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ABSTRACT

In financial risk management, the expected shortfall is a popular risk measure which is of-
ten considered as an alternative to Value-at-Risk. It is defined as the conditional expected
loss given that the loss is greater than a given Value-at-Risk (quantile). In this paper at
hand, we have proposed a new method to compute nonparametric prediction bands for
Conditional Expected Shortfall for returns that admits a location-scale model. Where the
location (mean) function and scale (variance) function are smooth, the error term is un-
known and assumed to be uncorrelated to the independent variable (lagged returns). The
prediction bands yield a relatively small width, indicating good performance as depicted
in the literature. Hence, the prediction bands are good especially when the returns are
assumed to have a location-scale model.
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1 Introduction

Expected Shortfall (ES) is often used in portfolio risk measurement, risk capital allocation
and performance attribution. Value-at-Risk (VaR) is defined as the conditional quantile
of the portfolio loss distribution for a given horizon (it could be a day or a week) and
for a given coverage rate (for instance 0.01 or 0.05), and the ES is simply defined as the
expected loss beyond the VaR. Thus, VaR and ES measures are clear expressions about
the left tail of the return distribution.

The concept of bootstrapping hangs on the idea that the probability distribution function
of the data set available is unknown.



Therefore, the problem of constructing nonparametric prediction bands for Conditional
Expected Shortfall (CES) where the returns are assumed to have a location-scale model
with heteroscedasticity, and also distribution of the error term is assumed unknown using
bootstrap method is of interest in this paper.

2 The Nonparametric Predictive Intervals (NPIs) for Con-
ditional Expected Shortfall

Definition 1: α−mixing (Strong mixing)

Let F lk be the σ − algebra of events generated by {Yi, k ≤ i ≤ l} for l > k. The
α−mixing coefficient introduced by [4] is defined as

α(k) = sup
A∈Fi1,B∈F∞

i+k

|P(AB)− P(A)P(B)|.

The series is said to be α−mixing if

lim
k→∞

α(k) = 0.

The dependence described by the α − mixing is the weakest as it is implied by other
types of mixing.

In this paper, we assumed that the sequence {Yt} satisfies a certain weak dependence
condition, the concept of strong mixing coefficients by [4] as defined above. We further
assumed that returns considered here, Yt, admit a location-scale representation given as

Yt = m(Xt) +
√
h(Xt)εt (1)

where m and h > 0 are nonparametric functions defined on the range of Xt , εt is inde-
pendent ofXt, and εt is an independent and identically distributed (iid) innovation process
with E(εt) = 0, Var(εt) = 1 and the unknown distribution function Fε.

From equation (1) we have

CV aR(X)τ := QY |X(τ |x) = m(Xt) +
√
h(Xt)q(τ) (2)

whereQY |X(τ |x) is the conditional τ−quantile associated withF (y|x) and q(τ) = F−1ε (τ)

is the τ−quantile associated with the error distribution Fε. The estimator of (2) and its



properties has been studied in [6],

and

CES(X)τ ≡ E(Yt/Yt > QY |X(τ |x), Xt = x) = m(Xt) +
√
h(Xt)E(εt|εt > q(τ)) (3)

Estimation of m(X) and h(X) in equations (2) and (3) was studied by [1] and [2]. For
estimation of the error term, see our paper for more [7] details.

With estimators of the mean functionm(X), the variance function h(X) and the unknown
error distribution, the estimator for Conditional Value-at-Risk (CVaR), discussed in [6] is
given as

ĈV aR(x)τ := Q̂Y |X(τ |x) = m̂(x) + ĥ1/2(x)q̂(τ) (4)

therefore, the estimator for Conditional Expected Shortfall is

ĈES(x)τ := E(Yt/Yt > Q̂Y |X(τ |x), Xt = x) = m̂(x) + ĥ1/2(x)E(εt|εt > q̂(τ)) (5)

The mean and variance of the estimator (5) as discussed in [5] are as follows:

E
[
ĈES(x)τ

]
u m(x) + E(εt|εt > q(τ))h(x) +

b2

2
µ2(k)

[
m′′(x) + E(εt|εt > q(τ))h′′(x)2

]︸ ︷︷ ︸
=Bias

(6)

So that,

Bias
(
ĈES(x)τ

)
u
b2

2
µ2(k)

[
m′′(x) + E(εt|εt > q(τ))h′′(x)2

]
= B(x)τ (7)

and

V ar
(
ĈES(x)τ

)
u

R(k)

nbf(x)

[
σ2(x) + E(εt|εt > q(τ))2h2(x)λ2(x)

]
= V ar(x)τ (8)

=⇒ ĈES(x)τ
d−→ CES(X)τ , and by central limit theorem we have:

√
nb
[
ĈES(x)τ − CES(X)τ −B(x)τ

]
d−→ N

(
0, V ar(x)τ

)
(9)



2.1 Pivotal quantity (Pivot)

Def: Let X = (X1, ..., Xn) be random variables with unknown joint distribution F , and
let θ(F ) denote a real-valued parameter. A random variable Q(X, θ(F )) is a pivot if the
distribution of Q(X, θ(F )) is independent of all parameters. That is, X ∼ F (x|θ(F )),
then Q(X, θ(F )) has the same distribution ∀θ(F ), see [8].

