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Abstract
Weather is a key production factor in agricultural crop production but at the same time, the most significant and least
controllable source of peril in agriculture. These effects of weather on agricultural crop production have triggered a
widespread support for weather derivatives as a means of mitigating the risk associated with climate change on agriculture.
However, these products are faced with basis risk as a result of poor design and modeling of the underlying weather
variable (temperature). In other to circumvent this problem, a novel time-varying mean-reversion Lévy regime-switching
model is used to model the dynamics of the deseasonalized temperature dynamics. Using plots and test statistics, it
is observed that the residuals of the deseasonalized temperature data are not normally distributed. To model the non-
normality in the residuals, we propose to use the hyperbolic distribution to capture the semi-heavy tails and skewness
in the empirical distributions of the residuals for the shifted regime. The proposed regime-switching model has a mean
reverting heteroskedastic process in the base regime and a Lévy process in the shifted regime. By using the expectation-
maximization algorithm, the parameters of the proposed model are estimated. The proposed model is flexible as it modelled
the deseasonalized temperature data accurately.

Keywords
weather derivatives; Markov regime-switching; temperature dynamics; Lévy Process; hyperbolic distribution; expectation-
maximization algorithm.

1. Introduction

From tilling of the farmland to selling of the output of the crop yield, farmers around the world make countless decisions
that affect their performance. Yet, there is one very important factor that they can’t control, climate. The world’s climate
keeps on changing and this changes will persist at rates that is projected to be out of the ordinary for some century,
(Adger et al., 2003). Africa is no exception of these extreme climate change across the world. Extreme climate events
cause strain on food security, water resources, and human health in Africa. Ordinarily, it is the cause of limited economic
growth and obstructs poverty reduction efforts for most countries in Africa (Christiaensen, 2007). With Agricultural been
the major contributing factor of the gross domestic product (GDP) growth of most countries in Africa (Bryan et al., 2009)
and climate conditions having extensive and causal correlation with the production variables (Ochieng et al., 2016), there
should be an effective management technique to hedge against agricultural production risk. Most agricultural producers
have encountered crop failures because of extreme weather conditions due to changes in climate. As a result, most farmers
in Africa have developed their own traditional ways to improve the effect of extreme weather changes.

As an institutional response to weather changes, the Chicago Mercentaile Exchange (CME) introduced the weather deriva-
tive (WD). WD has been in existence in most developed countries (Canada, Europe, USA, and Japan). However, most
farmers in Africa have rarely heard about this effective hedging tool. WD, if introduced in Africa will be more viable,
reliable, and efficient to the agricultural industry and can hedge against the increasing weather changes that affects agri-
culture since it is devoid of factors like loss adjustments, moral hazards, adverse selections, high premiums, and complex
information requirements. To avoid basis risk associated with WD, there should be an efficient model for the underlying
weather variable used in pricing WD. The weather variable considered in this study is temperature. Temperature controls
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and influences other elements of weather like clouds, humidity, air pressure and precipitation that affects crops during and
after crop production (https://en.wikipedia.org/wiki/Growing degree-day accessed on 26/01/2018)

In the last decade, there has been empirical literatures on modeling the dynamics of temperature. Dischel (1999) was the
first to propose a continuous stochastic model for temperature. He modelled temperature as a mean-reverting process by
adapting directly the Hull-White model. The noise process in his model was driven by two Wiener process corresponding to
the distribution of the temperature and the distribution of the changes in temperature. Thereafter, McIntyre and Doherty
(1999) proposed a mean-reverting SDE with a constant volatility daily average temperature at Heathrow airport in the
United Kingdom(UK). Dornier and Queruel (2000) disagreed with the direct use of the Hull-White model adapted by
Dischel. They rather used a conventional Autoregressive Moving Average model rather than the AR(1) model proposed
by Dischel. By replacing Brownian motion with fractional Brownian motion, Brody et al. (2002) modelled the evolution of
temperature that allowed the integration of a long memory effect. Other researchers (Alaton et al., 2002; Benth and Benth,
2007; Zapranis and Alexandridis, 2009) used different kinds of mean-reverting OU model driven by Brownian motion. In
contrast to other researchers using Brownian motion to capture the residuals, Benth and Šaltytė-Benth (2005) proposed
an OU model that incorporate seasonal volatility and mean. In the model of Benth and Šaltytė-Benth, the residuals
were driven by the generalized hyperbolic Lévy process rather than Brownian motion. The process they employed was an
adjustable class of Lévy process that captured the skewness and semi-heavy tails properties of the residuals.

Clearly, it can be observed that most of these researchers assumed no changes in state of the dynamics of temperature
and hence modelled temperature dynamics as a single regime. The above methods of modeling temperature may lead to
intractable pricing techniques for temperature derivatives. As noted by Brockett et al. (2009), temperature time series
data shows sudden changes due to artificial and natural factors. By employing regime-switching models, the researcher
can capture such sudden and discrete shifts in the temperature dynamics. Regime-switching models do capture most of
the stylized facts of temperature accurately more than the single stochastic differential equation model. Hence, the need
for different stochastic model for each switching state.
With a mean-reverting process as their base regime and a Brownian motion with mean different from zero as their shifted
regime, Elias et al. (2014) presented a constant volatility two-state MRS model for temperature dynamics at the city of
Toronto, Canada. The model of Elias et al. (from hence we will call the model developed by Elias et al. as Elias’ Model)
failed to capture the fact that volatility of temperature varies with varying temperature as it goes through discrete changes
between the states of the regime process. Evarest et al. (2016) improved on Elias’ model by capturing the fact that volatility
of temperature varies as temperature goes through discrete changes between the states of the regime. They priced weather
derivatives contracts based on the daily temperature dynamics. They used their model to calculate the future contract
of HDD, CDD, and CAT indices. The introduction of the local volatility in the base regime helped in capturing well the
dynamics of the underlying process. This led to a better pricing process as compared to Elias’model. However, they failed
to capture the extreme and fat tail characteristics of temperature data in their model. In his seminal thesis, Cui (2014)
modelled and priced temperature derivative. He modelled the dynamics of temperature by a standard mean-reverting
Ornstein-Uhlenbeck process with a general Lévy process as the driving noise. He extended his model by proposing a
continuous-time autoregressive (CAR) model driven by a general Lévy process which he calibrated to the canadian data.
The two models he proposed was used in deriving futures price on HDD, CDD, and CAT. He later developed a two-state
MRS model with a normal regime and a “jump” regime. The normal regime depended on a standard OU process. For
the “jump” regime, he used different noise process (Brownian motion with more extreme drift and volatility) to drive the
abnormal positive or negative “jumps” in the temperature dynamics. However, he failed to capture the changes in volatility
of temperature during the MRS model but rather assumed a constant volatility in both regimes.

