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ABSTRACT 

The action of          and          on the cosets of their subgroups is a very active 

area in enumerative combinatorics. Most researchers have concentrated on the action of 

these groups on the cosets of their maximal subgroups. For instance Tchuda computed 

the subdegrees of the primitive permutation representations of         . Kamuti 

determined the subdegrees of primitive permutation representations of         . He 

also constructed suborbital graphs corresponding to the action of          on the cosets 

of          However many properties of the action of          on the cosets of its 

subgroups are still unknown. This research is mainly set to investigate the action of 

         on the cosets some of its subgroups namely;                    and 

       . Corresponding to each action the disjoint cycle structures, cycle index formulas, 

ranks and the subdegrees are computed. To obtain cycle index formulas we use a method 

devised by Kamuti and for the subdegrees and the ranks we use a method proposed by 

Ivanov et al. which uses marks of a permutation group. For the action of          on 

the cosets of      the subdegrees are shown to be    and            and the rank is 

   . For    the subdegrees are        and        and the rank is       . Suborbital 

graphs for          acting on the cosets of      are constructed and their properties 

analysed. We have established that the number of self paired suborbits is     and the 

paired suborbits are 2. Also suborbital graphs corresponding to suborbits whose elements 

intersect       at a singleton have been shown to be of girth 3. Suborbital graph 

corresponding to the suborbit containing       is found to be of girth 0. Finally 

suborbital graph corresponding to suborbit with representative of the form        is 

shown to be of girth 4.  
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CHAPTER ONE 

INTRODUCTION 

This chapter has five sections. In Section 1.1 we give definitions and preliminary 

results which will be used throughout the research. Section 1.2 provides the 

background information of the research we are working on. Section 1.3 gives the 

statement of the problem. In Section 1.4 we state the objectives of our study. 

Finally in Section 1.5 the significance of the study is provided.  

1.1 Definitions and preliminary results 

1.1.1 Definition  

Let X be a set.  A group G acts on the left of X if for each g G  and each x X

there corresponds a unique element gx X such that;  

i)                          and x X . 

ii) For any         , where   is the identity in G . 

1.1.2 Definition  

Two subgroups H and K of a group G are said to be conjugates if 
1H gKg   for 

some .g G  

1.1.3 Definition  

If G is a finite group acting on a finite set X, we define the orbit of     to be;  

                                                        GOrb ( ) .x gx g G   
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1.1.4 Definition 

Let G act on a set X and let x X . The stabilizer of x in G, denoted by  GStab x  

is given by,    GStab x g G gx x   . 

This subgroup is also denoted by xG  

1.1.5 Definition  

If the action of a group G on a set X  has only one orbit, then we say that G acts 

transitively on X. That is G acts transitively on X if for every pair of points

,x y X ,   g G    gx y . 

1.1.6 Definition 

If a finite group G acts on a set X with n elements, each g G  corresponds to a 

permutation   of X, which can be written uniquely as a product of disjoined 

cycles. If  has 1  cycles of length 1, 2  cycles of length 2, 3 cycles of length 

3,…, n  cycles of length n; then we say that   and hence g has a cycle type

 1 2, ,..., .n    

1.1.7 Definition 

If a finite group G acts on a set X, X n  and g G  has a cycle type 

 1 2, ,..., n   , we define the monomial of g to be, 

  1 2

1 2 ... n

nmon g t t t
 

 , where 1 2, ..., nt t t  are distinct commuting indeterminates. 
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1.1.8 Definition  

The cycle index of the action of G on X is the polynomial (say over the rational 

field  ) in 1 2, ,..., nt t t  given by 

   
1

g G

Z G mon g
G 

  . 

1.1.9 Theorem  

Let G be a finite transitive permutation group acting on the right cosets of its 

subgroup H. if     and         then, 

    

 
 
      

    
  

where      is the number of fixed points and    the conjugacy class of 

    .   

Proof: For the proof see Kamuti, 1992 p. 5   

1.1.10 Lemma  

Let g be a permutation with cycle type                   then, 

a) The number       of 1-cycles in    is          

b)  
1

( ) ( )
l
i

l

i l

g i
l

    , where  is the Mobius function. 

 Proof: For the proof see Kamuti, 1992 p. 6   
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1.1.11 Theorem    

(Cauchy-Frobenius Lemma) 

Let G be a finite group acting on a set X. Then the number of orbits of G is,  

 
g G

I
Fix g

G 

 , 

where  Fix g  denotes the number of points in X fixed by g.  

Proof: For the proof see Harary, 1969, p.96   

1.1.12 Definition 

Let G be transitive on X and let xG  be the stabilizer of a point x X . The orbits 

  1 2 1, , ,...,o rx      of xG  on X are known as the suborbits of G. The rank of G 

in this case is r. The sizes 
i in    0,1,..., 1i r  , often called the ‘lengths’ of 

the suborbits, are known as subdegrees of G.  

1.1.13 Definition  

Let   be an orbit of xG  on X.  Define  * ,gx g G x g     , then *  is also 

an orbit of xG and is called the xG -orbit (or the G-suborbit paired with  ).  

Clearly *   .  If *   , then   is called a self-paired orbit of xG .  

(Wielandt, 1964) 

 

1.1.14 Definition   

A permutation representation of a finite group G is produced when a group acts on 

a finite set                         where n is the cardinality of X. A 
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permutation representation,    is the set of permutation    on  , each of which is 

associated with an element     so that    and G are homomorphic; 

                                                        for every       . 

We say that two permutation representations of G on    and    are equivalent if 

there exists a bijection         such that                for all     and 

all      . 

Let H be a subgroup of index n in G. The set of left cosets of H in G partitions G 

i.e                    

                     where      and     . Consider the set 

of the left cosets {                  . For any    , the set of 

permutations of degree n; 

                                         
         
         

   ,  

constructs a permutation representation of G, which is sometimes called the coset 

representation of G by H and we shall denote it by (/ )G H . The degree of (/ )G H  

is 
   

         and it is a transitive permutation representation. 

We now state two important results which have been proved in Burnside (1911) 

pages 236-238. 

1.1.15 Theorem  

 Suppose that the number of conjugacy classes of subgroups in a finite group G is s 

(where a set of conjugacy class is counted once). If we collect a complete set; 
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             in ascending order of their sizes i.e                

    , where; 

     identity and     , then the set of corresponding coset representation ; 

(/ ), ( 1,2,............, )iG G i s is the complete set of different transitive permutation 

representation of G. 

1.1.16 Theorem  

 Any permutation representation    of a finite group G acting on X can be reduced 

into transitive coset representations with the following equation: 

                                                        (/ ),( 1,2,............, )i iG G i s  , 

  where the multiplicity i is a non-negative integer. 

1.1.17 Definition 

i) Burnside’s definition of marks  

Let    be a permutation representation (transitive or intransitive) of G on X. The 

mark of   the subgroup H of G in    is the number of points of X fixed by every 

permutation of H. incase (/ )iG G  is a coset representation ;           , the mark 

of    in (/ )iG G  is the number of cosets of    in   left fixed by every permutation 

of   . 

ii) White’s definition of marks;  

           
 

    
             

   

  

where   (statement)   
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iii) Ivanov et al. definition of marks 

Ivanov et al. (1983) defined the mark in terms of normalizers of subgroups of a 

group as; if         and                     is a complete set of 

conjugacy class representatives of subgroups of    that are conjugate to    in G, 

then;  

                              

 

   

  

In particular when         is conjugate in     to all subgroups    that are 

contained in     and are conjugate to    in G and;  

                             

It can be shown that these definitions are equivalent. (Kamuti,1992 p. 77) 

1.1.18 Definition 

 The table of marks of a group G is the matrix        with   

       entry     equal to           , the mark of the subgroup    in the coset 

representation (/ )iG G . 

i.e;  
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Table 1.1.1: Table of marks of a group G 

                                                                                  

                                                              

                                                           

           ….   …       ….   ……….   …  

          ….   …       ….    ……….   ….  

                                                           

 

It can be shown that       unless    is conjugate to a subgroup of    and that 

      for any i , because of this, if representative subgroups are numbered in 

increasing order of size, the table of marks is lower triangular and since it has no 

zero entries on the main diagonal, it is an invertible matrix. (Kamuti, 1992, p. 78)                                                                                                                                                               

By Theorem 1.1.16 the multiplicities    are obtained by using the table of marks 

as; 

      

 

   

                       

where    is the mark of    in   . If                  is a vector with 

components   , the marks of     

              in the permutation representation    of G on X,  

                  is a vector with the components the multiplicities    in 

Theorem 1.1.16 and M(G) is the table of marks of G, then 
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If we denote by    the number of suborbits    on which the action of H is 

equivalent to its action on the cosets of                   by computing all the 

   we get the subdegrees of        Hence we have; 

1.1.19 Theorem 

The number    satisfy the system of equations;  

     

 

   

                     

for each           . 

 Proof: For proof see Kamuti, 1992, p.78   

1.1.20 Definition 

A graph is a diagram consisting of a set V whose elements are called vertices, 

nodes or points and a set E of unordered pair of vertices called edges or lines. We 

denote such a graph by  ,G V E . Two vertices u and v of a graph  ,G V E  are 

said to be adjacent if there is an edge joining them. This is denoted by  ,u v  and 

sometimes by uv. In this case u and v are said to be incident to such edge.  

A graph consisting of one vertex and no edge is called a trivial graph.  

If we allow existence of loops (edges joining vertices to themselves) and multiple 

edges (more than one edge joining two distinct vertices), then we get a multigraph. 

A graph with no loops or multiple edges is called a simple graph. 

The degree (valency) of a vertex v of  ,G V E  is the number of edges incident to v 
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1.1.21: Definition  

For any positive integer   define      (mobius function of  ) as the sum of the 

primitive n
th

 root of unity. It has values          depending on the factorization 

of n into prime factors:  

       if n is a square free positive integer with an even number of prime 

factors;  

        if n is a square free positive integer with an odd number of prime 

factors; 

       if n has squared prime factors. 

1.2 Background information 

1.2.1 Projective General Linear Group 

 The Projective General Linear Group          over a finite field        where 

    ,   a prime number and   a natural number, is a group consisting of all 

linear fractional transformations of the form; 

  
    

    
     

where                      the projective line,               and  

           

It is the factor group of the general linear group by its centre. That is;  

         
       

          
   

Thus a transformation  
  
  

 ,                       and  
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         are taken to be the same in           where        are  non zero 

elements of      . 

The order of the projective general linear group is, 

         

            
 
            

   
          

         is a subgroup of          with        . 

It is simple for    . It is also 2-transitive on the         of degree     and it 

is of order, 

           
       

 
  

where             

If   is a power of 2, then                      

( Dickson, 1901)                                                                    

1.2.2 Properties of          acting on the projective line 

Non identity transformations act non- trivially on the projective line. 

         acts doubly transitive on the projective line.  

         also acts sharply 3-transitively on the projective line. 

( Huppert 1967)       
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1.2.3 Subgroups of          

         is the union of three conjugacy classes of subgroups each of which 

intersects with each other at the identity subgroup, and these are; 

a) Commutative subgroups of order q 

         has commutative subgroups of order  . We denote it by   . 

