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Abstract

In this paper, we demonstrate the power of functional data models for a statistical

analysis of stimulus-response experiments which is a quite natural way to look at this

kind of data and which makes use of the full information available. In particular,

we focus on the detection of a change in the mean of the response in a series of

stimulus-response curves where we also take into account dependence in time.
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1 Introduction

Stimulus-response data are a frequent product of cognitive experiments. The test object

is confronted with a stimulus, and the following response is measured in some form, e.g.

as the changes in time of the potential at certain locations in a single neuron or by means

of an electroencephalogram (EEG) of an animal or human. The full data are functions of

time or, in the EEG case, vectors of functions. Usually, they are already digitized during

storage, but with such a fine discretization such that they still can be seen as continuous

curves.

For a statistical analysis, we have to model such data as random functions of time.

However, in cognitive science, the full information available is rarely used for inference.

Usually, the response curves are reduced to a low-dimensional data vector before, e.g.,

performing statistical tests. Those data vectors consist of simple univariate characteristics

like maximal response, average response, length of response, response latency, i.e. waiting

time between stimulus and response etc. Modern functional data analysis allows to use

the full information of the response curves in a quite natural manner which we want to

demonstrate in this paper with a real-data example.

Standardizing the observation interval to [0, 1], let Xi(t), 0 ≤ t ≤ 1, denote the response

curve from the ith experiment. Analogously to multivariate data, the mean curve of func-

tional data is defined pointwise, i.e. EXi(t) = µ(t), 0 ≤ t ≤ 1, if the functional data Xi

have identical means. As for random vectors, there are tests for equality of the mean to

some given function in case of one sample or for equality of the means of two independent

samples (compare, e.g., ?, chapter 5). In this paper, we consider a more involved testing

problem. We have a time series of response curves Xi(t), 0 ≤ t ≤ 1, i = 1, . . . , N, generated

by presenting the same stimulus repeatedly to the same test object. The particular kind

of data are explained in chapter 2.

In chapter 3, we consider the problem of testing for a change in the mean under the as-

sumption of independent X1, . . . , XN as well as in the general setting of dependent curves.

Such changepoints are of interest in experiments about learning or increasing fatigue of

the test object under repeated stimuli. E.g., the response latency may become longer cor-
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responding to a shift of the response curve towards the time of stimulus, or the response

curves may become flatter on the average corresponding to the test object getting used

to the stimulus. In chapter 4, we finally apply the methods described in chapter 3 to our

actual stimulus response data and detect various changes in the mean in our sequences of

stimulus-response curves. We also test the detrended data for dependence. It turns out

that subsequent curves are dependent which has to be taken into account in the tests for

changes in the mean.

Figure 1: Original stimulus-response data
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2 Preprocessing the data

The data are generated by stimulus-response experiments on a single on a single neuron in

the lateral superior olive, as part of a larger research project on the reliability of inhibitory

synaptic transmission in the auditory brainstem. For more details about the physiological

background, we refer to ? or ?. The stimulus is a brief electric shock that triggers synaptic

activity and is repeatedly applied at various frequencies (1, 2, 5, 10, 50 Hz). The duration

of the experiment is always 1 min such that the sample sizes for the samples with different
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stimulus frequencies vary between N = 60 for 1 Hz and N = 3000 for 50 Hz. The individual

responses are short-lived enough such that each response has ended well before the next

stimulus even in case of the highest stimulus frequency. Hence, we have a series of curve

data which look similar, but show some random variation.

The top panel of Figure ?? shows a subsection of 14 curve data from the experiment

with stimulus frequency 10 Hz (observations number 11-24), where the total sample size

was N = 600. Note that the horizontal axis shows the index number of discretized single

measurements recorded for storage, not some physical time. We always stored about 85

observations for each individual stimulus-response cycle independently of the frequency.

For the mean tests, we use the response curves themselves. In testing for dependence

of the data, it is however convenient to first apply a differencing filter which removes the

mean even in situations where it is slowly changing. To be precise, if Xi(t) denote the

original response curves, then the differenced curve data are the random functions

Yi(t) = Xi+1(t)−Xi(t), i = 1, . . . , N − 1. (1)

The lower panel of Figure ?? shows a subsection of the differenced response curves from

the experiment with stimulus frequency 10 Hz.

