

MACHAKOS UNIVERSITY

University Examinations 2017/2018

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN AGRICULTURAL EDUCATION AND EXTENSION

KST 104: FUNDAMENTALS OF CHEMISTRY

DATE: 14/12/2017	TIME: 2.00-4.00 PM

INSTRUCTIONS:

- The paper consists of **two** sections.
- Section **A** is **compulsory** (30 marks).
- Answer any **two** questions from section **B** (each 20 marks).

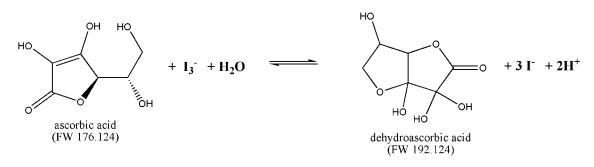
SECTION A (COMPULSORY)

QUESTION 1 (30 MARKS)

(a)	Briefly, explain the following terms	
	(ii) Titration error	[1 mark]
	(iii) Functional group	[1 mark]
(b)	Using examples, illustrate the difference between	
	(i) Molarity and normality	[2 marks]
	(ii) Polar and non-polar molecules	[2 marks]

- (c) Volumetric analysis is one of the classical methods for quantification of analytes in samples. Its application in the determination of protein content samples via Kjeldahl analysis for nitrogen has been widely explored. To determine the amount of protein, 0.9814 g sample was digested, where the nitrogen content was oxidized to NH₄⁺, then converted to NH₃ with NaOH followed by distillation of NH₃ into a collection flask contain 50.00 mL of 0.1047 M HCl. The excess HCl was back titrated with 22.84 ml 0.1183 M NaOH, requiring 22.84 mL. Calculate the % protein in the sample, given that there is 6.38 g of protein for every gram of nitrogen in the sample. (5 marks)
- (d) Analytical chemistry is useful in determination of pollutants in the environment. A KST 104 student was given a water sample in which to determine the level of chloride ions. By applying gravimetric methods of analysis, describe how the student would go about to solve this problem. (4 marks)
- (e) Alkalinity is defined as the buffering capacity of water. Briefly, explain what this means. (2 marks)
- (f) A shampoo has a pH of 8.7. What are $[H_3O^+]$ & $[OH^-]$ in the shampoo? (4 marks)
- (g) The energy difference between two states in the OH⁻ molecule is 35714 cm⁻¹.
 Calculate the wavelength (nm) needed to excite the molecule. (3 marks)
- (h) Ion exchange chromatography has come in handy in softening of hard water and making of deionized water.
 - (i) Water containing CaSO₄ is passed through a column containing cationexchange resin (Na⁺ form). Describe what happens to render the water soft.

(3 marks)

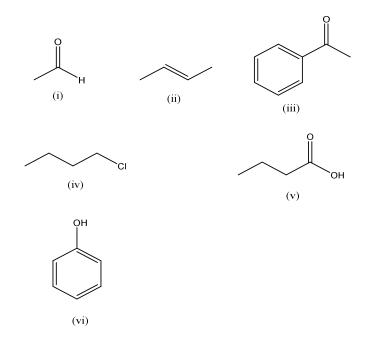

(ii) Water is passed through an anion-exchange resin (OH⁻ form) and cation-exchange resin (H⁺ form), describe what happens to Cu(NO₃)₂ if present in the water? (3 marks)

SECTION B: ATTEMPT ANY TWO QUESTIONS

QUESTION TWO (20 MARKS)

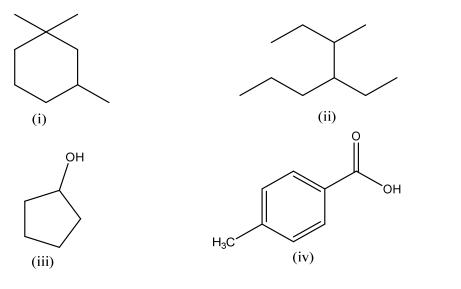
(a) Precipitation titration is one of the different types of titrations applied in quantitative determination of analytes. In the determination of chloride ions in water, the sample is titrated with silver nitrate. Describe three ways in which one can determine the end point.

(b) To standardize I_3^- solution with ascorbic acid, 29.41 mL of I_3^- solution was required to react with 0.1970 g of pure ascorbic acid, determine the molarity of the I_3^- solution. Below is the equation for the reaction. (3 marks)

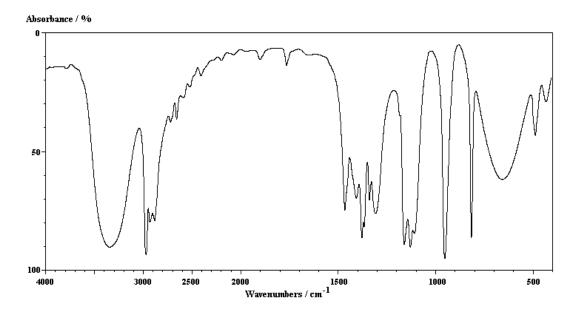


- (c) A mixture containing only Al₂O₃ and Fe₂O₃ weighs 2.019 g. When heated under a stream of H₂, Al₂O₃ is unchanged, but Fe₂O₃ is converted into metallic Fe plus H₂O (g). If the residue weighs 1.774 g, what is the weight percent of Fe₂O₃ in the original mixture? (5 marks)
- (e) In the titration of 25 mL of 0.05 M of AgNO₃ solution with 0.02 M KSCN solution, calculate the molar concentration of Ag^+ in the conical flask solution after the following additions of titrant KSCN solution given that Ksp (AgSCN)= $1.0x10^{-12}$:
 - (i) 30 mL
 - (ii) At equivalent point
 - (iii) 100 mL?

