

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST YEAR SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING DIPLOMA IN MECHANICAL ENGINEERING

DIPLOMA IN CIVIL ENGINEERING
SUPPLEMENTARY EXAMINATION
SCU 102: CHEMISTRY
DATE: 31/8/2017
TIME: 8:30-10:30 AM

INSTRUCTIONS:

Answer questions one and any other two.
USE: Atomic numbers for: $\mathrm{H}=1, \mathrm{~N}=7, \mathrm{O}=8, \mathrm{C}=6, \mathrm{Al}=13, \mathrm{Cl}=17, \mathrm{Na}=11$

SECTION A

QUESTION ONE (30 MARKS)

a) Calculate the pH of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ acid.
b) i) Give the conjugate acid of $\mathrm{H}_{2} \mathrm{O}$
ii) Differentiate between a weak acid and a strong acid.
iii) Using s p d f orbitals write down the electronic configuration of Potassium atomic number 19 .
c) i) Define an acid using Arrhenius theory.
ii) Write an appropriate equation to show how $\mathrm{HSO}_{4}{ }^{-}$can act as Arrhenius acid.
(4 marks)
d) Show how the hybridization of atomic orbitals occurs in Methane molecule, CH_{4} and name type of hybridization.
e) Using dots and crosses draw the electronic structures for water $\mathrm{H}_{2} \mathrm{O}$ and methyl radical
CH_{3}.
f) State the group, period and the block to which element Q atomic number 21 belongs.
g) Calculate the value of a cell from the standard electrode potentials given below.

$$
\begin{array}{lr}
\mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e} \rightarrow \mathrm{Mg}_{(\mathrm{s})} & -2.36 \mathrm{~V} \\
\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e} \rightarrow \mathrm{Cu}_{(\mathrm{s})} & +0.34 \mathrm{~V}
\end{array}
$$

SECTION B

QUESTION TWO (20MARKS)

a) Explain what is meant by hydrogen bonding and give an example.
b) Using dots and crosses draw diagrams to show electronic structures of:
i. AlCl_{3}
ii. $\quad \mathrm{Na}_{2} \mathrm{O}$
iii. $\quad \mathrm{C}_{2} \mathrm{H}_{2}$
c) The atomic nuclei of atoms P and Q contain:

P- 14 neutrons, 12 protons
Q- 7 neutrons, 7 protons
i. Draw the structure of the hydride of P .
ii. Using s p d forbitals write the electronic configuration of P and Q . (9 marks)

QUESTION THREE (20 MARKS)

a) The dissociation constant for a weak monobasic acid is $3.2 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the pH of the acid if its concentration is $1.25 \times 10^{-2} \mathrm{M}$.
b) i) Define a base using the Arrhenius and Bronsted-Lowry theories.
ii) State two advantages under the Arrhenius theory.
(4 marks)
c) Show by writing an appropriate equation how $\mathrm{HCO}_{3}{ }^{-1}$ can act as Bronsted-Lowry acid and Arrhenius acid.
d) State the basicity of the following acids and calculate their pH .
$0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
$10^{-2} \mathrm{M} \mathrm{HCl}$

QUESTION FOUR (20 MARKS)

a) Three elements A,B and C have atomic numbers 17, 12 and16 respectively. Draw using dots and crosses the structures formed between: (i) A and B (ii) AandC.Name the types of bonds formed.
(8marks)
b) Define dative (coordinate) bond.

Show how the dative bond is formed when Phosphorous trichloride combines with oxygen. Name the molecule formed.
(6 marks)
c) $\quad Q$ is an element with electronic configuration $1 s^{2} 2 s^{2} 2 p^{4}$.
i. Write down the atomic number of Q .
ii. State with reasons whether Q is a metal or a non metal.
iii. Show how Q will combine with four chlorine atoms.

QUESTION FIVE (30 MARKS)

a) Explain the following terms.

$$
\begin{array}{ll}
\text { i. } & \text { Anode } \\
\text { ii. } & \text { Molten electrolyte }
\end{array}
$$

b) i Draw a diagram for electrochemical cell using magnesium and iron given that the standard reduction potentials for magnesium and iron are -236 V and -0.44 V respectively.
ii Write ionic equations for the reactions in each half cell
iii Write down the overall cell equation.
iv Calculate the emf of the cell