At the beginning of each response and differenced response there is a noticeable sharp

spike (circled in red) in Figure ??. This is an artifact which represents the direct effect

of the stimulus onto the measuring device, but does not correspond to the response of the

cell. The cell reacts to the stimulus only after a brief delay. As the stimulus part and the

response part of the curves are well enough separated and we are only interested in the

measurements of the response, it is safe to remove a few data points at the beginning of

each curve. We therefore cut the data points in the circle and consider only the rest as the

reponse curve to be analyzed further on. Once the truncation has been done, we have 68,

73, 78, 73, 73 measurement points per individual curve left in the case of 1, 2, 5, 10 and

50 Hz frequencies respectively, which are then smoothed to form the curves shown in the

figures.
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Figure 2: Artifact

 

Figures ??, ?? and ?? show the adjusted and differenced plots of parts of the response

curve samples corresponding to stimulus frequencies 1, 2, 5, 10 and 50 Hz respectively. In

particular, after the adjustment the local random noise in the differenced data can be seen

much more clearly.

3 Testing for changes in the mean

We interpret observed response curves resp. their transformations after preprocessing as

random functions Xi(t), 0 ≤ t ≤ 1, and we assume that they are square integrable:∫ 1

0

X2
i (t)dt <∞,

i.e. Xi is a random variable with values in the space H = L2[0, 1] of, for convenience

complex-valued, square integrable functions on [0,1]. This space is a separable Hilbert

space which has a quite similar structure as the finite dimensional Euclidean space Rm. In

particular, there is a scalar product and a corresponding norm

〈f, g〉 =

∫ 1

0

f(t)g(t)dt, ‖f‖ =

{∫ 1

0

|f(t)|2dt
}1/2

, f, g ∈ H,
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Figure 3: Adjusted Responses (left) and their Differenced Counterparts 1, 2 Hz
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where g(t) denotes the complex conjugate of g(t). There exists a countable orthonormal

basis, i.e. a sequence of functions v1, v2, . . . in H with ‖vk‖ = 1, 〈vk, vl〉 = 0 for all k 6= l,

such that we have the usual linear expansion of any f in H in terms of the basis

f(t) =
∞∑
k=1

〈f, vk〉vk(t), ‖f‖2 =
∞∑
k=1

〈f, vk〉2.

If we choose, in particular, the Fourier basis vk(t) = ei2πkt = cos(2πkt)+i sin(2πkt),−∞ <

k <∞, then this is the Fourier expansion well known in signal analysis, and 〈f, vk〉 are the

Fourier coefficients of f . In the following, we refer some notions and results from chapter

6 of ?.

3.1 Changepoint test for independent data

If Xi(t), i = 1, . . . , N, is a sequence of real-valued random functions in H, then we decom-

pose them into the mean function and the random component:

Xi(t) = µi(t) + Yi(t), EYi(t) = 0.
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Figure 4: Adjusted responses (left) and their differenced counterparts 5, 10 Hz
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We assume that the random components Yi are independent and all have the same distri-

bution satisfying

E‖Yi‖2 =

∫ 1

0

Y 2
i (t)dt <∞.

Then, the covariance function measuring dependence between the function valuesXi(t), Xi(s)

at different points t, s in time, does not depend on i:

c(t, s) = cov(Xi(t), Xi(s)) = EYi(t)Yi(s) for all i, 0 ≤ s, t ≤ 1,

and it allows for the expansion

c(t, s) =
∞∑
k=1

λkvk(t)vk(s).

λ1 ≥ λ2 ≥ . . . are the ordered eigenvalues, which automatically are nonnegative, and

v1, v2, . . . the corresponding orthonormal eigenfunctions of the covariance operator C which

linearly maps a function f in H onto the function Cf given by

(Cf)(t) = E
(
〈Yi, f〉Yi(t)

)
= E

( ∫ 1

0

Yi(s)f(s)dsYi(t)
)

=

∫ 1

0

c(t, s)f(s)ds. (2)

7



Figure 5: Adjusted responses (top) and their differenced counterparts 50 Hz
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The functions v1, v2, . . . are called the functional principal components. As they are an

orthonormal basis of H, we also have

Yi(t) =
∞∑
k=1

yi,kvk(t), where yi,k = 〈Yi, vk〉.

