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Introduction 

 Sorghum and several other cereal crops are important for 

food security in sub-Saharan Africa. Crop production in Kenya 

has been steadily declining FAO (2013). Such declines in maize 

production have been linked with unpredictable rainfall and 

drought, considered to be consequences of climate change 

(Meehl et al., 2007). This has led to efforts for development of 

new cereal germplasms that have high water use efficiency and 

tolerant to drought, which can withstand the effects of climate 

change (Twomlow et al. 2008). The newly introduced sorghum 

is performing well at 1.57 metric tons per acre in Kitui Kenya 

(Esipisu, 2013) and is complementing other failing cereals under 

the influence of climate change (FAO 2013).  

Sorghum is relatively tolerant to drought (FAO 2013; KARI 

2013) making it a primary candidate for cultivation in arid and 

semi-arid lands (ASALs) that are highly vulnerable to climate 

change. Sorghum is currently gaining popularity in Kenya due 

to its adaptability to different climates, failure of other crops, 

and its new industrial uses in alcohol production. Many 

researchers and policy makers are shifting their efforts towards 

production of sorghum both at small-scale and large-scale 

levels. In Kitui Kenya, farmers can only many to supply 2,080 

metric tons against a demand of 40,000 metric tons from East 

African Breweries Limited (Esipisu, 2013). A large germplasm 

collection for sorghum comprising of more than 42,000 

accessions has been developed (Huang 2004). As stakeholders 

take up the production of sorghum, it is important to map areas 

that are climatically suitable for sorghum at present and future 

cultivation of this crop. 

 

 

 

A number of studies have been done on spatial species 

distribution modeling, either using one method, or a comparison 

of different methods. Pearson and Dawson (2003) in their 

studies recommended the use of Climate Envelope Modeling 

(CEM) in species distribution studies. Climate Envelope 

Modeling (CEM) and spatial analysis tools were be used in 

estimating the current and future distribution of sorghum 

growing areas. The model uses geo-referenced growing areas 

and nineteen climatic variables (Philips et al. 2006). Other 

researchers have used the Geographical Information System 

(GIS) in their studies and have recommended its application in 

similar studies (Chen 2001; Christensen et al. 2004; Zonneveld 

et al. 2009). This is because GIS applications are easy to use, 

integrate a lot of information and do complex analysis. Outputs 

of GIS are maps showing sorghum suitability growing areas 

under different climates. In view of the anticipated climatic 

variations, this paper modeled potential areas of growing 

sorghum currently, and the projection for the years 2050 and 

2080. The generated information is useful in determining how 

climate change will affect the suitability of ASALs for sorghum 

production, and regions that require special focus.  

Methodology 

Data Sources and Processing 

Data were sourced from different published materials. The 

sorghum location data were sourced from GENESYS website 

www.genesys-pgr.org and published material from Kenya 

Agricultural Research Institute website (www.kari.org). From 

this data, eighty two geo-referenced points were selected in 

sorghum ASALs areas. The current, the years 2050 and 2080 

climate data with a resolution of 5 km were downloaded from Tele:  
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Global Climate data website (www.worldclim.org). The

climate data is under CCM3 A2 carbon dioxide emission 

scenario and contain annual precipitation, minimum and 

maximum temperature.  Using DIA-GIS, climate data was used 

to generate other sixteen climate variables all grouped as 

bioclim variables. The bioclim variables are coded as BIO1 = 

Annual mean temperature, BIO2 = Mean diurnal range (max 

temp – min temp) (monthly average), BIO3 = Isothermality 

(BIO1/BIO7) * 100, BIO4 = Temperature seasonality 

(Coefficient of variation), BIO5 = Max Temperature of

period, BIO6 = Min temperature of coldest period, BIO7 = 

Temperature annual range (BIO5-BIO6), BIO8 = Mean 

temperature of wettest quarter, BIO9 = Mean temperature of 

driest quarter, BIO10 = Mean temperature of warmest quarter, 

BIO11 = mean temperature of coldest quarter, BIO12 = Annual 

precipitation, BIO13 = Precipitation of wettest period, BIO14 = 

Precipitation of driest period, BIO15 = Precipitation seasonality 

(Coefficient of variation), BIO16 = Precipitation of wettest 

quarter, BIO17 = Precipitation of driest quarter, BIO18 = 

Precipitation of warmest quarter and BIO19 = Precipitation of 

coldest quarter. 

