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Rainfall modeling is significant for prediction and forecasting purposes in agriculture, weather derivatives, hydrology, and risk and
disaster preparedness. Normally two models are used to model the rainfall process as a chain dependent process representing the
occurrence and intensity of rainfall. Such two models help in understanding the physical features and dynamics of rainfall process.
However rainfall data is zero inflated and exhibits overdispersion which is always underestimated by such models. In this study
we have modeled the two processes simultaneously as a compound Poisson process. The rainfall events are modeled as a Poisson
process while the intensity of each rainfall event is Gamma distributed. We minimize overdispersion by introducing the dispersion
parameter in the model implemented through Tweedie distributions. Simulated rainfall data from the model shows a resemblance
of the actual rainfall data in terms of seasonal variation, means, variance, and magnitude. The model also provides mechanisms
for small but important properties of the rainfall process. The model developed can be used in forecasting and predicting rainfall
amounts and occurrences which is important in weather derivatives, agriculture, hydrology, and prediction of drought and flood
occurrences.

1. Introduction

Climate variables, in particular, rainfall occurrence and
intensity, hugely impact human and physical environment.
Knowledge of the frequency of the occurrence and intensity
of rainfall events is essential for planning, designing, and
management of various water resources system [1]. Specif-
ically rain-fed agriculture is a sensitive sector to weather
and crop production is directly dependent on the amount
of rainfall and its occurrence. Rainfall modeling has a great
impact on crop growth, weather derivatives, hydrological
systems, drought, and floodmanagement and crop simulated
studies.

Rainfall modeling is also important in pricing of weather
derivatives which are financial instruments that are used as
a tool for risk management to reduce risk associated with
adverse or unexpected weather conditions.

Further as climate change greatly affects the environment
there is an urgent need for predicting the variability of rainfall
for future periods for different climate change scenarios

in order to provide necessary information for high quality
climate related impact studies [1].

Howevermodeling precipitation poses a lot of challenges,
namely, accurate measurement of precipitation since rainfall
data consists of sequences of values which are either zero or
some positive numbers (intensity) depending on the depth
of accumulation over discrete intervals. In addition factors
like wind can affect collection accuracy. Rainfall is localized
unlike temperature which is highly correlated across regions;
therefore a derivative holder based on rainfall may suffer
geographical basis risk in case of pricing weather derivatives.
The final challenge is the choice of a proper probability
distribution function to describe precipitation data. The
statistical property of precipitation is far more complex and
a more sophisticated distribution is required [2].

Rainfall has been modeled as a chain dependent process
where a two-state Markov chain model represents the occur-
rence of rainfall and the intensity of rainfall is modeled by
fitting a suitable distribution like Gamma [3], exponential,
and mixed exponential [1, 4]. These models are easy to
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understand and interpret and use maximum likelihood to
find the parameters. However models involve many parame-
ters to fully describe the dynamics of rainfall aswell asmaking
several assumptions for the process.

Wilks [5] proposed a multisite model for daily precipi-
tation using a combination of two-state Markov process (for
the rainfall occurrence) and amixed exponential distribution
(for the precipitation amount). He found that the mixture of
exponential distributions offered a much better fit than the
commonly used Gamma distribution.

In study of Leobacher and Ngare [3] the precipitation
is modeled on a monthly basis by constructing a suit-
able Markov-Gamma process to take into account seasonal
changes of precipitation. It is assumed that rainfall data
for different years of the same month is independent and
identically distributed. It is assumed that precipitation can be
forecast with sufficient accuracy for a month.

Another approach of modeling rainfall is based on the
Poisson cluster model where two of the most recognized
cluster based models in the stochastic modeling of rain-
fall are the Newman-Scott Rectangular Pulses model and
the Bartlett-Lewis Rectangular Pulse model. These mod-
els represent rainfall sequences in time and rainfall fields
in space where both the occurrence and depth processes
are combined. The difficulty in Poisson cluster models as
observed by Onof et al. [6] is the challenge of how many
features should be addressed so that the model is still
mathematically tractable. In addition the models are best
fitted by the method of moments and so requires matching
analytic expressions for the statistical properties such asmean
and variance.

Carmona and Diko [7] developed a time-homogeneous
jump Markov process to describe rainfall dynamics. The
rainfall process was assumed to be in form of storms which
consists of cells themselves. At a cell arrival time the rainfall
process jumps up by a random amount and at extinction time
it jumps down by a random amount, bothmodeled as Poisson
process. Each time the rain intensity changes, an exponential
increase occurs either upwards or downwards. To preserve
nonnegative intensity, the downward jump size is truncated
to the current jump size.TheMarkov jumpprocess also allows
for a jump directly to zero corresponding to the state of no
rain [8].

In this study the rainfall process is modeled as a single
model where the occurrence and intensity of rainfall are
simultaneously modeled. The Poisson process models the
daily occurrence of rainfall while the intensity is modeled
using Gamma distribution as the magnitude of the jumps
of the Poisson process. Hence we have a compound Poisson
process which is Poisson-Gammamodel.The contribution of
this study is twofold: a Poisson-Gamma model that simul-
taneously describes the rainfall occurrence and intensity at
once and a suitablemodel for zero inflated datawhich reduces
overdispersion.

This paper is structured as follows. In Section 2 the
Poisson-Gamma model is described and then formulated
mathematically while Section 3 presents methods of estimat-
ing the parameters of the model. In Section 4 the model is
fitted to the data and goodness of fit of the model is evaluated

by mean deviance whereas quantile residuals perform the
diagnostics check of the model. Simulation and forecasting
are carried out in Section 5 and the study concludes in
Section 6.

2. Model Formulation

2.1. Model Description. Rainfall comprises discrete and con-
tinuous components in that if it does not rain the amount
of rainfall is discrete whereas if it rains the amount is
continuous. In most research works [3, 4, 9] the rainfall
process is presented by use of two separate models: one
is for the occurrence and conditioned on the occurrence
and another model is developed for the amount of rain-
fall. Rainfall occurrence is basically modeled as first or
higher order Markov chain process and conditioned on
this process a distribution is used to fit the precipitation
amount. Commonly used distributions are Gamma, expo-
nential, mixture of exponential, Weibull, and so on. These
models work based on several assumptions and inclusion
of several parameters to capture the observed temporal
dependence of the rainfall process. However rainfall data
exhibit overdispersion [10] which is caused by various factors
like clustering, unaccounted temporal correlation, or the fact
that the data is a product of Bernoulli trials with unequal
probability of events.The stochastic models developed in this
way underestimate the overdispersion of rainfall data which
may result in underestimating the risk of low or high seasonal
rainfall.

