

# **MACHAKOS UNIVERSITY**

### University Examinations 2016/2017

## SCHOOL OF PURE AND APPLIED SCIENCES

## DEPARTMENT OF PHYSICAL SCIENCES

# FIRST YEAR SECOND SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINNERING SUPPLEMENTARY EXAMINATION

#### ECU 102: CHEMISTRY FOR ENGINEERS II

DATE: 30/8/2017

TIME:

#### **INSTRUCTIONS:**

- The paper consists of **two** sections.
- Section **A** is **compulsory**.
- Answer any two questions from section **B**.
- R = 8.314 JK<sup>-1</sup>mol<sup>-1</sup> = 0.08206 L atm K<sup>-1</sup> mol<sup>-1</sup>
- 1 atm = 760 mmHg

# **SECTION A - COMPULSORY.**

# **QUESTION ONE**

| -  |                                                                                                                        |                                                                                                                    |                        |  |  |
|----|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| a) | Derive:                                                                                                                |                                                                                                                    |                        |  |  |
|    | i.                                                                                                                     | The ideal gas equation                                                                                             | (4 marks)              |  |  |
|    | ii.                                                                                                                    | The Van der Waals equation                                                                                         | (3 marks)              |  |  |
|    | iii.                                                                                                                   | An equation for the pressure at the base of a column of liquid of mass density $\rho$                              |                        |  |  |
|    |                                                                                                                        | (rho) and height $h$ at the surface of the Earth.                                                                  | (2 marks)              |  |  |
| b) | A sa                                                                                                                   | ample of 3.50 moles of $NH_3$ gas occupies 5.2 L at 47 °C. Calculate the                                           | e pressure of the      |  |  |
|    | gas (                                                                                                                  | (in atm) using:                                                                                                    |                        |  |  |
|    | i.                                                                                                                     | The ideal gas equation                                                                                             | (1 mark)               |  |  |
|    | ii.                                                                                                                    | The Van der Waals equation given $a_{NH3}$ = 4.17 atm L/mol <sup>2</sup> and                                       | $b_{\rm NH3} = 0.0371$ |  |  |
|    |                                                                                                                        | L/mol.                                                                                                             | (1 mark)               |  |  |
| c) | i                                                                                                                      | A certain anesthetic compound contains 64.9% carbon, 13.5%                                                         | hydrogen and           |  |  |
|    |                                                                                                                        | 21.6% oxygen. At 120 °C and 760 mmHg, 1.00 L of the gase                                                           | eous compound          |  |  |
|    |                                                                                                                        | weighs 2.30 g. What is the molecular formula of the compound?                                                      | (5 marks)              |  |  |
|    | ii.                                                                                                                    | In an industrial process, nitrogen is heated to 500 K in a ves                                                     | sel of constant        |  |  |
|    |                                                                                                                        | volume. If it enters the vessel at 100 atm and 300 K, what pressure would it exert                                 |                        |  |  |
|    |                                                                                                                        | at the working temperature if it behaved as a perfect gas?                                                         | (2 marks)              |  |  |
| d) | i                                                                                                                      | State the Le Chatelier's principle.                                                                                | (2 marks)              |  |  |
|    | ii                                                                                                                     | The equilibrium constant K for the formation of nitrosyl chlor                                                     | ride from nitric       |  |  |
|    |                                                                                                                        | oxide and chlorine:                                                                                                |                        |  |  |
|    |                                                                                                                        | $2NO_{(g)} + Cl_{2(g)} \leftrightarrow 2NOCl_{(g)}$ is 6.5 x 10 <sup>4</sup> at 35 °C. In which direction will the |                        |  |  |
|    |                                                                                                                        | reactions proceed to reach equilibrium if the starting NO, Cl and NOCl are 1.1 x                                   |                        |  |  |
|    |                                                                                                                        | $10^{-3}$ mol/L, 3.5 x $10^{-4}$ mol/L and 1.9 mol/L respectively.                                                 | (4 marks)              |  |  |
| e) | Given the reversible equation: $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$ $\Delta H = -196 \text{ kJmol}^{-1}$ |                                                                                                                    |                        |  |  |
|    | i.                                                                                                                     | Give an equation for equilibrium constant $(K_p)$ .                                                                | (1 mark)               |  |  |
|    | ii.                                                                                                                    | The $K_p$ for the above equilibrium reaction is 1.45 x 10 <sup>-5</sup> at 500 °C. Calculate the                   |                        |  |  |
|    |                                                                                                                        | partial pressure of SO <sub>3</sub> when the partial pressure of SO <sub>2</sub> is $0.928$ atmospheres and        |                        |  |  |
|    |                                                                                                                        | that of $O_2$ is 0.432 atmospheres.                                                                                | (2 marks)              |  |  |
|    | iii.                                                                                                                   | Calculate the value of $K_c$ at a temperature of 800 °C.                                                           | (1 mark)               |  |  |
|    |                                                                                                                        | iv. Explain the effect of (i) increasing pressure (ii) increasing t                                                | emperature to          |  |  |
|    |                                                                                                                        | the above reversible reaction.                                                                                     | (2 marks)              |  |  |
|    |                                                                                                                        |                                                                                                                    |                        |  |  |

