
Environmental Research Communications

LETTER • OPEN ACCESS

Potential tropical climate-based spatio-temporal grass variability
To cite this article: Charles K Kigen et al 2019 Environ. Res. Commun. 1 021001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 197.136.134.5 on 27/03/2019 at 08:48

https://doi.org/10.1088/2515-7620/ab0cc7


Environ. Res. Commun. 1 (2019) 021001 https://doi.org/10.1088/2515-7620/ab0cc7

LETTER

Potential tropical climate-based spatio-temporal grass variability

CharlesKKigen1 , FrancisNMuyekho2, EdwardNMasibayi3 and StanleyMMakindi4

1 Department ofNatural Resources,MoiUniversity, Kenya
2 School of Agriculture andVeterinary Science andTechnology,MasindeMuliroUniversity of Science andTechnology, Kenya
3 Department ofDisaster Preparedness and EngineeringManagementMasindeMuliroUniversity of Science andTechnology, Kenya
4 Department of Environmental Science EgertonUniversity, Kenya

E-mail: charleskigen@gmail.com

Keywords: rangeland, grass,modelling, climate change, spatial, temporal

Abstract
Numerous international agreements aimed at reduction of greenhouse gas emissions by signatory
countries have been ratified in an attempt to combat the adverse varied impacts of climate change and
promote resource use sustainability. Grass is an important resource that livestock, wildlife and human
beings depend on and is largely influenced by climatic conditions. The grass inKenya supports the key
economic activities of livestock andwildlife-based tourism. This significant contribution to gross
domestic product underscored the need tomodel the impacts of climate change on the grass for the
country to promote sustainable development. The study aimed atmodelling the impacts of projected
climate variations on the spatial and temporal distribution of grass in the base-year (1950–2000) and
the future climatic periods of the years 2050 and 2070. The spatial data was sourced fromUnited States
Geological Survey, International Livestock Research Institute, andAfricover Project processed and
analysed inArcGIS, DIVA-GIS,Maxent andMapComparisonKit softwares. Themodels outputs
were significant with the least area under receiver-operator curve (AUC) values of 0.754. The study
found out that the 2050 climate will decrease grass niche suitability by 44.99%, the unsuitable will
increase by 87.01%, the grass niche suitability locationwill shift by 76.7% and the category areas
change by 46.4%; the 2070 climatic period grass niche suitability will shrink by 55.21%, the unsuitable
category increase by 106.80%, the location changewill be 77.8% and the category areas will vary by
66.0%. The research concluded that the rangeland vegetation (grass)will decline and shift location in
the both future climatic periods.

1. Introduction

The rangelands according toWRI (1986) are defined aswild forage-producing areas under native grass and other
forage plants used, among other things, for livestock, wildlife, andwatershedmaintenance that can be too rocky,
steep, poorly drained or cold to farm. The grass which forms pasture resources support livestock kept formeat,
hides, skins andwildlife which is critical for tourism and related activities.Most of grass resources are largely
influenced by climatic conditions (Allen et al 2010, Crimmins et al 2011). Anomalies in climate have been
documented bymany researchers who alsomodelled the future climate scenarios (IPCC2007, IPCC 2014).

Research has shown that the Earth haswarmed up by an average of about 0.6 °C since the late 19th century
and is projected that the temperaturewill increase to 1.4 °C–5.8 °Cby 2100 at a global scale (IPCC2007).
Temperature anomalies inKenya have been reported to be 0.4 °C–1.6 °Cwith climate change related deaths of
70–120 permillion population (Patz andOlson 2006). The changes in temperature and rainfall patternswill
have a direct impact on the land use land cover (LULC) (Stephenson 1990) and other organisms. In reference to
vegetation, climate change can cause significant effects on its spatial and temporal distribution. Variations of
vegetation, an important ecosystem and natural resource will disrupt both ecological and economic activities
that are directly or indirectly depending on it. Ecosystems like tropical rangelands support directly and indirectly
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a huge number of livestock, herbivores and carnivores that are critical to economic activities in Kenya
(KIPPRA 2013). These economic activities are ranching, livestock keeping and tourismwhich are directly
dependent onweather. The livestock development sub-sector contributes about 42 per cent of agricultural GDP,
which is about 10 percent directly to the overall GDPwith tourism and related activities contributing Ksh 96.02
billion (US$ 1.2 billion) toGDP in 2012 (KIPPRA2013).