We want to test if the response curves are on the average identical or, if at some unknown

changepoint m in the sample, the mean changes. In our model above, the null hypothesis

H0 of no change and the alternative H1 of one change are

H0 : µ1 = . . . = µN , H1 : µ1 = . . . = µm 6= µm+1 = . . . = µN for some 1 ≤ m < N.

As the basis of the test statistic, we consider the partial means of data before and after k:

µ̂k(t) =
1

k

k∑
i=1

Xi(t), µ̃k(t) =
1

N − k

N∑
i=k+1

Xi(t).

Under H0, both µ̂k and µ̃k will estimate the common mean of all the functional data and

will be approximately equal for all k. If, however, there is a changepoint m < N , then

µ̂k − µ̃k will be large for k ≈ m.
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For small k, the variability of µ̂k is rather large, as only few observations contribute

to the average, and the same applies to µ̃k for small N − k. Therefore, the test uses the

weighted differences

Pk(t) =
k(N − k)

N

(
µ̂k(t)− µ̃k(t)

)
=

k∑
i=1

Xi(t)−
k

N

N∑
i=1

Xi(t),

to take into account the different random variability of µ̂k − µ̃k for various k.

If Pk would be scalar numbers, we would look at the maximum value of |Pk| in the

spirit of classical changepoint analysis and reject the hypothesis H0 if it exceeds a critical

bound depending on the level of the test. However, Pk is a function in H. We could reduce

them to scalar characteristics like the integral of the absolute value or the maximum if we

would have a rather precise notion about the type of change to expect. A main feature of

functional data analysis, however, is its flexibility regarding the characterization of response

curves. So, we are looking for several scalar quantities which combined give us the essential

features of the whole function. For a suitable d (compare subsection ??), these are just the

scores of Pk relative to the first d functional principal components v1, . . . , vd, i.e.

〈Pk, v`〉 =

∫ 1

0

Pk(t)v`(t)dt, ` = 1, . . . , d.

Then, for convenience, we look at a suitable weighted average of the squares, not of the

absolute values, of the 〈Pk, v`〉:

TN(k) =
1

N

d∑
`=1

1

λ`
〈Pk, v`〉2.

This is not yet a feasible test statistics, as it depends on the unknown v`, λ`. First note

that

〈Pk, v`〉 = 〈
k∑
i=1

Xi −
k

N

N∑
i=1

Xi, v`〉 = 〈
k∑
i=1

Yi −
k

N

N∑
i=1

Yi, v`〉 =
k∑
i=1

yi,` −
k

N

N∑
i=1

yi,`,

as centering each summand in both sums by subtracting XN has no effect. Therefore, for

estimating TN(k), we need to estimate λ`, yi,`, ` = 1, . . . , d, i = 1, . . . , N. First we estimate

the covariance function c(t, s) by the sample version

ĉ(t, s) =
1

N

N∑
i=1

(
Xi(t)−XN(t)

)(
Xi(s)−XN(s)

)
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where, under the hypothesis of no change, the sample mean XN(t) of X1(t), . . . , XN(t) esti-

mates the common mean function of the curve data. ĉ(t, s) characterizes the estimate Ĉ of

the covariance operator analogously to (??). Finally, we have to calculate the first d eigen-

values λ̂1 > . . . > λ̂d and the scalar products of the centered data with the corresponding

eigenvectors v̂1, . . . , v̂d of Ĉ to get the estimate of TN(k)

T̂N(k) =
1

N

d∑
`=1

1

λ̂`

( k∑
i=1

ŷi,` −
k

N

N∑
i=1

ŷi,`

)2

.

These calculations can be easily done using the R package fda. There are various possi-

bilities how to combine T̂N(k), k = 1, . . . , N to a single scalar test statistic. ? just use

averaging and get

SN,d =
1

N

N∑
k=1

T̂N(k) =
1

N2

d∑
`=1

1

λ̂`

N∑
k=1

( k∑
i=1

ŷi,` −
k

N

N∑
i=1

ŷi,`

)2

.

