MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 THIRD YEAR FIRST SEMESTER EXAMINATION FOR
 DIPLOMA IN CIVIL ENGINEERING
 SUPPLEMENTARY EXAMINATION
 CALCULUS III

Answer question ONE (Compulsory) and any other TWO questions
QUESTION ONE (COMPULSORY) (30 MARKS)
a) Use the maclaurins series to find the series for the following functions
i) $\operatorname{In}(1+x)$ (5 marks)
ii) $\operatorname{In}(1+3 x)$
b) i) Derive the fourier series expansion expression (5 marks)
ii) $\quad f(x)=\left\{t^{2}+t\right\} \quad-\pi<x>\pi$

$$
\begin{equation*}
\mathrm{f}(\mathrm{t}+2 \pi) \tag{15marks}
\end{equation*}
$$

c) Using the maclaurins series of $(1+x)^{n}$ derive its binomial series

QUESTION TWO

a) Given that $\cos 60^{\circ}=0.5$ determine the value of $\cos 70^{\circ}$ by taylors series
b) Determine the value of $\int_{0}^{1} \frac{\cos 2 x}{x^{1 / 3}} d x$ correct to 2 decimal places.
c) i) Derive fourier series co efficients for half range sine series with a period T.
(5 marks)
ii) Given $f(x)=\left\{\begin{array}{cc}3 t & 0<t>1 \\ 3 & 1<t>2 \\ f(t+2)\end{array}\right\}$
find the fourier series expansion.
(15 marks)

QUESTION THREE

a) i) Given the polynomial $f(x)=x^{3}+2 x^{2}-5 x-1$ prove that the newton Raphsons interpolation formulae is given by

$$
\begin{equation*}
x_{n+1}=\frac{2 x^{3}+2 x^{2}+1}{3 x^{2}+4 x-5} \tag{4marks}
\end{equation*}
$$

ii) taking $x_{0}=1.4$ obtain a better approximation to the root of the equation $x^{3}+2 x^{2}-5 x-1$ correct to four decimal places.
(6 marks)
b) Given the table

x	1	2	3	4	5	6	7
$\mathrm{~F}(\mathrm{x})$	-3	1	11	33	73	137	231

i) Construct a finite table of differences
ii) Use the table to obtain the values of $\mathrm{f}(2.8), \mathrm{f}$ (6.7) correct to three decimal places

QUESTION FOUR

A fourier series function is represented by

$$
f(x)=\left\{\begin{array}{cc}
1+\frac{x}{\pi} & -\pi<x>0 \\
1-\frac{x}{\pi} & 0<x>\pi \\
& f(x+2 \pi)
\end{array}\right\}
$$

obtain the fourier series
(20 marks)