Sorghum Potential Growing Areas Modeling

Data required for modeling potential growing areas was 

prepared in excel and DIVA-GIS and model built i

The climate envelopes were then mapped and categorized as low 

suitability (25-50%), medium suitability (50

suitability (over 75%) areas. Maps of more than 25% suitability 

were generated for all the climatic periods. The robustness o

developed model was validated using cross tabulation one of the 

methods available in the Maxent software. The changes in 

suitability growing areas were sought and mapped using DIVA 

– GIS in the categories stated for each climatic period. 

Results and Discussion  

All the 19 bioclim variables were used in the model with 50 

of the location data used for training and 10040 used to 

determine the Maxent distribution (background points and 

presence points). Figure 1A is the omission rate and predicted 

area as a function of the cumulative threshold which is 

calculated on the training presence records, on the test records. 

The closer the Omission on training samples line is to the 

Predicted omission, the more accurate the generated model. In 

work done by Zonneveld et al. (2009) the location data used for 

Pinus kesiya and P. merkusii were 46 and 50 respectively.  

Scheldeman et al. (2010) on their research on the influence of 

presence points in model concluded that after 50 species 

presence point, the prediction of potential distribution stabilizes.  

In a comparison of modeling methods, region and taxa, Elith 

al. (2006) reported a general progression of performance (least 

to best performing) from BIOCLIM to DOMAINE and Maxent.  

Area Under Curve (AUC) of the Rece

Characteristic (ROC) curve figure 1B, is a parameter used to 

evaluate the predictive ability of the generated model. It 

measures the likelihood that a randomly selected presence point 

is located in a raster cell with a higher probability val

species occurrence than a randomly selected absence point. 

The generated model’s AUC for training data was 0.97 an 

excellent model as per Araújo et al. (2005) guidelines with a 

random prediction AUC of 0.5. Apart from Maxent being 

substantially superior to GARP (Genetic Algorithm for Rule

Prediction), Phillips et al. (2004) concluded that it also has a 

natural probabilistic interpretation and can be easily understood 

by non-experts.  The same conclusion was arrived at by Philips 

et al. (2005) in the study of species geographic distribution 

modeling. Their results showed that both Maxent and GARP 

Charles K. Kigen et al./ Elixir Remote Sensing 66 (2014) 20674-20678

Global Climate data website (www.worldclim.org). The future 
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Sorghum Potential Growing Areas Modeling 

Data required for modeling potential growing areas was 

GIS and model built in Maxent. 

The climate envelopes were then mapped and categorized as low 

50%), medium suitability (50-75%) and high 

suitability (over 75%) areas. Maps of more than 25% suitability 

were generated for all the climatic periods. The robustness of the 

developed model was validated using cross tabulation one of the 

methods available in the Maxent software. The changes in 

suitability growing areas were sought and mapped using DIVA 

GIS in the categories stated for each climatic period.  

All the 19 bioclim variables were used in the model with 50 

of the location data used for training and 10040 used to 

determine the Maxent distribution (background points and 

presence points). Figure 1A is the omission rate and predicted 

s a function of the cumulative threshold which is 

calculated on the training presence records, on the test records. 

The closer the Omission on training samples line is to the 

Predicted omission, the more accurate the generated model. In 

(2009) the location data used for 

were 46 and 50 respectively.  

(2010) on their research on the influence of 

presence points in model concluded that after 50 species 

f potential distribution stabilizes.  

In a comparison of modeling methods, region and taxa, Elith et 

(2006) reported a general progression of performance (least 

to best performing) from BIOCLIM to DOMAINE and Maxent.  

Area Under Curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve figure 1B, is a parameter used to 

evaluate the predictive ability of the generated model. It 

measures the likelihood that a randomly selected presence point 

is located in a raster cell with a higher probability value for 

species occurrence than a randomly selected absence point.  