H0 is rejected if SN,d is large. Let us just summarize again the intuition behind this deci-

sion procedure. As mentioned above, if the mean does not change, the weighted differences

Pk(t) of the sample mean functions before and after k should all be reasonably close to 0.

Hence, for all k and `, their squared scores 〈Pk(t), v`〉2 should be small. Now, TN(k) as a

weighted average of those quantities should be small too for k = 1, . . . , N , and, hence, this

also holds for the average over k. If we replace the unknown quantities in this average by

their sample analogues, then we just get SN,d.

Finally, we need critical values for the test which we get from the asymptotic distribution

of SN,d under the hypothesis which has been derived be ? under some rather weak regularity

assumptions. In particular, for N →∞

pr (SN,d > z | H0 holds )→ Kd =

∫ 1

0

d∑
`=1

B2
` (t)dt, (3)

where B`, ` = 1, . . . , d, are independent standard Brownian bridges. The distribution of

Kd has been derived quite early by ? in his study of extensions of the Cramér-von Mises

test. Critical values for SN,d for various significance levels and values of d can be found in

Table 6.1 of ?.
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If the test rejects the hypothesis and detects a changepoint m, then we are interested

in estimating its location. A consistent estimate m̂ is derived by checking at which index

k, the statistic T̂N(k) assumes its maximum:

T̂N(m̂) = max
k=1,...,N

T̂N(k). (4)

Note that if we detect a changepoint, we can say that the mean is not constant over

time, i.e. H0 does not hold, up to the usual small error probability. It does not necessarily

imply that the mean is constant before and after the changepoint. The test is also sensitive

against other kinds of alternatives, e.g. several changepoints or a gradual change of the

mean.

One way to check the constancy of the mean before and after the detected changepoint

is a repeated application of the test. So, if H0 is detected and m̂ is the estimated change-

point, we apply the test again twice to the samples X1, . . . , Xm̂ resp. Xm̂+1, . . . , XN . If we

detect some changepoints in those subsamples, then again we split the samples and apply

the test again until finally we get a partition of the original data into subsamples which all

have approximately constant means or just have small enough sample sizes that the test

does not reject the hypothesis any longer.

3.2 Changepoint test for dependent data

We now consider the same setting as in the previous subsection, but we allow for depen-

dence of the curve data. In particular, we assume that the random functions Y1, . . . , YN

centered around 0 are part of a stationary times series of functional data which satisfies

certain weak dependence conditions (compare chapter 16 of ?). We again want to test for

a change in the mean. The testing procedure is similar, but, as in the familiar scalar set-

ting, we have to take into account that the variability of the sample mean XN(t) depends

on the kind of dependence of the data. In particular, the variability will be larger if the

dependence is rather positive which is the more common situation in practice. This would

lead to a larger number of false rejections of the above test procedure if we falsely assume
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independence. Therefore, we have to modify the test statistics accordingly. We follow the

work of ?, also described in ?.

As in the scalar case, the effect of dependence on mean tests can be summarized in the

long-run variance. For a real-valued stationary time series Zt,−∞ < t <∞, with mean 0

this quantity is the sum over all autocovariances

σ =
∞∑

h=−∞

cov(Zt, Zt+h) =
∞∑

h=−∞

EZtZt+h.

By stationarity, it does not depend on t. Equivalently, σ is the value of the power spectral

density of the time series at 0.

The functional data enter the test statistic of the previous subsection only in form of

the scores ŷi = (ŷi,1, . . . , ŷi,d)
T, i = 1, . . . , N , which is a sequence of d-dimensional random

vectors. So, we need the long-run variance which now is a d × d-covariance matrix, of a

d-variate stationary time series zt,−∞ < t <∞, with mean 0 which is defined as

Σ =
∞∑

h=−∞

Eztz
T
t+h.