Several models have been formulated over time to capture the stylized facts of temperature, however these models pro-
posed in literature have failed to capture well the stylized features of temperature, thus affecting the pricing models of WD.
Inaccurate representation of the dynamics of temperature affect the pricing of WD. WD also relies on accurate extensive
long-term time-series data (Nicola et al., 2011). However, there is lack of accessible, accurate, complete, and usable weather
data in most African countries. Calibrating the MRS model is not trivial because the regimes are not clearly observable
but latent. To outwit these problems, we use Expectation Maximization (EM) algorithm to estimate the parameters in
the model.
From the above literatures presented, Brownian motion has been replaced with a fractional Brownian motion and subse-
quently by a generalized hyperbolic Lévy processes. Nevertheless, it will be interesting to explore both Brownian motion
and Lévy processes in a MRS model that incorporates “normal” temperatures and “extremes” in temperature. The con-
tribution of this paper is in two folds; firstly we developed a mathematically tractable temperature dynamics model for
the African farmer by using regime-switching model and secondly we showed that Gaussian distribution cannot capture
the dynamics of real-life temperature. To the best of our knowledge, the two-state regime-switching model developed is
the first kind of model that can be used to price futures and options on futures.
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2. Daily Temperature Dynamics

The most widely used temperature indices in most industries (energy consumers, energy industry, travel, transportation,
agriculture, government, retailing, and construction) are the cummulative average temperature (CAT), cooling degree
days(CDD) and heating degree days (HDD). Nevertheless, in this research, we use the CAT and growing degree days
(GDD) since they are the dominant indices that affect agriculture in Africa (Gordon and Bootsma, 1993; Hatfield and
Prueger, 2015). GDD is the measure of the suitability for a crop to grow in relation to the standard temperature.

Definition 1. For a given single temperature weather station, let Tmax(t) and Tmin(t) represent the daily maximum and
minimum temperature2 recorded at day t respectively. We define the daily average temperature at day t as

T (t) ≡ Tmax(t) + Tmin(t)

2
. (1)

Definition 2. Assume the daily average temperature (DAT) T (t) at time t ≥ 0, then the CATt and GDDt generated at
a specific location over a specific measurement period [τ1, τ2] is define as

CAT (τ1, τ2) :=

τ2∑
t=τ1

T (t) (2)

GDD(τ1, τ2) :=

τ2∑
t=τ1

max{T (t)− T optimal , 0} (3)

2.1. Stylized Facts of Temperature

Temperature have clear characteristics which differs largely from commodities and other financial assets. The most palpable
characteristics of temperature are:

• Seasonality Feature
Temperature exhibits annual (365 days) seasonal movements. The DAT T (t) at time t ≥ 0 is defined as the sum of
the deseasonalized temperature T̃ (t) and deterministic seasonal component Sd(t) given as:

T (t) = T̃ (t) + Sd(t) (4)

To model the variations of temperature without the deterministic seasonality, the seasonal component in equation 4
will be removed to obtain the deseasonalized temperature T̃ (t). The deterministic seasonal model at time t, Sd(t) is
defined as

Sd(t) = A0 +A1t+A2 sin

(
2π

365
(t− ϕ)

)
(5)

where A0 and A1 represent the constant and coefficient in the linear seasonal trend of the raw data respectively, A2

captures the amplitude of the variation, and ϕ is the phase angle.

• Mean - Reverting Feature
It is practically impossible for daily temperature to deviate from the mean temperature over a long period. Daily
temperature reverts toward the mean, a feature that is common to other commodities. As observed by Alaton et al.
(2002), long term changes may be as a result different factors which includes but not limited to global warming,
green-house effects, and urbanization.

• Extreme Feature
Temperature data have extremal data points. These extremal data points are “abnormal” movement caused by
abrupt changes in temperature. In contrast to stocks which usually exhibits jumps in their price movements, daily
temperature can show some signs of spikes which are normally short-lived and very extreme size.

• Locality Feature
Temperature has a strongly localized response in temperature modeling and as such requires caution in making
generalization. Hence, the need for different models to capture these different characteristics at different locations.

• Volatility
In their two state regime swithcing model formulation, Elias et al. (2014) considered a constant volatility in either
sates of his model. But this assumption might not be a reality since a shift in temperature residuals from one state
to the other causes a change in the volatility from one state to the another. Extremal data points in temperature

2the temperature used in this research are measured in degree celsius
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resiuduas have greater volatility effects than is the case when there is no spikes or sudden increase in temperature.
This is ascertained in the Engle test performed to check for heteroscedasticity in the temperature residuals (see table
2). In model 8, the volatility is assumed to be dependent on the current deseasonalized temperature T̃ (t). More
precisely, the higher the deseasonalized temperature level, the larger are the changes in the deseasonalized daily
average temperature. Hence, in this study we will propose a model whose volatility differ with each regime and
underlying process.