 Non- identity transformations in    have only   as a fixed point in        . It is 

of the form; 

      
  
  

             

The normalizer of    in          has transformations of the form; 

   
  
  

                                

Thus    

                        

Therefore the number of subgroups of          conjugate to    is    . 

These      subgroups have no transformation in common except the identity. All 

the conjugate subgroups of order   contain      distinct non identity 

transformations of order      

b) Cyclic subgroups of order     

         also contains a cyclic subgroup      of order    . Each of its non 

identity transformations fixes 0 and  . It is of the form; 
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The normalizer of      is generated by the transformations   and W 

Where;                                   
  
  

    

and h is a primitive element in       and 

                                           

 

   
  
  

   

 

Thus    

                        . 

Therefore the number of subgroups of            conjugate to      is 
 

 
      . 

These conjugate cyclic subgroups have no transformation in common except the 

identity and thus contain  
 

 
            non identity transformations 

c) Cyclic subgroups of order     

Another subgroup of           is the cyclic subgroup      of order     . This 

consists of elliptic transformations. All the non identity elements of the cyclic 

subgroup of order     fixes no element. The normalizer of this subgroup is a 

dihedral subgroup of order         .  

Therefore the number of subgroups of          conjugate to this cyclic subgroup 

of order     is 
 

 
      . Since the 

 

 
       conjugate subgroups have only 

identity in common so, they contain  
 

 
        non identity transformations. 

A simple enumeration shows that all the transformations of the commutative 

subgroups of order  , cyclic subgroups of order       and cyclic subgroups of 

order       exhaust all the transformations of         . That is;  
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which is the order of         . ( Dickson, 1901 p. 262)                                                                    

 1.2.3.1 Theorem  

a) Let   be the following set of subgroups of           ; 

     
 
     

 
     

         

           Then each non-identity elements of G is contained in exactly one group in                       

.            . (Thus the set   form a partition of G.) 

b) Let      be the number of fixed points of     on the          If we 

define  

                    

then 

                                            

(Huppert, 1967 p.193) 

NB: Those permutations with precisely one fixed point on the         are the 

parabolic elements. Those with two fixed points are the hyperbolic elements and 

those with no fixed points are the elliptic elements.  

1.2.3.2 Lemma  

   If g is elliptic or hyperbolic of order greater than 2 or if g is parabolic, then the 

centralizer in          consists of all elliptic (respectively, hyperbolic, parabolic) 

elements with the same points set, together with the identity elements. On the 

other hand if g is elliptic or hyperbolic of order 2, then its centralizer is the 

dihedral group of order        or        respectively. (Dickson, 1901) 

1.3 Statement of the problem 

Although the action of          on cosets of its subgroups has been known for 

many years little has been done in this area especially the action on the non 

maximal subgroups. A lot of attention has been given to the action of          

and         on their maximal subgroups. This study concentrates more on the 
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action of          on the cosets of some of its non maximal subgroups namely; 

                   and maximal subgroup        . Corresponding to each 

action the disjoint cycle structures, cycle index formulas, ranks and the subdegrees 

are computed. Suborbital graphs corresponding to the action          on the 

cosets of      is constructed and their theoretic properties such as, self pairing, 

pairing and the girths sizes is investigated.   

1.4 Objectives  

1.4.1 General objective 

To investigate the actions of          on the cosets of some of its subgroups 

namely;                    and          

1.4.2 Specific objectives 

i) To find the disjoint cycle structures of elements of          in each of the 

corresponding action. 

ii) To find the cycle index formulas of          corresponding to each 

action.  

iii) To determine the ranks and subdegrees of          corresponding to 

these actions.  

iv) To construct the suborbital graphs corresponding to the action of 

         on the cosets of      and to investigate their theoretic 

properties. 
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1.5 Significance of the Study 

This research obtained new properties and generalized the existing results. In 

addition; the results of this study provides valuable information to the graph 

theorists. Graphs have several practical applications in real life situation as well as 

in other fields of study. For instance, they can be used to determine the shortest or 

longest distance between places on the earth’s surface. In Chemistry, graph theory 

can be used to study the structure of molecules as it makes a natural model for 

molecules, where vertices represent atoms and edges bonds. The cycle index 

formula can be used to find the counting series for unlabelled graphs which can be 

used to find the number of isomers of a given molecule. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter considers the work which has been done by other researchers. It has 

three sections. In Section 2.1 we provide the literature review of cycle indices. 

Section 2.2 gives a review of ranks and the subdegrees and finally Section 2.3 

provides what has been done on the suborbital graphs.  

2.1 Cycle index  

The cycle index of a permutation group was introduced by Redfield in 1927, but 

he called it the group reduction function (Grf). He studied some of the links 

between combinatorial analysis and permutation groups. 

  

 Polya independently rediscovered the same function in 1937. He used it to count 

graphs and chemical compounds via the famous Polya Enumeration Theorem. 

Through this theorem, the cycle index becomes a very powerful tool in 

enumeration. After Polya several authors have used the cycle index in enumeration 

Clerke (1990) proved the identity concerning the cycle index polynomial of the 

symmetric group and presented its consequences.   

 

Herald (1996) computed the Polya cycle indices for the natural actions of the 

general linear groups and the affine groups (on vector space) and for the projective 

linear groups (on a projective space) over a finite field. He also demonstrated how 
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to enumerate isometric classes of linear codes by using the cycle indices. Kamuti 

and Obong’o (2002) derived the cycle index formula of  3

nS .  Kamuti and Njuguna 

(2004) derived the cycle index formula of the reduced ordered r-group. 

 

Kamuti (2004) showed how the cycle index of a semidirect product of a group  

      can be expressed in terms of cycle indices of   and   by considering 

special types of semidirect products called the Frobenius groups. 

 

Kamuti (2012) extended the work of Kamuti (2004). He expressed the cycle index 

of       (internal direct product) in terms of the cycle indices of   and   

when   acts on the cosets of   in  . 

 

Mogbonju et al. (2014) found the cycle index of permutation groups especially the 

symmetric groups, the alternating group and the number of orbits of   .  

2.2 Ranks and Subdegrees   

Wielandt (1955) proved that a primitive group of degree 2p, p a prime, has rank of 

at most 3. Higman (1964) showed that any 4-fold transitive group has rank 3 when 

considered as a group of permutations of the unordered pairs from distinct points. 

Higman (1970) calculated the rank and the subdegrees of the symmetric group nS  

acting on 2-element subsets from the set  1,2, ,X n .  He showed that the rank 
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is 3 and the subdegrees are  
2

1, 2 2 ,
2

n
n

 
  

 
.Quirin (1971) studied primitive 

permutation groups with small suborbits. He was able to classify all primitive 

permutation groups G which have a suborbit   of length 4 for which 4xG A   or 

4xG S   is faithful.  

 

Cameroon (1975) studied suborbits in transitive permutation groups. He proved 

that if G is primitive on X and xG  is doubly transitive on all non-trivial suborbits 

except possibly one, with 2xG  , then G has rank at most 4.  

 

Neumann (1977) extended the work of Higman to finite permutation groups, edge 

coloured graphs and matrices.  In this paper, he drew the Petersen (1898) graph as 

a suborbital graph corresponding to one of the non-trivial suborbits of    on 

unordered pairs from {1,2,3,4,5}.   

Numata (1978) studied primitive rank 5 permutation groups. He proved that if G is 

a primitive rank 5 permutation group on a finite set X, and the stabilizer xG  of a 

point x X  is doubly transitive on  1 x  and  2 x , where  1 x  and  2 x  

are two xG -orbits with 1 1 2 2

       , then G is isomorphic to the small Janko 

simple group and 266X  .  
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Ivanov et al. (1983) gave a method of computing subdegrees of transitive 

permutation group using the table of marks. They gave a sporadic simple group     

as an example. 

 

Tchuda (1986) computed the subdegrees of the primitive permutation 

representations of         . Cai et al. (2004) extended the work of Quirin (1971) 

on primitive permutation groups with small suborbits. They came up with a 

precise list of primitive permutation groups with a suborbit of length 4. In 

particular they showed that there exists no examples of such groups with the point 

stabilizer of order 4 62 3 , clarifying an uncertain question (since 1970s). 

 

Kamuti (2006) computed the subdegrees of primitive permutation representations 

of  2,PGL q   using a method proposed by Ivanov et al. (1983) which uses marks 

of a permutation group. For instance, in the action of  2,PGL q  on the cosets of 

4S , he found that the rank is,  

  
3 189 82

.
576

q q
r

 
  Nyaga et al. (2011) computed the ranks and the 

subdegrees of the symmetric group    acting on unordered   element subsets. 

They proved that the rank is     if     . They also showed that the 

subdegrees are; 

            
   

      
 
     

   
      

  
     

   
       

   
     

 
      

 
 . 
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2.3 Suborbital graphs  

Sims (1967) introduced suborbital graphs corresponding to the nontrivial suborbits 

of a group G acting on X. He defined a suborbital graph i  corresponding to 

suborbital iO X X   as a graph in which the vertex set is X and the edge set E 

consists of directed edges xy  such that  , ix y    After Sims several researchers 

have studied suborbital graphs.  

 

Jones et al. (1991) investigated the action of          on the rational projective 

line. They observed that the action on    was transitive but imprimitive. 

They also constructed the suborbital graphs corresponding to the above action and 

the simplest was the Farey graph F . They found that F  is connected and contains 

undirected triangles. 

Kamuti (1992) devised a method for constructing some of the suborbital graphs of  

         acting on the cosets of its maximal dihedral subgroup of order  2 1q . 

This method gave an alternative way of constructing the Coxeter graph which was 

first constructed by Coxeter (1983). This is a non-Hamiltonian cubic graph on 28 

vertices and 42 edges with girth 7.  

 

Akbas (2001) extended the work of Jones et al. (1991) on the action of the 

modular group on the rational projective line   . He was able to prove their 

conjecture, that a suborbital graph for a modular group is a forest if and only if it 

contains no triangles. 
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Refik (2005) characterized all circuits in the suborbital graph for the normalizer of 

      when m is a square- free positive integer.  

 

Refik (2009) dealt with the conjuncture given in Refik (2005) that when the 

normalizer of       acts transitively on      , any circuit in the suborbital 

graph     
 

 
  for the normalizer of      , is of the form; 

                          

 where             and T is elliptic mapping of order k in the normalizer 

of        

 

Kader et al. (2010) found the number of sides of circuits in suborbital graph for the 

normalizer of       in         , where m is of the form    , p a prime and 

         . Also they gave a theoretical result which says that the prime 

divisors p of          are of the form          . Bahadir et al. (2010) 

examined      -orbits on   and the suborbital graphs for      . They showed 

that each such suborbital graph is a disjoint union of subgraphs whose vertices 

form blocks of imprimitivity for      . They also proved that the subgraphs are 

vertex       transitive and edge       transitive. Serkan and Bahadir . (2011) 

showed that  the conjugate elliptic elements of the modular group   and of 

congruence subgroup       give rise to conjugate circuit corresponding to the 
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related elliptic elements in the  arey graphs F  and in the suborbital graph      of 

the action of      , respectively. 

