

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS THIRD YEAR FIRST SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL ENGINEERING SUPPLEMENTARY EXAMINATION CALCULUS III

DATE: 29/8/2017 TIME: 8:30 – 10:30 AM

INSTRUCTIONS

Answer question ONE (Compulsory) and any other TWO questions QUESTION ONE (COMPULSORY) (30 MARKS)

a) Use the maclaurins series to find the series for the following functions

i)
$$ln(1 + x)$$

(5 marks)

ii)
$$In(1 + 3x)$$

(5 marks)

b) i) Derive the fourier series expansion expression

(5 marks)

ii)
$$f(x) = \{t^2 + t\}$$

$$-\pi < x > \pi$$

f (t+ 2π)

(15 marks)

c) Using the maclaurins series of $(1 + x)^n$ derive its binomial series

(5 marks)

QUESTION TWO

a) Given that $\cos 60^{\circ} = 0.5$ determine the value of $\cos 70^{\circ}$ by taylors series

(5 marks)

b) Determine the value of $\int_0^1 \frac{\cos 2x}{x^{1/3}} dx$ correct to 2 decimal places.

(5 marks)

i) Derive fourier series co efficients for half range sine series with a period
 T. (5 marks)

ii) Given
$$f(x) = \begin{cases} 3t & 0 < t > 1 \\ 3 & 1 < t > 2 \\ f(t+2) \end{cases}$$

find the fourier series expansion.

(15 marks)

QUESTION THREE

a) i) Given the polynomial $f(x) = x^3 + 2x^2 - 5x - 1$ prove that the newton Raphsons interpolation formulae is given by

$$x_{n+1} = \frac{2x^3 + 2x^2 + 1}{3x^2 + 4x - 5} \tag{4 marks}$$

ii) taking $x_0 = 1.4$ obtain a better approximation to the root of the equation $x^3 + 2x^2 - 5x - 1$ correct to four decimal places.

(6 marks)

b) Given the table

X	1	2	3	4	5	6	7
F(x)	-3	1	11	33	73	137	231

i) Construct a finite table of differences

(3 marks)

ii) Use the table to obtain the values of f (2.8), f (6.7) correct to three decimal places (7 marks)

QUESTION FOUR

A fourier series function is represented by

$$f(x) = \begin{cases} 1 + \frac{x}{\pi} & -\pi < x > o \\ 1 - \frac{x}{\pi} & 0 < x > \pi \\ f(x + 2\pi) \end{cases}$$

obtain the fourier series

(20 marks)