3. Markov Regime-Switching (MRS) Model

The Markov switching model developed by Hamilton (1988) and Hamilton (1989) inferred that the distribution of a
variable is known, conditional on the occurence of a specific regime/state. The switching process between the regimes is
Markovian and is determined by an unobserved random variable. The underlying regimes, albeit, do not necessary have
to be Markovian, but should be independent. The daily temperature do change from day to day and this changes are not
directly observable but latent. Therefore, statistical inference with regard to the likelihood of occurence of each of the
regime at any time should be drawn.
MRS has been used effectively in modeling the behaviour of the stock market and spot price of electricity (Chevallier and
Goutte, 2015; Gyamerah and Ngare, 2018; Schaller and Norden, 1997; Weron, 2009). Chevallier and Goutte (2017a) used
sixteen international stock markets to compare the performance of regime-switching Lévy models. Chevallier and Goutte
(2017b) developed an estimation methodology that provided a better fit for electricity and CO2 market prices by using
mean-reverting Lévy jump processes.
In temperature modeling, it is typical to assume that there are different regimes that can capture distinct principal
weather condition, or the localized weather behaviour. In our study, the daily temperature is assumed to be latent with
two possible regimes, either in the base regime(“normal or mean-reverting regime” St = 1) or the shifted regime(“extreme”
regime St = 2). Suppose that each regime in the regime-switching model undergoes discrete shifts between the regimes St
of the process, then St follows a first order Markov process with the transition matrix:

P =

[
p11 p12

p21 p22

]
=

[
p11 1− p11

1− p22 p22

]
(6)

The transition probabilities of our temperature process pij in equation 6 is given as

pij = P(St = j | St−1 = i) ∀i, j = 1, 2 (7)

0 ≤ pij ≤ 1 and

2∑
j=1

pij = 1

Due to the Markov property of the states at any given time t, the future state of the underlying process(temperature) St+1

is independent of the past state St−1 of the underlying process given the present state St of the underlying process.

3.1. Modeling Daily Temperature Dynamics

To efficiently model the dynamics of temperature, it is assumed that the deseasonalized temperature is either under base
regime or shifted regime and each regime are independent and parallel to the other regime. The deseasonalized temperature
T̃ (t) is assumed to be driven by two sources of randomness; a Markov process and Lévy process. We assume a constant
mean-reversion rate in the base regime. Based on the stylized facts of temperature, a regime-switching stochastic model
that describes the dynamics of temperature is formulated. This model can be used to price weather derivatives. The base
regime model is assumed to follow a mean-reverting stochastic process with a time-varying volatility. The residuals of the
base regime is assumed to be generated by a Brownian process.

To effectively capture the non-normality of the temperature residuals (see figures 3, 5, 6, 7 and table 5), the residuals of
the shifted regime is captured by a Lèvy process. By comparing the Generalized hyperbolic distribution to its sub-classes
(Normal-Inverse Gaussian, Hyperbolic and Variance-Gamma), we were able to find the best distribution that can model
the asymmetry and heavy tails of the residuals data. As our first regime-switching model, we call it time-varying mean-
reversion Lévy (TML) regime-switching model. This proposed model is distinctly appropriate to capture the dynamics of
temperature. In sequel, the propose TML Model for the deseasonalized temperature dynamics is given as:

T̃ (t) =

{
T̃Mt : dT̃Mt = κT̃Mt dt+ σM T̃Mt dWt, with probability p1

T̃Lt : dT̃Lt = µLdt+ σLdLt, with probability p2

(8)

where σM T̃Mt deseasonalized daily volatility of the base through time and σL is the volatility of the shifted regimes, κ is the
mean-reversion rate of the deseasonalized temperature in the base regime which reverses the deseasonalized temperature
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to the long term equilibrium level after the deseasonalized temperature has drifted from this equilibium. Wt ∼ N(0, t)
is the standard Brownian motion. Lt is a Lévy process which is cádlág, adapted, real-valued general Lévy process with
independent, stationary increments and stochastically continuous, and T̃t is the deseasonalized temperature at time t.

Proposition 1. If the deseasonalized daily average temperature T̃ (t) follows the model 8, then the explicit solution is
given by

T̃ (t) =

{
T̃M (t) : T̃M (t) = T̃ (t− 1)eκt +

∫ t
t−1

σT̃ (s)eκ(t−s)dW (s)

T̃L(t) : T̃L(t) = T̃ (t− 1) + µLt+
∫ t
t−1

σLdL(s)
(9)

Proof. Determining the stochastic integral of the base regime process demands a variation of parameters approach to spell
out a new function f [T (t), t] = T̃W (t)e−κt. By Itô’s lemma, the derivative of the new function can be found.

df(T (t), t) = −κe−κtT̃W (t)d(t) + e−κtdT̃W (t)

= −κe−κtT̃W (t)d(t) + e−κt
[
κT̃W (t)dt+ σW T̃M (t)dW (t)

]
= σW e−κtT̃ (t)dW (t)

f(T (t), t) = T̃W (t)e−κt = T (t− 1) +

∫ t

t−1

σT (s)e−κsdW (s)

T̃W (t) = T (t− 1)eκt +

∫ t

t−1

σT (s)eκ(t−s)dW (s)

For the shifted regime
dT̃L(t) = µLdt+ σLdL(t)∫ t

t−1

dT̃L(s) =

∫ t

t−1

µLds+

∫ t

0

σdL(s)

T̃ (t) = T̃ (t− 1) + µLt+

∫ t

t−1

σLdL(s)

4. Analysis of Temperature Data

The daily maximum and minimum surface temperature data was taken from the weather measurement stations at Bole
and Tamale. Bole and Tamale are located in the Northern region3 of Ghana. Bole and Tamale are the district capital of
Bole and Tamale respectively. In Ghana, the main source of weather data is from the Ghana Meteorological Agency. The
sample period expands from 01/01/1987 to 31/08/2012 and consist of a total of 9375 observations. The avarage of the
daily maximum and minimum temperature is calculated according to definition 1. The raw data is checked for missing
data to avoid gaps in the historical data. Depending on the size of the missing data4, the missing data is filled using the
method of combined average. The combined average is calculated using two distinct averages; the average of 7 days(d)
after and before the missing day,

Tday(t) =

∑7
d=1 T (t− d) +

∑7
d=1 T (t+ d)

14
, (10)

and the average of that missing day across previous N years,

Tyear(t) =
1

N

N∑
y=1

Ty(t) (11)

The missing values in the dataset are filled by averaging the calculated value in equation 10 and 11.

