Supporting Information

Environmental Applications of Poly(amic acid)-based Nanomaterials

Veronica A. Okello, Nian Du, Boling Deng & Omowunmi A. Sadik*

Department of Chemistry

Center for Advanced Sensors & Environmental Systems (CASE)

State University of New York at Binghamton

P.O. Box 6000

Binghamton, NY, 13902

Introduction. The purpose of this section is to provide additional information of interest to the reader; A detailed UV-vis absorbance profile of reduction of Cr(VI) ions by poly(amic acid) in the presence and absence of palladium nanoparticles during an exposure time of 14 minutes and a standard calibration curve has been provided.

Table 1: Detailed Cr(VI) reduction profile in the absence and presence of PAA, PdNPs at both ambient and elevated temperatures for water samples. The table also shows the UV-vis. absorbance's values observed experimental setup of the control.

Time (min)	Control	A	В	С
0	0.966	0.966	0.966	0.966
2	0.966	0.148	0.436	0.647
4	0.966	0.0732	0.246	0.4575
6	0.966	0.0567	0.2134	0.4245
8	0.966	0.0438	0.1876	0.3986
10	0.966	0.0363	0.1726	0.3837
14	0.966	0.0249	0.1498	0.3609

A- Cr(VI) + PAA+PdNPs @ 45 Deg. C

B-Cr(VI) + PAA+PdNPs

C-Cr(VI) + PAA

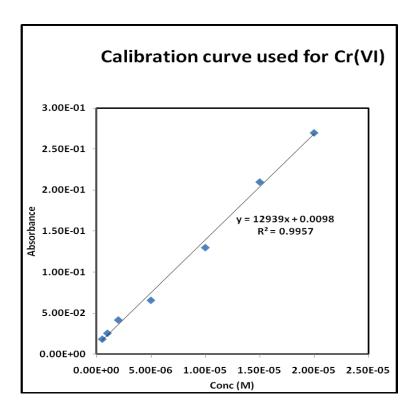


Figure 1. Standard calibration curve for hexavalent Chromium

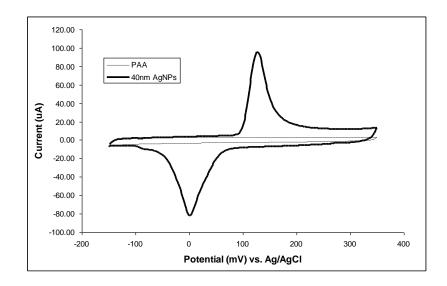


Figure 2: Comparison of CV spectra of blank PAA membrane and standard 40nm AgNPs covered PAA membrane. Experimental conditions: 50 mV/s scan rate and 100 μ A/V sensitivity.