Consider the function estimator ĈES(x)τ in (5), the asymptotic distribution of a pivotal
quantity are used to construct confidence intervals (CIs). Let us definedQ

(
CES(X)τ , ĈES(x)τ

)
to be the pivotal statistic given as

Q
(
CES(X)τ , ĈES(x)τ

)
=
ĈES(x)τ − CES(X)τ√

V ar(x)τ
(10)

where V ar(x)τ is the variance of the function estimator defined in (8).

2.2 Bootstrap Method

This strategy consist of estimating the distribution of the pivotal quantity given below

Q
(
CES(X)τ , ĈES(x)τ

)
=
ĈES(x)τ − CES(X)τ√

σ2(x) + V̂ ar(x)τ

(11)

using the bootstrap method. The distribution of (8) was approximated by the distribution
of the bootstrapped statistics

T
(
ĈES(x)τ , ĈES

∗
(x)
)
=
ĈES

∗
(x)− ĈES(x)τ√

σ2(x) + V̂ ar
∗
(x)τ

(12)

where ∗ denotes the bootstrap counterparts of the the estimates. Hence, we have the fol-
lowing Nonparametric Prediction Intervals with (1− τ) asymptotic coverage probability.

[
ĈES(x)τ −

√
σ2(x) + V̂ ar

∗
(x)τ q̂(a), ĈES(x)τ +

√
σ2(x) + V̂ ar

∗
(x)τ q̂(b)

]
(13)

The Algorithm (Bootstrap)

1. Generate n data sets from the unknown probability model of the data generation
process in (14), with independently identically distributed random errors form some



unknown probability distribution function (pdf) Fε.

2. Calculate m̂(x) and ĥ(x).

3. Generate the sequence of Standardized Nonparametric Residuals (SNR) {ε̂t}nt=1,
where

ε̂t =


Yt − m̂(x)√

ĥ(x)
, if ĥ(x) > 0

0, if ĥ(x) ≤ 0

and hence compute q̂(τ) = F̂−1ε (τ) and E(εt|εt > q̂(τ))

4. Compute for each process the ĈES
∗
(x)j , j = 1, 2, . . . ,m

5. Compute the average function, ĈES
∗

m(x) given by:

ĈES
∗

m(x) =
ĈES1(x) + ĈES2(x) + · · ·+ ĈESm(x)

m

6. and the standard error between the curves is:

SE =

√√√√ 1

m× n

n∑
i=1

m∑
j=1

(
ĈES

∗
(xi)j − ĈES

∗

m(xi)

)2

7. The lower and upper bounds of the NPIs at level τ are therefore given by

LB = ĈES
∗

m(x)−Q ∗
SE√
m

UB = ĈES
∗

m(x) +Q ∗ SE√
m

where Q = z1− τ
2

is the (1− τ
2
)th quantile for the standard normal distribution. For

instance, z1− τ
2
= 1.96 for τ = 0.05.

3 Simulation Study

To examine the performance of our estimators, we conducted a simulation study consid-
ering the following data generating location-scale model

Xt = m(Xt−1) + h(t)1/2εt, t = 1, 2, ..., n (14)



where

m(Xt−1) = sin(0.5Xt−1), εt ∼ t(ν = 3), h(t) = hi(Xt−1) + θh(Xt−1), i = 1, 2

and h1(Xt−1) = 1 + 0.01X2
t−1 + 0.5sin(Xt−1), h1(Xt−1) = 1− 0.9exp

(
− 2X2

t−1
)

Xt and h(t) are set to zero (0) initially, then Xt is generated recursively from (10) above.
The data generating process was used by [3] and also used by [7].
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Figure 1: Plot of the simulated daily
returns showing its evolution.

Nonparametric Prediction Intervals for CES
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Figure 2: Graph showing the 95% Condi-
tional Expected Shortfall in blue color, while
the Upper and Lower Prediction Intervals in
red color.

Ordered 95% CES
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Figure 3: Graph showing the
95% ordered Conditional Expected
Shortfall.
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Sorted NPIs for 95% CES
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Figure 4: The red lines in the first and sec-
ond panel shows the upper and lower predic-
tion intervals, and the blue lines in both cases
shows the 95% CES.

The time series plot of the simulated daily returns generated from the data generating pro-



cess (14) is presented in Figure 1. Looking at Figure 2 and Figure 4, the Nonparametric
Prediction Intervals by bootstrap method for Conditional Expected Shortfall performs
well. Clearly, the 95% CES is contained within the prediction bands. Plotting the ordered
95% CES in Figure 3, it shows the distribution of 95% CES over time. We can see that
the width of the bands is considerably small affirming its good performance, conforming
with what is obtainable in the literature on prediction intervals.

4 Conclusion

We proposed Nonparametric Prediction Bands for a conditional Expected Shortfall us-
ing bootstrap method. Our approach is based on returns on assets or portfolio that have
a location-scale model. Simulation study was conducted and the prediction bands was
found to perform very good.
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