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Abstract: In this paper, nonparametric regression is employed which provides an estimation of unknown finite population 

totals. A robust estimator of finite population totals in model based inference is constructed using the procedure of local linear 

regression. In particular, robustness properties of the proposed estimator are derived and a brief comparison between the 

performances of the derived estimator and some existing estimators is made in terms of bias, MSE and relative efficiency. 

Results indicate that the local linear regression estimator is more efficient and performing better than the Horvitz-Thompson 

and Dorfman estimators, regardless of whether the model is specified or mispecified. The local linear regression estimator also 

outperforms the linear regression estimator in all the populations except when the population is linear. The confidence 

intervals generated by the model based local linear regression method are much tighter than those generated by the design 

based Horvitz-Thompson method. Generally the model based approach outperforms the design based approach regardless of 

whether the underlying model is correctly specified or not but that effect decreases as the model variance increases. 

Keywords: Nonparametric Regression, Finite Population Totals, Local Linear Regression, Robustness Properties, 

Confidence Intervals, Model Based Surveys 

 

1. Introduction 

Integrated systems for survey designs and estimation 

methods to finite population inference have been considered 

by researchers in the past and categorised as design based 

approach, model assisted approach, combined inference 

approach and model based approach. Comparing and 

contrasting them in terms of their concepts of efficiency and 

robustness to assumptions about the characteristics of the 

population, it has been concluded that although none of these 

approaches delivers both efficiency and robustness, the 

model based approach seems to achieve the best compromise 

among the other approaches. In Chambers [1], a brief 

discussion on these survey strategies is accomplished. Kuo 

[2], Dorfman and Hall [3] and Kuk [4] apply nonparametric 

regression for estimating totals in finite populations. 

There are two incompatible approaches for making 

inference from sample to population. In the traditional 

design-based approach, Horvitz and Thompson [5] use the 

probability structure of the procedure by which the sample � 

is selected to serve as the basis for inference in finite 

populations.  In the model-based or predictive approach, 

Dorfman [6], use a regression model of the response � on the 

predictor �  to predict the non-sample �′�  and by 

consequence, their total. Kikechi e tal [7] employ a model 

based survey to estimate the unknown values of the survey 

variable using the local linear regression approach. In 

particular, the authors derive the properties of a local linear 

regression estimator and make variance comparisons between 

the derived estimator and the Nadaraya-Watson regression 

estimator which show that the two estimators are 

asymptotically equivalently efficient. 

Researches done by Dorfman and Hall [3] and Chambers e tal 

[8] have dwelt on estimating ���� , a smooth function. The 

expression for the asymptotic bias of this version of a non-

parametric regression estimator of total does not include division 

by the sampling density, and so we expect the bias of a local 

linear regression based estimator be less sensitive to sparse � 

regions in the sample data. We make use of the local linear 
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regression technique to study the properties of the derived 

estimator and compare its performance with the existing 

estimators. Chambers and Dorfman [9] observe that the 

calibration estimator based on the columnar model does slightly 

better than the best linear unbiased estimator at high band width. 

The estimator generally appears robust to changes in band-

width, and gives exact unbiasedness and minimal variance for a 

particular weighted balanced sample. 

They further noted that the estimators based on non-

parametric model give approximate unbiasedness with no 

condition on balance and give approximate minimal variance, 

under approximate weighted balance. However, Fan and 

Gijbels [10] explore a more sophisticated method than the 

kernel regression, for example, the variable bandwidth local 

linear regression approach in finite populations. 

Zeng and Little [11] propose a model-based estimator that 

uses penalized spline regression, and Zeng and Little [12] 

extend this estimator to two-stage sampling designs. 

A new type of model-assisted non-parametric regression 

estimator for the finite population total, based on local 

polynomial smoothing which is a generalization of kernel 

regression has also been proposed. Breidt and Opsomer [13] use 

the traditional local polynomial regression estimator for the 

unknown regression function ����  for the model assisted 

estimation of the finite population total. Sanchez e tal [14] 

estimate ��. � using a modified local constant estimator for the 

mixed variable case. Luc [15] derive asymptotic properties of 

probability weighted nonparametric regression estimator under a 

combined inference framework for complex surveys. However, 

the nonparametric regression estimator considered here is the 

local constant estimator. Simulation studies showed that the bias 

of the modified nonparametric regression estimator had the 

same leading terms and order of probability as under the model 

based framework. He develops asymptotic properties under the 

combined inference approach and tests the performance of the 

estimator against the traditional model based local constant 

estimators. However, the use of local linear regression procedure 

in a purely model based framework is open and requires further 

study. 

