

University Examinations 2016/2017

SCHOOL OF ENGINEERINGAND TECHNOLOGY DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

FIRST SEMESTER THIRD YEAR EXAMINATIONS FOR DIPLOMA IN CIVIL ENGINEERING

BCECD 309: CIVIL ENGINEERING CONSTRUCTION II DATE:2/6/2017 TIME: 2.00-4.00 PM INSTRUCTIONS

Answer	Question	One and A	Any Other	Two Questions	

1.	a) Describe five factors that will determine the choice of a type of dredging		
		equipment.	(10 marks)
	b) Give two functions for sleepers in railway		(4 marks)
	c) Give two problems encountered during tunnel construction.		
	d)	Explain two methods used in the maintenance of dams.	(4 marks)
	e)	The rulling gradient is 1 in 200 on a section of B.G track. If the track is	laid on that
		place in a curve of 5°, determine the allowable rulling gradient on the c	urve.
			(2 marks)
	f)	Explain what is meant by a water front structure.	(2 marks)
2.	a)	With the aid of sketches, describe the following water front structures.	(12 marks)
		i. Moles	
		ii. Dry docks	
		iii. Dolphins	
	b)	Give four reasons for reclamation.	(8 marks)
3.	a)	Give five functional requirements of an ideal rail	(10 marks)
	b)	With an aid of a sketch, describe the cast iron pot type of chairs	(4 marks)
	c)	With an aid of a sketch, describe the sea wall water front structure.	(6 marks)

4.	a) With an aid of a sketch, explain any joint involved in rigid pavement construct			onstruction.	
				(4 marks)	
	b)	Describe with sketches the following dredging equipments;			
		i.	Cutter suction dredger		
		ii.	Trailing suction dredger		
	c)	With	a sketch explain the heading and benching method of funnel constr	ruction.	
	d)	Descr	ibe the following as in railways	(6 marks)	
		i.	Diamond crossing		
		ii.	Super elevation		
		iii.	Turn out		
5.	a)	With	a sketch, describe a fish plate fastening.	(6 marks)	
	b)	With	With the aid of sketches, differentiate bull leaded rails from double leaded rail		
				(6 marks)	
	c)	Expla	in briefly the procedure involved during reclamation process	(6 marks)	
	d)	Expla	in what is meant by super elevation in rails	(2 marks)	

University Examinations 2016/2017

SCHOOL OF ENGINEERING

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

SECOND YEAR FIRST SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL

ENGINEERING

BCECD 208: FLUID MECHANICS I

DAT	ГЕ: 5/8/	/2017	TIME: 2.00-4.00 PM	
INSTRUCTIONS Answer Question One and Any Other Two Questions				
1.	a)	Expl	ain two characteristics of liquids	(4 marks)
		b)	Define the following as in fluid mechanics	
		i.	Compressibility	
		ii.	Viscosity	
		iii.	Absolute pressure	
		iv.	Gauge pressure	(8 marks)
	c)	Belo	w is a diagram of a u-tube manometer, calculate;	
		i.	The pressure at A	

ii. The gauge pressure at A

d) For the u-tube differential manometer show below, determine the pressure between point A & B.

Examination Irregularity is punishable by expulsion

	e)	Water is flowing through a 200mm radius pipe with a velocity of 0.35ms ⁻¹				
		Determine the discharge.	(2 marks)			
	f)	Give two assumption of Bernoullis equation. (2				
	g)	A siphons has a circular hole of 75mm diameter and consist of a p	oipe with a crest			
		1.8m above water level discharging in atmosphere at a level of 3.6	om below water			
		level.				
		Determine;				
		i. Velocity of flow				
		ii. Discharge				
		iii. Absolute pressure at crest level if atmospheric pressure is	10m of water			
		(neglect losses due to friction.	(6 marks)			
2.	a)	Explain the following as in Bernoullis's equation.				
		i. Potential energy				
		ii. Kinetic energy				
		iii. Pressure energy	(6 marks)			
	b)	Differentiate between a liquid and gas	(2 marks)			
	c)	A certain liquid has specific gravity of 0.8, determine the following	ng;			
		i. Mass density				
		ii. Specific weight of the liquid				
		iii. Volume of 350gms of the liquid	(8 marks)			
	d)	Differentiate between specific gravity and specific weight.	(4 marks)			
3.	a)	Define the following terms and give their SI unit.				
		i. Cohesion				
		ii. Adhesion				
		iii. Surface tension				
		iv. Capillarity				
		v. Vapour pressure	(10 marks)			
	b)	Explain Pascal's Law and give the SI unit.	(4 marks)			
	c)	State three assumptions of bernoullis's equation.	(6 marks)			
4.	a)	Differentiate between turbulence flow and laminar flow (4 marks)				
	b)	Give three areas where bernoullis's equation is application. (6 marks)				
	c)	With the aid of diagram, describe a siphon parts. (6 mark				