Our interest in this research is to simultaneously model
the occurrence and intensity of rainfall in one model. We
would model the rainfall process by using a Poisson-Gamma
probability distribution which is flexible to model the exact
zeros and the amount of rainfall together.

Rainfall ismodeled as a compoundPoisson processwhich
is a Lévy process with Gamma distributed jumps. This is
motivated by the sudden changes of rainfall amount from
zero to a large positive value following each rainfall event
which are modeled as pure jumps of the compound Poisson
process.

We assume rainfall arrives in forms of storms following a
Poisson process, and at each arrival time the current intensity
increases by a randomamount based onGammadistribution.
The jumps of the driving process represent the arrival of
the storm events generating a jump size of random size.
Each storm comprises cells that also arrive following another
Poisson process.

The Poisson cluster processes gives an appropriate tool as
rainfall data indicating presence of clusters of rainfall cells.
As observed by Onof et al. [6] use of Gamma distributed
variables for cell depth improves the reproduction of extreme
values.

Lord [11] used the Poisson-Gamma compound process to
model the motor vehicle crashes where they examined the
effects of low sample mean values and small sample size on
the estimation of the fixed dispersion parameter. Wang [12]
proposed a Poisson-Gamma compound approach for species
richness estimation.
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2.2. Mathematical Formulation. Let 𝑁𝑡 be total number of
rainfall event per day following a Poisson process such that

𝑃 (𝑁𝑡 = 𝑛) = 𝑒−𝜆 𝜆𝑛𝑛! , ∀𝑛 ∈ N,
𝑁𝑡 = ∑

𝑡≥1

1[𝑡,∞) (𝑡) . (1)

The amount of rainfall is the total sum of the jumps of
each rainfall event, say (𝑦𝑖)𝑖≥1, assumed to be identically and
independently Gamma distributed and independent of the
times of the occurrence of rainfall:

𝐿 (𝑡) = {{{{{
𝑁𝑡∑
𝑖=1

𝑦𝑖 𝑁𝑡 = 1, 2, 3, . . .
0 𝑁𝑡 = 0, (2)

such that 𝑦𝑖 ∼ Gamma(𝛼, 𝑃) is with probability density func-
tion

𝑓 (𝑦) = {{{{{
𝛼𝑝𝑦𝑃−1𝑒−𝛼𝑦Γ (𝑃) 𝑦 > 0,
0 𝑦 ≤ 0. (3)

Lemma 1. The compound Poisson process (2) has a cumulant
function

𝜓 (𝑠, 𝑡, 𝑥) = 𝜆𝑡 (𝑒𝑀𝑌(𝑥) − 1) , (4)

for 0 ≤ 𝑠 < 𝑡 and 𝑥 ∈ R, where𝑀𝑌(𝑥) is the moment generat-
ing function of the Gamma distribution.

Proof. Themoment generating functionΦ(𝑠) of 𝐿(𝑠) is given
by

𝑀𝐿 (𝑠) = E (𝑒𝑠𝐿(𝑡))
= ∞∑

𝑗=0

E (𝑒𝑠𝐿(𝑡) | 𝑁 (𝑡) = 𝑗) 𝑃 (𝑁 (𝑡) = 𝑗)
= ∞∑

𝑗=0

E (𝑒𝑠(𝐿(1)+𝐿(2)+⋅⋅⋅+𝐿(𝑗)) | 𝑁 (𝑡) = 𝑗) 𝑃 (𝑁 (𝑡) = 𝑗)
= ∞∑

𝑗=0

E (𝑒𝑠(𝐿(1)+𝐿(2)+⋅⋅⋅+𝐿(𝑗))) 𝑃 (𝑁 (𝑡) = 𝑗)
because of independence of 𝐿 and 𝑁(𝑡)

= ∞∑
𝑗=0

(𝑀𝑌 (𝑠))𝑗 𝑒−𝜆𝑡 (𝜆𝑡)𝑗𝑗! = 𝑒−𝜆𝑡 ∞∑
𝑗=0

(𝑀𝑌 (𝑠))𝑗 (𝜆𝑡)𝑗𝑗!
= 𝑒−𝜆𝑡+𝑀𝑌(𝑠)𝜆𝑡.

(5)

So the cumulant of 𝐿 is

ln𝑀𝐿 (𝑠) = 𝜆 (𝑀𝑌 (𝑠) − 1) = 𝜆 [(1 − 𝛼𝑥)−𝑃 − 1] . (6)

If we observe the occurrence of rainfall for 𝑛 periods,
then we have the sequence {𝐿 𝑖}𝑛𝑖=1 which is independent and
identically distributed.

If on a particular day there is no rainfall that occurred,
then

𝑃 (𝐿 = 0) = exp (−𝜆) (𝜆)00! = exp (−𝜆) = 𝑝0. (7)

Therefore the process has a point mass at 0 which implies
that it is not entirely continuous random variable.

Lemma 2. The probability density function of 𝐿 in (2) is

𝑓𝜃 (𝐿) = exp (−𝜆) 𝛿 (𝐿) + exp (−𝜆 − 𝛼𝐿) 𝐿−1𝑟𝑃 (V𝐿𝑃) , (8)

where 𝛿0(𝐿) is a dirac function at zero.

Proof. Let 𝑞0 = 1−𝑝0 be the probability that it rained. Hence
for 𝐿 𝑖 > 0 we have
𝑓+
𝜃 (𝐿) = ∞∑

𝑖=1

𝑝𝑖𝑞0 (𝛼𝑖𝑃𝐿𝑖𝑃−1 exp (−𝛼𝐿)Γ (𝑖𝑝) )
where 𝑝𝑖 = exp (−𝜆) (𝜆)𝑖𝑖!

= 1𝑞0 [∞∑
𝑖=1

𝑝𝑖 exp (−𝛼𝐿) 𝛼𝑖𝑃𝐿𝑖𝑃−1Γ (𝑖𝑃) ]
= 1𝑞0 [exp (−𝛼𝐿) ∞∑

𝑖=1

𝑝𝑖 𝛼𝑖𝑃𝐿𝑖𝑃−1Γ (𝑖𝑃) ]
= 1𝑞0 [exp (−𝛼𝐿) ∞∑

𝑖=1

(exp (−𝜆) (𝜆)𝑖𝑖! ) 𝛼𝑖𝑃𝐿𝑖𝑃−1Γ (𝑖𝑃) ]
= exp (−𝜆)𝑞0 [exp (−𝛼𝐿) ∞∑

𝑖=1

((𝜆)𝑖𝑖! ) 𝛼𝑖𝑝𝐿𝑖𝑃−1Γ (𝑖𝑝) ]
= exp (−𝜆)𝑞0 exp (−𝛼𝐿) [∞∑

𝑖=1

(𝜆)𝑖 (𝛼𝐿)𝑖𝑝𝐿𝑖!Γ (𝑖𝑃) ]
= 𝐿−1 exp (−𝛼𝐿)(exp (𝜆) − 1)

∞∑
𝑖=1

𝜆𝛼𝑃𝐿𝑃𝑖!Γ (𝑖𝑃) .