 

Murat et al. (2012) investigated suborbital graphs for the action of the normalizer 

of       on            where N is of the form           and p is a prime 

number. In addition they gave the condition to be a forest for normalizer in 

suborbital graph     
 

    
 . 

 

Kamuti et al. (2012) investigated some properties of the action of     (the 

stabilizer of   in   (the modular group)) acting on the set of  . They showed that 

the action is simply transitive and imprimitive. They also examined the properties 

of the suborbital graphs corresponding to this action. 

Thus the cycle index formula, ranks, subdegrees, and the suborbital graphs of 

         acting on the cosets of most of its subgroups have not been published so 

far. This is the area we mainly concentrated on our research. 
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CHAPTER THREE 

PERMUTATION REPRESENTATIONS OF            

 

In this chapter we shall determine the disjoint cycle structure of elements of   

acting on the cosets of its subgroups. This chapter is divided into six sections. In 

Section 3.1 to Section 3.6 we determine the disjoint cycle structure of elements of 

G acting on the cosets of                     and         respectivley. Though 

Kamuti (1992) had already done this for the cosets of         using the concept of 

pair group action, we will also work on this subgroup using geometric arguments 

(i.e Theorem 1.1.9  and Lemma 1.1.10 (b)). 

3.1 Representation of G on the cosets of        

From Section 1.2.3, G contains a cyclic subgroup H of order     whose every 

non-identity elements fixes two elements. If g is an element in G, we may want to 

find the disjoint cycle structures of the permutation    induced by   on the cosets 

of H.Our computation will be carried out by each time taking an element   of 

order d in G from       and    respectively.   

 

To find the disjoint cycle structures of     we use Lemma 1.1.10(b) and thus we 

need to determine     ,         and      using Theorem 1.1.9. We easily 
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obtain      using Lemma 1.2.3.2, but we need to distinguish between     and 

   . So if       then we have; 

     
   

      
  

   where        is the order of centralizer of g.           

So if       then 

     
       

     
         

Also if       then  

     
       

 
       

Finally if       then 

     
       

     
         

If     then; 

For       we have; 

     
       

      
 
      

 
  

Again if       then  

     
       

 
       

Finally if       then  
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After finding        then we need to obtain          If no     with  

      (order of  ) exists then          and if such an h exists then; 

          

If      or      then; 

          

 If      and      then           has a single element of order 2. Each 

subgroup of   conjugate to   has one element of order 2. So 

          

if      and      

If      and      then 

          

Now applying Theorem 1.1.9, if      and      we have,  

        

This is true for all     and    . 

If      and     , 

        

For      and    , 

        

The values of     are displayed in Table 3.1.1 below. 
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Table 3.1.1: No. of fixed points of elements of G acting on the cosets of      

Case                   

I          

        

       

      

 
 

0 

0 

0 

0 

II          

                      

 

     

     

 

0 

0 

0 

0 

III          

                    

       

      

 
 

2 

1 

2 

2 

 

After obtaining     , we now proceed to calculate in details the disjoint cycles 

structures of elements    in this representation using Lemma 1.1.10(b). 

Case I 

      

If       , we deduce from Table 3.1.1 that          and hence by Lemma 

1.1.10(b)       

When      then we have; 

                              
1

( ) (1)d

d g
d

    

                           
( 1)

.
q q

d


  

 

 

 



28 

 

Case II 

      

Using Lemma 1.1.10 (b) and Table 3.1.1, if       ,         and thus 

    . If        then 

                                                          1
1

( ) (1)
p

p g
p

    

                                                               
1

( ) (1)pg
p
   

                                                                
1( 1).fp q   

Case III 

       

From Table 3.1.1        for      . Hence for      ,     . If      

then 

                                                                  1
1

( ) (1) 2( ( ) (1))
d

d

i d

g i
d

      


  

                                   
1

( 1) 2q q
d
    

                                                                      
1

( 1)( 2) .q q
d
    

Also if      then         and thus, 

                                                                    
1
1

1 ( ) (1)g   
  

 

                            1 2 2.   
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Summary of results 

Table 3.1.2: Disjoint cycle structures of elements of G on the cosets of      

          

Cycle length of 

   

1                      p 1               d                    d 

No. of cycles 0                       0           
      

 
            

          

 
 

 

3.2 Representation of G on the cosets of        

To compute the disjoint cycle structures of    we first need to determine      by 

using Theorem 1.1.9 and find    by applying Lemma 1.1.10(b).  Before we obtain 

     we first need to determine      and       . Since      is the same as in 

Section 3.1, so we only need to find       . If      and    then, 

          

. If       then, 

         
        
        

   

 This is because if             . So it has a single element of order 2. Each 

subgroup of G conjugate to   has one element of order 2. 

If       and     we have; 
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We now proceed to obtain      using Theorem 1.1.9. For      and      we 

have; 

        

For      and      

        

For      and      

        

The values of      are displayed in Table 3.2.1 below 

 

Table 3.2.1: No. of fixed points of elements of G acting on the cosets of      

Case                   

I          

        

       

      

 
 

2 

1 

2 

2 

II          

                      

     

     

0 

0 

0 

0 

III          

                    

       

      

 
 

0 

0 

0 

0 

 

After obtaining      we use the same approach as in Section 3.1 above to find the 

disjoint cycle structures of elements of G on the cosets of     .Therefore the 

results is as shown in Table 3.2.2 below. 
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Summary of results 

Table 3.2.2: Disjoint Cycle structures of elements of G on the cosets of      

          

Cycle length of    1                      p 1               d                    d 

No. of cycles 0                       2          
          

 
            

      

 
 

 

3.3 Representations of G on the cosets of      

To obtain the disjoint cycle structures of   we use Theorem 1.1.9 to get     . We 

compute     using Lemma 1.1.10(b). To find      we first need to obtain      and 

      . Since      is the same as in Section 3.1, so we only need to determine  

      .  

If      and     ,  

          

If      then; 

            

Now using Theorem 1.1.9 and for      or        we have; 

        

For     , 

                             

The values of      are displayed in Table 3.3.1 below; 
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Table 3.3.1: No. of fixed points of elements of G on the cosets of    

Case                   

I              0 0 

II                    

III              0 0 

 

In this section we will only discus case II  and use similar approach to find the 

disjoint cycle structures of elements of G on the cosets of    for the other two 

cases.  

     

From the results in Table 3.3.1           for      . Hence      

for       . If       , then;  

                         
 

  
                           

      

        

 
 

 
               

                                      
 

 
       

If      then we have, 

                                                 

                                           

Therefore the results are as shown in Table 3.3.2 below.  

Summary of results 
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    Table 3.3.2: Disjoint Cycle structures of elements of G on the cosets of    

          

Cycle length of    1                p 1               d              d 

No. of cycles        
      

 
     0         

      

 
        

      

 
 

 

3.4 Representations of G on the cosets of      

G contains a subgroup H isomorphic to    if and only if     or     and 

          . 

H contains 3 conjugate elements of order 2 and 8 elements of order 3 which lie in 

two mutually inverse conjugacy classes of 4 elements. This can be illustrated in 

Table 3.4.1 below. 

 

Table 3.4.1: Cycle structure of elements of    

Cycle structures No. of permutation order 

I 1 1 

(ab)(cd) 3 2 

(abc) 8 3 

 

If     there is a single conjucacy class of elements of order 2 in G containing 

     elements. If    , G contains 2 conjugacy classes of elements of order 2 

consisting of  
      

 
 elements of order two and the other 

      

 
 . 
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From the information given above, we have; 

        

         
         
         

   

If    , G contains            conjugate elements of order 3. If    , there 

is a single conjugacy class of elements of order 3 in G containing        

elements where, 

   
             

               
   

Therefore we have,  

        

         
         
         

   

                                                                                                 (Kamuti, 1992, p 60) 

Now we have the following four cases to consider; 

a)                       

b)            

c)                       

d)                        

Since we have obtained      and       , we can now proceed to compute      

in all the four cases. These are displayed in Table 3.4.2 below. 
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Table 3.4.2: No. of fixed points of elements of G acting on the cosets of    

                   

        ase a) 

Case b),     

Case c) and d) 

     

     

     

3 

8 

0 

     

 

 
  

0 

      Case a)  and c)  

    

       

 

8  

 
      

Case b), c) and 

d) ,      

      

 
  

               

              
   

   

 
 

  

Case a) - d) 

d     

       0 0 

 

     

Case b), c) and 

d),      

      

 
  

              

               
   

   

 
 

  

Case d) 

        

       8  

 
      

Case a) – d)  

d     

       0 0 

 

Here we give case c) with      as an example of how we obtain the number    

and use similar approach for the other 3 cases. 
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This case splits into the following four subcases; 

i)      and        ii)        and           iii)           iv)        

We only work out subcase iii); 

Using arguments similar to those in Section 3.1 it can be shown that; 

When   
 

 
  

                                                

 

 
 

 
        

When   
 

 
  

                                                 

 

 
 

 
        

When      

                                 
 

 
 
       

  
 
 

 
      

     

 
  

                       
 

   
                  

 

The disjoint cycle structures of elements of G on the cosets of    are as shown in 

below. 

 

Summary of the results 

      

Case a)    contains      
 

 
 1-cycle and 

 

  
       p-cycles 

Case b)    contains 
 

 
  1-cycle and 

 

  
       p-cycles 

Case c) and Case d)     contains 
 

 
       p-cycles 
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Results for      and       are displayed in table 3.4.3 below. 

 

Table 3.4.3: Disjoint cycle structures of elements of G on the cosets of    

      

Cycle length of 

   

  

 
 

 

 
 

  

No. of Cycles 

Case a)  

    

     0  

 
       

             

   
  

    0 0 
 
       

   
  

Case b) and d)       

 
      

0 
 
               

   
  

    0 0 
 
       

   
  

Case c)      0  

 
       

             

   
  

      

 
      

0 
 
               

   
  

       

 

 

 
      

 

 
       

              

   
  

      0 0 
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Cycle length 

of    

  

 
 

 

 
 

  

No. of Cycles 

Case a) 

    

      0 0 
 
       

   
  

Case b) and c)       

 
      

0 
 
               

   
  

    0 0 
 
       

   
  

Case d)      0  

 
       

             

   
  

      

 
      

0 
 
               

   
  

       

 

 

 
      

 

 
       

              

   
  

      0 0 
 
       

   
  

 

3.5 Representations on the cosets of      

G has a subgroup H isomorphic to    if     or           . Together with 

the identity element, H contains 24 elements of order 5 forming two conjugacy 

classes of 12 elements which are transposed by squaring, 20 conjugate elements of 
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order 3 and 15 conjugate elements of order 2. We can summarize this information 

in Table 3.5.1 below. 