2. The Proposed Estimator 

The regression model for estimating the population total is 

given by, 

�
 = ���
� + ���
��
.                      (1) 

Letting jx  be any point in the non-sample, and like in 

Dorfman [6], the estimator proposed by Kikechi e tal [7] is 

adopted and is defined by, 

���� = ∑ �

∈� + ∑ �����∈� ����                   (2) 

����  is an estimator of the finite population total, where ��������  is a local linear regression estimator of �����	at 

point ��. 

In Kikechi e tal [7], ��������  is derived and defined as 

under, 

��������
= ���� ,� − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� & �

�
 − ��ℎ $(�)
∈�
+ ��
 − ������� ,% − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� & �

�
 − ��ℎ $ (�)
∈*
 

=�+
����
∈�
(� + ��
 − ����+
,����
∈�

(� . 
where, 

+
���� = �� ,� − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� - �
�
 − ��ℎ $. 

and, 

+
,���� = �� ,% − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� - �
�
 − ��ℎ $. 

3. Properties of the Local Linear 

Regression Estimator, .�// 

In this section, consider the fixed equally spaced design 

model. The following assumptions made in Ruppert and 

Wand [16] are used to derive the properties of the local linear 

regression estimator: 

(i) The �� variables lie in the interval �0, 1�. 
(ii) The function �,,�. �  is bounded and continuous on �0, 1�. 
(iii) The kernel &�2�  is symmetric and supported on �−1, 1�. Also &�2� is bounded and continuous satisfying the 

following: 3 &���454 6� = 1 , 3 �&���454 6� = 0 , 3 ��&���454 6� > 0, 3 &��454 6� < ∞, 6: = 3 &��2�454 62 
(iv) The bandwidth ℎ  is a sequence of values which 

depend on the sample size ;  and satisfying ℎ → 0  and ;ℎ → ∞, as ; → ∞. 

(v) The point ��  at which the estimation is taking place 

satisfies ℎ < �� < 1 − ℎ. 

Fan [17] imposed conditions on &�. � and are only used for 

convenience in terms of technical arguments and thus can be 

relaxed. 

Using equation �2� as proposed by Kikechi e tal [7], the 

local linear estimator of finite population total �  can be 

estimated using, 
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3.1. The Expectation of the Local Linear Regression Estimator, .�// 

The expectation of ����is derived as, 

Q������ = �Q�(
� +������ ,� − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� - �
�
 − ��ℎ $Q�(
�)
∈�

) +	
�∈�
∈�
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Using Taylor series expansion of the form, 

���
� = ����� + ℎ2�,���� + NJRJ�! �,,���� + ⋯                                      (5) 

theorem 3 in Fan and Gijbels [10] is such that, under the conditions given in (i)-(v), we have, 

Q������ = ����
� +������ ,� − � ,#��
 − ���$� ,%� ,� − �� ,#�� - ��
 − ��ℎ $���
�)
∈�
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= ∑ ���
�
∈� + ∑ ������∈� + ∑ ^��
 − ����′����_	�∈� + ∑ [YD��H,J�J5�H,K�H,`�H,I�H,J5��H,K�JL + ��
 − ��� D�H,I�H,`5�H,K�H,J�H,I�H,J5��H,K�J LZabb�EG�� \	�∈�     (6) 

3.2. The Bias of the Local Linear Regression Estimator, .�// 

The bias of ����is derived as, 

cde������� = �^��
 − ����′����_�∈�
 

+∑ [YD��H,J�J5�H,K�H,`�H,I�H,J5��H,K�JL + ��
 − ��� D�H,I�H,`5�H,K�H,J�H,I�H,J5��H,K�J LZabb�EG�� \�∈�                           (7) 

cde�f*g������ =�^��
 − ����′����_�∈�
 

+�[^;�ℎh-�� + i�;�ℎj� + ��
 − ����;�ℎk-] + i�;�ℎl��_�′′����2�;�ℎm-� + i�;�ℎh�� \	
�∈�

 

= ^∑ ��
 − ����,�����∈� _ + ∑ CN�N:JJn�EF5EG�:`�a,,�EG��:J P�∈�                                      (8) 

3.3. The Variance of the Local Linear regression Estimator, .�// 

The variance of the local linear regression estimator ���� is estimated using the variance of the error. Then, oepq���� − �r is 

taken as an estimator of oep������ 
oep������ = oep ��(
 +��������� −�(

∈�

−�(��∈��∈�
∈�
) 

= oep ���+
����(
 +���
 − ����+
,����(�
∈�
−�(��∈��∈��∈�
∈�

) 

= ∑ ∑ +
�����
∈� ���
��∈� + ∑ ��
 − �����∈� ∑ +
,��������
� + ∑ ������∈� 	
∈�                             (9) 

where, 

+
���� = �� ,� − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� & �
�
 − ��ℎ $. 