Hegerl et al (2007)findings indicate that developing countries includingKenyawill be hitmost due to
various reasons including the fact that Kenya’s economy is largely dependent on agriculture andwildlife which
are sensitive to climatic changes. For example, the impacts of the 2008–2011 drought was estimated at Ksh 968.6
billion (US$ 12.16 billion) andwas responsible for an average 2.8%per annumdecline inGDP (GoK2012).
Climate change is therefore a concern for Kenya as it plans to advance sustainable utilization of its natural
resources and promotion of sustainable development. To achieve these goals, it is necessary tomodel the effects
of climate change on the spatial and temporal rangeland vegetation distribution in order provide useful
information to the policy and decisionmakers at the local, regional and national level. Such important
information includesmanner andmagnitude the rangeland vegetation is projected to change and thereby
informing on the nature of investment by stakeholders.

2.Methodology

2.1. Study area
Kenya is located in the east African region covering a total of 582,646 km2with about 80%of it classified as arid
and semi-arid lands (ASALs) (figure 1). It is divided into seven agroecological zones (AEZs)withAEZs I–III
classified as high potential areas and the others lowpotential areas. TheAEZs classification is based on rainfall,
soilmoisture pattern, soil types and vegetation types. Sombroek et al (1982) andPANESA (1988) summarized
characteristics of theAEZs in relation to precipitation andmajor grass species (table 1).

AEZs IV-VII are the ASALswhere rangeland vegetation is located.Here, pastoralism is amajor economic
activity supporting the bulk of Kenya’s wildlife-based tourism.Within the ASALs, the rangelands are both
managed (for the cases of ranches) and unmanaged (for the cases of communal lands)who are also nomadic.
Kenya’s climate is varied though dominated by a tropical wet and dry climate type. The rainfall distribution is

Figure 1.Map of study area showingKenya’s Arid and Semi-Arid lands. (Source:Modified fromdata downloaded from ILRI).
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Table 1.A summary of AEZs IV–VII characteristics.

AEZ Classification Moisture index (%) Precipitation (mm) Major grass species

IV Semi-humid to semi-arid 40–50 600–1100 Themeda triandra, Pennisetummezianum, P. straminium, P.massaiense, Eragrotis spp., Hyperenia spp., Seteria spp., Digitaria spp. and

Centhrus ciliaris

V Semi-arid 25–50 450–900 Eragrotis superb, Centhrus ciliaris, Cymbopogon spp., Bothriochloa spp., andHeteropogon contortus

VI Arid 15–25 300–550 Aristida adoensis, Stipagrostis hirtigluma, Aristidamutabilis, Cymbopogon aucheri, Tetrapogon spp., Enneapogon cenchroides andChloris

roxburghiana

VII Very arid <15 150–350 Aristida papposa, Cynodon dactylon, P. coloratum, Sporobolus spp.,A. adoensis, Rhynchetrum spp.,Enteropogonmacrostachys andEragrostis

caespitosa, Eragrostis superb, C. roxburghiana, E.macrostachyus, P.maximum, E. superba andChrysopogon Spp.,
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bimodal with peaks inApril (129.1 mm) andNovember (93.5 mm)while the temperatures are 26.2 °C (March)
and 22.9 °C (July) formaximumandminimum temperatures respectively (World Bank 2018).

Kenya’s current population is estimated to be 46,748,000which is projected to be 95,504,636 and
125,137,459 in 2050 and 2070 respectively (PopulationPyramid.net 2015). Kenya is divided into 47 counties that
drive their own economic development agenda in the agriculture and tourism sectors.Most of the counties are
located in theASALs and are facing serious climate related challenges. Kenya’s gross domestic product wasKsh
1.7 trillion (US$ 17 billion) for the 2014/2015financial year (PBO2014)with the bulk of it from agriculture-
based activities. Other notable economic activities dependent onweather patterns arewildlife-based tourism
which is under threat from climatic variability. A generalisedmethodology used in the research is presented in
figure 2.

