MACHAKOS UNIVERSITY

University Examinations 2016/2017

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES

FIRST YEAR SECOND SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE
IN ELECTRICAL AND ELECTRONICS ENGINNERING
SUPPLEMENTARY EXAMINATION
ECU 102: CHEMISTRY FOR ENGINEERS II
DATE: 30/8/2017
TIME:

INSTRUCTIONS:

- The paper consists of two sections.
- Section A is compulsory.
- Answer any two questions from section \mathbf{B}.
- $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
- $1 \mathrm{~atm}=760 \mathrm{mmHg}$

SECTION A - COMPULSORY.

QUESTION ONE

a) Derive:
i. The ideal gas equation
ii. The Van der Waals equation
iii. An equation for the pressure at the base of a column of liquid of mass density ρ (rho) and height h at the surface of the Earth.
b) A sample of 3.50 moles of NH_{3} gas occupies 5.2 L at $47^{\circ} \mathrm{C}$. Calculate the pressure of the gas (in atm) using:
i. The ideal gas equation
(1 mark)
ii. The Van der Waals equation given $\mathrm{a}_{\mathrm{NH} 3}=4.17 \mathrm{~atm} \mathrm{~L} / \mathrm{mol}^{2}$ and $\mathrm{b}_{\mathrm{NH} 3}=0.0371$ L/mol.
c) i A certain anesthetic compound contains 64.9% carbon, 13.5% hydrogen and 21.6% oxygen. At $120{ }^{\circ} \mathrm{C}$ and $760 \mathrm{mmHg}, 1.00 \mathrm{~L}$ of the gaseous compound weighs 2.30 g . What is the molecular formula of the compound?
ii. In an industrial process, nitrogen is heated to 500 K in a vessel of constant volume. If it enters the vessel at 100 atm and 300 K , what pressure would it exert at the working temperature if it behaved as a perfect gas?
d) i State the Le Chatelier's principle. (2 marks)
ii The equilibrium constant K for the formation of nitrosyl chloride from nitric oxide and chlorine:
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NOCl}_{(\mathrm{g})}$ is 6.5×10^{4} at $35^{\circ} \mathrm{C}$. In which direction will the reactions proceed to reach equilibrium if the starting NO, Cl and NOCl are 1.1 x $10^{-3} \mathrm{~mol} / \mathrm{L}, 3.5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ and $1.9 \mathrm{~mol} / \mathrm{L}$ respectively.
e) \quad Given the reversible equation: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g}))} \quad \Delta \mathrm{H}=-196 \mathrm{kJmol}^{-1}$
i. \quad Give an equation for equilibrium constant $\left(K_{\mathrm{p}}\right)$.
ii. The K_{p} for the above equilibrium reaction is 1.45×10^{-5} at $500^{\circ} \mathrm{C}$. Calculate the partial pressure of SO_{3} when the partial pressure of SO_{2} is 0.928 atmospheres and that of O_{2} is 0.432 atmospheres.
iii. Calculate the value of K_{c} at a temperature of $800^{\circ} \mathrm{C}$.
iv. Explain the effect of (i) increasing pressure (ii) increasing temperature to the above reversible reaction.
(2 marks)

SECTION B: ANSWER ANY TWO QUESTIONS QUESTION TWO

a) Define the following terms;
i. Redox reaction
ii. Rate constant
iii. Rate of reaction
iv. Order of a reaction
v. Reaction intermediate
(5 marks)
b) Define half-life $\left(\mathrm{t}_{1 / 2}\right)$ and show that for a $1^{\text {st }}$ order rate reaction, the half life $\left(\mathrm{t}_{1 / 2}\right)$ is independent of initial concentration.
(5 marks)
c) For a $1^{\text {st }}$ order reaction: $2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}$ has a rate constant of $1.06 \times 10^{-3} \mathrm{~min}^{-}$ ${ }^{1}$. If the initial $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{0}=0.020 \mathrm{~mol} / \mathrm{L}$, then what percentage of it remains after 100 minutes of reaction time.
(5 marks)
d) The reaction: $2 \mathrm{NOBr}_{(g)} \rightarrow 2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)}$ is a second order reaction with respect to NOBr. $k=0.810 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $10^{\circ} \mathrm{C}$. If $(\mathrm{NOBr})_{\mathrm{o}}=7.5 \times 10^{-3} \mathrm{M}$, how much NOBr will be left after a reaction time of 10 minutes? Determine the half-life of this reaction. (5 marks)

QUESTION THREE

a) Define the following terms;
i. Standard electrode potential
ii. An anode
iii. An electrolytic cell
iv. Electromotive force
b) i Explain the limitations to the use of standard electrode potential.
ii State the Nernst equation of electrochemical reactions and define all the terms.
(3 marks)
iii An electrochemical cell is made of X (standard electrode potential; $\left.\left(E^{0}\right)=+0.7100 \mathrm{~V}\right)$ and $\mathrm{Y}\left(E^{0}=+0.34 \mathrm{~V}\right)$ electrodes.

- Using standard sign conventions, construct a cell expression made of X and Y electrodes
(2 marks)
- If the $\left(\mathrm{X}^{+}\right)=0.01 \mathrm{M}$ and $\left(\mathrm{Y}^{2+}\right)=0.1 \mathrm{M}$ for the above cell, what would be the instantaneous EMF of the cell at $25^{\circ} \mathrm{C}$.
(4 marks)
c) i Write the balanced net ionic equation for the reaction:

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}+\mathrm{VO}^{2+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{V}(\mathrm{OH})_{4}^{-} \tag{3marks}
\end{equation*}
$$

ii Identify the oxidizing and the reducing agent in the above equation

QUESTION THREE

a) i State Henry's law.
ii List the conditions for applicability of Henry's law.
b) i What is an ideal solution?
ii Briefly describe properties of an ideal solution.
iii Sketch plots of vapour pressure versus mole fractions for the binary solution toluene-benzene obeying Raoult's law over the whole concentration range at a certain temperature. Comment on your observations.
(4 marks)
iv \quad Calculate the vapour pressure of a solution containing 11.7 g benzene $(\mathrm{MW}=78)$ and 4.6 g methylbenzene $(\mathrm{MW}=92)$ at $50^{\circ} \mathrm{C}$, if the vapour pressures of the pure components at this temperature are $3.6 \times 10^{4} \mathrm{Nm}^{-2}$ and $1.12 \times 10^{4} \mathrm{Nm}^{-2}$, respectively.
c) i) What is osmosis?
ii) A biochemical engineer isolates a bacterial gene fragment and dissolves a 17.6 mg sample of the material in enough water to make 31.5 mL of solution. The osmotic pressure of the solution is 0.340 torr at $25.0^{\circ} \mathrm{C}$. Calculate the molar mass of the gene fragment.

QUESTION FIVE

a) i) What are colligative properties?
ii) Give three examples of colligative properties.
iii) Boiling point elevation is a colligative property. Explain
iv) Explain the Van't Hoff factor in colligative properties equation.
v) With an aid of a labeled diagram, describe Landsberger's method for determining the elevation in boiling point of a solvent on dissolving a non-volatile solute in it.
b) i) What is pH of a solution?
ii) The dissociation constant of acetic acid at $25^{\circ} \mathrm{C}$ is 1.75×10^{-5}. Calculate the degree of dissociation and the pH of the solution in a 0.500 M acetic acid solution.