The generated model’s AUC for training data was 0.97 an 

(2005) guidelines with a 

random prediction AUC of 0.5. Apart from Maxent being 

erior to GARP (Genetic Algorithm for Rule-Set 

(2004) concluded that it also has a 

natural probabilistic interpretation and can be easily understood 

experts.  The same conclusion was arrived at by Philips 

the study of species geographic distribution 

modeling. Their results showed that both Maxent and GARP 

were significantly better than random when tested for omission 

and ROC analysis. They further concluded that Maxent showed 

better discrimination of suita

species in the analysis of AUC.   

Figure 1: The receiver operating characteristic (ROC) curve 

for sorghum

Change of variables with climate 

The contributions of bioclim variables to the model were 

different with the highest at 37.0% and lowest being four 

variables at 0.0%. The four variables contributing more than 

10% to the model table 1 were BIO13

Period (month) (37.0%), BIO4 

* 100) (21.6%), BIO – 18 Precipitation of Warmest Quarter 

(14.8%) and BIO – 14 Precipitation of Driest Month (13.6%). 

The Kenya’s ASALs figure 2 comprises a total of 27 districts of 

which 10 are classified as arid 

2013).  

Figure 2: Kenya arid and semi

Within the Kenya’s ASALs, the four main bioclim variables 

changes are summarized in table 1. The values of all the location 

points used in the model were averaged 

differences sought in each climatic period. All the four variables 

are predicted to be reducing at different magnitudes in the future 

climatic periods where sorghum is currently growing. 

Table 1: Change in the key environmental variables in 

current sorghum location points contributing more than 

10% in sorghum suitability growing areas
Variable 

code 

Variable title Percent 

contribution

BIO13 Precipitation 

of wettest 

37.0 
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were significantly better than random when tested for omission 

and ROC analysis. They further concluded that Maxent showed 

better discrimination of suitable and unsuitable areas of the 

species in the analysis of AUC.    

 

Figure 1: The receiver operating characteristic (ROC) curve 

for sorghum 

Change of variables with climate  

The contributions of bioclim variables to the model were 

different with the highest at 37.0% and lowest being four 

variables at 0.0%. The four variables contributing more than 

10% to the model table 1 were BIO13- Precipitation of Wettest 

.0%), BIO4 - Temperature Seasonality (STD 
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14 Precipitation of Driest Month (13.6%). 

The Kenya’s ASALs figure 2 comprises a total of 27 districts of 

which 10 are classified as arid and 17 as semi-arid lands (GOK, 

 

Figure 2: Kenya arid and semi-arid lands districts 

Within the Kenya’s ASALs, the four main bioclim variables 

changes are summarized in table 1. The values of all the location 

points used in the model were averaged for each variable and 

differences sought in each climatic period. All the four variables 

are predicted to be reducing at different magnitudes in the future 

climatic periods where sorghum is currently growing.  

key environmental variables in 

current sorghum location points contributing more than 

10% in sorghum suitability growing areas 
Percent 

contribution 

Current 

values 

2050 

Changes 

2080 

Changes 

125.84 0.54 -21.18 



Charles K. Kigen 

 

20676 

period 

BIO4 Temperature 

seasonality 

(STD * 100) 

21.6 187.28 

BIO18 Precipitation 

of warmest 

quarter 

14.8 4.05 

BIO14 Precipitation 

of driest month 

13.6 236.09 

Spatial analysis was also performed for the four main 

bioclim variables figures 3 and 4 and their variations with 

climatic periods described. The results showed that the different 

variables change differently in the future climatic periods with 

some to the positive and others to the negative.

Figure 3: The current and changes in 2050 and 2080 climatic 

periods of BIO13 and BIO4 variables

The variable BIO13 measures precipitation in the wettest 

month of the year which in large parts of ASALs range from 0 

mm – 260 mm in the current climatic period. In 2050 climate 

BIO13 changes will be from a low of -141mm to a high of 

61mm. Many parts of north western, eastern and coastal regions 

will experience changes in precipitation of slightly less than 0 

mm to -141 mm. In addition, the rest of the ASAL region will 

receive precipitation slightly more than 0 mm to a maximum of 

61 mm.   There will be a reduction of as much as 

an increase of 100 mm in precipitation in the 2080 climate 

scenario. In this climatic period, much of the wester

north-eastern and coastal regions will experience precipitation 

variance of between 0 mm and -270 mm. An improvement in 

precipitation of 0 mm – 100 mm will only be received in the 

eastern and lower eastern regions. Majority of the ASAL 

districts will experience an increase in BIO13 from slightly 

more than 0 mm to 30 mm in 2050 climate while a reduction of 

between -90 mm to 0 mm will be observed in 2080 climate. 