In Table 1, the descriptive statistics for the daily average temperature of the two measurement stations (Bole and Tamale)
are presented. The values of the median, mean, maximum and minimum temperature for both towns are consistent and
this can be attributed to the fact that the geographical locations of these two measurement stations are not distant apart.
The amount of variation (std) is relatively small but vary between two measurement stations. With a skewness value of
0.41 and 0.31 for Bole and tamale respectively, the empirical distribution of these two towns are asymmetrical. With a
negative excess kurtosis for both towns, it can be explained that the distribution of the DAT data is more outlier-prone
than the normal distribution. We present the values χ2-statistics of Pearson’s criteria of goodness-of-fit with its P-values

3the hottest region in Ghana
4the proportion of the missing data should not be more than 10%
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of the DAT time series data (see table 1). From the values of the χ2 goodness of fit test and at a 1% α-level of significance,
the null hypothesis (DAT data is normally distributed) can be rejected. With a Hurst exponenent (H) greater than 0.5 for
the two towns, there is a strong trend in the DAT data. However, the trend in Bole DAT data is more predictable than
that of Tamale.

Mean Median Mode Std Min Max Skewness Kurtosis Hurst Exponent χ2 p-value
Bole 27.20 27.00 26.5 2.07 21.40 34.20 0.41 2.77 0.8212 615.01 0

Tamale 28.69 28.40 27.8 2.47 21.40 35.60 0.31 2.34 0.7643 567.85 0

Table 1: Descriptive statistics for daily average temperature

4.1. Seasonal Component

Generally, temperature follows a seasonal pattern. These seasonal pattern can be decomposed into a seasonal trend and
linear trend depending on the region where the data was taken and the number of years of temperature data used. The
seasonal component in the DAT time series data is captured in model 5. In order to calibrate the DAT time-series data to
the proposed model 8, the DAT time-series will be deseasonalized.

(a) Bole seasonalized DAT (b) Tamale seasonalized DAT

Figure 1: Historical average tempereture against the day of observation from 01/01/1987 to 31/08/2012, exhibiting seasonal
cycles.

(a) Bole Deseasonalized DAT (b) Tamale Deseasonalized DAT

Figure 2: Deseasonalized daily average temperature from 01/01/1987 to 31/08/2012

From Figure 1, there is a strong seasonality in the DAT time series data. Temperature exhibits a seasonal trend in
Africa; higher temperatures during the dry seasons and lower temperatures during the rainy seasons. The seasonal trend
is captured in model 5. The seasonal component of model 5 is given as A2 sin

(
2π
360 (t− ϕ)

)
. The DAT data is calibrated to

the model and using the least square method of estimation, the parameters are estimated.

Eventhough, the linear trend in the data is weak, a close observation (see figure 1) shows an increasing trend in the DAT
time series data. The linear trend in our data may be as a result of the longer period of years taken. Also, as observed by
Alaton et al. (2002), this increasing trend of DAT over some decades at this location is as a result of many factors which
includes but not limited to global warming, green house effect, urbanization. The linear component of model 5 is given as
A0 +A1t
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4.2. Residuals

Figure 4 shows the squared residual plot of the deseasonalized daily average temperature data of Bole and Tamale. There
is evidence of continuous variation in the variance of noise, an indication of seasonal heteroscedasticity. This shows that
volatility of the deseasonalized DAT residuals is not constant as assumed by Elias et al. (2014). To further validate this
result, we use the Engle test of residual heteroscedasticity to test for conditional heteroscedasticity. From Table 2, we can
reject the null hypothesis of no conditional heteroscedasticity and conclude that there are significant heteroscedasticity
effects in the residual series of both towns. With a p-value of 0 and at a 1% α-level of significance for both towns, there is
a strong evidence to reject the null hypothesis of no conditional heteroscedasticity effects.

(a) Histogram of Bole final Residuals (b) Histogram of Tamale final Residuals

Figure 3: Histogram of final residuals in Bole and Tamale

(a) Bole squared residuals (b) Tamale squared residuals

Figure 4: Squared final residuals of Bole and Tamale

Test statistics p-value
Bole 1175.2 0

Tamale 1282.9 0

Table 2: Engle test for Residual heteroscedasticity of
Bole and Tamale

χ2 p-value
Bole 230.3531 8.9851 ×10−48

Tamale 419.0531 2.2355 ×10−87

Table 3: χ2 statistics of final residuals of Bole and
Tamale

Mean Median Std Min Max Skewness Kurtosis Hurst Exponent
Bole 1.0873 ×10−06 0.0879 1.2995 -7.7166 5.5563 -0.4181 3.9910 0.7718

Tamale 3.6874 ×10−06 0.1328 1.5431 -7.3353 5.6889 -0.4947 3.6699 0.7029

Table 4: Descriptive statistics of final residuals of Bole and Tamale

4.2.1 Normality Test of Temperature Data Residuals

In this section, statistical and graphical methods are applied to the DAT residuals time series data to test for the normality
of the residuals.
Most conventional literatures (Alaton et al., 2002; Elias et al., 2014; Evarest et al., 2016) assumed that the residuals are
independent, identically, and normally distributed. It should however be noted that inaccurate choice of the distribution of
this residuals can cause model error and mispricing when pricing weather derivatives. To model the residuals of the DAT
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data, it is important to test the residuals for normality using different goodness-of-fit test.
Table 3 shows the normal distribution χ2-statistics of the residuals. The values of the χ2 for Bole and Tamale are
significant at 99% confidence level implying that the residuals of Bole and Tamale are not normally distributed. The
descriptive statistics of the residuals of Bole and Tamale are presented in table 4. From the hurst exponent in table 4,
the residuals of Bole and Tamale DAT have strong trend and are more predictable. The skewness and kurtosis in table 4
further shows that the residuals are not normally distributed. These results are in congruous to the Q-Q plot for normal
distribution (figure 5) and the normal fit plot (figure 6). Figure 7 shows that there are cases of outliers in the residuals of
the daily average temeprature of Bole and Tamale.

