

# MACHAKOS UNIVERSITY COLLEGE 

(A Constituent College of Kenyatta University)
University Examinations for 2015/2016 Academic Year
SCHOOL OF PURE AND APPLIED SCIENCE
DEPARTMENT OF MATHEMATICS AND STATISTICS

## SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

SMA 210: MATHEMATICS IV

Date: 19/04/2016
Time: 2.00-4.00 PM
INSTRUCTIONS
Attempt Question One Which is A Compulsory Question And Any Other Two Questions.

Show All Your Working.

1. a) Given that $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & 4\end{array}\right] \quad$ and $\mathrm{B}=\left[\begin{array}{ccc}-1 & 1 & 3 \\ 2 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$

Determine $\mathrm{AB}-\mathrm{A}$.
b) Solve the equation $\left|\begin{array}{lll}X & 2 & 3 \\ 2 & 3 & X \\ X & 1 & 2\end{array}\right|=-4$
c) Solve the following differential equations
i) $\frac{d y}{d x}=3+2 y$
ii) $\frac{d y}{d x}=5 x+\sin x$
(4 marks)
d) Use Maclaurins series to obtain series of
(i) $\quad \operatorname{Sin} \mathrm{x}$ as far as the term in $\mathrm{x}^{5}$ then simplify your answer.
(6 marks)
(ii) $\quad(2+3 x)^{4}$ then simplify your answer.
(8 marks)
2.
a) Given that $\mathrm{A}=\left[\begin{array}{cc}4 & 9 \\ -3 & 6 \\ 2 & 5\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ccc}-3 & 2 & 4 \\ 4 & 5 & 2\end{array}\right] \quad$ and $\mathrm{C}=\left[\begin{array}{ccc}X & -4 & Y \\ -4 & 5 & -3 \\ 2 & -3 & Z\end{array}\right]$ and that $(A B) C=\left[\begin{array}{ccc}-120 & 67 & 15 \\ -63 & -12 & -24 \\ -66 & 35 & 7\end{array}\right]$ Determine the values of $X, Y$ and $Z$.
b) Use Crammers rule to solve the equations

$$
\begin{align*}
& 3 p-q-r=3 \\
& 2 p+3 q-r=-1 \\
& P+4 q-5 r=8 \tag{12marks}
\end{align*}
$$

3. a) Solve the differential equation $2 \frac{d r}{d x}+\sin 2 x=0$ given that when $\mathrm{x}=\frac{\pi}{2} \mathrm{r}=2$
b) Solve the differential equation $\left(D^{2}-D-2\right) y=6 e^{-x}$ given that when $x=0, y=3$

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=-2 . \tag{14marks}
\end{equation*}
$$

4. a) Express $\cos (x+h)$ ) as a series of powers of $h$ and evaluate, without using tables, $\operatorname{Cos} 70^{\circ}$ by using Taylors series correct to 4 decimal places given that $\cos 60^{\circ}=\frac{1}{2}$ and $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$.
(10 marks)
b) Solve the differential equation $x y \frac{d y}{d x}=x^{2}+y^{2}$ given that when $x=1 y=0$.
a) Find from first principals the Laplace transform of $\mathrm{e}^{2 \mathrm{t}}$.
b) Determine the inverse Laplase transform of $\frac{4 s^{2}-5 s+6}{(s+1)\left(s^{2}+4\right)}$
c) Use Laplace transforms to solve the differential equation

$$
\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+2 x=2 e^{3 t} \text { given that at } \mathrm{t}=0, \mathrm{x}=5 \text { and } \frac{d x}{d t}=7
$$