	d)	A hydraulic cylinder must be able to exert a force of 38.8KN. The pistor	n
		diameter is 40mm. Compute the required pressure of the oil.	(4 marks)
5.	a)	A venturimeter is filled to a 450mm diameter and has a throat of 200mm	diameter.
		Find the quantity of water flowing when the venturi head is 175mm of w	vater.
		Take $CD = 0.96$	(6 marks)
	b)	Describe briefly a piezometer with the aid of a diagram.	(6 marks)
	c)	Vinegar has a density of 1080Kg/M ³ . Calculate its specific weight and its	ts
		specific density.	(6 marks)
	d)	Describe a differential u-tube manometer.	(2 marks)

University Examinations 2016/2017

SCHOOL OF ENGINEERING

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL

ENGINEERING

BCECD 119: STRENGTH OF MATERIALS 1

DA	DATE:6/6/2017			TIME: 2.00-4.00 PM	
INS Ans	INSTRUCTIONS Answer Question One and Any Other Two Questions				
1.	a)	Diffe	erentiate between stress and strain.	(2 marks)	
	b)	Illust	trate a graph of stress-strain relationship and show the fol	llowing:-	
		i.	Elastic limit		
		ii.	Limit of proportionality		
		iii.	Upper yield point		

- iv. Stress at failure (8 marks)
- c) Determine the second moment of area I_{xx} and I_{yy} for the compound second shown.

- i. The reactions at supports
- ii. Draw the shearing force diagram
- iii. Draw the bending moment diagram. (14 marks)
- c) With the aid of a diagram, show a uniformly distributed lead on a beam of span LM (4 marks)
- 3. a) Describe any three types of loads. (6 marks)
 - A mass concrete pier of rectangular, cross-section 600mm x 800mm and 2.20m
 long carries an axial compressive load of 2.5MN.
 Determine;
 - i. The stress in the concrete at the base of the pier.
 - ii. The amount of shortening that will occur in the pier.

Take – Density of concrete = 2500Kg/m³ Young's modulus = 13KN/mm² (8 marks)

- c) With the aid of a diagram show the following loading systems.
 - i. Concentrated load
 - ii. Line load
 - iii. Uniformly distributed load. (4 marks)
- 4. a) Explain a compound bar.
 - b) Determine the second moment of area of the rectangle shown in the figure about zz axis.

(8 marks)

(2 marks)

c) A short reinforced concrete column is 450mm square and contains four steel barsof 25mm diameter. Determine the stresses in the steel and the concrete when the

total load on the column is 1.5MN. Young's moduli: steel = 210KN/mm², concrete = 14KN/mm². (2 marks)

5. a) Determine the variation in stress in fully restrained steel members resulting in ambient temperature.

Coefficient of linear expansion for steel, $\mathfrak{P} = 12 \times 10^{-6}$ per Co. Young's modulus of elasticity of steel, $\mathfrak{E} = 205$ KN/mm²

- 30KN 4DKN 50KN 30KN A B C 5 F 1.0 M 2.0 M R.SM 1.SM 1.6 M
 - i. Reactions at supports
 - ii. Draw the shear force diagram
 - iii. Draw the bending moment diagram

b) Calculate the following in the figure below

(5 marks)

University Examinations 2016/2017

SCHOOL OF ENGINEERING

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

SECOND YEAR FIRST SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL

ENGINEERING

BCECD 204 THEORY OF STRUCTURES I

DATE:30/5/2017TIME: 8.30-10.30 AMINSTRUCTIONSAnswer Question One and Any Other Two Questions

- i. Short column
- ii. Long column (4 marks)
- b) With the aid of a diagram, derive an expression to show that $ryy = b/\sqrt{12}$ (2 marks)
- c) A horizontal girder having uniform cross-section is 14m long and is simply supported at its ends.

It carries two concentrated loads as shown. Calculate the deflection of the been under the loads C and D. Take E=200 N/MM² and I = $160 \times 10^6 \text{ mm}^4$.