+
,���� = �� ,% − � ,#��
 − ���$�� ,%��� ,�� − �� ,#�� & �
�
 − ��ℎ $. 

The asymptotic expression for the variance of ���� is given by the expression using the results of �������� in Kikechi e tal [7] 

that have been derived, thus, 

oepf*g������ = 1;ℎ��-�
∈� ��
 − ��ℎ $���
� ��
 − �
5#ℎ $�∈� +���
 − �����0.
∈� ���
�	�∈�  

= ∑ st N ������∈�                                                                               (10) 

Note that in Kikechi et al [7], oepf*g ���������$ = st N ����� and oepf*g ���uv����$ = st N ����� 
3.4. The MSE of the Local Linear Regression Estimator, .�// 

Theorem I in Fan [17] allows that under condition (ii) we have, 
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w�Q������ = qcde�������r� + oep������ 
= ����
 − ����,���� +�UV�� ,��� − � ,#� ,]� ,%� ,� − �� ,#��W + ��
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)
�
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�����
∈� ���
��∈� + ∑ ��
 − �����∈� ∑ +
,��������
� + ∑ ������∈�
∈�                           (11) 

The asymptotic expression for the MSE of the local linear regression estimator ���� is given by, 

w�Qf*g������ = ����
 − ����,�����∈x
+�[ℎ�ℎ-�� + ��
 − ���-]��′′����2-� \

�∈x
)
�
 

+∑ st N�∈x �����                                                                              (12) 

4. Simulation Study 

In this section, a study is conducted on the performances 

of various estimators, including the proposed local linear 

regression estimator �2� . In particular, we consider the 

design-based estimator, the parametric model-based 

estimator and the nonparametric model-based estimators. 

4.1. Population Description 

In this study, four populations are considered, which are 

generated from the regression model of the form, 

�
 = ���
� + ���
��
                      (13) 

where, 

Q��
 ⁄ �
 = �
� = ���
�	                     (14) 

zi{��
 , �� ⁄ �
 = �
 , �� = ��� = C���
�, d = |0, d ≠ | 	     (15) 

The populations 	�
 ′�  are generated as independent and 

identically distributed (iid) uniform (0, 1) random variables. 

Four mean functions are considered with 1 ≤ d ≤ 200 , 

namely; 

Linear:	����� = 1 + 2�� − 0.5� 
Quadratic:	������ = 1 + 2�� − 0.5�� 

Bump: 	������� = 1 + 2�� − 0.5� + exp	�−200�� −0.5��� 
Jump:	������ = 1 + 2�� − 0.5���E�%.hk� + 0.65��E�%.hk� 
The above mean functions represent the model 

specifications for the parametric and nonparametric 

estimators in consideration for cases where the model is 

correctly specified or incorrectly specified. The REG 

estimator is expected to be the best for �����. The remaining 

mean functions; ������ , �������  and ������  represent 

different deviations from the linear model. The errors are 

assumed to be independent and identically distributed (iid) 

random variables with mean 0 and constant variance. 

 

Figure 1. Scatter Diagram for the Linear relationship. 

 

Figure 2. Scatter Diagram for the Quadratic relationship. 
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Figure 3. Scatter Diagram for the Bump relationship. 

 

Figure 4. Scatter Diagram for the Jump relationship. 

Table 1. Estimators used for comparison in the simulation study. 
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The Epanechnicov kernel is used in this study for kernel 

smoothing on each of the populations because of its 

simplicity and easy computations using well designed 

computer programs. This is given by, 34√5 D1 − 15 2�L ¨2¨ < √5 

In Silverman. [18], the search for optimal bandwidth is 

done within the interval,	 ©m K ª« ≤ ]©� K ª«  where  is the standard 

deviation of the �
′�. In this study, the bandwidths are data 

driven and are determined by the least squares cross 

validation method. 

