

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE) SMA 406: FUNCTIONAL ANALYSIS

DATE: 26/7/2017 TIME: 8:30 – 10:30 AM

INSTRUCTIONS

Answer question ONE (Compulsory) and any other TWO questions QUESTION ONE (30 MARKS)

- a) Define the following:
 - i. Metric space (2 marks)
 - ii. Normed space and Banach space. (2 marks)
 - iii. Equivalent norms. (2 marks)
- b) Show that a subspace Y of a Banach space X is complete if and only if Y is closed in X.

(5 marks)

- c) Given an operator T: $X \rightarrow Y$ defined by Tx=3x .show that T is linear. (3 marks)
- d) Show that:
 - i. $|||x|| ||y||| \le ||x y||$ for all $x, y \in X$. (2 marks)
 - ii. $|||x|| ||y||| \le ||x + y||$ for all $x, y \in X$. (2 marks)
- e) Show that $f(x) = \int_a^b x(t)dt$, $x \in C[a,b]$ is linear and bounded functional on C[a,b].(6 marks)
- f) Show that every convergent sequence in a normed space is a Cauchy sequence. (6 marks)

QUESTION TWO (20 MARKS)

- a) Proof the continuous mapping theorem which states that a mapping T on a Metric space X into a metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X. (8 marks)
- Show that the vector space $X=\mathbb{R}^2$ is a normed space with respect to the following norm $||p|| = (x^2 + y^2)^{1/2}$ for all $x,y \in \mathbb{R}^2$. (6 marks)
- c) Let (x_n) be a weakly convergent sequence in a normed space X, say $x_n \rightarrow x$. show that weak limit in x_n is unique. (6 marks)

QUESTION THREE (20 MARKS)

- a) Show that the linear space \mathbb{R}^n with <, > defined for arbitrary vectors $\mathbf{x} = (x_1, x_2, x_3, \dots, x_n)$, $\mathbf{y} = (y_1, y_2, y_3, \dots, y_n)$ in \mathbb{R}^n by $< x, y > = \sum_{i=1}^n x_i y_i$ is an inner product. (4 marks)
- b) Show that an inner product on E defines a norm on E given by $||x|| = \sqrt{\langle x, x \rangle}$. (6 marks)
- c) If in an inner product space $x_{n \to} x$ and $y_{n \to} y$ show that $\langle x_n, y_n \rangle \to \langle x, y \rangle$. (5 marks)
- d) Show that the space l_p with p not equal to zero is not an inner space product space and hence not a Hilbert space . (5 marks)

QUESTION FOUR (20 MARKS)

- a) Let X,Y be vector spaces and T:D(T) \rightarrow R(T) be a linear operator with D(T) \subset X and R(T) \subset Y .Show that :
 - i. The inverse of T exist if and only if Tx=0 implies x=0. (5 marks)
 - ii. If inverse of T exist, it is a linear operator . (5 marks)
- b) i Show that the linear space C[0,1] with the function <,> defined for arbitrary $f,g \in C[0,1] \text{ by } < f,g > = \int_0^1 f(x)\overline{g(x)} \text{ dx is an inner product space . (6 marks)}$
 - ii Verify that $\langle x, 0 \rangle = 0$ for all $x \in X$. (4 marks)

QUESTION FIVE (20 MARKS)

- a) Show that any closed subset of a compact metric space is compact. (7 marks)
- b) Show that any sequentially compact subset of a metric space is bounded and closed. (7 marks)
- c) If (X,d) is a metric space with the discrete metric ,show that the induced topology consists of all the subsets of X. (6 marks)