(9)

If we let V = 𝜆𝛼𝑃 and 𝑟𝑝(V𝐿𝑃) = ∑∞
𝑖=1(V𝐿𝑃/𝑖!Γ(𝑖𝑃)), then we

have

𝑓+
𝜃 (𝐿) = 𝐿−1 exp (−𝛼𝐿)(exp (𝜆) − 1) 𝑟𝑃 (V𝐿𝑃) . (10)
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We can express the probability density function 𝑓𝜃(𝐿) in
terms of a Dirac function as𝑓𝜃 (𝐿) = 𝑝0𝛿0 (𝐿) + 𝑞0𝑓+

𝜃 (𝐿)
= exp (−𝜆) 𝛿0 (𝐿)

+ [ 𝑞0(exp (𝜆) − 1)] 𝐿−1 exp (−𝛼𝐿) 𝑟𝑃 (V𝐿𝑃)
= exp (−𝜆) 𝛿0 (𝐿)

+ exp (−𝜆 − 𝛼𝐿) 𝐿−1𝑟𝑃 (V𝐿𝑃) .

(11)

Consider a random sample of size 𝑛 of 𝐿 𝑖 with the proba-
bility density function

𝑓𝜃 (𝐿) = exp (−𝜆) 𝛿 (𝐿) + exp (−𝜆 − 𝛼𝐿) 𝐿−1𝑟𝑝 (V𝐿𝑝) . (12)

If we assume that there are 𝑚 positive values 𝐿1, 𝐿2, . . . , 𝐿𝑚,
then there are𝑀 = 𝑛 − 𝑚 zeros where𝑚 > 0.

We observe that 𝑚 ∼ 𝐵𝑖(𝑛, 1 − exp (−𝜆)) and 𝑝(𝑚 = 0) =
exp (−𝑛𝜆); hence the likelihood function is

𝐿 = (𝑛𝑚)𝑝𝑛−𝑚0 𝑞𝑚0 𝑚∏
𝑖=1

𝑓+
𝜃 (𝐿 𝑖) (13)

and the log-likelihood for 𝜃 = (𝜆, 𝛼, 𝑝) is
log𝐿 (𝜃; 𝐿1, 𝐿2, . . . , 𝐿𝑛)

= log((𝑛𝑚)𝑝𝑛−𝑚0 𝑞𝑚0 𝑚∏
𝑖=1

𝑓+
𝜃 (𝐿 𝑖))

= log((𝑛𝑚) 𝑒−𝜆𝑛+𝜆𝑚 (1 − 𝑒−𝜆)𝑚 𝑚∏
𝑖=1

𝑒−𝜆−𝛼𝐿 𝑖 1𝐿 𝑖

⋅ ∞∑
𝑗=1

(𝜆𝛼𝑝𝐿𝑝𝑖𝑗)𝑗𝑗!Γ (𝑗𝑝) ) = log(𝑛𝑚) + 𝜆 (𝑚 − 𝑛) + 𝑚
⋅ log (1 − 𝑒−𝜆) + 𝑚∑

𝑖=1

− 𝜆 − 𝛼𝐿 𝑖 − log 𝐿 𝑖

+ log
𝑚∑
𝑖=1

∞∑
𝑗=1

(𝜆𝛼𝑝𝐿𝑝𝑖𝑗)𝑗𝑗!Γ (𝑗𝑝) .

(14)

Now for �̂� we have𝜕 log 𝐿 (𝜃; 𝐿1, 𝐿2, . . . , 𝐿𝑛)𝜕𝜆
= 𝑚 − 𝑛 + 𝑚1 − 𝑒−𝜆 + (−1)𝑚

+ 1𝜆
𝑚∑
𝑖=1

∞∑
𝑗=1

𝑖 𝜕 log𝐿 (𝜃; 𝐿1, 𝐿2, . . . , 𝐿𝑛)𝜕𝜆 = 0 ⇒
𝑚 − 𝑛 + 𝑚1 − 𝑒−𝜆 + (−1)𝑚 + 1𝜆

𝑚∑
𝑖=1

∞∑
𝑗=1

𝑖 = 0.

(15)

We can observe from the above evaluation that 𝜆 can not be
expressed in closed form; similar derivation also shows that𝛼 as well can not be expressed in closed form. Therefore we
can only estimate 𝜆 and 𝛼 using numerical methods. Withers
and Nadarajah [13] also observed that the probability density
function can not be expressed in closed form and therefore
it is difficult to find the analytic form of the estimators. So
we will express the probability density function in terms of
exponential dispersion models as described below.

Definition 3 (see [14]). A probability density function of the
form

𝑓 (𝑦; 𝜃, Θ) = 𝑎 (𝑦, Θ) exp { 1Θ [𝑦𝜃 − 𝑘 (𝜃)]} (16)

for suitable functions 𝑘() and 𝑎() is called an exponential
dispersion model.

Θ > 0 is the dispersion parameter.The function 𝑘(𝜃) is the
cumulant of the exponential dispersion model; since Θ = 1,
then 𝑘() are the successive cumulants of the distribution [15].
The exponential dispersion models were first introduced by
Fisher in 1922.

If we let 𝐿 𝑖 = log𝑓(𝑦𝑖; 𝜃𝑖, Θ) as a contribution of 𝑦𝑖 to the
likelihood function 𝐿 = ∑𝑖 𝐿 𝑖, then

𝐿 𝑖 = 1Θ [𝑦𝑖𝜃 − 𝑘 (𝜃𝑖)] + log 𝑎 (𝑦, Θ) ,
𝜕𝐿 𝑖𝜕𝜃𝑖 = 1Θ (𝑦𝑖 − 𝑘 (𝜃𝑖)) ,
𝜕2𝐿 𝑖𝜕𝜃2𝑖 = − 1Θ𝑘 (𝜃𝑖) .