2.2. Grass and agroecological zones data
The spatial rangeland vegetation datawas sourced from theUnitedNationswebsite www.un-spider.org (United
Nations 2015). TheAfricover Project prepared and presented these data in shapefiles with varying grassland
coverage of polygons ranging from30%–100%. For spatialmodelling analysis, grassland data coverage of 60%–

Figure 2.Generalised researchmethodology.
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100%was used in eachAEZ (figure 3). The use of 60%–100%polygon coverage data was informed by the fact
that the grass coverage should bemore that 50% for the polygon to represent grass thereby increasing the
accuracy of the data. The grass data signified the grass nichewhich in this case is represented by all the grass
species found in that particular ecosystem and its sub-settingwas based on the AEZs. TheAEZs spatial data was
downloaded from International Livestock Research Institute (ILRI)website (http://192.156.137.110/gis/) and
processing done in ArcMAP.

TheAEZs IV–VII were each treated as having homogeneous climatic parameters and formed the basis of
extraction and subdivision of grass cover spatial data. The grass polygon datawere converted to grass point data
(to represent points at which the grass is growing) for use inMaxentmodel (discussed in the next section).
Within the grassland polygons, a total of 7,863 grass presence points, at least 1000 m a part (table 2)were
generated andmapped (figure 4).

TheAEZs IV–VII with potential evaporation rate of>50% (Sombroek et al 1982) are the regionswhere
livestock keeping and tourism-basedwildlife are themajor economic activities inKenya. TheAEZs IV–VIIwere
extracted and a buffer of−5000 mwas established for extraction of randompresence points in eachAEZ. The
presence points coordinates were then generated for runningMaxent ecological nichemodel (Phillips et al
2006). A detailed explanation ofMaxentmodel was done by Elith et al (2011).

Figure 3.The spatial coverage of Africover grassland byAEZs. (Source:Modified fromUnitedNations Africover Project).

Table 2.Grass presence points
by AEZs.

AEZ Presence points

Zone IV 89

ZoneV 495

ZoneVI 1,341

ZoneVII 5,938
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2.3. Bioclimdatasets
The Bioclim climate dataset comprising precipitation,minimumandmaximum temperature at intervals of 30
year periodwas used. These data comprised the base-year period (1960–2000) and future (2050 and 2070)
climatic periods. The climate datawith a resolution of 1 kmwas sourced from global climate data website (www.
worldclim.org) (WorldClim 2015). TheCoupledModel Intercomparison Project provides four different
scenarios among them is Representative Concentration Pathways (RCP) 4.5which this study used. The RCP 4.5
data were used as it is one of the twomedium stabilisation levels indicating that CO2 levels in the atmospherewill
be 650 ppm causing a radiative forcing of 4.5Wm−2 (Watts per squaremeter) in the year 2100 (Moss et al 2010).

2.4.Maxentmodelling and geospatial analysis
The data used for spatial and temporalmodelling were climate elements and presence-only grass points. Using
Maxent andArcMAP, the base-year and years 2050 and 2070 potential spatial distribution of grass vegetation
weremodelled and spatial output processed. A total of 12 differentMaxentmodels were run following
procedures developed by Phillips et al (2006).Maxent 3.3.3 downloaded fromwww.cs.princeton.edu/
~schapire/maxent/was used in themodelling. TheMaxentmodel generated probability curves for each
bioclim variable resulting in probabilitymaps of the vegetation likely occurrence based on a scale from0 to 1.
Further processing and analysis generated ‘unsuitable’ and the ‘suitable’ data. The ‘10 percentile training
presence logistic threshold’ generated the ‘unsuitable’niche, a range of 0—threshold valuewhile the ‘suitable’
grass niche areas were scaled from threshold value−0.5, 0.5–0.6, 0.6–0.7 and 0.7–1.0. These processes were
performed for eachAEZ andmosaicking procedure derived newdatasets for thewhole country. Using the base-
year potential grass niche spatial distribution as the basis of comparison, the future rangeland vegetation
distributionwere quantified andmapped.