To get an estimate of Σ, we estimate the autocovariances Γh = Eztz
T
t+h by their empirical

versions based on a sample z1, . . . , zN :

Γ̂h =
1

N

N−h∑
i=1

ziz
T
i+h, 0 ≤ h < N, Γ̂h = Γ̂−h, −N < h < 0.

Then, we apply the windowing technique well known from one-dimensional spectral analysis

to get with some suitable window width bN depending on N

Σ̂N =
N−1∑

h=−N+1

K
( h
bN

)
Γ̂h.

K is a common kernel function which is bounded, symmetric around 0 and, for convenience,

has a bounded support, say [−1,+1]. An example is the Bartlett kernel K(u) = 1 − |u|

for |u| ≤ 1, and K(u) = 0, else. For N, bN →∞ such that bN/N → 0, Σ̂N is a consistent

estimate of Σ under some regularity conditions.
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For getting an appropriate test statistic, set for 1 ≤ k ≤ N

LN(k) =
1

N

( k∑
i=1

ŷi −
k

N

N∑
i=1

ŷi

)
.

Let Σ̂N(ŷ) denote the long-run variance estimate based on zi = ŷi, i = 1, . . . , N , and set

RN,d =
1

N

N∑
k=1

LT
N(k)Σ̂−1N (ŷ)LT

N(k).

Note that for the diagonal matrix with entries λ̂1, . . . , λ̂d replacing Σ̂N(ŷ), the integrand

coincides with T̂N(k) such that RN,d is a straightforward generalization of the test statistic

SN,d of the previous section to the dependent case. The asymptotics does not change un-

der the hypothesis and under the alternative as the effects of dependence are completely

covered by the modification of the test statistic. Therefore, we may use the critical values

from Table 6.1 of ? for the changepoint test under dependence, too.

Note that in chapter 16 of ? a slightly different version of the test statistic is considered,

but it differs from ours only by replacing an integral by the corresponding Riemann sum

which asymptotically is neglible.

Figure 6: Scree Plot
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Table 1: Test for change in the mean function (i.i.d. Test)

α = 0.05, d=4, Asymptotic crit. value=1.239675

1Hz 2Hz 5Hz 10Hz 50Hz

N 60 120 300 600 3000

Test statistic 2.0872 3.8249 8.5994 54.7244 212.0775

4 Application to Stimulus Response Data

Before applying the changepoint test, we have to choose the number d of functional principal

components entering the test statistic. This problem is closely related to to the analogous

problem in classical principal component analysis as a tool for dimension reduction, and

we use a popular method, which is based on the scree plot, for selecting the number of

relevant principal components based on the data.

The screeplot shows how much each principal component contributes to the total vari-

ability of the data in decreasing order of importance. In the case of functional princi-

pal components, the contribution to total variability are just given by the eigenvalues

λ1 ≥ λ2 ≥ ... of the covariance operator C introduced in subsection ??. Estimates λ̂j are

easily calculated using the fda package of R. Figure ?? shows the screeplot for the sample

corresponding to the stimulus frequency 10 Hz. The screeplots of the other samples look

quite similar.

The idea of the scree plot is that we visually select the number d of principal com-

ponents as the point where the curve dies off. Another more objective method for this

purpose is requiring that the cumulative percentage of variance explained by the first d

functional principal component has to be greater than some bound close to 100%, e.g.

85%. Based on Figure ?? and this rule, we decided to work with d = 4 functional prin-

cipal components. They explain a cumulative percentage of variance of approximately 96%.

Assuming the data is independent and identically distributed, we applied the test de-

14



Table 2: Changepoints in order of significance (i.i.d. Test)

Frequency Change Points

1Hz 20

2Hz 70 100

5Hz 155 85

10Hz 361 164 62 10 472 396 547

scribed in subsection ?? to the data with stimulus frequency 1, 2, 5, 10 and 50 Hz. The

data where adjusted to remove the artificial artifact, but not differenced. Table ?? reports

the results obtained for significance level 0.05. Note that the asymptotic critical value,

based on the relationship (??), does not depend on the sample size N due to an appro-

priate standardization of the test statistics SN,d such that it is the same for all stimulus

frequencies. In all cases, a changepoint was detected as the values of the test statistic all

exceed the critical value.

