

MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST YEAR SECOND SEMESTER EXAMINATION FOR

CERTIFICATE IN ELECTRICAL AND ELECTRONICS ENGINEERING

CERTIFICATE IN MECHANICAL ENGINEERING

CERTIFICATE IN CIVIL ENGINEERING

SUPPLEMENTARY EXAMINATION

BCE BT 111: PHYSICS

DATE: 30/8/2017

TIME: 2:00 – 4:00 PM

INSTRUCTIONS:

Answer question one and any other two questions

Use 1. $g = 9.81 \text{ms}^{-2}$

2. Density of mercury = 13.6 g cm^{-3}

SECTION A

QUESTION ONE (30MARKS)

a)	i)	State the principle of moments.			
	ii)	A 10N weight is placed on 10cm mark of a 150 N uniform meter rule	e. Calculate		
		the distance of the pivot from the center of the meter rule.	(4 marks)		
b)	i)	Define the following terms and give their SI units:			
		1. Force			
		2. Pressure	(3 marks)		
	ii)	A block of weight 100N measures 2mm by 3mm by 7mm. Calculate	the minimum		
		pressure it can exerted in Nm ⁻² .	(5 marks)		
c)	i)	State the one difference between speed and velocity.			
	ii)	A car travelling at 20 kmh ⁻¹ accelerates uniformly at 1.5 m ⁻² . Calculate its			
		Velocity in ms ⁻¹ after 5 seconds.	(4 marks)		
d)	i)	Define Power			
	ii) By pulling a block of mass 25 kg through a distance of 500 m,		found out		
		that he took 10 minutes. Calculate the power he develops.	(5 marks)		
e)	i)	Define Friction			
	ii)	Distinguish between static and dynamic friction.	(3 marks)		
SEC'	TION	B			
QUE	STIO	N TWO (20MARKS)			
a)	Define				
	i.	Velocity			
	ii.	Acceleration	(4 marks)		
b)	A car runs at a constant speed of 10 ms ⁻¹ for 200 seconds then accelerates uniformly to a				
	speed of 30ms ⁻¹ for 40 seconds. This speed is maintained for 400 seconds before it				
	decelerates uniformly to rest in 50 seconds.				
	i.	Draw a Velocity time graph for the journey.	(5 marks)		
	ii.	Calculate its average velocity	(3 marks)		
c)	Distinguish between scalar and vector quantities. Give one example in each case.				
			(4 marks)		
d)	A body moving at 15 ms ⁻¹ accelerates at 2.5 ms ⁻² for 250 seconds. Calculate the distance				
	covered by the body. (4 mark				

QUESTION THREE (20 MARKS)

- a) A 5N weight placed on 20cm mark of a uniform meter-rule balances an object X hanging from 70 cm mark.
 - i. Draw a diagram for the set up
 - ii.Calculate the weight of the object.(8 marks)(Take moments about 50cm mark)
- b) What is meant by relative density of a substance (3 marks)
- c) Calculate the mass of mercury block given that its dimensions are 10cmx12cm and height 4cm. (4 marks)
- A uniform bar 5 m long and mass 20 kg rests on two sharp edges placed at 50cm and
 150cm respectively from the ends. Calculate the reaction forces at the edges. (5 marks)

QUESTION FOUR (20MARKS)

a)	Distinguish between work and Energy	(4 marks)	
b)	An Engine raises a load of 500 kg from a mine which is 100 m deep. If the load is raised		
	in 10 minutes, calculate the power of the engine.	(3 marks)	
c)	Define coefficient of friction.	(4 marks)	
d)	Name a device for whose working friction is essential	(3 marks)	
e)	Name two disadvantages of friction	(3 marks)	
f)	Use a diagram to show the types of forces for an object of weight W placed on an		
	inclined plane.	(3 marks)	

QUESTION FIVE (20 MARKS)

a)	State	the Law of Conservation of Energy	(3marks)		
b)	A body of Mass is 5 kg is raised to a height of 50 m above the ground. It is then dropped				
	to the ground.				
	Calculate its velocity just before it strikes the ground.		(3marks)		
c)	A second year student who has a mass of 70 kg runs up a flight of 50 stairs each 200 mm				
	high in 20 seconds. Calculate				
	i.	Total work done in raising his own weight	(3 marks)		
	ii.	Useful average power he develops	(4 marks)		
d)	Distinguish between mass and weight (4 mark		(4 marks)		
e)	An object of mass 5 kg is moving with a velocity of 20 ms ⁻¹ . Calculate its kinetic energy.				
			(3 marks)		