2.	a)	A rec	A rectangular strut is 150mm and 120mm thick it carries a load 180KN at an			
		eccen	eccentricity of 10mm in a plane bisecting the thickness. Find the maximum and			
		minir	num intensities of stress in the section.	(10 marks)		
	b)	State	four assumptions of Euler's theory	(8 marks)		
	c)	Defin	e what is meant by crippling load	(2 marks)		
3.	a)	A col	umn of timber section 20 x 30 cm is 6 metres long both ends bein	ng fixed		
		if you	ang modules for timber = 17.5 KN/MM ²			
		Deter	mine;			
		i.	Crippling load			
		ii.	Radius of gyration	(10 marks)		
	b)	Deter	mine the Euler's buckling load for a steel diameter 40mm if the l	ength		
		betwe	een the pin joints is $5m (E = 210 \text{KN/MM}^2)$			
	c)	Expla	ain what is meant by slenderness ratio.	(7 marks)		
4.	a)	Deter	mine the crippling load, when the given is used in the following of	conditions.		
		i.	One end of the strut is fixed and the other is free			
		ii.	Both the ends of the strut are fixed			
		iii.	One end is fixed and other is hinged.	(8 marks)		
	b)	A hol	llow rectangular masonry pier is 1.2 x 0.8 m wide 4 and 140mm t	hick. A		
		vertic	cal load of 2MN is transmitted in the vertical plane bisecting 1.2r	n side and as		
		an ec	centricity of 100mm from geometric axis of the section.			
		Calcu	late the maximum and minimum stress intensities in the section.	(12 marks)		
5.	a)	A sol	id round bar 4m long and 5m in diameter is used as a strut with b	oth ends		
		hinge	ed.			
		Deter	mine the crippling load. Take $E = 2.0 \times 10^5 \text{ N/MM}^2$	(7 marks)		
	b)	A hor	rizontal beam AB is freely supported at A and B, 8M apart and ca	rried a		
		unifo	rmly distributed load of 15KN/M. A clockwise moment of 160KI	N/M is		
		applie	ed to the beam as a point C, 3m from the left hand support A. Cal	culate the		
		slope	of the beam at			
		C, if I	$EF = 40 \text{ x } 10 \text{KN}^3 / \text{M}^2$	(13 marks)		

University Examinations 2016/2017

SCHOOL OF ENGINEERING

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

SECOND YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL

ENGINEERING

BCE CD 213: THEORY OF STRUCTURES II

DATE:31/5/2017

TIME: 2.00-4.00 PM

INSTRUCTIONS Answer Question One and Any Other Two Questions

 a) A uniformly distributed load 40KM/M of 10m length cross a girder of span 40m from left to right. With the help of influence lines, determine the values of sheer force and bending moment at a point 18m form the left support, the head of the load is 12m from the left support. (20 marks)

- b) Explain three importance of studying influence lines. (6 marks)
- c) State four statically determinate structures (4 marks)
- 2. Find the forces in AB, AD, AC and equilibrium EF,FG and FH on the right hand side A

(20 marks)

 A train of 5 wheel-loads as shown crosses a simply supported beam of span 22.5 metres

Calculate the maximum negative and positive shear force values of the centre of the span and the absolute maximum bending moment anywhere in span.

(10 marks)

a) Two point loads of 80KN and 160KN spaced 2m apart, cross a girder of span 10m with the 80KN load leading form left to right. Draw the influence lines for sheet force and bending moment and find the value of maximum shear force and bending moment at a section 4m fro and left end support. (10 marks)

b) In the following diagram, udh of 2KN/M, 6m long crosses a girder of span 24m.Determine the values of S.F and BM at a point E. (10 marks)

Examination Irregularity is punishable by expulsion

University Examinations 2016/2017

SCHOOL OF ENGINEERING

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

SECOND YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL

ENGINEERING

BCE CD 215: ENGINEERING GEOLOGY

DATE:2/6/2017

TIME:8.30-10.30 AM

INSTRUCTIONS Answer Question One and Any Other Two Questions

1.	a)	Describe three physical characteristics of the following minerals;			
		i.	Diamond		
		ii.	Apatite		
		iii.	Calcite	(9 marks)	
	b)	Differ	rentiate between foliation and exfoliation.	(3 marks)	
	c)	Expla	in six roles of a geologist in construction industry.	(6 marks)	
	d)	Give t	three geological importance of faulting	(6 marks)	
	e)	Explai	in three agents of metamorphism.	(6 marks)	
2.	a)	Descri	ibe with sketches any three types of faults	(9 marks)	
	b)	Descri	ibe with sketches two methods of tunnel construction.	(4 marks)	
	c)	With s	sketches, describe three types of folds.	(7 marks)	
3.	a)	Expla	in five geological problems in dam construction.	(10 marks)	
	b)	Explai	in five physical properties of igneous rocks.	(10 marks)	
4.	a)	Explai	in the term protolith	(4 marks)	

	b)	Describe three types of foliation in metamorphic rocks giving an example i			
			(8 marks)		
	c)	Explain four factors affecting metamorphic rock textures.	(8 marks)		
5.	a)	Describe the three processes in physical weathering.	(6 marks)		
	b)	Give two advantages of constructing a tunnel as opposed to an open cut.	(4 marks)		
	c)	Describe two types of metamorphic rocks.	(4 marks)		
	d)	Give four factors affecting the choice of site of a dam construction.	(4 marks)		
	e)	Give two examples of bio-chemical weathering rocks.	(2 marks)		