(17)

However we expect that E(𝜕𝐿 𝑖/𝜕𝜃𝑖) = 0 and −E(𝜕2𝐿 𝑖/𝜕𝜃2𝑖 ) =
E(𝜕𝐿 𝑖/𝜕𝜃𝑖)2 so that

E( 1Θ (𝑦𝑖 − 𝑘 (𝜃𝑖))) = 0,
1Θ (E (𝑦𝑖) − 𝑘 (𝜃𝑖)) = 0,

E (𝑦𝑖) = 𝑘 (𝜃𝑖) .
(18)

Furthermore

−E(𝜕2𝐿 𝑖𝜕𝜃2𝑖 ) = E(𝜕𝐿 𝑖𝜕𝜃𝑖 )
2 ,

−E(− 1Θ𝑘 (𝜃𝑖)) = E( 1Θ (𝑦𝑖 − 𝑘 (𝜃𝑖)))2 ,
𝑘 (𝜃𝑖)Θ = Var (𝑦𝑖)Θ2

,
Var (𝑦𝑖) = Θ𝑘 (𝜃𝑖) .

(19)

Therefore the mean of the distribution is E[𝑌] = 𝜇 = 𝑑𝑘(𝜃)/𝑑𝜃 and the variance is Var(𝑌) = Θ(𝑑2𝑘(𝜃)/𝑑𝜃2).
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The relationship 𝜇 = 𝑑𝑘(𝜃)/𝑑𝜃 is invertible so that 𝜃 can
be expressed as a function of 𝜇; as such we have Var(𝑌) =Θ𝑉(𝜇), where 𝑉(𝜇) is called a variance function.

Definition 4. The family of exponential dispersion models,
whose variance functions are of the form 𝑉(𝜇) = 𝜇𝑝 for𝑝 ∈ (−∞, 0]∪[1,∞), are called Tweedie family distributions.

Examples are as follows: for 𝑝 = 0 then we have a normal
distribution, 𝑝 = 1, and Θ = 1; it is a Poisson distribution,
and Gamma distribution for 𝑝 = 2, while when 𝑝 = 3 it is
Gaussian inverse distribution. Tweedie densities can not be
expressed in closed form (apart from the examples above)
but can instead be identified by their cumulants generating
functions.

From Var(𝑌) = Θ(𝑑2𝑘(𝜃)/𝑑𝜃2), then for Tweedie family
distribution we have

Var (𝑌) = Θ𝑑2𝑘 (𝜃)𝑑𝜃2 = Θ𝑉 (𝜇) = Θ𝜇𝑝. (20)

Hence we can solve for 𝜇 and 𝑘(𝜃) as follows:
𝜇 = 𝑑𝑘 (𝜃)𝑑𝜃 ,

𝑑𝜇𝑑𝜃 = 𝜇𝑝 ⇒
∫ 𝑑𝜇𝜇𝑝 = ∫𝑑𝜃,

𝜃 = {{{{{
𝜇1−𝑝1 − 𝑝 𝑝 ̸= 1,
log𝜇 𝑝 = 1

(21)

by equating the constants of integration above to zero.
For 𝑝 ̸= 1 we have 𝜇 = [(1 − 𝑝)𝜃]1/(1−𝑝) so that

∫𝑑𝑘 (𝜃) = ∫ [(1 − 𝑝) 𝜃]1/(1−𝑝) 𝑑𝜃,
𝑘 (𝜃) = [(1 − 𝑝) 𝜃](2−𝑝)/(1−𝑝)2 − 𝑝 = 𝜇(2−𝑝)/(1−𝑝)2 − 𝑝 ,

𝑝 ̸= 2.
(22)

Proposition 5. Thecumulant generating function of a Tweedie
distribution for 1 < 𝑝 < 2 is

log𝑀𝑌 (𝑡)
= 1Θ 𝜇2−𝑝𝑝 − 1 [(1 + 𝑡Θ (1 − 𝑝) 𝜇𝑝−1)(2−𝑝)/(1−𝑝) − 1] . (23)

Proof. From (16) the moment generating function is given by

𝑀𝑌 (𝑡) = ∫ exp (𝑡𝑦) 𝑎 (𝑦, Θ) exp { 1Θ [𝑦𝜃 − 𝑘 (𝜃)]} 𝑑𝑦
= ∫𝑎 (𝑦,Θ) exp { 1Θ [𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)]} 𝑑𝑦
= ∫𝑎 (𝑦,Θ) exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)Θ
+ 𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)Θ )𝑑𝑦 = ∫𝑎 (𝑦, Θ)
⋅ exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ
+ 𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )𝑑𝑦 = ∫𝑎 (𝑦,Θ)
⋅ exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )
⋅ exp(𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )𝑑𝑦
= exp(𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )∫𝑎 (𝑦,Θ)
⋅ exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )𝑑𝑦
= exp { 1Θ [𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)]} .

(24)

Hence cumulant generating function is

log𝑀𝑌 (𝑡) = 1Θ [𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)] . (25)

For 1 < 𝑝 < 2 we substitute 𝜃 and 𝑘(𝜃) to have
log𝑀𝑌 (𝑡)

= 1Θ 𝜇2−𝑝𝑝 − 1 [(1 + 𝑡Θ (1 − 𝑝) 𝜇𝑝−1)(2−𝑝)/(1−𝑝) − 1] . (26)

By comparing the cumulant generating functions in
Lemma 1 and Proposition 5 the compound Poisson process
can be thought of as Tweedie distribution with parameters(𝜆, 𝛼, 𝑃) expressed as follows:

𝜆 = 𝜇2−𝑝Θ(2 − 𝑝) ,
𝛼 = Θ (𝑝 − 1) 𝜇𝑝−1,
𝑃 = 2 − 𝑝𝑝 − 1 .

(27)

The requirement that the Gamma shape parameter 𝑃 be
positive implies that only Tweedie distributions between 1 <𝑝 < 2 can represent the Poisson-Gamma compound process.
In addition, for 𝜆 > 0, 𝛼 > 0 implies 𝜇 > 0 and Θ > 0.
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Proposition 6. Based on Tweedie distribution, the probability
of receiving no rainfall at all is

𝑃 (𝐿 = 0) = exp[− 𝜇2−𝑝Θ(2 − 𝑝)] (28)

and the probability of having a rainfall event is

𝑃 (𝐿 > 0)
= 𝑊 (𝜆, 𝛼, 𝐿, 𝑃) exp[ 𝐿(1 − 𝑝) 𝜇𝑝−1 − 𝜇2−𝑝2 − 𝑝] , (29)

where

𝑊(𝜆, 𝛼, 𝐿, 𝑃) = ∞∑
𝑗=1

𝜆𝑗 (𝛼𝐿)𝑗𝑃 𝑒−𝜆𝑗!Γ (𝑗𝑃) . (30)

Proof. This follows by directly substituting the values of 𝜆 and𝜃, 𝑘(𝜃) into (16).
The function 𝑊(𝜆, 𝛼, 𝐿, 𝑃) is an example of Wright’s

generalized Bessel function; however it can not be expressed
in terms of the more common Bessel function. To evaluate it
the value of 𝑗 is determined forwhich the function𝑊𝑗 reaches
the maximum [15].