Data simulations and computations are performed using 

the R computer software. A smaller population of size 200 is 

picked because the nonparametric local linear regression 

method is slower and takes more computer time to compute 

the estimates. The simulation has however been made 

exhaustive by performing 500  replications and thus the 

confidence in our conclusions. For each of the four artificial 

populations of size 200 , samples are generated by simple 

random sampling without replacement using sample size ; = 60. For each combination of mean function, standard 

deviation and bandwidth, 500 replicate samples are selected 

and the estimators calculated. The population total is 

computed for each of the four populations and for each 

sample, and is defined by, 

��(� = ∑ (:u
 #                             (16) 

The prediction errors for each of the estimators of finite 

population totals are computed as, 

Q�� = ����� − ��                               (17) 

Q��� = ������ − ��                              (18) 

Q���� = ������� − ��.                          (19) 

Q�� = ����� − ��                               (20) 

The biases for each of the estimators of finite population 

totals are computed as under, 

c������ = ∑ M��¬5�k%% O .k%%
 #            (21) 

c������� = ∑ M��®¯°5�k%% O	k%%
 #             (22) 

c�������� = ∑ M��±²®³5�k%% O	k%%
 #             (23) 

c������ = ∑ M��´´5�k%% O	k%%
 #               (24) 

The mean squared error for each of the estimators of finite 

population totals are computed as under, 

w�Q������ = ∑ M���¬5��Jk%% O	k%%µ #              (25) 

w�Q������� = ∑ M���®¯°5��Jk%% O	k%%µ #              (26) 
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w�Q�������� = ∑ M���±²®³5��Jk%% O	k%%µ #               (27) 

w�Q������ = ∑ M���´´5��Jk%% O	k%%µ #               (28) 

The absolute bias (AB) is computed in order to analyze the 

performances of the proposed estimator versus some 

specified estimators using, 

¶c������ = ∑ ·���¬5��k%% · .k%%
 #              (29) 

¶c������� = ∑ ·���®¯°5��k%% ·k%%
 #                (30) 

¶c�������� = ∑ ·���±²®³5��k%% · .k%%
 #                (31) 

¶c������ = ∑ ·���´´5��k%% ·k%%
 #                   (32) 

The relative efficiency (RE) which examines the 

robustness of various estimators, i.e. the Horvitz-Thompson 

estimator, the REG estimator and the Dorfman estimator 

versus the proposed local linear estimator is computed as 

under, 

�Q����� , ����� = ∑ ���´´5��JªIIF¸K∑ ���¬5��JªIIF¸K                   (33) 

�Q������ , ����� = ∑ ���´´5��JªIIF¸K∑ ���®¯°5��JªIIF¸K .                  (34) 

�Q������� , ����� = ∑ ���´´5��JªIIF¸K∑ ���±²®³5��JªIIF¸K                   (35) 

where ��  is the finite population total estimator in 

consideration,	� is the true population total and � = 500 is 

the number of replications. 

The confidence intervals �z��  and the average lengths �¶��  of the confidence intervals of various estimators are 

computed as under, 

z������� = ∑ ����� ± 1.96ºoep������$k%%
 #                (36) 

z�������� = ∑ ������ ± 1.96ºoep�������$k%%
 #                (37) 

z��������� = ∑ ������� ± 1.96ºoep��������$	k%%
 #      (38) 

z������� = ∑ ����� ± 1.96ºoep������$k%%
 #                (39) 

¶������� = #k%%∑ �z�»������ − z���������k%%
 #                (40) 

¶�������� = #k%%∑ �z�»������� − z����������k%%
 #           (41) 

¶��������� = #k%%∑ �z�»�������� − z�����������k%%
 #           (42) 

¶������� = #k%%∑ �z�»������ − z���������k%%
 #           (43) 

where z��  and z�»  are respectively the lower and upper 

confidence intervals within which we expect our true 

population total to lie with 95% confidence. 

4.2. Results 

The results for the absolute biases, mean squared errors, 

relative efficiencies, confidence intervals and average length 

of confidence intervals for the various estimators are 

provided in tables 3, 4, 5, 6 and 7 respectively. 

Table 3. The Absolute Bias of various Estimators in the four Populations. 