  

Table 3.5.1 Cycle structures of elements of    

Cycle structures No. of permutation order 

I 1 1 

(ab)(cd) 15 2 

(abc) 20 3 

(abcde) 24 5 

                                   

There are 15 involutions in H. So every conjugacy class of elements of order 2 if 

    in G satisfies; 

                   

                                 

There is a single conjugacy class containing 20 elements of order 3 in H. If      

we have; 

            

If      then f is even (since            , so the class of elements of order 3 

in G satisfies; 

                

                                                                                                   (Kamuti, 1992 p. 60) 
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If    , there are      elements of order 5 in G. These elements form two self-

inverse conjugacy classes containing 
    

 
 elements. Squaring preserves or 

transposes these elements as f is even or odd. If             there are two self-

inverse conjugacy classes of        elements, where  

   
              

                
   

Squaring transposes the two classes.  

Hence if      then 

        
                                            
                                 

                                                        

Now the following are the cases to consider: 

a)                                                

b)                                                

c)                                              

d)                                                 

e)                                               

f)                                            

g)                                               

h)                                             

i)                                              

j)                                               

k)                                              

l)                                             
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Since we have obtained      and         we now proceed to compute      in 

all the cases shown above. The results are displayed in Table 3.5.2 below. 

Table 3.5.2: No of fixed points of elements G acting on the cosets of    

                   

I       

     

Case a) , b), c), 

d)     

     15 or 0      

Case e), f)      20 or 0      

Case g), h)      12        

Case i), j), k), l)      0 0 

II       

     

Case a), c), g), 

k), l)     

       
 
                

               
    

   

 
 

  

Case b), c), e),  

j), k)     

       12      

 
 

Case e), f), g), 

h), i),  j), k), l) 

    

      

 
  

                

               
    

   

 
 

  

Case    -l) 

        

       0 0 

III 

     

Case a), d), f), 

i), l)     

       12      

 
 

Case b), d), h), 

i), j)     

       
 
               

                
    

   

 
 

  

Case e), f), g), 

h), i), j), k), l)  

    

      

 
  

               

                
    

   

 
 

  

Case    -l) 

        

       0 0 
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Here we give case k) with      as an example of how we obtain the number    

and use similar approach for the other cases. 

 We have the following subcases: 

     i       and   5      ii)          5      iii)       and              

      iv)       , and   5    v)        ,        vi)         and            

      vii)             viii)                

We only work out subcase (vii) 

By using similar arguments to those in section 3.1 it can be shown that  

   

 

 
 

 
        

 

 
 

 
        

 

 
 

 
             

              

   
   

The disjoint cycle structures of elements of G on the cosets of    are shown 

below. 

 

Summary of the results 

      

Case a) – d),    contains      
 

 
 1-cycle and 

 

   
        p-cycles 

Case e) and f)    contains       
 

 
  1-cycle and 

 

   
        p-cycles 

Case g) and h)    contains         
 

 
  1-cycle and 

 

   
        p-cycles 

Case i) - l)     contains 
 

   
       p-cycles 

Results for      and      are displayed in Table 3.5.3 below. 
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Table 3.5.3: Disjoint Cycle structures of elements of G on the cosets of    

      

Cycle 

length 

of    

  

 
 

 

 
 

 

 
 

  

No. of 

Cycles 

Case 

a) and 

case l) 

     

     0  

 
      

0 
 
               

   
  

    0 0  
 
       

   
  

Case 

b) 

      

 
      

0 0 
 
               

   
  

    0 0 0 
 
       

   
  

Case 

c) 

     0  

 
      

0                

   
 

     0 0  

 
       

               

   
  

       

 

0  

 
      

 

 
       

              

   
  

      0 0 0 
 
       

   
  

Case d       0 0 0 
 
       

   
  

Case       

 
      

0 0                
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e) & j)      0 0  

 
       

               

   
  

       

 

 

 
      

0  

 
       

              

   
  

      0 0 0 
 
       

   
  

Case 

f) and  

i) 

      

 
      

0 0                

   
 

    0 0 0 
 
       

   
  

Case 

g) 

      

 
      

0 0                

   
 

     0  

 
      

0 
 
               

   
  

       

 

 

 
      

 

 
      

0 
 
              

   
  

      0 0 0 
 
       

   
  

Case 

k) 

      

 
      

0 0                

   
 

     0  

 
      

0 
 
               

   
  

     0 0  

 
       

               

   
  

       

 

 

 
      

 

 
      

0 
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0  

 
       

              

   
  

       

 

0  

 
      

 

 
       

              

   
  

         

 

 

 
      

 

 
      

 

 
       

              

   
  

        0 0 0 
 
       

   
  

 

 

     

Cycle 

length 

of    

  

 
 

 

 
 

 

 
 

  

No. of 

Cycles 

Case 

a) 

     

     0 0  

 
       

               

   
  

    0 0 0 
 
       

   
  

Case 

b)  and 

j) 

     0  

 
      

0 
 
               

   
  

    0 0 0 
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Case c         0 0 0 
 
       

   
  

Case 

d) 

     0  

 
      

0 
 
               

   
  

     0 0  

 
       

               

   
  

       

 

0  

 
      

 

 
       

              

   
  

      0 0 0 
 
       

   
  

Case 

e),  g) 

, and 

k) 

      

 
      

0 0                

   
 

    0 0 0 
 
       

   
  

Case 

f) and 

l) 

      

 
      

0 0                

   
 

     0 0  

 
       

               

   
  

       

 

 

 
      

0  

 
       

              

   
  

      0 0 0 
 
       

   
  

Case 

h) 

     0  

 
      

0 
 
               

   
  

      

 
      

0 0                

   
 

       

 

 

 
      

 

 
      

0 
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      0 0 0 
 
       

   
  

Case i)       

 
      

0 0                

   
 

     0  

 
      

0 
 
               

   
  

     0 0  

 
       

               

   
  

       

 

 

 
      

 

 
      

0 
 
              

   
  

       

 

 

 
      

0  

 
       

              

   
  

       

 

0  

 
      

 

 
       

              

   
  

         

 

 

 
      

 

 
      

 

 
       

              

   
  

        0 0 0 
 
       

   
  

 

3.6 Representations on the cosets of           

If      is the maximal cyclic subgroup of H, then the     involutions in        

lie in two conjugacy classes of 
   

 
 in H; one lying entirely in         , the other 

entirely in           . In total H has 
   

 
 elements of order 2 if     .  
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Let             Then the conjugacy class of          in H is         . So 

every element and its inverse are in one conjugacy class. Involution in G form a 

single conjugacy class containing  

 
 
 

 
 
      

 
         

      

 
          

              

  

elements. 

If    , then      in G is; 

 

               
                

              

  

From the above information we have; 

       

 
 
 

 
 
   

 
         

   

 
          

             

  

if    . 

If      then  

        
                    
                             

   

So we must consider two cases 

a) When q is odd 

b) When q is even 
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Case a) When q is odd 

Since we have obtain      and         we now proceed to compute     . The 

results are displayed in Table 3.6.1 below. 

 

Table 3.6.1: No. of fixed points of G acting on the cosets of         when q is odd 

Case                    

I                    0 0 

          

 
 

   

 
   

   

 
   

II                    

III                  2 1 

          

 
 

   

 
   

   

 
   

 

By using arguments similar to those in section 3.1, the disjoint cycle structures of 

elements of G on the cosets of         are shown below. 

 

Summary of results 

     

   contains       
   

 
  p-cycles 
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Table 3.6.2: Disjoint Cycle structures of elements of G on the cosets of         

when q is odd 

        

Cycle length of 

   

 1            
 

 
             

 

 
              d 

No. of cycles   even 1      
   

 
       

 

  
          

   

 
    

 

  
       

  odd 1        0         
          

  
 0          

      

  
 

 

Case b) When q is even 

From the information given above we obtain the following table. 

 

Table 3.6.3: No of fixed points of G acting on the cosets of         when q is even 

Case                   

I               

 
 

0 0 

II                 

 
 

III             

 
 

        

 

NB: Applying the same argument as in Section 3.1 above we obtain the disjoint 

cycle structures of elements of G on the cosets of of         as shown in Table 

3.6.2 below.. 

Summary of results 

     

   contains       1-cycle and      p-cycles 
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Table 3.6.4: Disjoint Cycle structures of elements of G on the cosets of         

when q is even 

        

Cycle length of     1            
 

 
             

 

 
              d 

No. of cycles   even 1              
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CHAPTER FOUR 

THE CYCLE INDEX FORMULAS FOR            

ACTING ON THE COSETS OF ITS SUBGROUPS 

After computing the disjoint cycle structures of elements   acting on the cosets of 

its subgroups, then we can now use them to find the cycle index formula for these 

representations.  

In this chapter we shall determine some general formulas for finding the cycle 

indices for the representation of   on the cosets of its subgroups. This chapter is 

divided into six sections. In Section 4.1 to Section 4.6 we find the cycle index 

formula for the representations of   on the cosets of                     and 

        respectively. In each section we give an example. 

4.1 Cycle index of   acting on the cosets of        

Before finding the cycle index formula of G acting on the cosets of H we first give 

a theorem by Redfield which will be used in this section. 

 

4.1.1 Theorem  

The cycle index of the regular representation of a cyclic group    is given by; 
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where   is the Euler’s Phi function and                are distinct (commuting) 

indeterminates. 

 Proof: For proof see Redfield, 1927.   

4.1.2 Theorem  

The cycle index of   on the cosets of   is given by; 

     
 

   
   

   
    

         
         

 
      

 
       

   

          
 

        

 
      

 
       

      
 

        

   

Proof 

The identity contributes   

   
    

 to the sum of the monomials. All the        

parabolics lie in the same conjugacy class, hence they have the same monomials. 

So from Table 3.1.2 the contributions by elements of    is         
         

. 

Each      is contained in a unique cyclic subgroup      and there are in total  

      

 
 conjugates of     . Hence  by Theorem 4.1.1 and the results in Table 3.1.2 

the contributions by elements of    is 
      

 
       

   

          

 
        . Finally 

each      is contained in unique cyclic subgroup       and there are in total 

      

 
 conjugates of      so they contribute 
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         to the same of the monomial. Adding all the 

contributions and dividing by the order of G we get the desired results.   

4.1.3 Examples 

4.1.3.1 Example  

From Theorem 4.1.2 above the cycle index of            acting on the cosets 

of   is;  

     
 

 
   
     

     
    

This cycle index is the same as the cycle index of    acting on itself by left 

multiplication as expected since             .  

4.1.3.2 Example  

The cycle index of            acting on the cosets of H is given by; 

     
 

  
   
      

     
   

     
     

    

This is the same as the cycle index of    acting on the cosets of its subgroup of 

order 2 as expected since             . 

4.1.3.3 Example  

The cycle index of            acting on the cosets of   is given by; 

     
 

  
   
       

       
   

      
    

This is the same as the cycle index of    acting on the cosets of its subgroups of 

order 3 as expected since             . 
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4.2 Cycle index of   acting on the cosets of        

4.2.1 Theorem 

The cycle index of          acting on the cosets of   is given by; 

     
 

   
   

   
    

         
         

 
      

 
       

      
 

        

 
      

 
  

        

     
   

          
    

Proof  

Using the results in Table 3.2.2 and argument similar to those in Theorem 4.1.2 the 

result is immediate.   