3. Parameter Estimation

We approximate the function 𝑊(𝜆, 𝛼, 𝐿, 𝑃) =∑∞
𝑗=1(𝜆𝑗(𝛼𝐿)𝑗𝑃𝑒−𝜆/𝑗!Γ(𝑗𝑃)) = ∑∞

𝑗=1 𝑊𝑗 following the
procedure by [15] where the value of 𝑗 is determined for
which𝑊𝑗 reaches maximum.We treat 𝑗 as continuous so that𝑊𝑗 is differentiated with respect to 𝑗 and set the derivative to
zero. So for 𝐿 > 0 we have the following.
Lemma 7 (see [15]). The log maximum approximation of 𝑊𝑗

is given by

log𝑊max = 𝐿2−𝑝(2 − 𝑝)Θ [log 𝐿𝑃 (𝑝 − 1)𝑃Θ(1−𝑃) (2 − 𝑝) + (1 + 𝑃)
− 𝑃 log𝑃 − (1 − 𝑃) log 𝐿2−𝑝(2 − 𝑝)Θ] − log (2𝜋) − 12
⋅ log𝑃 − log 𝐿2−𝑝(2 − 𝑝)Θ,

(31)

where 𝑗max = 𝐿2−𝑝/(2 − 𝑝)Θ.

Proof.

𝑊(𝜆, 𝛼, 𝐿, 𝑃) = ∞∑
𝑗=1

𝜆𝑗 (𝛼𝐿)𝑗𝑃−1 𝑒−𝜆𝑗!Γ (𝑗𝑃)
= ∞∑

𝑗=1

𝜆𝑗𝐿𝑗𝑃−1𝑒−𝐿/𝜏𝑒−𝜆𝑗!𝜏𝑃𝑗Γ (𝑃𝑗) where 𝜏 = 1𝛼 .
(32)

Substituting the values of 𝜆, 𝛼 in the above equation we have

𝑊(𝜆, 𝛼, 𝐿, 𝑃)
= ∞∑

𝑗=1

(𝜇2−𝑝/Θ (2 − 𝑝))𝑗 𝐿𝑗𝑃−1 [Θ (1 − 𝑝) 𝜇𝑝−1]𝑗𝑃 𝑒−𝐿/𝜏𝑒−𝜆𝑗!Γ (𝑃𝑗)
= 𝑒−𝐿/𝜏−𝜆𝐿−1 ∞∑

𝑗=1

𝜇(2−𝑝)𝑗 (Θ (𝑝 − 1) 𝜇𝑝−1)𝑗𝑃 𝐿𝑗𝑃
Θ𝑗 (2 − 𝑝)𝑗 𝑗!Γ (𝑗𝑃)

= 𝑒−𝐿/𝜏−𝜆𝐿−1 ∞∑
𝑗=1

𝐿𝑗𝑃 (𝑝 − 1)𝑗𝑃 𝜇(2−𝑝)𝑗+(𝑝−1)𝑗𝑃Θ𝑗(1−𝑃) (2 − 𝑝)𝑗 𝑗!Γ (𝑗𝑃) .

(33)

The term 𝜇(2−𝑝)𝑗+(𝑝−1)𝑗𝑃 depends on the 𝐿, 𝑝, 𝑃, Θ values so
we maximize the summation

𝑊(𝐿,Θ, 𝑃) = ∞∑
𝑗=1

𝐿𝑗𝑃 (𝑝 − 1)𝑗𝑃Θ𝑗(1−𝑃) (2 − 𝑝)𝑗 𝑗!Γ (𝑗𝑃)
= ∞∑

𝑗=1

𝑧𝑗𝑗!Γ (𝑗𝑃)
where 𝑧 = 𝐿𝑃 (𝑝 − 1)𝑃Θ(1−𝑃) (2 − 𝑝)

= 𝑊𝑗.

(34)

Considering𝑊𝑗 we have

log𝑊𝑗 = 𝑗 log 𝑧 − log 𝑗! − log (𝑃𝑗)
= 𝑗 log 𝑧 − log Γ (𝑗 + 1) − log (𝑃𝑗) . (35)

Using Stirling’s approximation of Gamma functions we have

log Γ (1 + 𝑗) ≈ (1 + 𝑗) log (1 + 𝑗) − (1 + 𝑗)
+ 12 log( 2𝜋1 + 𝑗) ,

log Γ (𝑃𝑗) ≈ 𝑃𝑗 log (𝑃𝑗) − 𝑃𝑗 + 12 log(2𝜋𝑃𝑗 ) .
(36)

And hence we have

𝑊𝑗 ≈ 𝑗 [log 𝑧 + (1 + 𝑃) − 𝑃 log𝑃 − (1 − 𝑃) log 𝑗]
− log (2𝜋) − 12 log𝑃 − log 𝑗. (37)

For 1 < 𝑝 < 2 we have 𝑃 = (2 − 𝑝)/(𝑝 − 1) > 0; hence
the logarithms have positive arguments. Differentiating with
respect to 𝑗 we have

𝜕 log𝑊𝑗𝜕𝑗 ≈ log 𝑧 − 1𝑗 − log 𝑗 − 𝑃 log (𝑃𝑗)
≈ log 𝑧 − log 𝑗 − 𝑃 log (𝑃𝑗) , (38)
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where 1/𝑗 is ignored for large 𝑗. Solving for (𝜕 log𝑊𝑗)/𝜕𝑗 = 0
we have

𝑗max = 𝐿2−𝑝(2 − 𝑝)Θ. (39)

Substituting 𝑗max in log𝑊𝑗 to find the maximum approxima-
tion of𝑊𝑗 we have

log𝑊max = 𝐿2−𝑝(2 − 𝑝)Θ [log 𝐿𝑃 (𝑝 − 1)𝑃Θ(1−𝑃) (2 − 𝑝) + (1 + 𝑃)
− 𝑃 log𝑃 − (1 − 𝑃) log 𝐿2−𝑝(2 − 𝑝)Θ] − log (2𝜋) − 12
⋅ log𝑃 − log 𝐿2−𝑝(2 − 𝑝)Θ.