2.5. Temporal and spatial change in grass niche
Themodelled potential grass niche suitability comparison in both category and locationwas performed
accordingHagen (2003) andVisser and deNijs (2004)usingmap comparison kit (MCK). The generatedmaps
were infive categories at intervals of 0–0.2327, 0.2327–0.5, 0.5–0.6, 0.6–0.7 and 0.7–1.0 representing different
levels of grass niche suitability. Both spatial shift and quantitative changes of the grass niche analysis usedKappa
Location (KLoc) andKappaHistogram (KHisto).

TheKappa statistics evaluationwas based on scales developed byAltman (1991). The scale hasfive categories
of ‘Poor’ (0–0.2), ‘Fair’ (0.21–0.40) ‘Moderate’ (0.41–0.60), ‘Good’ (0.61–0.80) and ‘VeryGood’ (0.81–1.00).
However, for this study a threshold of 0.5 was used and generated binary data of ‘Not similar’ (0.00–0.49) and

Figure 4.The generated randompresence points for by AEZs.
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‘Similar’ (0.50–1.00). The grass niche suitability changes by climatic periodswere obtained and display binary
data of where the grass niche suitability level categories are either equal or unequal as explained byVisser and de
Nijs (2004). Accompanying the spatial data is Kappa statistics including KLoc andKHisto for both future climatic
periods.

2.6.Model performance and accuracy assessment
TheMaxentmodel performance analysis was based on the area under receiver-operator curve (AUC) scores
returned from the constructedmodels which discriminates between presences and background points (Phillips
et al 2009). TheAUC scores range from0–1 and the significant value scaled as�0.5 indicating better than
randomand denotes higher predictive power and�0.49 is worse than random.

3. Results and discussion

3.1.Modelled spatial and temporal rangeland vegetation distribution
The results ofMaxentmodel are presented for eachAEZ in both binary and scaled formats. The base-year grass
distribution processingwas based onAEZwhile analysis was done at the country level through aggregation. The
various figures generated display the potential spatial distribution and changewith timewhile the tables provide
quantitative information of the same. The future projections showed both increase and decrease characterized
by shifting, expansion and shrinking in grass niche suitability levels for different locations.

3.2. Base-year climatic period grass niche range
TheMaxent unsuitable and suitable grass niche areas were different in all the AEZs (table 3). Themodelled
suitable grass niche covered different fractions in eachAEZwith 66.92%and the 33.08%being unsuitable and
suitable respectively in the country. The percent of suitable grass niche increased from aminimumof 23.84% in
AEZ IV to amaximumof 80.12% inAEZVII. The others were 39.64% for AEZV and 68.61% for AEZVI.

The generated binary raster for all the AEZs shows the distribution of both suitable and unsuitable grass
niche inKenya in the base-year (figure 5). The analysis was based on the spatial extent of eachAEZwith the
corresponding 10 percentile training presence logistic threshold obtained from theMaxentmodels.

The suitability levels analysis of the aggregated raster used 0 (least suitable)—1.0 (most suitable) range. The
specific scale values were 0–0.2327 (unsuitable), 0.2327–0.5 (low suitability), 0.5–0.6 (medium suitability),
0.6–0.7 (high suitability) and 0.7–1.0 (excellent suitability) (table 4). The individualmodelled grass nicheAEZ
mapswere aggregated to generate a new raster (figure 6).