4.2.2 Examples 

4.2.2.1 Example  

From Theorem 4.2.1 above the cycle index of            on the cosets of   is 

given by; 

     
 

 
   
         

    

This cycle index is the same as the cycle index of    acting on the cosets of its 

subgroup of order 3 as expected since             . 
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4.2.2.2Example  

Again from Theorem 4.2.1 the cycle index of            acting on the cosets 

of   is given by; 

     
 

  
   
     

     
     

   
          

This is the same as the cycle index of    acting on the cosets of its subgroup of 

order 4 as expected since             . 

4.2.2.3 Example  

The cycle index of            acting on the cosets of        is given by; 

     
 

  
   
       

      
      

   
    

This is the same as the cycle index of    acting on the cosets of its subgroup of 

order 5 as expected since             .  

4.3 Cycle index of   acting on the cosets of      

From the results in Table 3.3.2, we have the following theorem; 

4.3.1 Theorem  

The cycle index of   on the cosets of   is given by;  
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4.3.2 Examples 

 4.3.2.1 Example  

Cycle index of          acting on the cosets of   is given by; 

     
 

 
   
              

This is the same as the cycle index of    acting on the cosets of its subgroup of 

order 2 as expected since             . 

4.3.2.2 Example  

Again from Theorem 4.3.1 the cycle index of          acting on the cosets of   

is given by; 

     
 

  
   
     

   
     

     
     

    

This is the same as the cycle index of    acting on the cosets of its subgroup of 

order 3 as expected since             . 

4.4.2.3 Example 

The cycle index of            acting on the cosets of   is given by; 

     
 

  
   
       

   
      

      
    

This is the same as the cycle index of    acting on the cosets of its subgroup of 

order 4 as expected since             . 
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4.4 Cycle index of   acting on the cosets of      

The cycle index of   acting on the cosets of   depends on the cases given in 

Section 3.4. We are going to prove case (a) and just state the other cases.  

4.4.1 Theorem  

Case a) 

Cycle index of   acting on the cosets of   is given by; 

     
 

   
   

       
           

 
   

       
  

 
      

 
        

 

      
   

 
   

             

         

        

 
   

       

        

  
      

 
        

 
   

       

      

    

Proof 

From the results in Table 3.4.3 the contribution to the sum of the monomials by 

the identity is   

       

   . The contribution by elements of    is         

 

   

       

  . 

We have two different types of monomials for elements of   ; 

i)   
 

      

   

 

   
             

, if            

ii)   

 

   
       

 ,         if             

Hence elements of     contribute;  
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Elements of     contributes  
      

 
[       

 

   
       

      .  

Adding all the above contributions and dividing by the order of G gives the above 

results.   

4.4.2 Example 

The cycle index of            acting on the cosets of   is given by; 

     
 

  
   
        

        
      

    

This is the same as the cycle index of    acting on the cosets of its subgroups of 

order 12 as expected since             . 

Case b) 

The cycle index of   acting on the cosets of   is given by; 
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Case c) 

The cycle index of   acting on the cosets of   is given by; 
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Case d) 

The cycle index of   acting on the cosets of   is given by; 

      
 

   
  

       
           

       
   

 
      

 
        

 

   
   

 
   

               

         

        

 
   

       

        

 

 
      

 
        

 

   
   

 
   

               

         

        
 

      
   

 
   

               

         

        
 

   
   

 

      
   

 
   

               

           

        

 
   

       

      

    

4.5 Cycle index of   acting on the cosets of      

Also the cycle index of   acting on the cosets of   depends on the cases given in 

Section 3.5. We only prove case (a) and state a theorem on each case since the 

same argument is used to prove them.  
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4.5.1Theorem  

Case a) 

The cycle index of   acting on the cosets of   is given by; 

      
 

   
   

       
           

 
   

        
   

 
      

 
        

 

   
   

 
   

               

         

        

 
   

       

          

 

 
      

 
        

 

   
   

 
   

               

         

        

 
   

       

          

    

Proof 

From the results in Table 3.5.3 the contribution to the sum of monomial by the 

identity element is   

       

  . The contribution by elements of    is  

         

 

   

        

   
. We have two different types of monomials for elements of 

  . These are; 

i)   
 

      

   

 

   
               

 if          . 

ii)   

 

   
       

 if           . 
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Hence elements of    contributes; 

      

 
[       

 

   

   

 

   
               

                 

 

   
       

            

to the sum of the monomial. Elements of    contributes 

      

 
[       

 

   

   

 

   
               

                 

 

   
       

            to the 

sum of the monomials. Adding all the above contributions and dividing by     

gives the above results.  

4.5.2 Examples 

The cycle index of            acting on the cosets of   is given by; 

     
 

  
                     

This is the same as the cycle index of    acting on the cosets of itself as expected 

since             . 
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Case b) 

The cycle index of   acting on the cosets of  is given by; 

     
 

   
   

       
           

 
   

        
   

 
      

 
        

 

   
   

               
   

         

        

 
   

       

          

 

 
      

 
        

 

   
   

               
   

         

        

 
   

       

          

    

Case c) 

The cycle index of   acting on the cosets of  is given by; 
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Case d) 

The cycle index of   acting on the cosets of  is given by; 
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Case e) 

The cycle index of   acting on the cosets of  is given by; 
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Case f) 

The cycle index of   acting on the cosets of   is given by; 
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Case g) 

The cycle index of   acting on the cosets of  is given by; 
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Case h) 

The cycle index of   acting on the cosets of   is given by; 
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Case i) 

The cycle index of   acting on the cosets of   is given by; 
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Case j) 

The cycle index of   acting on the cosets of   is given by;           
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Case k) 

 The cycle index of  acting on the cosets of   is given by; 
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Case l 

The cycle index of  acting on the cosets of  is given by; 
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4.6 Cycle index of   acting on the cosets of           

The cycle index of   acting on the cosets of   depends on the cases given in 

section 3.6.  

Case a)  

4.6.1 Theorem  

The Cycle index of   acting on the cosets of   when q is odd is given by; 

     
 

   
   

   
    

         
     

   
 

 

 
      

 
         

 

   
   

 
  

      

         

 
      

 
         

 
  

          

      

 
      

 
  

         

     
 

   
   

 
  

      

 
      

 
  

      

     

      
     

Proof  

Using the results from Table 3.6.2 and argument similar to those in Theorem 4.1.2 

the theorem follows.  
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4.6.2 Example 

The cycle index of          acting on the cosets of   is given by; 

     
 

  
   
     

     
   

     
   

         

Case b)  

4.6.3 Theorem  

The Cycle index of   acting on the cosets of   when q is even is given by; 
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CHAPTER FIVE 

RANKS AND SUBDEGREES OF            ON THE COSETS OF 

ITS SUBGROUPS 

 

In this chapter we compute the ranks and the subdegrees of the permutation 

representations of   on the cosets of its subgroups. This chapter has two main 

sections. In Section 5.1 we find the ranks of G on the cosets     ,     ,       ,    

and         using the results in Chapter 3. In Section 5.2 we determine the 

subdegrees of G on the cosets of     ,     ,      ,   and         using the table 

of marks. We also confirm the ranks computed in Section 5.1.  

5.1 Ranks   on the cosets of its subgroups 

In this section we compute the ranks of G on the cosets of its subgroups using 

Theorem 1.1.11 and the results in Chapter 3. 

5.1.1 Rank of   on the cosets of        

By using Theorem 1.1.11, we calculate the rank (r) of G as follows;                                       

From the result in Table 3.1.1, elements of H have fixed points as follows; 

The identity fixes        cosets, the remaining     element each fixes 2 

cosets.  

Thus we have; 
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5.1.2 Rank of   on the cosets of        

From the results in Table 3.2.1 above and using Cauchy Frobenius Lemma 

(Theorem 1.1.11) we calculate the rank     as follows; 

The identity fixes        cosets and the remaining   elements each fixes 2 

cosets. 

Thus we have; 

                                  
 

   
            

                                                                 
 

   
        

                                                                   

5.1.3 Rank of   on the cosets of      

From the results in Table 3.3.1 we calculate the rank   as follows; 

The identity fixes       cosets and the remaining     elements each fixes 

     cosets. 

Thus we have; 
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5.1.4 Ranks of   on the cosets of      

In computing the ranks     of    on the cosets of H we need to look at all the four 

cases in Section 3.4. 

Case a) 

From the results in Table 3.4.2 we establish that, elements of H have fixed points 

as follows;  

The identity fixes 
       

  
 cosets. We also have 3 elements of order two each fixing 

 

 
 cosets and 8 elements of order three each fixing 

 

 
      cosets. Hence by 

Theorem 1.1.11 we have; 

                              
 

  
 
       

  
  

 

 
   

 

 
        

                
 

  
 
              

  
  

 
 

   
             

NB: We only give results for the other three cases since the argument used is the 

same as in case a) above. 

 

Case b) 
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Case c) 

                                        
 

  
 
       

  
   

   

 
    

 

 
        

 
 

   
             

Case d) 

                                                  
 

  
 
       

  
   

   

 
    

 

 
        

                                                    
 

   
             

5.1.5 Ranks of   on the cosets of      

To find the ranks of G on the cosets of   we need to look at all the cases in 

Section 3.5;  

Case a) 

From the results in Table 3.5.2 we observe that the identity fixes 
       

  
 cosets. 

The 15 elements of order 2 each fixes 
 

 
 cosets. The twenty elements of order 3 

each fixes 
 

 
      cosets. Finally the 24 elements of order five each fixes  

 

 
      cosets. Now applying the Theorem 1.1.11 we obtain; 

                          
 

  
 
       

  
   

 

 
   

 

 
        

 

 
      

 
           

    
  

NB: Since the approach of finding the ranks for the remaining cases are the same 

as case a) we only give results. 
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Case b) 

                                 
 

  
 
       

  
   

 

 
   

 

 
        

 

 
       

                                  
           

    
   

Case c) 

                                
 

  
 
       

  
   

 

 
   

 

 
        

 

 
       

                                  
           

    
  

Case d) 

                          
 

  
 
       

  
   

 

 
   

 

 
        

 

 
          

 
           

    
  

Case e) 

                         
 

  
 
       

  
    

   

 
    

 

 
    

 

 
        

 
            

    
  

Case f) 
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Case g) 

                         
 

  
 
       

  
    

   

 
    

 

 
        

 

 
  

 
             

    
 

Case h) 

                          
 

  
 
       

  
    

   

 
    

 

 
        

 

 
  

 
            

    
  

Case i) 

                           
 

  
 
       

  
    

   

 
    

 

 
        

 

 
      

 
             

    
  

Case j) 

                           
 

  
 
       

  
    

   

 
    

 

 
        

 

 
      

 
            

    
  

Case k) 
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Case l) 

                           
 

  
 
       

  
    

   

 
    

 

 
        

 

 
      

 
            

    
  

5.1.6 Ranks of   on the cosets of           

We have two cases to consider  

a) When   is odd 

b) When   is even 

Case a) 

From the results in Table 3.6.1 we establish that, elements of H have fixed points 

as follows:  

The identity fixes 
      

 
 cosets. The q involutions each fixes 

   

 
  Finally the 

remaining     elements of order greater than two each fixes a single coset. Now 

applying Theorem 1.1.11 we have; 

                                                           
 

      
 
      

 
 

      

 
          

                                                       
   

 
   

Case b)  

Using the same argument as case i) above we establish that the rank is given by; 
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5.2 Subdegrees   on the cosets of its subgroups  

In this section we compute the subdegrees of G using the table of marks. We also 

confirm the ranks computed in the previous section. 