The variable, BIO4 (temperature seasonality*100) is a 

measure of temperature variation over the course of the year. 

This variable in the current climate range from a low of 50 in 

western and north-western regions then increases gradually to 

the eastern and southern parts of the Kenya to a value of 176. Its 

2050 climate values divide the country into southern and 

northern parts with maximum values of 20 and minimum of 

respectively. The BIO18 (precipitation of warmest quarter) 

measures precipitation in the four hottest months. Much of the 

ASALs especially the north-western and coastal a

experiences declines ranging from 0 mm to 

north-eastern parts changes are between 0 mm to 216 mm. 

Furthermore, the warmest quarter precipitation in 2080 climate 
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-1.76 -23.88 

-0.21 -0.35 

-1.34 -5.39 

performed for the four main 

bioclim variables figures 3 and 4 and their variations with 

climatic periods described. The results showed that the different 

variables change differently in the future climatic periods with 

e negative. 

 

Figure 3: The current and changes in 2050 and 2080 climatic 

periods of BIO13 and BIO4 variables 

The variable BIO13 measures precipitation in the wettest 

month of the year which in large parts of ASALs range from 0 

limatic period. In 2050 climate 

141mm to a high of 

61mm. Many parts of north western, eastern and coastal regions 

will experience changes in precipitation of slightly less than 0 

the ASAL region will 

receive precipitation slightly more than 0 mm to a maximum of 

61 mm.   There will be a reduction of as much as -270 mm and 

an increase of 100 mm in precipitation in the 2080 climate 

western, northern, 

eastern and coastal regions will experience precipitation 

270 mm. An improvement in 

100 mm will only be received in the 

eastern and lower eastern regions. Majority of the ASAL 

ts will experience an increase in BIO13 from slightly 

more than 0 mm to 30 mm in 2050 climate while a reduction of 

90 mm to 0 mm will be observed in 2080 climate.  

The variable, BIO4 (temperature seasonality*100) is a 

ion over the course of the year. 

This variable in the current climate range from a low of 50 in 

western regions then increases gradually to 

the eastern and southern parts of the Kenya to a value of 176. Its 

country into southern and 

northern parts with maximum values of 20 and minimum of -20 

respectively. The BIO18 (precipitation of warmest quarter) 

measures precipitation in the four hottest months. Much of the 

western and coastal areas will 

experiences declines ranging from 0 mm to -80mm while the 

eastern parts changes are between 0 mm to 216 mm. 

Furthermore, the warmest quarter precipitation in 2080 climate 

will continue to decline in the ASALs. Much of these regions 

will experience decline of between 0 mm to 

areas receiving extra precipitation by up to 115 mm.

Figure 4: The current and changes in 2050 and 2080 climatic 

periods of BIO18 and BIO14 variables
The BIO14 variable (precipitation of driest month)

measure of precipitation in the driest month with the entire 

ASALs having a value of between 0 mm 

areas in the south coast receiving up to 35.0 mm per month. 

Majority of ASALs in 2050 climate will experience changes of 

between -6.0 mm and 5.0 mm with a few areas in the south coast 

less precipitation by 11.0 mm.  The scenario in the 2080 climate 

indicate that the coastal, northern and north

receive reduced precipitation by as much as 

eastern and north-eastern regions having an increased rainfall by 

up to 20.0 mm per month. 
A lot of researches concerning climate change and its 

impacts with varied conclusions have been undertaken. KNMI 

(2006) used 12 models to investigate changes in precipitation 

using runs forced with Special Report Emission Scenario 

(SRES) A1B scenario. The research arrived at a conclusion of 

elevated precipitation under global warming in Kenya. KNMI 

(2007) indicated that there will be variations in climate observed 

in Kenya by the year 2100. The report contains different 

precipitations variations from different models and emission 

scenarios. In the North Western, northern and coastal districts an 

improvement is projected in the year 2100 short rain events.  