The aggregated base-year climatic periodmodelled grass niche suitable area covered 385,964 km2

representing 66.04%while the area classified as unsuitable was 198,471 km2 covering 33.96%ofKenya. Thefirst
category of 0–0.2327 represents the unsuitable areas from zero to 10 percentile threshold suitability in the
aggregated raster data and comprised 198,471 km2 (33.96%) of the total area.Most regions in this category are
the high potential areas restricted to theAEZs I–III with different climatic regimes compared to the AEZs IV–
VII. The excellent grass niche suitability category represents 2.63%of the area covering 15,393 km2 spreading
out across all theAEZs. A region of 7.46% representing 43,611 km2 of the area was under high grass niche
suitability category followed bymedium category at 192,397 km2 (32.92%). Thismedium category together with
low category covering 134,563 km2 (23.02%) is restricted to the north and north eastern parts of the country.
Apparently, these are the areaswhere pastoralism andwildlife-based tourism are largely practised as themain
economic activities.

Table 3.Base-year climatic period grass niche binary range by area.

AEZ IV AEZV AEZVI AEZVII

Area (km2)
Unsuitable 29,522 57,414 45,846 60,539

Suitable 9,239 37,713 100,184 243,977

10 percentile

Threshold

0.2856 0.3499 0.3407 0.4325

%area

Unsuitable 76.16 60.36 31.39 19.88

Suitable 23.84 39.64 68.61 80.12

Note: the 10 percentile thresholdwere generated by themodel.
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3.3. The 2050 climatic periodmodelled projected potential grass niche range
The 2050 climatic period projected potential grass niche suitabilities were generated for eachAEZ and analysed
as aggregated data for thewhole country. The spatial data show that the grass niche suitable areas aremostly in
parts of northern, north eastern, southern and the coastal regions of the country. TheMaxent output grass niche
suitability levels (table 4) summarises themodelled grass niche suitabilities and their respective areas. The
unsuitable areas cover a total of 373,104 km2 (63.84%) of the country and consistmainly the current AEZs I–III,
which comprise ofmany parts of the eastern, north eastern and northern parts of the country. Themodelled
grass niche suitable areas ranged from aminimumof 14,632 km2 (2.50%) to amaximumof 86,718 km2

(14.84%) in excellent and low suitability categories respectively. The other categories of high grass niche
suitability covered 30,647 km2 (5.24%)with themedium suitability occupying an area of 79,334 km2 (13.57%).

Change analysis between the base-year and 2050 climatic periods revealed that some regionswill change in
the positive, others will experience a decreasewhile in some cases therewill be no changes in the grass niche
suitability levels. The nature,magnitude and spatial extent of the grass niche suitability changes (figure 7)
indicate a net decline of grass niche suitability inKenya. These changes ranged from−1–1 andwere scaled from
0–0.2327, 0.2327–0.5, 0.5–0.6, 0.6–0.7, and 0.7–1.0 in both positive and negative directions. The negative
changes were in northern, north eastern, coastal and southern parts of the country. Of particular concerns are
the national parks namely Sibiloi,MaasaiMara, Amboseli, Chulu, Tsavo East andTsavoWest where grass niche
suitability levels are projected to decline. The central region of the country largely under AEZs IV–VI registered

Figure 5.Base-year climatic periodmodelled binary grass niche suitability by AEZ.

Table 4.The three climatic periods summary of grass niche suitability categories by area.

Base-Year 2050 2070

Suitability level Area (km2) %Area Area (km2) %Area Area (km2) %Area

Unsuitable 198,471 33.96 373,104 63.84 412,505 70.58

Low 134,563 23.02 86,718 14.84 64,020 10.95

Medium 192,397 32.92 79,334 13.57 66,674 11.41

High 43,611 7.46 30,647 5.24 28,457 4.87

Excellent 15,393 2.63 14,632 2.50 12,779 2.19
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an increase in grass niche suitability though in a scattered pattern. Further, some regionswill not experience any
changes and are spread all over the country.

The specific 2050 grass niche suitability changes (table 5) are presented per suitability category comprising
unsuitable, no change, increased and decreased ranging from values of−1–1. The spatial coverage and areas

Figure 6.Themodelled base-year climatic period and grass niche suitability levels.