Figure 5: Normal distributed QQ-plot for Bole and Tamale residuals

Figure 6: Normal fit plot of Bole and Tamale residuals

Figure 7: Box-plot of final residuals

Additionally, using the Jacque-Bera(JB) goodness-of-fit test, and the Anderson-Darling(AD) test for normality (see table
5), we can reject the null hypothesis that the residuals are normally distributed at a 99% confidence level. From the test
statistics (table 5) and graphical representations (figures 5–7), there is enough evidence to state that the deseasonalized
DAT residuals of Bole and Tamale do not follow the normal distribution. Thus, it can be concluded that it is not efficient
to model the random noise with a Gaussian process.
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Jacque-Bera Test
Bole Tamale

Test Statistics 656.7203 557.6335
P-value ≤ 0.001 ≤ 0.001

Anderson-Darling test
Bole Tamale

Test Statistics 26.0323 36.0366
P-value ≤ 0.0005 ≤ 0.0005

Table 5: Goodness of Fit test for Residuals

Due to the inability of the normal distribution to capture well the residuals of the deseasonalized DAT data, we propose
to use the Lévy process to model the residuals of the shifted regime. We use the Generalized Hyperbolic (GH) distribution
and its sub-classes (normal-inverse Gaussian (NIG), hyperbolic (HYP), and the variance-gamma (VG)) to capture the
skewness and semi-heavy tails in the residuals data. We test for the best fit for our residuals data using the above named
distributions.

4.3. Generalized Hyperbolic (GH) Distribution

We model the residuals εt of the shifted regime by the generalized hyperbolic (GH) distribution and the sub-classes which
are relevant for applications.

Definition 3. The one-dimensional generalized hyperbolic(GH) distribution was introduced by Barndorff-Nielsen (1977)
and its probability density function is define as

fGH(x; v, α, β, µ, δ) = ξ(v, α, β, δ)(δ2 + (x− µ)2)( v
2−

1
4 )eβ(x−µ) ×Kv− 1

2
(α
√
δ2 − (x− µ)2)

where ξ(v, α, β, δ) =
(α2 − β2)

v
2

√
2παv−1/2δvKv(δ

√
α2 − β2)

, Kv is the modified Bessel function of the third kind of order v and

x ∈ R

Each parameter in GH(v, α, β, µ, δ)) distribution have different effect on the shape of the distribution: v ∈ R determines
the characterization of sub-classes of the GH distribution, α > 0 controls the steepness around the peak (the larger the α,
the steeper the density), β with 0 ≤| β |≤ α is the asymmetry parameter (β= 0 gives a symmetric distribution around µ
and the skewness of the density increases as µ increases), µ is the location of the distribution, and δ > 0 is the scaling. A
proper choice of these parameters can help in describing different shapes of the distribution.
Suppose a random variable X follows a generalized hyperbolic distribution, then the characteristics function (moment
generating function(MGF) or the cumulant function) is given as

MX(z) = E[ezX ] = eµz
(

α2 − β2

α2 − (β + z)2

) v
2 Kv(δ

√
α2 − (β + z)2)

Kv(δ
√
α2 − β2)

, | β + z |< α

The sub-classes of the GH distribution include, among others, the normal-inverse Gaussian (NIG) distribution, the hyper-
bolic (HYP) distribution and the variance-gamma (VG) distribution.

Definition 4. For v = −0.5 in the GH distribution, we obtain the Normal-Inverse Gaussian (NIG). The probability density
function (pdf) of a NIG distribution NIG(α, β, µ, δ) of a random variable X is an infinetely divisible distribution which is
given as

fNIG(x;α, β, µ, δ)) = αδπ−1 exp{δ
√
α2 − β2 + β(x− µ)}

K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

. (12)

where 0 ≤| β |≤ α, 0 ≤ δ and x, µ ∈ R. kv is the modified Bessel function.

The NIG distribution was introduced in finance literature in 1997 Barndorff-Nielsen (1997). NIG distribution has a heavier
tail than the normal distribution and can take different kinds of shapes. The MGF of NIG distribution is

MNIG(z) = exp
{
µz + δ

(√
α2 − β2 −

√
α2 − (β + z)2

)}
, for all | β + z |< α (13)

The NIG distribution have the following properties:

1. Conditioned that β = 0, α→∞ and σ
α = σ2, the NIG distribution will approach the normal distribution N(µ, σ2).

2. Assuming that X ∼ NIG(α, β, µ, δ), then ∀a ∈ R+ and ∀b ∈ R, we have that Y = aX + b ∼ NIG(αa ,
β
a , aµ+ b, aδ)
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Definition 5. The Hyperbolic Distribution (HYP) is a subclass of the GH distribution when v = 1. Given a hyperbolic
random variable X, the pdf is given as

fHY P (x;α, β, µ, δ)) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
(14)

where x, µ ∈ R, 0 ≤ δ, | β |< α; K1 is t the Bessel function of the third kind with index 1

The hyperbolic distribution can also capture semi-heavy tails. The MGF of the hyperbolic distribution is

MHY P (z) =
eµz
√
α2 − β2K1

(
δ
√
α2 − (β + z)2

)
√
α2 − (β + z)2K1(δ(

√
α2 − β2))

, for all | β + z |< α (15)

The hyperbolic distribution is not closed under convolution.

Definition 6. By restricting δ = 0 and v > 0, we have the Variance-Gamma (VG) distribution with pdf

fV G(x; v, α, β, µ)) =
(
√
α2 − β2)2v

√
πΓ(v)(2α)v−

1
2

| x− µ |v− 1
2 Kv− 1

2
(α | x− µ |)eβ(x−µ), ∀x ∈ R

where µ ∈ R, v > 0, α >| β |≥ 0 and Γ denotes the gamma-function. Kv(·) is the modified Bessel function of the second
kind.

The Variance-Gamma density was intriduced by Madan et al. (1998). The tails of VG distribution decreases slowly than
the normal distribution. The class of VG distributions is closed under convolution. The MGF of VG distribution is

MV G(z) = eµz

( √
α2 − β2√

α2 − (β + z)2

)2v

, for all | β + z |< α (16)

4.4. Parameter Estimation

The parameters of the seasonality model and the TML model is estimated. The estimation of these parameters depend on
the Bole and Tamale DAT data from 01/01/1987 to 31/08/2012.

