
 
American Journal of Operations Management and Information Systems 
2017; 2(3): 72-75 

http://www.sciencepublishinggroup.com/j/ajomis 

doi: 10.11648/j.ajomis.20170203.11 
 
 

 Review Article  

Review of Software Engineering in the Context of 
Embedded and Cyber Physical Systems 

Omuya Odhiambo Erick
1
, Julius Murumba

2
 

1Department of Computing and Information Technology, Machakos University, Machakos, Kenya 
2Department of Management Science, Technical University of Kenya, Nairobi, Kenya 

Email address: 
Omuya2005@gmail.com (O. O. Erick), j.murumba@gmail.com (J. Murumba) 

To cite this article: 
Omuya Odhiambo Erick, Julius Murumba. Review of Software Engineering in the Context of Embedded and Cyber Physical Systems. 

American Journal of Operations Management and Information Systems. Vol. 2, No. 3, 2017, pp. 72-75. doi: 10.11648/j.ajomis.20170203.11 

Received: October 28, 2016; Accepted: January 4, 2017; Published: January 27, 2017 

 

Abstract: Embedded systems have overwhelmingly penetrated systems globally in areas such as transportation, 

industrial-automation, medical-equipment, communication and energy as a result of Innovations being triggered by software 

embedded in these systems. These systems use approximately 98 percent of all the microprocessors produced worldwide. The 

objective of this study was to discuss the state of embedded systems use in software engineering, establish Opportunities Created 

by Embedded Systems and to investigate the Challenges of Embedded and Cyber-Physical Systems. This study utilized the 

literature review method to examine and analyze secondary sources of data such as conference reports, journal articles, and 

publication articles including google scholar. The paper aims at contributing towards knowledge and lessons that can be applied 

in towards building embedded and cyber physical systems in software engineering. 

Keywords: Embedded Systems, Real-Time, Layout, Latencies, Concurrency, Petri-Nets, Cyber-Physical, Feedback Loops 

 

1. Introduction 

1.1. Embedded Systems Overview 

In the current world, it is difficult to imagine a day-to-day 

life without embedded systems. We are surrounded with many 

embedded systems products and our lives depend on the 

proper working of these gadgets. Embedded systems have 

been greatly applied worldwide in many areas like transport, 

industrial automation and communication systems. A good 

percentage of microprocessors produced globally have 

actually been used in such systems [8-9]. The worldwide 

market for embedded systems is around 160 billion euros, 

with an annual growth of 9 percent. While these statistics are 

comparable to the world’s biggest software packages, such as 

Microsoft Windows, embedded software is far more complex 

due to the real-time and interface constraints that do not affect 

IT, application, or desktop software. The embedded and 

information systems communities tend to exist in almost 

complete isolation from one another. This holds for 

conferences as well as for organization layout and products. 

Embedded systems most often need real time programming. 

Real Time operating systems and their working are generally 

shown by two methods: Finite state machine and Petri-Nets. 

But these two modeling methods have shown certain 

limitations as many sophisticated embedded systems are 

multiprocessor systems and the processes have short latencies. 

1.2. Cyber-Physical Systems Overview 

Cyber-Physical Systems (CPS) are integrations of 

computation with physical processes. 

Integrated networking, information processing, sensing and 

actuation capabilities allow physical devices to operate in 

changing environments. This makes smart systems possible 

but also creates the need for a new ‘systems science’ that can 

lead to unprecedented capabilities. Tightly coupled cyber and 

physical systems that exhibit this level of integrated 

intelligence are sometimes referred to as cyber-physical 

systems. All CPS have computational processes that interact 

with physical components. These can be relatively simple 

(e.g., a heater, cutting machine) or comprise multiple 

components in complex assemblies (e.g., vehicles, aircraft 

systems, oil refineries). The computational and physical 

processes of such systems are tightly interconnected and 



73 Omuya Odhiambo Erick and Julius Murumba:  Review of Software Engineering  

in the Context of Embedded and Cyber Physical Systems 

coordinated to work together effectively, often with humans in 

the loop [4]. 