Once the changepoint was detected, we estimated it using (??). Then, we splitted the

sample and applied the test repeatedly until no further changepoints were detected. In

Table ?? we list the detected changepoints in order of significance for the frequencies 1, 2,

5 and 10 Hz. These will be used for comparison with the changepoints for the dependent

case. The changepoints are listed here as number of observed stimulus-response curve in

the sample and not as physical time.

We also carried out the test for a change in the mean using the differenced data. As

expected, for all frequencies no change point was detected which implies that these data

approximately have a constant mean.

As discussed in subsection ??, the test of subsection ??, which is based on the assump-

tion of independence, is known to give wrong results when the data show some dependency,

likely too many rejections of the hypothesis. As we suspected dependence in our data which

are response curves measured subsequently on the same cell, we tested for dependence. We
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Table 3: Portmanteau Test

α = 0.05, d=4, Asymptotic crit. value=67.5050

1Hz 2Hz 5Hz 10Hz 50Hz

N 59 119 299 599

Test statistic 176.3522 313.8736 334.5219 552.3081 2574.5181

carried out a Portmanteau test presented by ? for testing the hypothesis H0 of independence

of the curve data X1, . . . , XN against an open ended alternative of lack of independence or

of sameness of distributions. The corresponding test statistic is asymptotically chi-square

distributed under the null hypothesis, such that critical values are well-known. The main

assumption of the test is the existence of fourth moments of the observations which is likely

be satisfied looking at the data. Also, the data should be stationary which of course is not

true if the means are changing. Therefore, we applied the test to the differenced data Yj

given by (??). The results of the test are given in Table ??. In all cases the assumption of

independence is rejected such that our data are genuine functional time series.

As the data are likely dependent, the previous application of the test of subsection ??

is not justified. Therefore, we dropped the assumption of independence and applied the

more complex test of ? described in subsection ??. The results of the tests are reported

in Table ??; in all case we again detect a change in the mean on the significance level

0.05. However, the values of the test statistics are generally smaller. As the asymptotic

distribution of the statistics SN,d and RN,d are identical, this means that the hypothesis is

not so strongly rejected as if we falsely use the test for independent data.

Note that, as under the incorrect assumption of i.i.d. curve data, the test taking into

account dependence also accepts the hypothesis of no change for all stimulus frequencies if

we apply it to the differenced data data Yi.

The differences between the two tests of subsections ?? and ?? are more striking once

we apply it repeatedly to the split subsamples in search of more than one changepoint.
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Table 4: Test for change in the mean function (Dependent Test)

α = 0.05, d=4, Asymptotic crit. value=1.239675

1Hz 2Hz 5Hz 10Hz 50Hz

N 60 120 300 600 3000 6000

Test statistic 1.5847 2.0715 3.6859 8.6769 32.6208

Table 5: Changepoints in order of significance (Dependent Test)

Frequency Change Points

1Hz 20

2Hz 74

5Hz 155

10Hz 359 163 62 472 389

50Hz 2067 1213 679 288 182 542 358 987 1081

1787 1632 1924 2459 2330 2748 2591 2830

Table ?? gives the change points in order of their significance based on the changepoint

test for dependent data. Comparing the results to those from Table ??, we see that the

test of subsection ?? for i.i.d. data detects many false changepoints as a result of failure to

account for the long-run variance. Also, it is noticeable as expected, that with increasing

frequency of the stimulus there are more changepoints. This can be attributed to the fact

that at high frequency the cell does not have enough time to recover and go back to its

resting state before the next stimulus is given.

5 Summary

In this paper, we applied tests from functional data analysis to illustrate their merit in mak-

ing use of the full information in stimulus response curve data. In particular, we showed

that the subsequent detrended curve data are dependent. Using an appropriate change-

point test which takes into account the dependence, we were able to show that the original
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curve data showed several changes in the mean response curve throughout the experiment.

Our findings are in accordance with other statistical analyses of the same data. E.g.,

looking only at the univariate response latencies, i.e. the time span between stimulus and

start of the response, we found an increasing trend which also was not homogeneous but

showed changepoints between periods of rapid increase and periods of almost constancy.
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