# SECTION B: ANSWER ANY TWO QUESTIONS QUESTION TWO

- a) Define the following terms;
  - i. Redox reaction
  - ii. Rate constant
  - iii. Rate of reaction
  - iv. Order of a reaction
  - v. Reaction intermediate (5 marks)
- b) Define half-life  $(t_{1/2})$  and show that for a 1<sup>st</sup> order rate reaction, the half life  $(t_{1/2})$  is independent of initial concentration. (5 marks)
- c) For a 1<sup>st</sup> order reaction:  $2H_2O_{2(aq)} \rightarrow 2H_2O_{(l)} + O_{2(g)}$  has a rate constant of 1.06 x 10<sup>-3</sup> min<sup>-1</sup>. If the initial  $(H_2O_2)_0 = 0.020$  mol/L, then what percentage of it remains after 100 minutes of reaction time. (5 marks)
- d) The reaction:  $2\text{NOBr}_{(g)} \rightarrow 2\text{NO}_{(g)} + \text{Br}_{2(g)}$  is a second order reaction with respect to NOBr.  $k = 0.810 \text{ M}^{-1} \text{ s}^{-1}$  at 10 °C. If  $(\text{NOBr})_0 = 7.5 \times 10^{-3} \text{ M}$ , how much NOBr will be left after a reaction time of 10 minutes? Determine the half-life of this reaction. (5 marks)

#### **QUESTION THREE**

- a) Define the following terms;
  - i. Standard electrode potential
  - ii. An anode
  - iii. An electrolytic cell
  - iv. Electromotive force (4 marks)
- b) i Explain the limitations to the use of standard electrode potential. (2 marks)
  - ii State the Nernst equation of electrochemical reactions and define all the terms.

(3 marks)

iii An electrochemical cell is made of X (standard electrode potential;

$$(E^0) = +0.7100 \text{ V}$$
 and Y  $(E^0 = +0.34 \text{ V})$  electrodes.

- Using standard sign conventions, construct a cell expression made of X and Y electrodes (2 marks)
- If the  $(X^+) = 0.01$  M and  $(Y^{2+}) = 0.1$  M for the above cell, what would be the instantaneous EMF of the cell at 25 °C. (4 marks)
- c) i Write the balanced net ionic equation for the reaction:

$$MnO_4^- + VO^{2+} \rightarrow Mn^{2+} + V(OH)_4^-$$
 (3 marks)

ii Identify the oxidizing and the reducing agent in the above equation (2 marks)

Examination Irregularity is punishable by expulsion Page 3 of 4

## **QUESTION THREE**

| <b>x</b> |       |                                                                                       |                   |  |
|----------|-------|---------------------------------------------------------------------------------------|-------------------|--|
| a)       | i     | State Henry's law.                                                                    | (2 marks)         |  |
|          | ii    | List the conditions for applicability of Henry's law.                                 | (2 marks)         |  |
| b)       | i     | What is an ideal solution?                                                            | (1 mark)          |  |
|          | ii    | Briefly describe properties of an ideal solution.                                     | (2 marks)         |  |
|          | iii   | Sketch plots of vapour pressure versus mole fractions for the binary solution         |                   |  |
|          |       | toluene-benzene obeying Raoult's law over the whole concentration range at a          |                   |  |
|          |       | certain temperature. Comment on your observations.                                    | (4 marks)         |  |
|          | iv    | Calculate the vapour pressure of a solution containing 11.7 g benzene ( $MW = 78$ )   |                   |  |
|          |       | and 4.6 g methylbenzene (MW = 92) at 50 $^{\circ}$ C, if the vapour pressure          | s of the pure     |  |
|          |       | components at this temperature are 3.6 x $10^4$ Nm <sup>-2</sup> and 1.12 x $10^4$ Nr | m <sup>-2</sup> , |  |
|          |       | respectively.                                                                         | (4 marks)         |  |
| c)       | i)    | What is osmosis?                                                                      | (1 mark)          |  |
|          | ii)   | A biochemical engineer isolates a bacterial gene fragment and dissolves a 17.6        |                   |  |
|          |       | mg sample of the material in enough water to make 31.5 mL of solution. The            |                   |  |
|          |       | osmotic pressure of the solution is 0.340 torr at 25.0 °C. Calculate the molar mass   |                   |  |
|          |       | of the gene fragment.                                                                 | (4 marks)         |  |
| QUI      | ESTIO | N FIVE                                                                                |                   |  |
| a)       | i)    | What are colligative properties?                                                      | (1 mark)          |  |
|          | ii)   | Give three examples of colligative properties.                                        | (3 marks)         |  |
|          |       |                                                                                       |                   |  |

- iii) Boiling point elevation is a colligative property. Explain (2 marks)
- iv) Explain the Van't Hoff factor in colligative properties equation. (2 marks)
- v) With an aid of a labeled diagram, describe Landsberger's method for determining the elevation in boiling point of a solvent on dissolving a non-volatile solute in it.

(6 marks) (2 marks)

- b) i) What is pH of a solution?
  - The dissociation constant of acetic acid at 25 °C is 1.75 x 10<sup>-5</sup>. Calculate the degree of dissociation and the pH of the solution in a 0.500 M acetic acid solution. (4 marks)