MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

FIRST YEAR SECOND SEMESTER EXAMINATION FOR CERTIFICATE IN

MECHANICAL ENGINEERING

MEC-PR 119: ENGINEERING SCIENCE II

DATE: 30/5/2017
TIME: 8:30-10:30 AM
INSTRUCTIONS

- This paper consists of FIVE questions
- Question ONE is Compulsory
- Answer any other TWO questions

1. a) Define the following terms-:
i. Acceleration
ii. Displacement
iii. Coefficient of friction
iv. Angle of friction
(4 marks)
b) A body of weight 300 N is lying on rough horizontal plane having a coefficient of friction of 0.3 . Find the magnitude of the force which can move the body acting at an angle of 25^{0} with horizontal
c) A train has a uniform acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ along a straight track. Calculate-:
i. The velocity after an interval of 16 s from stand still
ii. Time required and distance covered to attain a velocity of $50 \mathrm{~km} / \mathrm{h}$
iii. Time taken for the velocity to increase from $30 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ and the distance travelled during that time
2. a) State at least four laws of dry friction
b) A body resting on rough horizontal plane required a pull of 180 N inclined at 30° to the plane just to move it. It was found that a push of 220 N inclined at 30° to the plane just moves the body. Determine the weight of the body and the coefficient of friction.
(16 marks)
3. a) A wheel initially at rest is subjected to a constant angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$ for 50 s . Calculate the angular velocity attained and the number of revolutions the wheel makes in that time.
(10 marks)
b) A cricket ball is thrown vertically upwards at a velocity of $20 \mathrm{~m} / \mathrm{s}$. Calculate the time taken to reach the maximum height attained. Assume $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ and the air resistance to be negligible.
(10 marks)
4. A body of weight 50 N is at rest on an inclined plane. A force P is applied horizontally as shown below. If $\mu=0.4$. Find the range of values of P over which the body will remain at rest.
(20 marks)

During road test a car starting from rest attains a speed in first gear of $23.4 \mathrm{~km} / \mathrm{h}$ in 3 s . Second gear is then engaged and the car reaches a speed of $64.4 \mathrm{~km} / \mathrm{h}$ in a time 4 s . Third gear is then engaged and the car reaches a speed of $112.7 \mathrm{~km} / \mathrm{h}$ in a time of 5 s . The car is then brought to rest from $112.7 \mathrm{~km} / \mathrm{h}$ in a time of 4.8 s . Calculate -:
i. The acceleration of the car in all the three gears and the retardation
ii. The total time taken for the test
iii. The total distance covered during the test
(20 marks)