Robots, intelligent buildings, implantable medical devices, 

cars that drive themselves or planes that automatically fly in 

a controlled airspace—these are all examples of CPS. Today, 

CPS can be found in such diverse industries as aerospace, 

automotive, energy, healthcare, manufacturing, 

infrastructure, consumer electronics, and communications. 

Everyday life is becoming increasingly dependent on these 

systems—in some cases with dramatic improvements. 

Software engineering aspects in relation to cyber-physical 

systems is similar to embedded systems. An example is 

given below. 

 
Figure 1. Embedded system example –Digital thermostat. 

2. State of Embedded Systems in 

Software Engineering 

2.1. Lines of Code vs Making Things Work 

In embedded software the complexity is not in the lines of 

code, most of the times. Configuring an interrupt handler to 

respond to your button push and balancing the priority 

between a button push and a temperature sensor input might 

have taken a whole day to work on. At the end of the day, the 

embedded software developer would have written 50 lines of 

code. A software developer generally writes more lines of 

code almost always. The reason is that a software developers 

builds a product just with his lines of code, out of thin air [1]. 

An embedded guy makes a physical hardware device work 

with his software. 

2.2. Algorithm & Data Processing vs System Control 

A software program generally revolves around 2 aspects, 

ALGORITHM and DATA. Take any program, it would either 

be computing something (numerically or logically), which is 

what i refer as Algorithm or it would be working on data. It 

could be storing data, moving data, processing data or simply 

presenting or deleting data. Any software right from banking, 

insurance, retail, and logistics to simple PC based software 

like Word, PowerPoint, etc., all of them work on the 

aforementioned principles. An embedded software is more 

focused towards controlling and managing the system (or 

hardware). It is developed to exploit the full potential of the 

hardware and manage it for the benefit of the user. Though 

there would be data and algorithm in embedded software, it 

would be there only to control and manage the hardware in a 

better fashion. 

2.3. Personal Computer vs Printed Circuit Board 

Though embedded developers work on PC they are not 

writing software for PCs. They use the PC to build their 

software which eventually runs on another platform (a Printed 

Circuit Board with a Micro controller). Embedded software 

engineers develop software for these BOARDS and move the 

executable binary from the PC to the board using debugging 

tools or specific connectivity options. Software developers 

develop software that run on PCs or PC equivalents (like 

servers). Whether the software runs in a bank, shipyard, your 

Fedex store, Airport or Grocery store it runs on a computer. 

May be nowadays they run on Mobile phones and tablets too. 

From an embedded perspective today's tablets and mobiles 

don't differ much from PCs as they are all are more "General 

Purpose" [5-6]. 

2.4. Improving Software Development for Embedded 

Systems 

To improve your own embedded development processes, 

and to ensure that benchmark data applies to your 

environment, we strongly suggest building your own history 

database with baselines for estimation and quality planning. 

To get started without much overhead, we recommend the 

following lean set of effective project indicators [1]. 

a. Effort. This is a basic monitoring parameter to ensure 

you stay on budget. Effort is estimated up front for the 

project and its activities. Afterward, these effort elements are 

tracked. 

b. Schedule and time. Monitor results, increments, and 

milestones to ensure that you can keep the scheduled delivery 

time. Similar to effort, time is broken down into increments or 

phases that are tracked based on what has been delivered so 

far. Note that milestone completion must be aligned with 

defined quality criteria to avoid detecting poor quality 

software too late. 

c. Project progress. This is the key measurement during the 

entire project execution. Progress has many facets and should 

monitor deliverables and how they contribute to achieving the 

project’s goals. Typically, there are milestones for the big 

steps and earned value and increments for the day-to-day 

operational tracking. Earned value techniques look to the 

degree with which results such as implemented and tested 

requirements or closed-work packages relate to effort spent 

and elapsed time. This lets us estimate the cost and remaining 

time to complete the project. 

d. Methodology: This is the method that is used to actually 

develop the embedded system. It should be monitored in terms 

of its progress and accuracy of delivery. One that has been 

repeatedly used is agile methodology which yields early 

product delivery, predictable schedule and relatively good 

quality [10]. 

