

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST YEAR SECOND SEMESTER EXAMINATION FOR MASTER OF BUSINESS ADMINISTRATION

BMS 840: QUANTITATIVE TECHNIQUES

DATE: 4/8/2017

TIME: 10:00 – 1:00 PM

INSTRUCTIONS

Answer <u>ALL</u> the questions in Section A and <u>ANY TWO</u> Questions in Section B

SECTION A

QUESTION ONE (30 MARKS) (COMPULSORY)

- a) Define the following terms as used in operation research.
 - i Objective function
 - ii Constraints
 - iii Mathematical model
 - iv Optimization problem
 - v Feasible solution
- b) Evaluate the following limits

i)
$$\lim_{x \to 1} (x^2 - 2x + 3)$$
 (2 marks)
ii) $\lim_{x \to 0} \frac{(x^2 + 9)}{(x - 2)^2}$ (3 marks)

(5 marks)

c)	Find the $\lim_{x \to 0} x^2 \sin \frac{1}{x}$	(3 marks)
d)	Find the limit of $\lim_{\theta \to \infty} \frac{\sin 2\theta}{\theta}$	(3 marks)
e)	Find the derivative of $f(x) = 2x^2 - x + 5$ from the first principal	(3 marks)
f)	Find the derivative of $f(x) = \sin x$ using the 1 st principal	(4 marks)
g)	Obtain the derivative of $f(x) = 5x^2 - \cos x + 2$	(3 marks)
h)	Integrate the following functions with respect to x	
	$y = tan^8 x sec^2 x$	(4 marks)

SECTION B

QUESTION TWO (20 MARKS)

- a) Mr. Wafula has a 50 hectares piece of land. He wishes to plant tomatoes and onions. He has a capital of Ksh. 2700. One hectare of tomatoes cost Ksh. 60 to cultivate and onions cost Ksh. 30 to cultivate. He has a work force of 160 labourers and it takes 2 labourers to cultivate an hectare of tomatoes and 4 labourers to cultivate an hectare of onions. Suppose that he gets a profit of Ksh. 30 from tomatoes and 60 from onions
 - i Set up a linear programming model (10 marks)
 - ii Solve the problem using graphical method. (10 marks)

QUESTION THREE (20 MARKS)

- a) Calculate the maxima and minima values of function $y = x^3 3x^2 + 2$ and distinguish between them and sketch the graph. (5 marks)
- b) A cylinder is to be constructed so that the sum of height and ball radius is 6cm. Denoting ball radius by *r*cm, volume *v*cm³. Show that $r = \pi (6r^2 r^3)$. Hence show the value of *r* which make *V* a maxima. (5 marks)
- c) Evaluate

i.
$$\lim_{x \to 0} x \sin\left(\frac{\sqrt{x+2}}{x}\right)$$
(3 marks)

ii.
$$\lim_{x \to 2} \sqrt{\frac{5x^3 - 15}{x^3}}$$
 (2 marks)

d) For each of the following functions obtain their derivatives from first principal

$$f(x) = \frac{1}{2x+1} \tag{3 marks}$$

$$f(x) = 2x + 3 \tag{2 marks}$$

QUESTION FOUR (20 MARKS)

i

a) Find the integrals of the following function with respect to x, $y = \frac{2x+2}{x^2+2x+1}$ (5 marks)

b) Evaluate the following integral using the given change of variable

$$\int \frac{x(x-4)}{(x-2)^2}$$
, $u = x - 2$ (5 marks)

- c) Evaluate the following integral i $\int x^4 \sqrt{x^5 + 5} \, dx$ (5 marks)
 - ii $\int sin3xcos4x \, dx$ (5 marks)

QUESTION FIVE (20 MARKS)

Using appropriate integration techniques evaluate

- i $\int \frac{x^2}{(\sqrt{x^3+4)}} dx$ (6 marks)
- ii $\int \sin^5 x \cos^2 x \, dx$ (6 marks)

iii
$$\int (2-x) (x^2 - 4x + 4)^{-4} dx$$
 (4 marks)

iv Find the derivative of $f(x) = \sin x$ using the 1st principal (4 marks)