4.4.1 Fitting the deterministic seasonality model to data

The deterministic seasonality process, model 5 can be transformed to

Sd(t) = a0 + a1(t) + a2 sin

(
2π

365
t

)
+ a3 cos

(
2π

365
t

)
(17)

To find the numerical values in model 5, the transformed deterministic seasonality process (model 17) is fitted to the DAT
data. The parameters are estimated using the least square methods.

A0 = a0

A1 = a1

A2 =
√

(a2
2 + a2

3)

ϕ =
365

2π
tan−1

(
a3

a2

) (18)

4.4.2 Estimation of the TML parameters

Estimating the parameter of TML Model is not trivial. The parameters of the model is estimated using the Expectation-
Maximization algorithm developed by Dempster et al. (1977). The vector of unknown parameters will be estimated by two
steps iterative algorithm: an expectation(E)-step and a maximization(M)-step.

Discretization
Eventhough temperature is a continuous process, its data is not recorded continuously but rather recorded in discrete time
points. Therefore, estimating the parameters in a continuous time will be computationally costly. Before the parameters

10



of the TML model are estimated, it will have to be calibrated to the deseasonalized DAT data and this is possible by
transforming the model from its continuos form to a discrete form. The discretized form of model (8) for the base and
shifted regimes are given as

T̃ (t) =

{
T̃Mt : T̃Mt = T̃Mt−1(1 + κ) + σM T̃Mt−1ε

M
t , T̃M is in regime 1

T̃Lt : T̃Lt = T̃Lt−1 + µL + σLεLt , T̃L is in regime 2
(19)

where εM (t) and εL(t) are the Weiner residual and Lévy residual respectively.
From (19), the vector of unknown parameters θ1 = {βM , σM , p1} and θ2 = {µL, σL, p2} for the base and shifted regimes
respectively will be estimated.

E-step
Assume the length of the DAT historical data is N + 1 and t = 0, 1, 2, 3, · · · , N where t represents a specific time that
the DAT is recorded and θn is the computed vector of parameters in the nth iteration. The conditional distribution of the

regimes St for time update values of t = 0, 1, 2, 3, · · · , N will be calculated. Suppose F T̃ (t)
t is a vector of the past t + 1

historical data of the discretized model, then F T̃ (t)
t = {T̃ (1), T̃ (2), T̃ (3), · · · , T̃ (N)}.

i) Filtering: Based on the Bayes rule, the filtered probability of the discretized model can be estimated as

P(St = i|F T̃ (t)
t ; Θ(n)) =

P(St = i, T̃ (t)|F T̃ (t)
t−1 ; Θ(n))

f(T̃ (t)|F T̃ (t)
t−1 ; Θ(n))

=
P(St = i|F T̃ (t)

t−1 ; Θ(n))f(T̃ (t)|St = i;F T̃ (t)
t−1 ; Θ(n))∑

i∈s P(St = i|F T̃ (t)
t−1 ; Θ(n))f(T̃ (t)|St = i;F T̃ (t)

t−1 ; Θ(n))

(20)

where Θ = {θ1, θ2}, and f
(
T̃ (t)|St = i;F T̃ (t)

t−1

)
is the density of the underlying regime process i at time t conditional that

the underlying process was in regime i. The conditional probability density function for the base and shifted regimes will
be calculated from the CDF.
From (19), the drift and diffusion coefficient of the base regime are (1+β)T̃Mt−1 and σM T̃Mt−1 rspectively. Similarly, the drift

and diffusion coefficient of the shifted regimes are T̃Lt−1 + µL and σL respectively.

ii) Smoothing: for t = N − 1, N − 2, · · · , 1 iterate

P(St = i|F T̃ (t)
t ; Θ(n)) =

∑
i∈s

P(St = i | F T̃ (t)
t ; Θ(n))P(St+1 = j | F T̃ (T )

t ; Θ(n))p
(n)
ij

P(St+1 = i | F T̃ (t)
t ; Θ(n))

(21)

The probability density function(pdf) of the base and shifted regimes based on their diffusion and drift coefficient is
respectively given as

f(T̃t | St = i;F T̃ (t)
t−1 ; θ̂

(n)
1 ) =

1

σn1
√

2πT̃t−1

exp

−
(
T̃t −

(
1 + κ(n)

)
T̃t−1

)2

2
(
σ

(n)
1

)2

T̃ 2
t−1

 (22)

f(T̃t | St = i;F T̃ (t)
t−1 ; θ̂

(n)
2 ) =

1

σn2
√

2π
exp

−
(
T̃t − µ(n) − T̃t−1

)2

2
(
σ

(n)
2

)2

 (23)

M-step
By maximizing the expected log-likelihood function Θ(n+1) = argmax Q

(
Θ | Θ(n)

)
, the maximum likelihood(ML) estimate

Θ(n+1) for the vector of unknown parameters will be calculated. Also, in this step the transition probabilities of the
regime-switching model will be estimated.
The log likelihood function from the conditional probability density function of both regimes is respectively given as:

log[L(θ
(n)
1 ,F T̃t , St)] =

N∑
t=2

P
(
St = i|F T̃ (t)

t ; θ̂1
(n)
)[

logP1,i − log(σ1

√
2πT̃t−1)− 1

2σ2
1T̃

2
t−1

(
T̃t − (1 + κn)T̃t−1

)2
]

(24)

log[L(θ
(n)
1 ,F T̃t , St)] =

N∑
t=2

P
(
St = i | F T̃ (t)

t ; θ̂2
(n)
)[

logP2,i − log(σ2

√
2π)− 1

2σ2
2

(
T̃t − µ(n) − T̃t−1

)2
]

(25)
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By maximixing the loglikelihood function presented in (24), the vector of parameters θ
(n+1)
1 can be estimated.