 



 American Journal of Operations Management and Information Systems 2017; 2(3): 72-75 74 

 

3. Opportunities Created by Embedded 

Systems 

Embedded systems are becoming more and more important. 

The exponential increase in computing power, ubiquitous 

connectivity and the convergence of technology have resulted 

in hardware/software systems being embedded in everyday 

products and places (for example: today, 20% of the value of 

each car is attributed to embedded electronics, and this will 

increase to 35-50% by 2020). It goes without saying that 

embedded systems engineers have excellent career prospects, 

due to the increasing integration of hardware and software in 

applications. You’ll build your own future based on your 

personal interests, whether you’d like to be a researcher, a 

designer (developer of new products and services) or an 

organizer (managing an engineering department or providing 

consultancy services). 

4. Challenges of Embedded and 

Cyber-Physical Systems 

4.1. Challenges of Embedded Systems and Proposed 

Solutions 

4.1.1. Creating Predictable Systems 

Creating systems whose behavior can be predicted is one of 

the universal bottlenecks of embedded systems. System 

behavior includes a number of parameters like functionality, 

reaction and execution properties, for instance, timing and 

consumption of resources. Prediction of process outcome 

includes consideration of all possible continuations which is a 

difficult and expensive task to perform. In building 

predictable embedded systems the developers can opt to 

entirely use deterministic parts as the major components of the 

systems. The main task therefore would be to determine all 

causes of non-determinism and introduce ways of sorting 

them [11-12]. 

4.1.2. Robustness Through Continuity 

Another major challenge pf designing embedded systems is 

creating systems with robust behavior even when perturbing 

conditions exist. Given a set of requirements, a preference 

metric provides a measure of how close a system comes to 

meeting the requirements, and how robust it is against small 

changes in the requirements [13-14]. These requirements can 

either be reactive or execution oriented and they may assume 

dimensions like how precise the result is, timeliness and the 

expected lifetime of the system. The properties of robustness 

can be formalized as a mathematical continuity. Continuity 

properties are great because they enable system performance 

to degrade smoothly if the environment changes either 

accidentally or maliciously [12]. 

4.1.3. Safety and Security 

Risks from malfunctions of embedded software are much 

higher than those of application software. Security rapidly 

grows in relevance as embedded software communicates 

autonomously with other computing systems [2]. 

4.2. Challenges of Cyber-Physical Systems 

Advancement in CPS requires a new systems science that 

encompasses both physical and computational aspects. 

Systems and computer science has provided a solid 

foundation for spectacular progress in engineering and 

information technology; a type of new systems science is now 

needed to address the unique scientific and technical 

challenges of CPS. Below are some of the challenges facing 

cyber-physical systems. 

a. Interaction between humans and systems. Current models 

for human and machine behaviors are not adequate for 

designing CPS when humans and machines closely interact. 

One of the challenges is modeling and measuring situational 

awareness—human perception of the system and its 

environment and changes in parameters that are critical to 

decision-making. This is particularly necessary for complex, 

dynamic systems, such as those used in aviation, air traffic 

control, power plant operations, military command and 

control, and emergency services. 

b. Dealing with uncertainty. Complex CPS need to be able 

to evolve and operate reliably in new and uncertain 

environments. An increasing number of these systems will 

also demonstrate emergent and unknown behaviors as they 

become more and more reliant on machine learning 

methodologies. In both cases, uncertainty in the knowledge or 

outcome of a process will require new ways to quantify 

uncertainty during the CPS design and development stages. 