5.2.1 Subdegrees of   on the cosets of        

 Before finding the Subdegrees of   on the cosets of   we first need to give some 

theorems which will be used in this section and other sections to follow.  

5.2.1.1 Lemma  

 Let    (d coprime to p) be a cyclic subgroup of order d, then; 

        
                 

           
  

  sign as       .                                                                    (Dickson, 1901) 

5.2.1.2 Lemma 

Let     be a cyclic subgroup of order p in G, then 

        

 

 
                  

                  
                                    

  

                                                                                                    (Dickson, 1901) 

5.2.1.3  Lemma   

 Let     be a divisor of       and   be the quotient, then 

         
                      

                   
  

                                                                                                     (Dickson, 1901) 
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Since H is abelian, each of its subgroups is normal. Suppose H has s subgroups 

say,     ,                   with        and,  

                 

Now using the method proposed by Ivanov et al.(1983) the table of marks of H can 

be computed as follows; 

 

Table 5.2.1.1:Table of marks of        

                                                                     

                                               

                                              

             ….           ……….       .    

             ….          … . …….    

                                                                    

 

After computing the table of marks of H, we now proceed to find 

                where F is a representative of a conjugacy class in H and 

     The value of      is obtained using Lemma 5.2.1.1 and the method 

proposed by Ivanov et al. (1983). The values of      are displayed in Table 

5.2.1.2  below. 
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Table 5.2.1.2: The mark of F where           

                         …           

                  …     

 

Let                            denote the number of suborbits   . Then by 

Theorem 1.1.19 and using Table 5.2.1.2 and Table 5.2.1.1 we obtain the following 

system of equations; 

                                    

                                   

                                                                                      

                                                   

                                                                       

Solving the above system of equations we obtain                  .  

Hence the subdegrees of G on the cosets of H are shown in Table 5.2.1.3 below 

 

Table 5.2.1.3: Subdegrees of G on the cosets of      

Suborbit Length       

No. of Suborbits       

 

Therefore the rank (r) is given by; 
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5.2.2 Subdegrees of   on the cosets of        

Since H is cyclic thus it is abelian, so each of its subgroups is normal. If   has   

subgroups say        ,                   with        and  

                 

Again using the method proposed by Ivanov et al.(1983) the table of marks of H 

can be as shown below; 

 

Table 5.2.2.1: Table of marks of        

                                                                    

                                               

                                              

           ….   …       ….   … 

          ….   …       ….    ………. 

                                                                   

 

Using Lemma 5.2.1.1 and Lemma 5.2.1.2 we find                       , 

  tuples. Let                     . Then using Table 5.2.2.1 and 

Theorem 1.1.19 we form the following systems of equations; 
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Solving the above system of equations we obtain                   .  

Hence the subdegrees of G on the cosets of H are shown in Table 5.2.2.2 below 

 

Table 5.2.2.2: Subdegrees of G on the cosets of        

Suborbit Length       

No. of Suborbits       

 

Therefore the rank (r) is given by; 

          

 

5.2.3 Subdegrees of   on the cosets of      

Suppose H has n subgroups say                           . These 

subgroups are of order                  respectively since H is a p-group. 

Also all these subgroups are normal in H. So the table of marks of H omitting the 

zeros above the main diagonal is as shown in Table 5.2.3.1 below. 
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Table 5.2.3.1:Table of marks of      

                                     

                                                    

                                                  

                                

       

       …….. 

        …….. 

         

                               

……………………………….. 

………………………………………. 

                                                                                     

                                                                                   

 

After computing the table of marks of H, we now proceed to find 

                where F is a representative of a conjugacy class in H and 

     The values of      are displayed in Table 5.2.3.2  below. 

 

Table 5.2.3.2:The mark of F, where         

                         ……           

                      …         

 

Let                            denote the number of suborbits   . Then by 

Theorem 1.1.19 and using Table 5.2.4.1 and Table 5.2.3.2 we obtain the following 

system of equations; 
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                                                    ………………………………………… 

                                                                                                                   

                                                                                                                             

Solving the above systems of equation we obtain                      .  

Hence the subdegrees of G on the cosets of H are shown in Table 5.2.3.3 below. 

 

Table 5.2.3.3: Subdegrees of   on the cosets of      

Suborbit Length     

No. of Suborbits         

 

Therefore the rank (r) is given by; 

                     

5.2.4 Subdegrees of   on the cosets of      

The following are all the conjugacy classes of subgroups of   

    Identity subgroup 

    3 conjugate cyclic subgroups of order 2,    

    4 conjugate cyclic subgroups of order 3,    

    A normal subgroup of order 4 isomorphic to       

       

                  (Kamuti, 1992, P.90) 

The corresponding table of marks of   omitting zeros above the main diagonal is 

as shown in Table 5.2.4.1 below 
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Table 5.2.4.1: Table of marks of      

                                       

                                                     

                                                     

                                   

       

       

                                  

          1        1       1      1      1 

 

After computing the table of marks of   we proceed to find              , 

where   is a representative of a conjugacy class in   and      

Our computations will be carried out under the following four cases; 

a)                       

b)            

c)                       

d)                        

 

Case a)  

To find      we first need to determine         and        . We obtain 

        using Lemma 5.2.1.1, Lemma 5.2.1.2 and Lemma 5.2.1.3 . We compute 

        using Lemma 1.2.3.2. After obtaining the above results we now proceed 

to compute       Table 5.2.4.2 below gives the values of     . 
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Table 5.2.4.2: The mark of F, where        when               

F                .      

             12        

  
 

        4  

 
 

             3       

 
 

      24 12 2 

      24 12 2 

 

Let                    denote the number of suborbits   . Then by Theorem 

1.1.19 and using Table 5.2.4.1 and Table 5.2.4.2 we obtain the following system of 

equations; 

                    
       

  
 

                
 

 
 

                                         
      

 
 

                                                                              

                                             

Solving the above system of equations we obtain; 
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The rank of G is given by; 

                                   
    

 
 
   

 
 
          

   
 

 
 

   
             

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.4.3 

 

Table 5.2.4.3: Subdegrees of G on the cosets of    when               

Suborbit 

Length 

1 4 6 12 

No. of 

Suborbits 

2     

 
 

   

 
 

          

   
 

 

NB: Since the method of finding the subdegrees in the remaining cases is the same 

as case a), we are going to quote the results only. 

Case b) 

         ,            
    

 
 ,    

   

 
,     

          

   
   

   Hence the rank(r) is, 

                                                 
    

 
 
   

 
 
          

   
 

      
         

   
  

Therefore the subdegrees of G on the cosets of H are as shown in Table 5.2.4.4. 
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Table 5.2.4.4: Subdegrees of G on the cosets of      where     

Suborbit 

Length 

1 4 6 12 

No. of 

Suborbits 

2    

 
 

   

 
 

          

   
 

 

Case c) 

       ,           
    

 
 ,     

   

 
,     

          

   
  

The rank is given by; 

                                    
    

 
 
   

 
 
          

   
 

 
 

   
             

 

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.4.5 

 

Table 5.2.4.5: Subdegrees of G on the cosets of      when             

Suborbit 

Length 

1 4 6 12 

No. of 

Suborbits 

2    

 
 

   

 
 

          

   
 

 

Case d) 

       ,           
    

 
 ,     

   

 
,      

         

   
   

Therefore the rank is given by; 
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Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.4.6. 

 

Table 5.2.4.6: Subdegrees of G on the cosets of      when       
         

Suborbit 

Length 

1 4 6 12 

No. of 

Suborbits 

2     

 
 

   

 
 

         

   
 

 

5.2.5 Subdegrees of   on the cosets of      

   has the following nine conjugacy classes of subgroups; 

    Identity subgroup 

    15 conjugate subgroups of order 2 isomorphic to    

    10 conjugate subgroups of order 3 isomorphic to    

    5 conjugate subgroups of order 4 isomorphic to    

    6 conjugate subgroups isomorphic to    

    10 conjugate subgroups isomorphic to    

    6 conjugate subgroups isomorphic to     

    5 conjugate subgroups isomorphic to    

                                             

(Kamuti, 1992, p. 93) 
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The corresponding table of marks of H omitting zeros above the main diagonal is 

as shown in Table 5.2.5.1 below. 

 

Table 5.2.5.1: Table of Marks of      

                                                             

                                              

                                               

                           

       

       

       

       

       

                          

                                                                                           

                                                                                   

                                                                                           

                                                                                                                       

                                                                                                                                 

 

After computing the table of marks of H we now need to find              , 

where F is a representative of a conjugacy class in H and    . 

Our computation will be carried out under the following 12 cases; 

a)                         

b)                          

c)                          
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d)                         

e)                        

f)                         

g)                        

h)                         

i)                                  

j)                                   

k)                                   

l)                                   

 

Case a) 

Also in this subgroup, to find      we first need to determine         and 

       . We obtain          using Lemma 5.2.1.1, Lemma 5.2.1.2 and Lemma 

5.2.1.3. We compute          using Lemma 1.2.3.2. Table 5.2.5.2 below gives the 

values of     . 
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Table 5.2.5.2: The mark of F where         when                

F                .      

             60        

  
 

        4  

 
 

             6      

 
 

      24 12 2 

             10    

 
 

      6 6 1 

       10 10 1 

      24 12 2 

      60 60 1 

Let                                 denote the number of suborbits   . Then 

by Theorem 1.1.19 and using Table 5.2.5.1 and Table 5.2.5.2 we obtain the 

following system of equations; 
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Solving the above system of equations we obtain; 

                             
   

  
           

    

 
      

 
   

 
      

            

    
   

Therefore the rank is given by; 

                                                           
   

  
 

    

 
 

   

 
 

            

    
 

                 
           

    
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.3 

 

Table 5.2.5.3: Subdegrees of G on the cosets of      when       
         

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

    

 
 

   

 
 

            

    
 

 

NB: The procedure of finding the subdegrees for the remaining cases is the same 

as case a) so, we are going to quote the results only. 
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Case b) 

                                  
   

  
        

   
   

 
    

   

 
     

            

    
  

So the rank is given by; 

                              
   

  
 
   

 
 
   

 
 
            

    

 
           

    
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.4 

 

Table 5.2.5.4: Subdegrees of G on the cosets of      when       
          

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

   

 
 

   

 
 

            

    
 

 

Case d) 
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So the rank of G is given by; 

                               
   

  
 
    

 
 
   

 
 
            

    

 
 

    
               

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.5 

 

Table 5.2.5.5: Subdegrees of G on the cosets of      when       
         

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

    

 
 

   

 
 

            

    
 

Case e) 

                                   
    

  
    

        
    

  
     

   

 
    

            

    
   

So the rank is as given below; 

                              
    

  
 
    

  
 
   

 
 
            

    

 
 

    
                

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.6 
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Table 5.2.5.6: Subdegrees of G on the cosets of      when       
        

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1     

  
 

    

  
 

   

 
 

            

    
 

