MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR SECOND SEMESTER EXAMINATION FOR MASTER OF BUSINESS
ADMINISTRATION

BMS 840: QUANTITATIVE TECHNIQUES

DATE: 4/8/2017
TIME: 10:00-1:00 PM
INSTRUCTIONS
Answer ALL the questions in Section A and ANY TWO Questions in Section B
SECTION A

QUESTION ONE (30 MARKS) (COMPULSORY)
a) Define the following terms as used in operation research.
i Objective function
ii Constraints
iii Mathematical model
iv Optimization problem
v Feasible solution
b) Evaluate the following limits
i) $\lim _{x \rightarrow 1}\left(x^{2}-2 x+3\right)$
ii) $\lim _{x \rightarrow 0} \frac{\left(x^{2}+9\right)}{(x-2)^{2}}$
c) Find the $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
d) Find the limit of $\lim _{\theta \rightarrow \infty} \frac{\sin 2 \theta}{\theta}$
e) Find the derivative of $f(x)=2 x^{2}-x+5$ from the first principal
f) Find the derivative of $f(x)=\sin x$ using the $1^{\text {st }}$ principal
g) Obtain the derivative of $f(x)=5 x^{2}-\cos x+2$
h) Integrate the following functions with respect to x

$$
\begin{equation*}
y=\tan ^{8} x \sec ^{2} x \tag{4marks}
\end{equation*}
$$

SECTION B

QUESTION TWO (20 MARKS)

a) Mr. Wafula has a 50 hectares piece of land. He wishes to plant tomatoes and onions. He has a capital of Ksh. 2700. One hectare of tomatoes cost Ksh. 60 to cultivate and onions cost Ksh. 30 to cultivate. He has a work force of 160 labourers and it takes 2 labourers to cultivate an hectare of tomatoes and 4 labourers to cultivate an hectare of onions. Suppose that he gets a profit of Ksh. 30 from tomatoes and 60 from onions
i Set up a linear programming model
ii Solve the problem using graphical method.

QUESTION THREE (20 MARKS)

a) Calculate the maxima and minima values of function $y=x^{3}-3 x^{2}+2$ and distinguish between them and sketch the graph.
b) A cylinder is to be constructed so that the sum of height and ball radius is 6 cm . Denoting ball radius by $r \mathrm{~cm}$, volume $v \mathrm{~cm}^{3}$. Show that $r=\pi\left(6 r^{2}-r^{3}\right)$. Hence show the value of r which make V a maxima.
c) Evaluate

$$
\text { i. } \quad \lim _{x \rightarrow 0} x \sin \left(\frac{\sqrt{x+2}}{x}\right)
$$

ii. $\quad \lim _{x \rightarrow 2} \sqrt{\frac{5 x^{3}-15}{x^{3}}}$
(2 marks)
d) For each of the following functions obtain their derivatives from first principal

$$
\begin{array}{ll}
\text { i } & f(x)=\frac{1}{2 x+1} \\
\text { ii } & f(x)=2 x+3
\end{array}
$$

QUESTION FOUR (20 MARKS)

a) Find the integrals of the following function with respect to $\mathrm{x}, y=\frac{2 x+2}{x^{2}+2 x+1} \quad$ (5 marks)
b) Evaluate the following integral using the given change of variable

$$
\int \frac{x(x-4)}{(x-2)^{2}}, \quad u=x-2
$$

c) Evaluate the following integral
i $\quad \int x^{4} \sqrt{x^{5}+5} d x$
ii $\quad \int \sin 3 x \cos 4 x d x$

QUESTION FIVE (20 MARKS)

Using appropriate integration techniques evaluate
i $\int \frac{x^{2}}{\left(\sqrt{\left(x^{3}+4\right)}\right.} d x$
ii $\int \sin ^{5} x \cos ^{2} x d x$
iii $\int(2-x)\left(x^{2}-4 x+4\right)^{-4} d x$
iv Find the derivative of $f(x)=\sin x$ using the $1^{\text {st }}$ principal