(6 marks)


QUESTION THREE (20 MARKS)

(a) Identify the functional groups in the following compounds:



(b) Provide the IUPAC names for the following compounds

(6 marks)

(c) Infrared spectroscopy is an important tool for identification of functional groups. In the IR spectra shown below, identify one functional group that must be in the compound.
 (1 mark)

(d) Describe two ways in which one can determine the concentration of a standard solution. (4 marks)

QUESTION FOUR (20 MARKS)

(a) Write the equilibrium constant for the reaction shown below

 $H_{2}(g) + I_{2}(g) \leftrightarrow 2 \operatorname{HI}(g)$ (2 marks)

- (b) The Haber process is a method to produce ammonia from hydrogen and nitrogen gases. The reaction is $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$. Explain what happens if hydrogen gas is added after the reaction has reached equilibrium. (3 marks)
- (c) Consider the following reaction

 $CO2 (g) + H_2 (g) \rightarrow CO (g) + H_2O (g)$

Calculate the value of the equilibrium constant, K, for the above system, if 0.1908 moles of CO₂, 0.0908 moles of H₂, 0.0092 moles of CO, and 0.0092 moles of H₂O vapour were present in a 2.00 L reaction vessel at equilibrium. (5 marks)

(d) Explain why alcohols have much higher boiling points than alkanes of a similar size.

(2 marks)

(e) Discuss two requirements of a primary standard. (4 marks)

(f) Describe how to prepare 250 mL of 0.5 molar solution of potassium permanganate

(4 marks)

(6 marks)

QUESTION FIVE (20 MARKS)

	Dispersed phase	Dispersion media	Type of colloid
(i)	Solid	gas	
(ii)	Liquid	solid	
(iii)	Liquid	liquid	
(iv)	Gas	liquid	

(a) Identify the type of colloid in the table shown below

- (c) Describe three ways in which colloidal systems can be prepared. (6 marks)
- (d) A colloidal system can be described as polydisperse or monodisperse. Differentiate between the two? (2 marks)
- (e) One of the properties of colloids is Tyndall effect. Discuss what is meant by Tyndall effect. (2 marks)
- (e) The advances in modern agriculture can be attributed to chemistry. Discuss 2 ways in which chemistry has contributed to agriculture. (4 marks)

		132.91 87 F1 (223)	ខ្លួន	37 Rb 85.468	19 K 39.098	11 Na 22.990	3 Li 6941	1 H 1.0079	-
# Actinide series	* Lanthar series	137.33 88 Ra (226)	8 %	38 SI 87.62	20 Ca 40.078	12 Mg 24,305	4 Be	2	
	* Lanthanide series	89-103 #	57-71 *	906'88 Å	21 Sc 44956	ω			
89 Ac (227)	57 La 138.91	178,49 104 Ref (2.61)	HI HI	40 Zr 91.224	22 Ti 47.867	4			
90 Th 232.04	58 Ce 140.12	180.95 105 Db (262)	73 Ta	41 Nb 92.906	23 V 50.942	Ui I			
91 Pa 231.04	59 Pr 140.91	183.84 106 Sg (266)	74 W	42 Mo 95.94	24 Cr 51.996	<i>с</i> ,			
92 U 238.03	60 Nd 144.24	186.21 107 Bh (264)	Re 3	(98) F &	25 Min 54.938	7			
(237) 28 N	61 Pm (145)	190.23 108 Hs (270)	8 3	44 Ru 101.07	26 Fe 55.845	œ			
94 (244)	62 Sm 150.36	192.22 109 Mt (268)	F 3	45 Rh 102.91	27 Co 58.933	vo			
(243)	63 Eu 151.96	195.08 110 Ds (281)	P 28	Pd 106.42	28 Ni 58.693	10			
(247) (247)	64 Gd 157.25	196.97 111 Rg (272)	79 Au	47 Ag 107.87	29 Cu 63.546	=			
(247)	158.93	200.59 112 (285)	H 88	48 Cd 112.41	30 Zn 65.409	12			
(25) Q %	66 Dy 162.50	204.38 113 Uut (284)	18	49 In 114.82	31 Ga 69.723		5 B 10811	13	
99 Es	67 Ho 164.93	207.2 114 Uuq (289)	PB	50 Sn 118.71	32 Ge 72.64	14 Si 28.086	12.011	4	
(257) 1 200	68 Ea 167.26	208.98 115 Uup (288)	9 .8	51 Sb 121.76	33 As 74922		7 14007	ы	
(258)	09 Tm 168.93	(209) 116 Uult (291)	Po ⁸⁴	52 Te 127.60	34 Se 78.96	16 S 32.065	0 0 15999	16	
(259)	70 Yb 173.04	(210)	≜ %	53 I 126.90	35 Ba 79.904	35,453	866'81 L	17	
(262)	71 Lu 17497	(222) 118 Uuo (294)	P %	54 Xe 13129	36 Kr 83,798	18 AI 39.948	10 Ne 20.180	10 2 He 4.0026	10