 

Case f) 

                          
   

  
          

 
   

 
    

   

 
    

            

    
   

So the rank(r) of G is given by; 

                                          
   

  
 

   

 
 

   

 
 

            

    
   

                                    
            

    
   

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.7 

 

Table 5.2.5.7: Subdegrees of G on the cosets of      when       

         

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    
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Case g) 

                          
   

  
     

      
    

 
    

   

 
    

            

    
   

So the rank(r) is given by 

                             
   

  
 
    

 
 
   

 
 
            

    

 
            

    
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.8 

 

Table 5.2.5.8:Subdegrees of G on the cosets of     when             

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

    

 
 

   

 
 

            

    
 

 

Case h) 
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So the rank (r) of G is given by 

                             
   

  
 
   

 
 
   

 
 
            

    

 
            

    
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.9 

 

Table 5.2.5.9:Subdegrees of G on the cosets of     when             

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

   

 
 

   

 
 

            

    
 

 

 

Case i) 

                                            
   

  
          

 
    

 
    

   

 
    

            

    
  

Therefore the rank (r) of G is as given as; 

                             
   

  
 
    

 
 
   

 
 
            

    

 
             

    
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.10 
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Table 5.2.5.10:Subdegrees of G on the cosets of     when       
         

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

    

 
 

   

 
 

            

    
 

 

Case j) 

                          
   

  
     

      
   

 
    

   

 
    

            

    
   

So the rank (r) of G is given below 

                                
   

  
 
   

 
 
   

 
 
            

    

 
            

    
  

Hence the subdegrees of G on the cosets of H are as shown in table 5.2.5.11 

Table 5.2.5.11: Subdegrees of G on the cosets of      where             

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    
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Case k) 

                          
   

  
         

 
   

 
    

   

 
    

            

    
   

 

The rank (r) of G is given by; 

                            
   

  
 
   

 
 
   

 
 
            

    
  

 
             

    
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.12 

 

Table 5.2.5.12: Subdegrees of G on the cosets of      where             

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

   

 
 

   

 
 

            

    
 

 Case l) 

                          
   

  
        

 
    

 
    

   

 
    

            

    
   

Therefore the rank (r) G is as shown below; 
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Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.5.13 

 

Table 5.2.5.13: Subdegrees of G on the cosets of      where             

Suborbit 

Length 

1 5 12 20 30 60 

No. of 

Suborbits 

1 1    

  
 

    

 
 

   

 
                  

    
 

 

5.2.6 Subdegrees of   on the cosets of           

We shall compute the subdegrees of G in this representations under the following 

two cases: 

a) When   is even 

b) When   is odd 

Case a)  

When   is even 

The conjugacy classes of subgroups are; 

i)     Identity. 

ii)     a conjugacy class of     cyclic subgroups of order two 

iii)    Normal cyclic subgroups 
1 23 3 3, , ,

r
H H H  contained in 

1qC 
 

where | 1  and  2, 1i im q m i r    . 

iv)    Dihedral subgroups 
1 24 4 4, , ,

r
H H H  where | 1, 1im q i r   . 
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v)    A normal cyclic subgroup of order    , 
1qC 
. 

vi)    2( 1)qD 
. 

The corresponding table of marks of 2( 1)qD  ,when   is even is as shown in Table 

5.2.6.1 

 

Table 5.2.6.1: Table of marks of H = 2( 1)qD  ,    even 

 
1H  2H  

13H .. 
13H  

14H . 4r
H

 

5H  
6H      

 1/H H                       

 2/H H                  

 
13/H H  31 m  32 m  33 m           

 .. … …. ….         

 3/
r

H H  21 rm   22 rm 

 

23 rm   …… 
2 2 r rm  

 

       

 
14/H H  31 rm   32 rm 

 

33 rm   34 rm   35 rm 

 

       

 ….. …. …. …. …. ….       

 4/
r

H H  2 21 rm   2 22 rm 

 

2 23 rm   2 24 rm   ….  ….      

 5/H H  2 0 0 2 2  2 0     

 6/H H  1 1 1 1 1  1 1     
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We now proceed to compute              . To find      we first need to 

determine         and        . We obtain         using Lemma 5.2.1.1, 

Lemma 5.2.1.2 and Lemma 5.2.1.3. The values of      are displayed in Table 

5.2.6.2 below; 

 

Table 5.2.6.2: The mark of F where       2( 1)qD           

F                .      

1H                       

 
 

2H    2  

 
 

13H                1 

 … … … 

3r
H                1 

14H  2m 2m 1 

 … … … 

4r
H  2m 2m 1 

5H                1 

6H                1 
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Let  1 2 3 2 3 2 2 2 3 2 4, , , , , , , , ,r r r r rQ Q Q Q Q Q Q Q Q      denote the number of 

suborbits   . Then by Theorem 1.1.19 and using Table 5.2.6.1 and Table 5.2.6.2 

we obtain the following system of equations; 

 

1 2 3 31 2 21 2 3 2 4

2 3 32 2 22 2 2 2 22 2 4

3 33 2 23 3 33 2 3 2 4

( 1)
2( 1) ( 1)

2

2

2 1

........................................................

r r r r

r r r r r

r r r r r r

q q
q Q q Q Q m Q m Q Q

q
Q Q m Q m Q m Q

Q m Q m Q m Q

   

    

     


          

      

      

2 2 2 3 3 2 2 3 2 4

3 3 3 2 4

2 2 2 22 2 2 4

2 3 2 4

2 4

.....................

2 1

1

..............................

1

1

1.

r r r r r r r r

r r r r

r r r r

r r

r

Q m Q m Q

Q m Q

Q m Q

Q Q

Q





        

    

   

 



    

  

 

 



 

Solving the above systems of equations we obtain; 

1 2 3 2 3 2 2 2 3 2 4

2
( 1, , 0,., 0, 0,., 0, 0, 1).

2
r r r r r

q
Q Q Q Q Q Q Q Q Q    


          

So the rank (r)  

              
   

 
   

 
   

 
 

 

Hence the subdegrees of G on the cosets of H are as shown below; 
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Table 5.2.6.3: Subdegrees of G on the cosets of H = 2( 1)qD  ,   even 

Suborbit Length 1            

No. of Suborbits 1    

 
 

  

 

When q is odd 

1 2 3 2 3 2 2 2 3 2 4

3
( 1, , 1,, 0, 0,., 0, 0, 1).

2
r r r r r

q
Q Q Q Q Q Q Q Q Q    


          

So the rank (r) is as shown below 

                    
   

 
   

 
   

 
  

Hence the subdegrees of G on the cosets of H are as shown in Table 5.2.6.4 below; 

 

Table 5.2.6.4: Subdegrees of G on the cosets of H = 2( 1)qD  ,   odd 

Suborbit 

Length 

1    

 
 

           

No. of 

Suborbits 

1 1    
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CHAPTER SIX 

SUBORBITAL GRAPHS CORRESPONDING TO 

PERMUTATION REPRESENTATIONS OF          

 

After having computed the ranks and the subdegrees of a permutation group acting 

on the cosets of its subgroup; the next most interesting thing is to construct and 

investigate some properties of suborbital graphs corresponding to these actions. 

This chapter has three sections.  Section 6.1 gives the background information 

which will be used later in the chapter.  In Section 6.2 we determine suborbits of   

acting on the cosets of       Finally in Section 6.3 we construct suborbital graphs 

i  of   corresponding to the suborbits of length     when G acts on the cosets 

of     . 

 

6.1 Suborbital Graphs 

6.1.1 Definition  

Let G be a transitive permutation group acting on a set X. Then G acts on X X  

by    , , , , , .g x y gx gy g G x y X     If O X X   is a G-Orbit on X X , then 

for a fixed ,x X    .y X x y O     is a xG -Orbit.  Conversely, if X  is 

a xG -Orbit, then    , ,O gx gy g G y    is a G-Orbit on ,X X  We say   

corresponds to O. The G-orbits on X X  are called suborbitals.  Let 
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, 0,1,..., 1iO X X i r     be a suborbital.  Then we form a graph i , by taking X 

as the set of vertices of i  and by including a directed edge from x to y ( , )x y X  

if and only if ( , ) ix y O .  Thus each suborbital iO  determines a suborbital graph 

i .  Now     * , ,i iO x y y x O   is also a G-Orbit. Let 
*

i  be the suborbital 

graph corresponding to the suborbital
*

iO .  Let the suborbits  0,1,..., 1i i r    

correspond to the suborbital iO .  Then i  is undirected if i is self-paired and 

directed if i  is not self-paired. (Sims, 1967) 

.                                                                                                            

6.1.2 Lemma 

Let G be a transitive permutation group acting on X. Then there are bijections 

between; 

a) The set of orbits of    on X for a fixed    . 

b) The set of orbits of G on    . 

c) The set of double cosets      ,     for a fixed    . 

                                                                                              (Kamuti, 1992) 

6.1.3 Theorem 

Let G be transitive on X. Then G is primitive if and only if suborbital graph i   

             is connected.  (Sims, 1967) 
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6.1.4 Theorem  

Let G act transitively on a set X. Let     and     . Then the action of G on X 

is equivalent to the action by multiplication on the set of (right) cosets of H in G. 

(Rose,1978, p. 76) 

6.1.5 Theorem 

Let G be transitive on X and let    be the stabilizer of a point    . Let 

                            be orbits of    on X of length; 

                 , where                      If there exists an index 

    such that          , then G is primitive. (Wielandt, 1964) 

6.1.6 Lemma 

Let G act on a set X. Then the character   of a permutation representation of     

on X is defined by;  

                    

6.1.7 Theorem  

Let G act transitively on a set X, and let    . Suppose   is the character of the 

permutation representation of G on X, then the number of self-paired suborbits of 

G is given by; 

   
 

   
      

   

  

                                       (Cameron, 1975)   
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6.2  Suborbits of             acting on the cosets of        

Let   act on the projective line                  . If             is the set of 

elliptic, parabolic and hyperbolic elements respectively, the cycle structures of 

    is as given in the table below. 

 

Table 6.2.1: The cycle structures of      

             

Cycle length of g                      1                    

No. of cycles 1                   2              
   

 
    

 
 

  

where   is the order of      

Since  is 2-transitive on the          then it is transitive on ordered pairs from 

         

Because H is the stabilizer of an ordered pair, we deduce the following from 

Theorem 6.1.4; 

6.2.1 Corollary 

The action of G on the cosets of H is equivalent to its action on the ordered  

2- element subsets from the projective line. 

Proof 

Using Theorem 6.1.4 the result is immediate.   



115 

 

From now henceforth we shall be working on the action of G on the ordered pairs 

from the projective line where                                 Let H 

be the stabilizer of       and   be a primitive element of      , then 

    
  
  

                             

So the suborbits of   on ordered pairs from          are; 

         
                 

         
                 

         
                                          

         
                                          

         
                                          

         
                                          

         
                                            

         
                                              

              ……………………………………………………………………. 

         
                                                     

So the subdegrees are as shown in Table 6.2.2 below 
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Table 6.2.2: subdegrees of G on the ordered 2- element subsets from the 

                  

Suborbit length       

No. of suborbits       

 

6.2.2 Theorem 

The action of G on the set of ordered pairs from         is imprimitive.  