σ̂
(n+1)
1 =

√√√√√√
∑N
t=2

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
(T̃t − (1 + β)T̃t−1)2

)]
∑N
t=2P

(
St = 1 | F T̃ (t)

t ; θ̂1
(n)
) (26)

κ̂(n+1) =

∑N
t=1

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
T̃t−1(T̃t − T̃t−1)

)]
∑N
t=2

[
P
(
St = 1 | F T̃ (t)

t ; θ̂1
(n)
)] (27)

Proof. The first derivative of (24) with respect to σ1 is

∂L

∂σ1
=

1

σ3
1

N∑
t=2

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)( (T̃t − (1 + β)T̃t−1)2 − σ2

1T̃
2
t−1

T̃ 2
t−1

)]
(28)

By maximizing (28),

N∑
t=2

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
(T̃t − (1 + β)T̃t−1)2 − σ2

1T̃
2
t−1

)]
= 0

N∑
t=2

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
(T̃t − (1 + β)T̃t−1)2

)]
=

N∑
t=2

P(St = 1 | F T̃ (t)
t ; θ̂

(n)
1 )σ2

1

σ̂
(n+1)
1 =

√√√√√√
∑N
t=2

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
(T̃t − (1 + β)T̃t−1)2

)]
∑N
t=2P

(
St = 1 | F T̃ (t)

t ; θ̂1
(n)
)

The derivative of (24) with respect to β is

∂L

∂κ
=

N∑
t=1

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
σ−2

1 T̃−2
t−1

(
−T̃ 2

t−1 − βT̃ 2
t−1 + T̃tT̃t−1

)]
(29)

By maximizing (29),

N∑
t=1

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
σ−2

1 T̃−2
t−1

(
−T̃ 2

t−1 − βT̃ 2
t−1 + T̃tT̃t−1

)]
= 0

κ

N∑
t=2

[
P
(
St = 1 | F T̃ (t)

t ; θ̂1
(n)
)]

=

N∑
t=1

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
T̃t−1(T̃t − T̃t−1)

)]

κ̂(n+1) =

∑N
t=1

[(
P(St = 1 | F T̃ (t)

t ; θ̂1
(n)

)
)
T̃−2
t−1

(
T̃t−1(T̃t − T̃t−1)

)]
∑N
t=2

[
P
(
St = 1 | F T̃ (t)

t ; θ̂1
(n)
)]

Also, the vector of unknowns of θ
(n+1)
2 can be estimated by maximizing 25

µ̂(n+1) =

∑N
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂2
(n)

)
)(

T̃t − T̃t−1

)]
∑N
t=2

[
P
(
St = 2 | F T̃ (t)

t ; θ̂2
(n)
)] (30)

σ̂
(n+1)
2 =

√√√√√√
∑N
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂2
(n)

)
)(

T̃t − T̃t−1 − µ
)2
]

∑N
t=2

[
P
(
St = 2 | F T̃ (t)

t ; θ̂2
(n)
)] (31)
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Proof. By finding the derivative of (25) with respect to σ2,

∂L

∂σ2
=

1

σ3
2

N∑
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)(
(T̃t − T̃t−1 − µ)2 − σ2

2

)]
(32)

Maximizing (32) gives
N∑
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)(
(T̃t − T̃t−1 − µ)2 − σ2

2

)]
= 0

N∑
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)(
(T̃t − T̃t−1 − µ)2

)]
= σ2

2

N∑
t=2

(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)

σ̂
(n+1)
2 =

√√√√√√
∑N
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂2
(n)

)
)(

T̃t − T̃t−1 − µ
)2
]

∑N
t=2

[
P
(
St = 2 | F T̃ (t)

t ; θ̂2
(n)
)]

The derivative of (25) with respect to µ is

∂L

∂σ2
=

N∑
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)(
σ−2

2 (T̃t − T̃t−1 − µ)2
)]

(33)

By maximizing (33)

N∑
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)(
(T̃t − T̃t−1)2

)]
= µ

N∑
t=2

(
P(St = 2 | F T̃ (t)

t ; θ̂
(n)
2 )

)
(34)

µ̂(n+1) =

∑N
t=2

[(
P(St = 2 | F T̃ (t)

t ; θ̂2
(n)

)
)(

T̃t − T̃t−1

)]
∑N
t=2

[
P
(
St = 2 | F T̃ (t)

t ; θ̂2
(n)
)]

The transition probabilities are estimated by making use of the formula proposed by Kim (1994):

p
(n+1)
ij =

∑N
t=2 P(St = j, St−1 = i | F T̃ (t)

N ; Θ(n))∑N
t=2 P(St = i | F T̃ (t)

N ; Θ(n))

=

∑N
t=2 P(St = j | F T̃ (t)

N ; Θ(n))
p
(n)
ij P(St−1=i|)F T̃ (t)

t−1 ;Θ(n)

P(St=j|F T̃ (t)
t−1 ;Θ(n))∑N

t=2 P(St−1 = i | F T̃ (t)
N ; Θ(n))

(35)

5. Discussion and Results

By inserting the estimated parameters into the transformed deterministic seasonality process (model 17), the deterministic
seasonal DAT is obtained for Bole and Tamale. The linear trend in the model is evidently very small. However, the linear
trend of Bole DAT is more evident than that of Tamale DAT. Using the parameter estimates values in table 6, seasonal
sine graph is fitted to our Bole and Tamale DAT data (see figure 9).