(40)

Hence the result follows.

It can be observed that 𝜕𝑊𝑗/𝜕𝑗 is monotonically decreas-
ing; hence log𝑊𝑗 is strictly convex as a function of 𝑗.
Therefore 𝑊𝑗 decays faster than geometrically on either side
of 𝑗max [15]. Therefore if we are to estimate 𝑊(𝐿,Θ, 𝑃) by�̂�(𝐿, Θ, 𝑃) = ∑𝑗𝑢

𝑗=𝑗𝑑
𝑊𝑗 the approximation error is bounded

by geometric sum

𝑊(𝐿,Θ, 𝑃) − �̂� (𝐿, Θ, 𝑃)
< 𝑊𝑗𝑑−1

1 − 𝑟𝑗𝑑−1
𝑙1 − 𝑟𝑙 + 𝑊𝑗𝑢+1

11 − 𝑟𝑢 ,
𝑟𝑙 = exp(𝜕𝑊𝑗𝜕𝑗 )𝑗 = 𝑗𝑑 − 1,
𝑟𝑢 = exp(𝜕𝑊𝑗𝜕𝑗 )𝑗 = 𝑗𝑢 + 1.

(41)

For quick and accurate evaluation of𝑊(𝜆, 𝛼, 𝐿, 𝑃), the series
is summed for only those terms in the series which contribute
significantly to the sum.

Generalized linear models extend the standard linear
regressionmodels to incorporate nonnormal response distri-
butions and possibly nonlinear functions of the mean. The
advantage of GLMs is that the fitting process maximizes the
likelihood for the choice of the distribution for a random
variable 𝑦 and the choice is not restricted to normality unlike
linear regression [16].

The exponential dispersion models are the response
distributions for the generalized linear models. Tweedie dis-
tributions are members of the exponential dispersion models
upon which the generalized linear models are based. Conse-
quently fitting a Tweedie distribution follows the framework
of fitting a generalized linear model.

Lemma 8. In case of a canonical link function, the sufficient
statistics for {𝛽𝑗} are {∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖𝑗}.

Proof. For 𝑛 independent observations 𝑦𝑖 of the exponential
dispersion model (16) the log-likelihood function is

𝐿 (𝛽) = 𝑛∑
𝑖=1

𝐿 𝑖 = 𝑛∑
𝑖

log𝑓 (𝑦𝑖, 𝜃𝑖, Θ)
= 𝑛∑

𝑖=1

𝑦𝑖𝜃𝑖 − 𝑘 (𝜃𝑖)Θ + 𝑛∑
𝑖

log 𝑎 (𝑦𝑖, Θ) .
(42)

But 𝜃𝑖 = ∑𝑝
𝑗 𝛽𝑗𝑥𝑖𝑗; hence

𝑛∑
𝑖

𝑦𝑖𝜃𝑖 = 𝑛∑
𝑖=1

𝑦𝑖 𝑝∑
𝑗

𝛽𝑗𝑥𝑖𝑗 = 𝑝∑
𝑗

𝛽𝑗 𝑛∑
𝑖=1

𝑦𝑖𝑥𝑖𝑗. (43)

Proposition 9. Given that 𝑦𝑖 is distributed as (16) then its
distribution depends only on its first two moments, namely, 𝜇𝑖
and Var(𝑦𝑖).
Proof. Let 𝑔(𝜇𝑖) be the link function of the GLM such that𝜂𝑖 = ∑𝑝

𝑗=1 𝛽𝑗𝑥𝑖𝑗 = 𝑔(𝜇𝑖). The likelihood equations are

𝜕𝐿 (𝛽)𝜕𝛽 = 𝑛∑
𝑖=1

𝜕𝐿 𝑖𝜕𝛽𝑗 ∀𝑗. (44)

Using chain rule we have

𝜕𝐿 𝑖𝜕𝛽𝑗 = 𝜕𝐿 𝑖𝜕𝜃𝑖 𝜕𝜃𝑖𝜕𝜇𝑖 𝜕𝜇𝑖𝜕𝜂𝑖 𝜕𝜂𝑖𝜕𝛽𝑗 = 𝑦𝑖 − 𝜇𝑖
Var (𝑦𝑖)𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖 . (45)

Hence

𝜕𝐿 (𝛽)𝜕𝛽 = 𝑦𝑖 − 𝜇𝑖
Var (𝑦𝑖)𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖 = 𝑦𝑖 − 𝜇𝑖Θ𝜇𝑝𝑖 𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖 . (46)

Since Var(𝑦𝑖) = 𝑉(𝜇𝑖), the relationship between themean and
variance characterizes the distribution.

Clearly a GLM only requires the first two moments of
the response 𝑦𝑖; hence despite the difficulty of full likelihood
analysis of Tweedie distribution as it can not be expressed
in closed form for 1 < 𝑝 < 2 we can still fit a
Tweedie distribution family. The likelihood is only required
to estimate 𝑝 and Θ as well as diagnostic check of the model.

Proposition 10. Under the standard regularity conditions, for
large 𝑛, the maximum likelihood estimator 𝛽 of 𝛽 for general-
ized linear model is efficient and has an approximate normal
distribution.

Proof. From the log-likelihood, the covariance matrix of the
distribution is the inverse of the information matrix J =
E(−𝜕2𝐿(𝛽)/𝜕𝛽ℎ𝜕𝛽𝑗).
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So

J = E(−𝜕2𝐿 (𝛽)𝜕𝛽ℎ𝜕𝛽𝑗 ) = E[(𝜕2𝐿 𝑖𝜕𝛽ℎ )(𝜕2𝐿 𝑖𝜕𝛽𝑗 )]
= [( 𝑦𝑖 − 𝜇𝑖

Var (𝑦𝑖)𝑥𝑖ℎ 𝜕𝜇𝑖𝜕𝜂𝑖)( 𝑦𝑖 − 𝜇𝑖
Var (𝑦𝑖)𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖)]

= 𝑥𝑖ℎ𝑥𝑖𝑗
Var (𝑦𝑖) (𝜕𝜇𝑖𝜕𝜂𝑖)

2 .
(47)

Hence

E(−𝜕2𝐿 (𝛽)𝜕𝛽ℎ𝜕𝛽𝑗 ) = 𝑛∑
𝑖

𝑥𝑖ℎ𝑥𝑖𝑗
Var (𝑦𝑖) (𝜕𝜇𝑖𝜕𝜂𝑖)