Proof 

Using Theorem 6.1.5 the result is immediate.  

6.2.3 Theorem 

When G acts on the set of ordered pairs from        , the number of self paired 

suborbits is     and the paired suborbits are 2. 

Proof 

If      for    to fix an ordered pair then either   is the identity or g is a 

hyperbolic element of order 2 or   is a hyperbolic element of order greater than 

two or g is an elliptic element of order 2. If   is the identity then    fixes        

elements. If   is a hyperbolic element of order 2 then    fixes        elements. 

There are  
      

 
 hyperbolic elements of order 2 in G hence contributes 

         
      

 
  number of fixed points to the formula in Theorem 6.1.6. If g is 

a hyperbolic element of order greater than 2 then    fixes 2 ordered pairs (namely 

      and      ). In total we have       
      

 
  elements hence contribute 
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  to the formula. If g is an elliptic element of order 2 then    fixes 

       elements. In total we have   
      

 
  elliptic elements of order 2 hence 

contribute         
      

 
  to the formula. Now applying Theorem 6.1.6 we 

have; 

   
 

   
                 

      

 
          

      

 
 

         
      

 
         

Since the rank of G on the cosets of H is    , the number of paired suborbits are 

2. 

6.2.4  Theorem  

When G acts on the set of ordered pairs from        , then  3  is paired with  

4 . 

Proof 

Let      where    
   
   

   then   maps          to       and       

to          . Therefore by Definition 6.1.1    and    are paired.  

6.3 Suborbital graphs   of   corresponding to its suborbits  

when G acts on the cosets of        

We recall from Section 6.2 that there are     suborbits of length     and 

  suborbits of length  .  
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6.3.1 Suborbital graph corresponding to suborbit of G formed  

       by pairs of the form        

Since G is doubly transitive on the        ; given a pair              

         , there exist     such that        and       . For      , 

g can be chosen to be  
  
  

 . If either v or h is   then we can choose g to be 

 
  
  

  or  
  
  

  respectively. 

Now let   be the generator of          then we construct suborbital graph as 

follows; 

6.3.1.1 Theorem 

For each of the following cases               is an edge in 
( , )i 

 . 

a)            and                   

b)       and        

c)          and              

Proof 

a) Since                is in 
( , )i 

 so if               is in
( , )i 

 , then 

there exists     which send   to   and   to  . So we choose  

   
  
  

  since        Now; 

               

             



119 

 

Hence; 

 
  
  

   
 

 
                    

          and  

 
  
  

  
 
 
   

 
 
       

b) Since    , then we choose     to be  
  
  

 , hence we have, 

 
  
  

   
 

 
           

           and  

 
  
  

  
 
 
       

              Hence          and    . 

c)    , so we choose     to be  
  
  

 , hence we have, 

              

         
  
  

   
 

 

 
 
   

      

   
   

               Thus      and                 

6.3.1.2 Example  

Suborbital graph of            

To construct suborbital graph corresponding to this action we first need to find 

suborbits of G using Corollary 6.2.1.  
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Thus we have; 

         
                  

         
                 

         
                       

         
                       

         
                       

         
                       

         
                        

Then suborbits of G in this case are 7 and the subdegrees are                This is 

expected since from the results in Section 6.2 we have 2 orbits of length 1 and 

    suborbits of length    . Using Theorem 6.3.1.1 we can now construct 

suborbital graph 
( , )i 

 corresponding to   . 
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Figure 6.3.1.1: suborbital graph formed by pairs of the form        
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6.3.2 Suborbital graph corresponding to suborbit of G  

          formed by pairs of the form        

6.3.2.1 Theorem 

For each of the following cases               is an edge in ( ,0)i
 . 

a)            and                   

b)       and              

c)          and        

Proof  

a) Using the same approach as Theorem 6.3.1.1, when        we let     

be  
  
  

 . So  

                                                  

              Hence; 

                                        
  
  

   
 

 
                    

             and  

 
  
  

  
 
 
   

 
 
       

            Thus                   and      

b) Since    , then we have, 

 
  
  

   
 

 

  
  
                       

              Hence              and    . 
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c)    , then taking     to be  
  
  

 , hence we have, 

              

                                          
  
  

   
 

 

   
  
    

    
  

  

                        Thus      and         

6.3.2.2 Example  

From Theorem 6.3.2.1 we can construct suborbital graph 
( ,0)i

  for          

corresponding to suborbit    (in Example 6.3.1.2). 

 

Figure 6.3.2.1: Suborbital graph formed by pairs of the form        

 

 

 

 

 

 

 

 

 

 

 

       

      

      
 

      

(2,1) 
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6.3.3 Suborbital graph corresponding to suborbit of G  

         formed by pairs of the form        

6.3.3.1 Theorem 

For each of the following cases               is an edge in        . 

a)            and                    

b)         and         

c)         and               

      Proof  

a) Since        then we take     to be  
  
  

 . So we have; 

                                           

            Hence; 

 
  
  

  
 
 
    

 

 
   

   
 
  
     

    
                       

            Thus                          . 

b) For    , so taking     to be  
  
  

 , so we have; 

              

 
  
  

  
   
  
   

 

 
        

  
   

               So      and         

c) Finally for    , then we have, 
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              Thus      and                

6.3.3.2 Example  

Using Theorem 6.3.3.1 we can construct suborbital graph          for          

corresponding to suborbit    (in Example 6.2.2.2). 

 

Figure 6.3.3.1 Suborbital graph formed by pairs of the form         
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6.3.4 Suborbital graph corresponding to suborbit of G  

         formed by pairs of the form        

6.3.4.1 Theorem 

For each of the following cases              is an edge in 
( , )i

  . 

a)            and                   

b)     and              

c)        and       . 

Proof  

a)        so we take     to be  
  
  

 ; so 

              

             Hence; 

 
  
  

  
 
 
    

 

 
   

   
 
  
     

    
                        

           Thus                          . 

b) For    , In this case we take     to be  
  
  

 , so we have; 

              

 
  
  

  
   
  
   

 

 
   

     

   
  

               So      and            . 

c) Finally for    , then we have, 
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              Thus      and          

6.3.4.2 Example  

Using Theorem 6.3.4.1 we can construct suborbital graph 
( , )i

  for          

corresponding to suborbit    (in Example 6.3.1.2) 

 

Figure 6.3.4.1 Suborbital graph formed by pairs of the form          
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6.3.5 Suborbital graph corresponding to suborbit of G  

  formed by pairs of the form           

6.3.5.1 Theorem 

For each of the following cases               is an edge in (1, )i
   . 

a)                     and                   

b)               and              

c)            and       . 

Proof  

a)        so we take     to be  
  
  

 ; so 

                                                     

        Hence;  

                         
  
  

  
 
 
    

 

 
   

   
 

  
     

    
  

                                                                                    

               Thus                                  . 

b) Since    , In this case we take     to be  
  
  

 , so we have;                                                                                                                  

                                                         

 
  
  

  
 
 
   

 

 
   

   
 

      

  
  

               So        and             
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c) For     , then we have, 

 
  
  

  
 
 
   

 

 
                       

              Hence        and          

6.3.5.2 Example  

Using Theorem 6.3.5.1 we can construct suborbital graph (1, )i
    for          

corresponding to suborbit    (in Example 6.3.1.2) 

 

Figure 6.3.5.1:  Suborbital graph formed by pairs of the form           
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6.3.6 Suborbital graph corresponding to suborbit of G  

         formed by the pairs       

6.3.6.1 Theorem 

For each of the following cases               is an edge in         . 

a)            and     

b)     and       

c)       and     

   Proof  

a) Since        then we take     to be  
  
  

 . So we have; 

                                            

            Hence; 

 
  
  

  
 
 
   
 
 
   

   
 
  
 
 
         

            Thus           . 

b) For    , so taking     to be  
  
  

 , so we have; 

              

 
  
  

  
   
  
  
 
 
   

  
  

   

               So      and      

c) Finally for    , then we have, 

 
  
  

  
  
  
  
 
 
               

              Thus      and        
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6.3.6.2 Example  

Using Theorem 6.3.6.1 we can construct suborbital graph (0, )  for          

corresponding to suborbit    (in Example 6.3.1.2) 

 

Figure 6.3.6.1:  Suborbital graph formed by pairs of the form         

 

 

 

 

 

 

 

 

 

 

 

6.4 properties of the suborbital graphs constructed 

 

6.4.1 Theorem  

The suborbital graphs (1,0) , (0,1) , ( , )i
 ,

( , )i 
  are of girth 3. 
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Proof  

For ( , )i
  

Since                  in ( , )i
 ,        is adjacent to        and      . 

By Theorem 6.3.4.1 and taking       to be      and    to be     we find that 

              is an edge in ( , )i
 giving a triangle.   

NB: Applying the same approach to the other suborbital graphs we obtain the 

results. 

6.4.2 Theorem 

The suborbital graph (0, )  is of girth 0.   

Proof 

The graph is regular of degree one hence cannot form a circle. 

6.4.3 Theorem  

The suborbital graphs 
(1, )i

  is of girth 4. 

Proof  

Since                 in 
(1, )i

 ,      is adjacent to        and        By 

Lemma 6.1.8 and Theorem 6.3.5.1 and taking       to be      and    to be -1 we 

find that               is an edge. Also applying the same Theorem and taking 

      to be       we find that               is an edge in (1, )i
  giving us 

girth 4. 
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 6.4.4 Theorem 

The number of connected components for (0, ) is  
      

 
 . 

Proof 

The number of ordered pairs is     
 
 .  Each connected components has two 

ordered pairs. Hence the results follow. 
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CHAPTER SEVEN 

CONCLUSION AND RECOMMENTATIONS 

This chapter is divided into two sections. In section 7.1 it gives the conclusion. 

Section 7.2 gives recommendation for further research. 

7.1 Conclusion  

The purpose of this research was mainly to investigate the action of          on 

the cosets of its subgroups namely;                    and        . 

Corresponding to each action the disjoint cycle structures, cycle index formulas, 

ranks and the subdegrees were computed. Suborbital graphs corresponding to the 

action of          acting on the cosets of      were constructed. 

To obtain these, some objectives were set which we achieved as follows; 

a) For the disjoint cycle structures of          on the cosets of its subgroups 

namely;                    and        the results are given in chapter 

three.  

b) The cycle index formulas for the representation of          on the cosets 

of its subgroups were computed in chapter four.  

c) In chapter five we determine the ranks and the subdgrees for the action of  

         on the cosets of its subgroups. Results for the ranks are in 

Section 5.1. For the subdegrees they are section 5.2. 

d)  In Chapter six suborbital graphs   of   corresponding to its suborbits 

when G acts on the cosets of        are constructed and their theoretic 
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properties studied. All suborbital graphs except two are self paired.  We 

also established that some were of girth 3 others were not.  

 7.2 Recommendation for further research 

Having determined the disjoint cycle structures, cycle index formulae, ranks, 

subdegrees and constructing suborbital graphs when          acts on the cosets 

of     , one can extend this work by constructing suborbital graphs of 

        on the cosets of                    
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