Ward (2007) used DOMAIN,

model the potential geographic distribution of six invasive ant 

species in New Zealand. The research concluded that unlike 

DIMAIN and MAXENT, BIOCLIM performed poorly with low 

AUC and higher omission errors. Similar studies have also

undertaken by CIAT (2011) on climate influence on tea growing 

areas in Kenya. This study observed that there will be a decrease 

in suitable tea growing areas in Kericho and Nandi regions and 

expansion of the same in Central Kenya districts by the yea

2020 and 2050. Kigen et al. (2013) who studied climate change 

impact on the Grevy’s zebra niche concluded that there will be a 

significant niche expansion in under the year 2080 climatic 

period. The model’s AUC was 0.984 and the key variables 

contributing more than 2% were Isotherma

Coldest Quarter, Annual mean temperature, Annual 

Precipitation, Min Temperature of Coldest Period and 

Precipitation of Wettest Quarter. A study in South East Asia on 

the impacts of climate on pine distribution used Maxent and 

DIVA GIS software concluded that the spatial distribution of 
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will continue to decline in the ASALs. Much of these regions 

erience decline of between 0 mm to -255 mm with a few 

areas receiving extra precipitation by up to 115 mm. 

 

Figure 4: The current and changes in 2050 and 2080 climatic 

periods of BIO18 and BIO14 variables 
The BIO14 variable (precipitation of driest month) is a 

measure of precipitation in the driest month with the entire 

ASALs having a value of between 0 mm – 18.0 mm with some 

areas in the south coast receiving up to 35.0 mm per month. 

Majority of ASALs in 2050 climate will experience changes of 

0 mm and 5.0 mm with a few areas in the south coast 

less precipitation by 11.0 mm.  The scenario in the 2080 climate 

indicate that the coastal, northern and north-western parts will 

receive reduced precipitation by as much as -41.0 mm with the 

eastern regions having an increased rainfall by 

A lot of researches concerning climate change and its 

impacts with varied conclusions have been undertaken. KNMI 

(2006) used 12 models to investigate changes in precipitation 

ing runs forced with Special Report Emission Scenario 

(SRES) A1B scenario. The research arrived at a conclusion of 

elevated precipitation under global warming in Kenya. KNMI 

(2007) indicated that there will be variations in climate observed 

year 2100. The report contains different 

precipitations variations from different models and emission 

scenarios. In the North Western, northern and coastal districts an 

improvement is projected in the year 2100 short rain events.  

Ward (2007) used DOMAIN, MAXENT and BIOCLIM to 

model the potential geographic distribution of six invasive ant 

species in New Zealand. The research concluded that unlike 

DIMAIN and MAXENT, BIOCLIM performed poorly with low 

AUC and higher omission errors. Similar studies have also been 

undertaken by CIAT (2011) on climate influence on tea growing 

areas in Kenya. This study observed that there will be a decrease 

in suitable tea growing areas in Kericho and Nandi regions and 

expansion of the same in Central Kenya districts by the years 

(2013) who studied climate change 

impact on the Grevy’s zebra niche concluded that there will be a 

significant niche expansion in under the year 2080 climatic 

period. The model’s AUC was 0.984 and the key variables 

contributing more than 2% were Isothermality, Precipitation of 

Coldest Quarter, Annual mean temperature, Annual 

Precipitation, Min Temperature of Coldest Period and 

Precipitation of Wettest Quarter. A study in South East Asia on 

the impacts of climate on pine distribution used Maxent and 

S software concluded that the spatial distribution of 
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pine will change with climate by the year 2050. The pine 

populations especially in China, Cambodia and Thailand are 

under threat Zonneveld et al. (2009). They further discovered 

that areas with potential new pine niche cover Malay 

Archipelago. The key environmental variables in the output 

model were annual temperature, maximum temperature, 

temperature seasonality, annual precipitation and precipitation in 

the driest quarter.  

Modeled sorghum growing suitability areas 

The modeled Kenya’s current sorghum growing areas of 

more than 25% (low) suitability in the ASALs covers mainly the 

semi arid districts of Kajiado, Makueni, Kitui, Mwingi, Tharaka 

and Meru North. Other ASAL districts with minimal suitable 

areas are in the coastal region comprising Lamu, Tana River, 

Kilifi, Kwale and Taita Taveta. Also included in the current 

model are some high potential neighboring districts. These 

current modeled suitability areas are in agreement with genesis 

spatial data published in (GENESYS, 2013). The same areas are 

also published by (Wortmann et al., 2006; KARI 2013; Esipisu, 

2013; Muui et al. 2013) as Kenya’s sorghum growing areas.  