Figure 7.Change in grass niche suitability in 2050 climatic period.
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change analysis was based on the area classified as suitable in the base-year climatic period. A total of 150,560
km2 (25.76%) of Kenyawas classified unsuitable for grass nichewith an area of 269,110 km2 (46.06%) indicating
a decline of grass niche suitability level. The no change category covered 61,762 km2 (10.75%)while a combined
total area of 103,003 km2 (17.62%)pointed towards an increase in grass niche suitability.

3.4. The 2070 climatic periodmodelled projected potential grass niche range
The 2070 climatic period projected potential grass niche distributionmodelling was done at AEZ levels and
aggregated for thewhole country. The suitable grass niche area in this climatic period is projected to shrink and
restricted to the north, central, eastern, southern and some pockets of coastal region of the country. TheMaxent
output of grass niche suitability levels (table 4) summarises the areas and percent changes compared to the base-
year climatic period. The combined suitable areas cover 171,930 km2 (29.42%)with the rest of the country being
unsuitable for the grass and covering an area of 412,505 km2 (70.58%).

The suitable grass niche categories were further grouped into fourwith excellent and high suitability
categories covering 12,779 km2 (2.19%) and 28,457 km2 (4.87%) respectively. The other categories were
medium category occupying 66,674 km2 (11.41%) and low category covering 64,020 km2 (10.95%). The grass
niche suitability change analysis in the 2070 climatic period compared to the base-year climatic periodwas also
done. It revealed that some regionswill favourwhile others will limit the growth of grass. Some areaswill not
changewith others becoming unsuitable. The grass niche suitability spatial change in the 2070 climatic period
shows the location, nature andmagnitude of change (figure 8). These changes ranged from−1–1 andwere
scaled from0–0.2633, 0.2633–0.5, 0.5–0.6, 0.6–0.7, and 0.7–1.0 in the positive and negative direction (table 4).
The national parks under threat fromdeclining grass niche suitability are Sibiloi,MaasaiMara, Tsavo East and
West, Amboseli andChulu. The negative changes were in northern, north eastern, coastal and southern parts of
the country. The central region of the country registered an increase in grass niche suitability though in patches
while some areas did not show any changes.

Table 5.The grass niche suitability and area changes in the 2050 and 2070
climatic periods.

2050 2070

Suitability

category

Area (km2) %Area Area (km2) %Area

Unsuitable 150,560 25.76 163,587 27.99

Declining 269,110 46.04 285,044 48.77

No change 61,762 10.57 51,893 8.88

Increasing 103,003 17.62 83,910 14.36

Figure 8.Change in grass niche suitability in 2070 climatic period.
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Particular changes in the 2070 climatic periodmodelled results (table 5) revealed variations in both location
and coverage of suitability categories in comparison to the base-year climatic period. The variabilities in the
spatial coverage and areas were based on the total area classified as suitable in the base-year climatic period. The
area that had an increased suitable grass niche covered 14.36% (83,910 km2)with the area indicating declining
grass niche suitability covering 285,045 km2 (48.77%). The no change category occupied an area of 51,893 km2

(8.88%). The changes in grass niche suitability levels and spatial coveragewas also concluded by Sala et al (2005)
in their study on biodiversity across projected scenarios. Projections to 2020 and 2050 based on 1970 statuses
found that the biomeswith the higher rates of habitat and local species diversity losses arewarmmixed forests,
savannas, scrub, tropical forests, and tropical woodlands. Briske (2017) pointed out that consequences of climate
change relevant to rangelands aremodification of forage quantity and quality, livestockmetabolism, and plant
community composition. Further, trend analysis evaluation from1961–1990 indicated substantial spatial
differences in the direction andmagnitude for both rainfall and simulated forage production across Australian
rangelandsMcKeon et al (2009).

3.5.Modelled potential grass niche suitability similarity analysis
The appliedCategorical Kappamethod revealed different Kappa Location (KLoc) andKappaHistogram (KHisto)
similarities between the base-year and the future levels of grass niche suitability. The comparison between the
base-year and 2050 suitability levels returnedKLoc of 0.233 and 0.536 for KHisto. This implies that location
similarity of the grass niche categories were 23.3% and 53.6% in quantitative (area) similarity aspects.