2 = (𝑋𝑇𝑊𝑋) , (48)

where𝑊 = diag[(1/Var(𝑦𝑖))(𝜕𝜇𝑖/𝜕𝜂𝑖)2].
Therefore 𝛽 has an approximate 𝑁[𝛽, (𝑋𝑇𝑊𝑋)−1] with

Var(𝛽) = (𝑋𝑇�̂�𝑋)−1, where �̂� is evaluated at 𝛽.
To compute 𝛽 we use the iteratively reweighted least

square algorithmproposed byDobson andBarnett [17]where
the iterations use the working weights 𝑤𝑖:𝑤𝑖𝑉 (𝜇𝑖) ̇𝑔 (𝜇𝑖)2 , (49)

where 𝑉(𝜇𝑖) = 𝜇𝑝𝑖 .
However estimating 𝑝 is more difficult than estimating𝛽 and Θ such that most researchers working with Tweedie

densities have𝑝 a priori. In this study we use the procedure in
[15]where themaximum likelihood estimator of𝑝 is obtained
by directly maximizing the profile likelihood function. For
any given value of𝑝wefind themaximum likelihood estimate
of 𝛽,Θ and compute the log-likelihood function. This is
repeated several times until we have a value of 𝑝 which
maximizes the log-likelihood function.

Given the estimated values of 𝑝 and 𝛽, then the unbiased
estimator of Θ is given by

Θ̂ = 𝑛∑
𝑖=1

[𝐿 𝑖 − 𝜇𝑖 (𝛽)]2
𝜇𝑖 (𝛽)𝑝 . (50)

Since for 1 < 𝑝 < 2 the Tweedie density can not be expressed
in closed form, it is recommended that the maximum
likelihood estimate of Θ must be computed iteratively from
full data [15].

4. Data and Model Fitting

4.1. Data Analysis. Daily rainfall data of Balaka district in
Malawi covering the period 1995–2015 is used. The data was
obtained from Meteorological Surveys of Malawi. Figure 1
shows a plot of the data.

In summary the minimum value is 0mmwhich indicates
that there were no rainfall on particular days, whereas the
maximum amount is 123.7mm. The mean rainfall for the
whole period is 3.167mm.
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Figure 1: Daily rainfall amount for Balaka district.
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Figure 2: Variance mean relationship.

We investigated the relationship between the variance and
the mean of the data by plotting the log(variance) against
log(mean) as shown in Figure 2. From the figure we can
observe a linear relationship between the variance and the
mean which can be expressed as

log (Variance) = 𝛼 + 𝛽 log (mean) (51)

Variace = 𝐴 ∗mean𝛽, 𝐴 ∈ R. (52)

Hence the variance can be expressed as some power 𝛽 ∈ R

of the mean agreeing with the Tweedie variance function
requirement.

4.2. Fitted Model. To model the daily rainfall data we use sin
and cos as predictors due to the cyclic nature and seasonality
of rainfall. We have assumed that February ends on 28th for
all the years to be uniform in our modeling.

The canonical link function is given by

log𝜇𝑖 = 𝑎0 + 𝑎1 sin( 2𝜋𝑖365) + 𝑎2 cos( 2𝜋𝑖365) , (53)

where 𝑖 = 1, 2, . . . , 365 corresponds to days of the year and𝑎0, 𝑎1, 𝑎2 are the coefficients of regression.
In the first place we estimate 𝑝 by maximizing the profile

log-likelihood function. Figure 3 shows the graph of the
profile log-likelihood function. As can be observed the value
of 𝑝 that maximizes the function is 1.5306.

From the results obtained after fitting themodel, both the
cyclic cosine and sine terms are important characteristics for
daily rainfall Table 1. The covariates were determined to take
into account the seasonal variations in the stochastic model.
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Table 1: Estimated parameter values.

Parameter Estimate Std. error 𝑡 value Pr(> |𝑡|)𝑎0 0.1653 0.0473 3.4930 0.0005∗∗∗𝑎1 0.9049 0.0572 15.81100 <2e −16∗∗∗𝑎2 2.0326 0.0622 32.6720 <2e −16∗∗∗Θ̂ 14.8057 - - -
With 𝑠𝑖𝑔𝑛𝑖f code: 0 ∗ ∗ ∗.
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Figure 3: Profile likelihood.

The predicted 𝜇𝑖, 𝑝, Θ̂ for each day only depends on the
day’s conditions so that for each day 𝑖 we have

𝜇𝑖 = exp [0.1653 + 0.9049 sin( 2𝜋𝑖365)
+ 2.0326 cos( 2𝜋𝑖365)] ,

𝑝 = 1.5306,
Θ̂ = 14.8057.

(54)

From these estimated values we can calculate the parameter(�̂�𝑖, �̂�𝑖, �̂�) from the corresponding formulas above as

�̂�𝑖 = 16.5716 (exp [0.1653 + 0.9049 sin( 2𝜋𝑖365)
+ 2.03263 cos( 2𝜋𝑖365)])

0.4694 ,
�̂� = 7.4284 (exp [0.1653 + 0.9049 sin( 2𝜋𝑖365)

+ 2.0326 cos( 2𝜋𝑖365)])
0.5306 ,

�̂� = 0.8847.

(55)

Comparing the actual means and the predicted means for 2
July we have 𝜇 = 0.3820, whereas 𝜇 = 0.4333; similarly for 31
December we have 𝜇 = 9.0065 and 𝜇 = 10.6952, respectively.
Figure 4 shows the estimated mean and actual mean where
the model behaves well generally.

4.3. Goodness of Fit of the Model. Let the maximum likeli-
hood estimate of 𝜃𝑖 be 𝜃𝑖 for all 𝑖 and 𝜇 as the model’s mean
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Figure 4: Actual versus predicted mean.

estimate. Let 𝜃𝑖 denote the estimate of 𝜃𝑖 for the saturated
model with corresponding 𝜇 = 𝑦𝑖.

The goodness of fit is determined by deviance which is
defined as

− 2 [ maximum likelihood of the fitted model
Maximum likelihood of the saturated model

]
= −2 [𝐿 (𝜇; 𝑦) − 𝐿 (𝑦, 𝑦)]
= 2 𝑛∑

𝑖=1

𝑦𝑖𝜃𝑖 − 𝑘 (𝜃𝑖)Θ − 2 𝑛∑
𝑖=1

𝑦𝑖𝜃𝑖 − 𝑘 (𝜃𝑖)Θ
= 2 𝑛∑

𝑖=1

𝑦𝑖 (𝜃𝑖 − 𝜃𝑖) − 𝑘 (𝜃𝑖) + 𝑘 (𝜃𝑖)Θ = Dev (𝑦, 𝜇)Θ .

