MACHAKOS UNIVERSITY

University Examinations 2017/2018
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SUPPLEMENTARY EXAMINATION FOR
DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

DIPLOMA IN BUILDING AND CIVIL ENGINEERING
DIPLOMA IN MECHANICAL ENGINEERING

APPLIED GEOMETRY

DATE:
TIME:

INSTRUCTIONS

Attempt question ONE and any other two questions
QUESTION ONE (COMPULSORY) (30mrks)
I. A triangular template has sides of $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 5 cm . Find its three angles
II. Use the Cosine rule to solve the following triangle XYZ.
$\mathrm{y}=11 \mathrm{~cm}, \mathrm{z}=15 \mathrm{~cm}, \mathrm{X}=55^{\circ}$
(3marks)
III. Two ships, A and B, leave a port at the same time. A sails at a steady speed of $52 \mathrm{~km} / \mathrm{h}$, $\mathrm{S} 32^{\circ} \mathrm{W}$ and B at $38 \mathrm{~km} / \mathrm{h} \mathrm{S} 24^{\circ} \mathrm{E}$. Find their distance apart after 2.5 hours.
IV. Find the volume and the total surface area of a cone of radius 4.86 cm and perpendicular height 10.58 cm .
V. A hemisphere has a diameter of 3.6 cm . Find its volume and total surface area.
(3marks)
VI. A cone of height d is cut by a plane parallel to a distance $\frac{d}{3}$ from the base. Show that, the volume of the frustum produced is 70.37% of the original cone.
(3marks)
VII. Prove the following trigonometric identities
a.) $\sin \theta \cos \theta=\frac{\sin ^{2} \theta}{\tan \theta}$
(3marks)
b.) $\sin \theta \sec \theta=\tan \theta$
(3marks)
VIII. Verify the following identity

$$
\begin{aligned}
& \sin \theta+\sin \Phi=2 \sin \frac{\theta+\Phi}{2} \cos \frac{\theta-\Phi}{2} \\
& (4 \text { marks })
\end{aligned}
$$

IX. If $a=2 i+2 j \sim k$ and $b=3 i \sim 6 j+2 k$, find $a \cdot b$ and $a X b$
(2marks)

QUESTION TWO (2OMARKS)

I. What is the length of a diagonal of a square of side length $\sqrt{2}$
(2marks)
II. If $\tan \theta=a$, show that;
$\frac{\cos \theta \sin ^{2} \theta+\cos ^{3} \theta}{\sin \theta}=\frac{1}{a}$
(3marks)
III. A regular hexagonal pyramid has a perpendicular height of 42 mm . if the distance across the flats of the hexagonal base is 18 mm find the volume and the lateral surface area of the pyramid. (lateral surface area means the area of the sides of the figure) (5marks)
IV. Find the volume and the total surface area of a cone of radius 4.86 cm and perpendicular height 10.58 cm (5marks)
V. A cone 15 cm high and of base diameter 12 cm is cut by a plane parallel to the base and 9 cm from the base. Find the ratio of the volume of the two parts thus formed.
(5marks)

QUESTION THREE (2OMARKS)

I. Show that the points $\mathrm{A}=(1,3,5), \mathrm{B}=(4,12,20)$ and $\mathrm{C}=(3,9,15)$ are collinear. marks)
II. In triangle PQR, M is the midpoint of $\mathrm{PR} . \mathrm{N}$ is a point on PQ such that $3 \mathrm{PN}=2 \mathrm{NQ}$. $N M$ produced meets $Q R$ produced at L. Determine the ratios in which L divides $Q R$
marks)
III. Use the fundamental trigonometric identity to show that:
a.) The triangle with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is a right-angled triangle marks)
b.) The triangle with sides $7 \mathrm{~cm}, 15 \mathrm{~cm}$ and 16 cm is a right-angled triangle marks)
IV. Verify the following trigonometric identity:

$$
\text { a.) } \frac{(\cos \theta-\sin \theta)^{2}}{\cos \theta}=\sec \theta-2 \sin \theta
$$

V. Find the volume and total surface area of a frustum of a pyramid, the ends being squares of sides 6.4 m and 3.6 m and the height being 4 m .

QUESTION FOUR (20MARKS)

I. Show that

> a.) Tan $75^{\circ}=\frac{\sqrt{3}}{\sqrt{3}}+\frac{1}{-1}$ marks)
> b.) $\sin 15^{0}=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{}$ marks)
II. Find non-zero scalars $\boldsymbol{\mu}$ and $\boldsymbol{\beta}$ such that $\boldsymbol{\mu} \mathbf{a}+\boldsymbol{\beta} \boldsymbol{b}=\mathbf{c}$, given that $a=\binom{3}{2}, b=\binom{4}{6}, c=\binom{2}{2}$
marks)
III. Given that $\mathbf{r}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}, \mathbf{s}=4 \mathbf{i} \mathfrak{j}+5 \mathbf{k}$ and $\mathbf{t}=\sim \mathbf{i}+9 \mathbf{j}+5 \mathbf{k}$, express \mathbf{r} as a linear combination of s and t. marks)
IV. A cooling tower is in the form of a cylinder of height 15 m surmounted by a frustum of a cone. The diameter of the cylinder and the bottom of the frustum is 30 m and
the diameter at the top of the tower is 18 m . The height of the tower is 40 m . Calculate the volume of the air space in the tower if 35% of the space is used for pipes and other structures.
(5marks)
V. A triangular pyramid has a perpendicular height of 25 cm . If the base is an equilateral triangle of side 3 cm , find its volume.

QUESTION FIVE (20MARKS)

I. Proof $\sin (a+b)=\sin a \cos b+\cos a \sin b$ for angle $(a+b)<90^{\circ}$
II. Solve the equation $3 \cos 2 \varnothing+\sin \varnothing=1$ for values of \varnothing from 0° to 360° inclusive (5marks)
III. Prove that $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A} \sim 4 \sin ^{3} \mathrm{~A}$

