

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

THIRD YEAR FIRST SEMESTER DIPLOMA IN MECHANICAL ENGINEERING

MED-PR-304: ANALOGUE ELECTRONICS

DATE: 1/8/2017

TIME: 8:30 – 10:30 AM

INSTRUCTIONS:

This paper consists of FIVE Questions. Answer <u>Question ONE</u> and <u>ANY OTHER TWO</u> questions.

QUESTION ONE (COMPULSORY) (30 MARKS)

a)	With the aid of well labeled diagrams, explain the Bohr atomic structures of the following elements.					
	i)	Conductors	iii. Semic	conductors	(4 marks)	
b)	Explain the	effect of temperature on	a semiconductor	under the following condition	ons	
	i.	Below zero degrees				
	ii.	At absolute zero				
	iii.	Above absolute zero			(6 marks)	
c)	With the aid	of well labeled diagram	s, explain the for	mation of a P-N junction	(6 marks)	
d)	If an external voltage is added to the P-N junction in (c) above, explain what could be the effect.					
					(4 marks)	
e)	By the aid of	a circuit diagram, expla	in the operation of	of a single stage amplifier	(10 marks)	

QUESTION TWO (20 MARKS)

a)	Exp	plain three properties of semiconductors	(6 marks)	
b)	Diff	ferentiate between Intrinsic semiconductors and Extrinsic semiconductors		
c)	i)	Calculate the operating point of a transistor whose collector load is $8k\Omega$ and	d the transistors'	
		quiescent current is 2mA. Take VCC as 20V.	(6 marks)	
	ii)	If RC was to be put to $10K\Omega$, what could be the operating point of the transformed states of the transformation of the transformat	nsistor in (i) above	
			(4 marks)	

QUESTION THREE (20 MARKS)

a)	In a common base connection, the emitter current is 10mA. If the emitter circuit is open, the collector				
	current is 100mA. Find the total collector current given that $\alpha = 0.98$	(6 marks)			
b)	With respect to a common emitter connection, derive the relationship between β and α .	(6 marks)			
c)	Find the values of collector and emitter currents in a transistor having ICB0= 3μ A, and				
	DC=0.98 when its base current is 60μ A.	(8 marks)			
QUE	STION FOUR (20 MARKS)				
a)	By the aid of well labeled diagram, explain the V-I characteristics on the following constition in Forward biasing	siderations: -			
	ii) Reverse biasing	(12 marks)			
b)	In (a) above, highlight the parts of the V-I characteristics graph drawn	(8 marks)			
QUESTION FIVE (20 MARKS)					

- a) With the aid of a well labeled diagram, explain a single stage emitter amplifier circuit (14 marks)
- b) Explain any six types of diodes and their application in the world of electronics. (6 marks)