Sd(t) =26.8194 + (2.3855× 10−05)t− 2.0234 sin
2π

365
(t− 196.2153)

Sd(t) =28.5058 + (3.7039× 10−05)t− 2.1026 sin
2π

365
(t− 200.5695)

(36)

A0 A1 A2 ϕ
Bole 26.8194 2.3855× 10−5 -2.0234 196.2153

Tamale 28.5058 3.7039× 10−05 -2.1026 200.5695

Table 6: Estimated parameters for deterministic seasonality model
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Figure 8: Seasonal fit plot of Bole and Tamale residuals

Figure 9: Seasonal fit plot of Bole and Tamale residuals

Normal HYP GH NIG VG

Bole
v – – 3.2875 – 0.0144
α – 1.7178 1.4813× 10−5 1.5010 0.4968
β – -0.3921 -0.1839 -0.4087 -0.0140
µ 1.0873× 10−6 0.6179 0.4638 0.6413 0.5004
δ 1.2995 1.6783 5.5849× 10−6 2.2664 0

Tamale
v – – 3.7329 – 0.0101
α – 1.6520 3.1272× 10−5 1.5212 0.5006
β – -0.5406 -0.2570 -0.5807 -0.0097
µ 3.6874× 10−6 1.1181 0.6802 1.1893 0.4793
δ 1.5431 2.2130 1.0713× 10−5 2.8794 0

Table 7: Estimated parameters of Normal, HYP, GH, NIG, and VG distributions fitted to Bole and Tamale DAT residuals.
The parameters are estimated using the maximum likelihood method

Parameter σ1 κ µ σ2 p11 p22

Bole 0.0656 0.2047 29.8465 1.3939 0.9913 0.9490
Tamale 0.0100 0.3574 31.7835 1.4579 0.9909 0.9135

Table 8: Estimated parameters for TML model

The estimated parameters of normal, HYP, GH, NIG, and VG distributions are presented in the table 7.

To test for the goodness-of-fit of the distributions, two distance measures are used, the Kolmogorov-Smirnov (K-S) and
the Anderson-Darling(A-D) statistic are used. The K-S test statistic and A-D test statistic are used to summmarize the
difference between the fitted cumulative density function (cdf) and the empirical cdf. Comparative to Kolmogorov-Smirnov,
the A-D test statistics is more powerful because it incorporates integration over the entire range of data by paying more
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attention to the tail distances. The lower the value of K-S and A-D test statistics, the better the fit of that distribution.
Regardless of the test used, the distance between the fitted hyperbolic distribution and its empirical distribution is lower
compared to the other distributions and their empirical. This affirms that the hyperbolic distribution does fit well to our
Bole and Tamale random noise. A series random numbers for GH, NIG, HYP, and VG are generated using the parameters
estimated in table 7. The Q-Q plot of the quantiles of the residuals versus the randomly generated quantiles of the GH,
NIG, HYP, and VG distributions are plotted (see figure 10). The straight line (in red) shows how the residual data would
behave if it is perfectly distributed with the GH, NIG, HYP, and VG. From the illustrated figures (figure 10, it is evident
that the hyperbolic distribution fits plausibly well for our Bole and Tamale random components than the normal, GH,
NIG, HYP, and VG distributions. This is consistent with the A-D and K-S goodness-of-fit test in table 9.

Normal HYP GH NIG VG

Bole
Kolmogorov-Smirnov 2.9650 0.6474 1.8743 0.7000 3.8201

Anderson-Darling 26.0323 0.5346 10.6454 0.7398 36.3417

Tamale
Kolmogorov-Smirnov 1.4567 0.8977 1.2440 0.9370 2.4174

Anderson-Darling 36.0366 0.6035 8.8242 0.7864 41.6297

Table 9: Goodness-of-fit test using the Kolmogorov-Smirnov and Anderson-Darling

Figure 10: Q-Q plots of HYP, NIG, GH, and VG distributions
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(a) Bole (b) Tamale

Figure 11: Calibration results of the MRS model with two independent regimes fitted to the deseasonalized daily average
temperature. The lower panel shows the conditional probability P of being in the extreme regime

The deseasonalized DAT T̃t and the conditional probability of being in the extreme regime P(St = 2) for the historical
deseasonalized DAT are shown in figure 11. The deseasonalized DAT that are categorize as “extremes”, that is, with
P(St = 2) > 0.8 are represented by red dots.
The estimates of the TML model for deaseasonalized temperature is presented in Table 8. The speed of the mean-reversion
is fairly low for both Bole and Tamale. However, the mean-reversion rate of Tamale is higher than that of Bole. The
Markov probability p11 of the deseasonalized DAT to stay in the “normal” regime of the TML model at Bole and Tamale
is higher than the Markov probability p22 of the deseasonalized DAT to stay in the “extreme” regime at Bole and Tamale.
We can conclude that the “normal” regime of the TML model at both Bole and Tamale is relatively stable comparative to
the “extreme” regime of the TML model. However, it is evident that there are instances that the temperature of Bole and
Tamale are at their extremes since the probability of staying in the “extreme” regime is significant eventhough it is small
comparative to the probability of staying in the “normal” regime

6. Conclusion

In this research, a novel time-varying mean-reversion Lévy regime-switching (TML) temperature dynamics model which
captures the normal variations and extreme variations in temperature is developed to characterize the stochastic dynamics
of temperature. The model includes a time-varying volatility and a Lévy process giving rise to the innovations. The
parameters of the TML model is extimated by using a robust estimation method called the Expectation-Maximization(EM)
algorithm.
A study of the Bole and Tamale historical DAT data showed that the deseasonalized DAT data has the mean-reversion
property. Using plots and test statistics, it was observed that the residuals of the deseasonalized data are not normally
distributed. To model the non-normality in the residuals, we employed the generalized-hyperbolic, normal-inverse Gaussian,
and hyperbolic distributions to capture the skewness and semi-heavy tails in the residuals. The hyperbolic distribution
was found to be the best distribution that can capture the semi-heavy tails and skewness in the empirical distributions of
the residuals in the shifted (“extreme”) regime. The introduction of the generalizd hyperbolic and its sub-classes led us to
use the Lévy process in the shifted regime of the TML model for the deseasonalized temperature. The proposed regime-
switching model is flexible as it modelled the deseasonalized temperature data reasonably well. Also, it was observed that
there are instances that the temperature at both measurement stations are at their extremes as stated in the introduction.
From our results, it is evident that due to the changes in volatility of the daily average temperature dynamics, conventional
models that depend on Gaussian distribution will be ineffective when pricing weather derivatives in the derivative market.
Our model however can be use to price weather derivative contracts written on temperature indices (CAT and GDD) for
farmers in Africa since it incorporates the stylized facts of temperature in the model.
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