Themodelled grass niche suitability apart from shifting location by 76.7% also experienced change in area of
46.4% in the 2050 climatic period. The base-year and 2070 comparison statistic indicated that theKLoc similarity
was 0.222with a KHisto of 0.440. This denotes that the grass niche location similarities were 22.2%while
quantitative (area) similarity was 44.0%. These kappa statistics can also be interpreted as that the grass niche
suitability levels shifted by 77.8% and 66.0%quantitatively (area). For the purpose of judging the kappa values
obtained, Altman (1991) proposed a benchmark scale offive categories ranging frompoor to very good. The
classes are 0–0.2—‘Poor’, 0.21–0.40 denotes ‘Fair’ and 0.41–0.60 stands for ‘Moderate’. The other scales are
‘Good’ and ‘VeryGood’ represented by 0.61–0.80 and 0.81–1.00 respectively. Using this scale, it was therefore
concluded that in both future climatic periods, the KLoc andKHisto the grass niche suitability levels falls under
categories of ‘Fair’ and ‘Moderate’ similarities respectively. This projected variability in grass niche suitability
concluded a spatial and quantitative change andwill affect both livestock andwildlife.

3.6.Model performance
Several climate change impacts research on organism’s niche have been conducted in different regions using
Maxent under different climate change scenarios (Rebelo and Jones 2010, Yates et al 2010, Elith et al 2011, Kigen
et al 2014).While it is possible to assess the base-yearmodelled grass niche accuracy, Phillips et al (2006) pointed
that amajorweakness ofMaxent is lack of actual data for validation to assessmodel accuracy. Thus, theMaxent
future projections have some level of uncertainty.

TheMaxentmodel performancewas derived fromAUC (area under receiver-operator curve) and gives the
probability that themodel correctly ranks randompresence site versus random absence site (Pontius and
Schneider 2001, Phillips et al 2009). TheAUChas a range of 0–1with aminimum threshold of 0.5 (randomness)
and amaximumof 1.0 (perfect simulation)Rebelo and Jones (2010). Themodel performances were all
significant (table 6) for all themodels. In the base-year, the highest average test AUC for the replicate runswas
0.962with standard deviation of 0.037 inAEZ IV and the least was 0.754with standard deviation of 0.001 inAEZ
VII. The future climatic periodsMaxentmodels performance andwere all significant (table 6).

TheAEZ IV in 2070 had the highest AUCof 0.973 and standard deviation of 0.018. TheAEZVII in both
climatic periods had identical AUC and standard deviation of 0.754 and 0.001 respectively. Limited guidelines
are available for judgement of theMaxentmodel receiver operating characteristic (ROC) values. However,
Pontius and Schneider (2001) stated that any value of AUCmore than 0.50 is statistically better than random
while a value of 0.7 is considered acceptable for land use land covermodelling. Further, Hosmer and Lemeshow

Table 6.AUC results from theMaxentmodels.

Base-year 2050 2070

AEZ AUC SD AUC SD AUC SD

IV 0.962 0.037 0.963 0.018 0.973 0.018

V 0.942 0.001 0.942 0.001 0.942 0.001

VI 0.886 0.003 0.886 0.003 0.886 0.003

VII 0.754 0.001 0.754 0.001 0.754 0.001
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(2000) classifiedAUCvalues beyond 0.8 as excellent andmore than 0.9 as outstanding. Using these guidelines,
the generatedMaxentmodels for AEZs IV andVwere outstanding, AEZVI excellent andAEZVII acceptable for
all climatic periods.

4. Conclusion

Kenyawill experience both increase and decrease in climate-based grass niche suitability in different locations
with a general net decrease. Further, the 2050 climatic periodwill decrease grass niche suitability by 44.99%
while the unsuitable will increase by 87.01%. Further, the grass niche suitability levels locationswill change by
76.7% and 46.4% in areas under the different categories used. In the 2070 climatic period grass niche suitability
will shrink by 55.21%with an increase of the unsuitable category by106.80%.Moreover, the location suitability
levels will shift by 77.8%while the areas under the different categories will change by 66.0%.
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