THE ABSOLUTE BIAS 

 HORVITZ-THOMPSON(HT) LINEAR REGRESSION (REG) DORFMAN (DORF) LOCAL LINEAR (LL) 

Linear 139.1395 3.650095 3.628214 3.626798 

Quadratic 163.4725 1.226636 0.403125 0.4323062 

Bump 157.7427 2.018801 0.4777851 0.4087753 

Jump 1219.668 21.785 9.760465 9.485367 

Table 4. The Mean Squared Error (MSE) of various Estimators in the four Populations. 

THE MEAN SQUARE ERROR (MSE) 

 HORVITZ-THOMPSON (HT) LINEAR REGRESSION (REG) DORFMAN (DORF) LOCAL LINEAR (LL) 

Linear 514.9775 15.36639 15.74559 15.47903 

Quadratic 453.5207 1.521063 0.1713249 0.160443 

Bump 548.131 4.551133 0.2942485 0.1894413 

Jump 35691.94 512.8734 110.7915 97.02299 

Table 5. The Relative Efficiency of various Estimators versus the proposed Local Linear Estimator. 

THE RELATIVE EFFICIENCY 

 HORVITZ-THOMPSON (HT) LINEAR REGRESSION (REG) DORFMAN (DORF) 

 Relative Efficiency Relative Efficiency Relative Efficiency 

Linear 0.09467563 0.8093 0.95664 

Quadratic 0.000464731 0.9954403 0.962707 

Bump 0.0002038478 0.02743355 0.9433107 

Jump 0.003577862 0.1901854 0.9706123 
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Table 6. The Confidence Intervals of various Estimators with respect to the four populations. 

THE 95% CONFIDENCE INTERVALS 

 HORVITZ-THOMPSON (HT) LINEAR REGRESSION (REG) DORFMAN (DORF) LOCAL LINEAR (LL) 

 Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit 

Linear 65.43579 78.35652 62.92036 63.24861 62.75978 63.01298 62.62953 63.06378 

Quadratic 61.74714 62.41275 60.29736 60.30645 60.25827 60.27853 60.44418 60.47615 

Bump 88.43077 92.85335 93.01087 93.14516 92.06424 93.34889 91.91642 93.18671 

Jump 503.6836 565.5807 479.9458 495.7306 460.7667 479.1529 465.1171 483.1778 

Table 7. The Average Length of Confidence Intervals of various Estimators. 

THE AVERAGE LENGTH OF CONFIDENCE INTERVALS 

 HORVITZ-THOMPSON (HT) LINEAR REGRESSION (REG) DORFMAN (DORF) LOCAL LINEAR (LL) 

Linear 12.92073 0.3282467 0.2532001 0.4342478 

Quadratic 0.6656047 0.009090092 0.02025908 0.03197243 

Bump 4.422574 0.1342954 1.284649 1.270295 

Jump 61.8971 15.78477 18.38621 18.06073 

 

4.3. Discussion of Results 

In this section, results of the bias, the mean square error 

(MSE), relative efficiency, confidence intervals and 

average length of confidence intervals are discussed. The 

bias of an estimator ¼̅	of a parameter ¼  is the difference 

between the expected value of ¼̅ and ¼; that is, cde��¼̅� =Q�¼̅� − ¼. An estimator whose bias is identically equal to 0 is called an unbiased estimator and satisfies 	Q�¼̅� = ¼ 

for all ¼. The larger the bias, the poorer the estimator. The 

mean squared error (MSE) measures the average squared 

difference between the estimator ¼̅  and the parameter ¼ , 

which is a somewhat reasonable measure of performance 

for an estimator. The MSE of an estimator ¼̅  of a 

parameter ¼ is the function of ¼ defined by Q�	¼̅ 	− 	¼�	� , 

and this is denoted as w�Q½� . Thus, MSE has two 

components, one that measures the variability of the 

estimator (precision) and the other one that measures its 

bias (accuracy). An estimator that has good MSE 

properties has small combined variance and bias. 

The relative efficiency of two estimators is the ratio of 

their efficiencies. If ¼̅# and ¼̅� are both unbiased estimators of ¼, then the efficiency of ¼̅#	relative to ¼̅�  is Q���¼̅#, ¼̅�	� =oep�¼̅�	� oep�¼̅#	�⁄ . If this is less than 1, then it implies that oep�¼̅�	� < oep�¼̅#	� and therefore ¼̅� has a smaller variance 

than ¼̅# and so ¼̅�  is preferred. Finally, confidence intervals 

consist of a range of values (interval) that act as good 

estimates of the unknown population parameter. The best 

performing confidence interval is one whose coverage rate is 

close to the true population and its length small. 