(56)

Dev(𝑦, 𝜇) is called the deviance of the model and the greater
the deviance, the poorer the fitted model as maximizing the
likelihood corresponds to minimizing the deviance.

In terms of Tweedie distributions with 1 < 𝑝 < 2, the
deviance is

Dev𝑝

= 2 𝑛∑
𝑖=1

(𝑦2−𝑝𝑖 − (2 − 𝑝) 𝑦𝑖𝜇1−𝑝𝑖 + (1 − 𝑝) 𝜇2−𝑝𝑖(1 − 𝑝) (2 − 𝑝) ) . (57)

Based on results from fitting the model, the residual
deviance is 43144 less than the null deviance 62955 which
implies that the fitted model explains the data better than a
null model.

4.4. Diagnostic Check. Themodel diagnostic is considered as
a way of residual analysis. The fitted model faces challenges
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Figure 6: Q-Q plot of the quantile residuals.

to be assessed especially for days with no rainfall at all as they
produce spurious results and distracting patterns similarly
as observed by [15]. Since this is a nonnormal regression,
residuals are far from being normally distributed and having
equal variances unlike in a normal linear regression. Here
the residuals lie parallel to distinct values; hence it is difficult
to make any meaningful decision about the fitted model
(Figure 5).

So we assess the model based on quantile residuals which
remove the pattern in discrete data by adding the smallest
amount of randomization necessary on the cumulative prob-
ability scale.

The quantile residuals are obtained by inverting the
distribution function for each response and finding the
equivalent standard normal quantile.

Mathematically, let 𝑎𝑖 = lim𝑦↑𝑦𝑖
𝐹(𝑦; 𝜇𝑖, Θ̂) and 𝑏𝑖 = 𝐹(𝑦𝑖;𝜇𝑖, Θ̂), where 𝐹 is the cumulative function of the probability

density function 𝑓(𝑦; 𝜇, Θ); then the randomized quantile
residuals for 𝑦𝑖 are

𝑟𝑞,𝑖 = Φ−1 (𝑢𝑖) (58)

with 𝑢𝑖 being the uniform random variable on (𝑎𝑖, 𝑏𝑖]. The
randomized quantile residuals are distributed normally bar-
ring the variability in 𝜇 and Θ̂.

Figure 6 shows the normalized Q-Q plot and as can
be observed there are no large deviations from the straight
line, only small deviations at the tail. The linearity observed
indicates an acceptable fitted model.
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Figure 8: Probability of rainfall occurrence.

5. Simulation

Themodel is simulated to test whether it produces data with
similar characteristics to the actual observed rainfall. The
simulation is done for a period of two years where one was
the last year of the data (2015) and the other year (2016) was
a future prediction. Then comparison was done with a graph
for 2015 data as shown in Figure 7.

The different statistics of the simulated data and actual
data are shown in Table 2 for comparisons.

The main objective of simulation is to demonstrate that
the Poisson-Gamma can be used to predict and forecast
rainfall occurrence and intensity simultaneously. Based on
the results above (Figure 8), the model has shown that it
works well in predicting the rainfall intensity and hence can
be used in agriculture, actuarial science, hydrology, and so on.

However the model performed poorly in predicting
probability of rainfall occurrence as it underestimated the
probability of rainfall occurrence. It is suggested here that
probably the use of truncated Fourier series can improve this
estimation as compared to the sinusoidal.

But it performed better in predicting probability of no
rainfall on days where there was little or no rainfall as
indicated in Figure 8.

It can also be observed that the model produces synthetic
precipitation that agrees with the four characteristics of a
stochastic precipitation model as suggested by [4] as follows.
The probability of rainfall occurrence obeys a seasonal pat-
tern (Figure 8); in addition we can also tell that a probability
of a rain in a day is higher if the previous day was wet
which is the basis of precipitation models that involve the
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Table 2: Data statistics.

Min 1st Qu. Median Mean 3rd Qu. Max
Predicted data 0.00 0.00 0.00 3.314 0.00 116.5
Actual data [10 yrs] 0.00 0.00 0.00 3.183 0.300 123.7
Actual data [2015] 0.00 0.00 0.00 3.328 0.00 84.5
Markov process. From Figure 7 we can also observe variation
of rainfall intensity based on time of the season.

In addition the model allows modeling of exact zeros in
the data and is able to predict a probability of no rainfall event
simultaneously.

6. Conclusion

A daily stochastic rainfall model was developed based on
a compound Poisson process where rainfall events follow
a Poisson distribution and the intensity is independent
of events following a Gamma distribution. Unlike several
researches that have been carried out into precipitation
modeling whereby two models are developed for occurrence
and intensity, the model proposed here is able to model both
processes simultaneously. The proposed model is also able
to model the exact zeros, the event of no rainfall, which
is not the case with the other models. This precipitation
model is an important tool to study the impact of weather
on a variety of systems including ecosystem, risk assessment,
drought predictions, and weather derivatives as we can be
able to simulate synthetic rainfall data. The model provides
mechanisms for understanding the fine scale structure like
number and mean of rainfall events, mean daily rainfall,
and probability of rainfall occurrence. This is applicable in
agriculture activities, disaster preparedness, and water cycle
systems.

The model developed can easily be used for forecasting
future events and, in terms ofweather derivatives, theweather
index can be derived from simulating a sample path by
summing up daily precipitation in the relevant accumulation
period. Rather than developing a weather index which is not
flexible enough to forecast future events, we can use this
model in pricing weather derivatives.

Rainfall data is generally zero inflated in that the amount
of rainfall received on a day can be zero with a posi-
tive probability but continuously distributed otherwise. This
makes it difficult to transform the data to normality by
power transforms or to model it directly using continu-
ous distribution. The Poisson-Gamma distribution has a
complicated probability density function whose parameters
are difficult to estimate. Hence expressing it in terms of a
Tweedie distribution makes estimating the parameters easy.
In addition, Tweedie distributions belong to the exponential
family of distributions upon which generalized linear models
are based; hence there is an already existing framework in
place for fitting and diagnostic testing of the model.

Themodel developed allows the information in both zero
and positive observations to contribute to the estimation
of all parts of the model unlike the other model [3, 4, 9]
which conditions rainfall intensity based on probability of

occurrence. In addition the introduction of the dispersion
parameter in the model helps in reducing underestimation
of overdispersion of the data which is also common in the
aforementioned models.
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