Current methods for characterization and quantification of 

uncertainty are limited and inadequate. This is exacerbated by 

the limits of reliability and accuracy of physical components, 

the validity of models characterizing them, network 

connections, and potential design errors in software. 

c. Measuring and verifying system performance. The 

difficulty of verifying performance, accuracy, reliability, 

security, and various other requirements impedes 

development and investment in CPS. Today’s capabilities for 

verification and validation (V&V) of CPS are limited, time 

consuming, and costly, particularly when compared to 

development time. Two major challenges are the creation of 

methodologies to further the capabilities of V&V of complex 

systems, and the development of test beds and datasets to 

support a principled approach to the validation of complex 

CPS. If the design phase is more reliable, testing can become 

more informed and require less time. The evaluation 

challenges will become increasingly difficult at the larger 

scales and higher complexity expected for future CPS, which 

will have massive and interconnected sensor, actuator, and 

component networks. 

5. Conclusion 

This paper discussed the state of embedded systems in 

software, established the opportunities created by embedded 

and cyber physical systems. The challenges related to the 

development if these systems are also well articulated. The 



75 Omuya Odhiambo Erick and Julius Murumba:  Review of Software Engineering  

in the Context of Embedded and Cyber Physical Systems 

content was obtained by examining and analyzing secondary 

sources of data. The research contributed to knowledge and 

provided lessons that can be applied in building embedded and 

cyber physical systems. 

 

References 

[1] Christof Abert and Copers Jones, 2009. Embedded Software: 
Facts, Figures and Future, IEEE, 2009. 

[2] GAO, 2010. Protecting the Federal Government’s Information 
Systems and the Nation’s Cyber Critical Infrastructures. 
Government Accountability Office, 2010. Accessed 12/18/12. 
http://www.gao.gov/highrisk/risks/ 
safety-security/government_information_systems.php 

[3] IEEE Software, special issue on software development for 
embedded systems, May/June 2009; 
www.computer.org/portal/site/software 

[4] Lee, 2012. Edward A. Lee, Cyber Physical Systems: Design 
Challenges, International Symposium on 
Object/Component/Service-Oriented Real-Time Distributed 
Computing (ISORC), May 6, 2008, Orlando, FL. 

[5] Newsletter and archive on embedded-software engineering and 
technologies: www.embedded.com 

[6] Applications of Embedded Systems: 
http://www.amazon.com/Software-Engineering-Embedded-Sy
stems-Applications/dp/012415 9176 

[7] Differences between Embedded and Cyber-Physical Systems: 
https://www.linkedin.com/pulse/5-differences-between-embed
ded-maharajan 

[8] David Greenfield, 2013, How Embedded Systems are changing 
automation. Automation World, 2013. 

[9] P R Kolhe, M. H. Tharkar, R. M Dharskar P P. Kolhe, 2014. 
Impact of Embeded Systems in Modern Life, International 
Journal of Computer Science, Volume 2, Issue 10. 2014. 

[10] James Grenning, 2011. Agile Embedded Software 
Development, San Jose, CA, 2011. 

[11] Edwards, S. A. & Lee, E. A. 2007. The case for the 
precision-timed PRET machine. In Proc. Design Automation 
Conference (DAC), pp. 264–265. (doi: 
10.1109/DAC.2007.375165) 

[12] Thomas A. Henzinger. 2008. Two challenges in embedded 
systems design, The Royal Society publishing, 2008. 

[13] Chatterjee, K., Ghosal, A., Henzinger, T. A., Iercan, D., Kirsch, 
C. M., Pinello, C. & Sangiovanni-Vincentelli, A. 2008 Logical 
reliability of interacting real-time tasks. In Proc. Design, 
Automation, and Test in Europe (DATE), pp. 909–914. (doi: 
10.1109/DATE.2008.4484790) 

[14] R. Alur et al. 2001. “Hierarchical Hybrid Modeling of 
Embedded Systems,” Proc. 1st Int’l Workshop Embedded 
Software (EMSOFT 01), LNCS 2211, Springer, 2001, pp. 14–
31. 

[15] Embeded Systems. 
http://www.intel.com/education/highered/Embedded/lec-tures/. 

 