4.3.1. The Absolute Bias 

The biases for different estimators are summarised in table 3. In all the populations considered, the Horvitz-Thompson 

estimator was the poorest resulting in large biases as 

compared to the other three finite population total estimators. 

The bias for the Local Linear estimator is much lower than 

those of the other three estimators. For all the biases 

computed, the Local Linear Regression estimator is superior 

and dominates the Horvitz-Thompson estimator and the 

Linear Regression estimator for all the populations. The 

Local Linear estimator also dominates the Dorfman estimator 

for all the populations except when the population is 

quadratic. 

4.3.2. The Mean Squared Error (MSE) 

The MSE for different estimators are summarised in 

table 4. Generally the estimator with a smaller MSE is 

regarded as the most efficient one. The Local Linear 

Regression estimator is more efficient and performing 

better than the Horvitz-Thompson and Dorfman 

estimators, regardless of whether the model is specified or 

mispecified. The Local Linear estimator also outperforms 

the Linear Regression estimator in all the populations 

except when the population is linear. The Local Linear 

Regression estimator is not only superior to the popular 

Kernel Regression estimators, but it is also the best among 

all linear smoothers including those produced by 

orthogonal series and spline methods. In general, Local 

Linear estimation removes a bias term from the kernel 

estimator, that makes it have better behavior near the 

boundary of the �′� and smaller MSE everywhere. 

4.3.3. The Relative Efficiency 

Table 5 examines the robustness of various estimators i.e. 

the Horvitz-Thompson estimator, the REG estimator and the 

Dorfman estimator versus the proposed Local Linear 

estimator. The results in the table show that relative 

efficiency of the proposed Local Linear estimator to the 

Horvitz-Thompson estimator, the REG estimator and the 

Dorfman estimator is less than 1 . This implies that the 

proposed Local Linear estimator has a smaller variance than 

the three estimators and thus the three estimators are less 

efficient than the Local Linear estimator. Generally, the Local 

Linear estimator outperforms the HT estimator, the REG 

estimator and the DORF estimator in all the populations. The 

Local Linear estimator is therefore robust and the most 

efficient estimator. 

4.3.4. The Confidence Intervals and Their Average Length 

The confidence intervals and average length of the 
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intervals are also measured for each case. A smaller length 

is better because it implies that the true population total is 

captured within a smaller range and therefore results are 

more precise. The confidence intervals generated by the 

model based Local Linear method are much tighter than 

those generated by the design based Horvitz-Thompson 

method, regardless of whether the model is specified or 

mispecified. The confidence intervals also indicate that 

the Local Linear method dominates the REG and Dorfman 

methods when the model is incorrectly specified. 

Generally, the model based estimators are much far better 

than the traditional design based estimators. The results 

show that the model based approach outperforms the 

design based approach at 95% coverage rate. The biases 

under the model based approach are also much lower than 

those for the design based approach in different 

populations. 

4.4. Conclusion 

In this paper, a model based estimator of finite population 

total has been constructed using the procedure of Local 

Linear regression. The Local Linear regression estimator has 

been derived and robustness properties studied. Results of the 

bias, mean squared error, relative efficiency, confidence 

intervals and average length of confidence intervals for the 

various estimators have been provided. 

The bias results show that the Local Linear estimator 

dominates the Horvitz-Thompson estimator for the linear, 

quadratic, bump and jump populations. The MSE results 

show that the Local Linear estimator is performing better 

than the Horvitz-Thompson estimator and Dorfman 

estimator, irrespective of the model specification or 

misspecification. Results further indicate that the confidence 

intervals generated by the model based Local Linear 

procedure are much tighter than those generated by the 

design based Horvitz-Thompson method, regardless of 

whether the model is specified or misspecified. It has been 

observed that the model based approach outperforms the 

design based approach at 95% coverage rate. 

Generally, the Local Linear Regression estimator is not 

only superior to the popular kernel regression estimators, but 

it is also the best among all linear smoothers including those 

produced by orthogonal series and spline methods. The 

estimator adapts well to bias problems at boundaries and in 

regions of high curvature and it does not require smoothness 

and regularity conditions required by other methods such as 

boundary kernels. Simulation experiments carried out on the 

proposed Local Linear regression estimator in comparison 

with some estimators that exist in the literature indicate that 

the proposed estimator is robust and is the most efficient 

estimator. 
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