The future 2050 and 2080 climate suitability areas figure 5 

indicated an expansion in the suitable sorghum growing areas. 

The expansion of suitable regions in 2050 climatic period will 

cover not only the semi-arid districts as the current distribution 

but also new areas as Malindi, Kilifi, Kwale and the entire Lamu 

districts. The new growing areas of arid lands are Tana River, 

Lamu, Garissa, Wajir, Marsabit and Turkana. The sorghum 

suitable growing areas will shrink in 2080 climate with major 

changes in area of coverage and level of suitability. All the 

districts show a reduction in level and coverage of suitability 

exception of Marsabit and Trans Mara districts with positive 

changes.  

Figure 5: The modeled current, 2050 and 2080 

potential growing areas in ASALs of Kenya
These results are consistent with (GENESYS 2013; KARI 

2013) and descriptions in Muui (2013). Similar studies have 

been done by Zonneveld et al. (2009) and Kigen 

the impacts of climate on pine and Grevy’s zebra niche 

respectively. They both concluded that the climate variables 

affected the distribution of pine and zebra both negatively and 

positively in their areas of study. The percentage area variation

with climatic periods in each level of suitability are summarized 

in table 2. The current suitability areas were used for basis of 

comparison changes in suitability areas in the future climatic 

periods. The 2050 climate will have a net increase in all th

levels of suitability with low suitability area increasing by 

130%.  

Table 2: Changes in sorghum suitability growing areas 

(square kilometers) 
Suitability Current area 2050% change 

Low 27,700 130 

Medium  33,275 79 

High 11,500 267 

In addition, medium suitability increased by 79% and over 

high suitability area changing positively by 267%. The 2080 
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pine will change with climate by the year 2050. The pine 

populations especially in China, Cambodia and Thailand are 

. (2009). They further discovered 

l new pine niche cover Malay 

Archipelago. The key environmental variables in the output 

model were annual temperature, maximum temperature, 

temperature seasonality, annual precipitation and precipitation in 

 

The modeled Kenya’s current sorghum growing areas of 

more than 25% (low) suitability in the ASALs covers mainly the 

semi arid districts of Kajiado, Makueni, Kitui, Mwingi, Tharaka 

and Meru North. Other ASAL districts with minimal suitable 

as are in the coastal region comprising Lamu, Tana River, 
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areas of arid lands are Tana River, 
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Figure 5: The modeled current, 2050 and 2080 S. bicolor 

potential growing areas in ASALs of Kenya 
These results are consistent with (GENESYS 2013; KARI 

and descriptions in Muui (2013). Similar studies have 

. (2009) and Kigen et al. (2013) on 

the impacts of climate on pine and Grevy’s zebra niche 

respectively. They both concluded that the climate variables 

affected the distribution of pine and zebra both negatively and 

positively in their areas of study. The percentage area variations 

with climatic periods in each level of suitability are summarized 

in table 2. The current suitability areas were used for basis of 

comparison changes in suitability areas in the future climatic 

periods. The 2050 climate will have a net increase in all the 

levels of suitability with low suitability area increasing by 

: Changes in sorghum suitability growing areas 

2080 % change 

168 

-17 

71 

In addition, medium suitability increased by 79% and over 

high suitability area changing positively by 267%. The 2080 

climate effected sorghum suitability areas negatively by various 

degrees. There is an increase of 168% 

with medium suitability decreasing by 17% the high suitability 

areas expanded by 71%. Parry 

estimate change in world percent cereal changes in different 

climatic periods. Their results showed that un

emission scenario, percent cereal yield changes in Kenya range 

from 2.5 in 2020, -2.5 in 2050 and 

Conclusion and recommendations

Sorghum crop is gaining popularity in Kenya

variability as other cereals are failing and its new application in 

the brewing industry. With the changing climate, modeling has 

indicated the potential changes in sorghum suitable growing 

areas thereby providing useful information for pol

The study recommends incorporation of models to achieve 

sustainable development and utilization of Kenyan ASALs.
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