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Abstract

We consider the residual-based or naive bootstrap for functional autoregressions

of order 1 and prove that it is asymptotically valid for, e.g., the sample mean and for

empirical covariance operator estimates. As a crucial auxiliary result, we also show

that the empirical distribution of the centered sample innovations converges to the

distribution of the innovations with respect to the Mallows metric.
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1 Introduction

The seminal work of (Bosq, 2000) has initiated a lot of research on the theory, compu-

tational aspects and applications of functional data analysis. The recent monograph of

(Horváth and Kokoszka, 2010) and, with a focus on functional time series, the review ar-

ticle of (Kokoszka, 2012) give an overview over the field of research. In this paper, we

consider a time series Xt ∈ H,−∞ < t < ∞, with values in a Hilbert space H, e.g.

curves in a function space like L2[0, 1]. In particular, we are interested in functional au-

toregressions, also known as autoregressive Hilbertian models (ARH). As is well known, a

functional autoregressive process of order p or FAR(p)-process can be easily be written as

a FAR(1)-process by an appropriate change of state vector and Hilbert space. Therefore,

it essentially suffices to consider the case of order 1, where

Xt+1 = Ψ(Xt) + ǫt+1. (1)

Here, Ψ : H → H is a linear operator, and ǫt ∈ H are independent, identically dis-

tributed (i.i.d.) innovations. Recently, several new statistical methods for data generated

by (1) have been proposed, in particular regarding tests and forecasts. (Kokoszka et al.,

2008) have investigated a test of the hypothesis Ψ = 0, i.e. of independence of the data.

(Gabrys and Kokoszka, 2007) consider a related problem, a test of independence for general

functional time series. (Horváth et al., 2010) propose a CUSUM test for a sudden change

in the dependence structure of the data, i.e. for the presence of a point in time where the

value of Ψ changes, which has been applied to neurophysiological data by (Franke et al.,

2018). Other papers concentrate on the task of forecasting the data. (Didericksen et al.,

2012) present an empirical study of forecasting Xt+1 by Ψ̂(Xt) where Ψ̂ denotes some es-

timate of Ψ. (Kargin and Onatski, 2008) develop an appropriate theory for a particular

kind of estimate Ψ̂. Also, forecasting on the basis of FAR(1) models has been used in a lot

of applications partly discussed below in the context of the bootstrap.

Asymptotics for the distribution of estimates of the autoregressive operator Ψ is in-

volved, as pointed out by (Mas, 2007), and as, additionally, it frequently provides decent

approximations only for large sample sizes, a lot of applied papers use resampling tech-
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niques to derive critical values for tests or prediction intervals for forecasts (compare, e.g.,

(Shang, 2015) for an overview). The theory for bootstrapping functional data, which pro-

vides guidelines under which circumstances bootstrap approximations are valid, is, how-

ever, still rather incomplete. E.g., only recently (Paparoditis and Sapatinas, 2015) show

that bootstrap methods work for testing the equality of means and covariance operators in

K samples of independent functional data.

We are, in particular, interested in the residual-based bootstrap where resampling is

done on the basis of the centered sample residuals ǫ̂t = Xt − Ψ̂(Xt−1). This kind of boot-

strap is quite common in the context of scalar autoregressive and ARMA models (compare

(Kreiss and Paparoditis, 2011)) and forms the starting point for the widely applicable au-

toregressive sieve bootstrap (compare (Kreiss et al., 2011)).

This kind of bootstrap has been investigated in the analogous, but, from the viewpoint of

theory, considerably simpler regression situation. (González-Manteiga and Mart́ınez-Calvo,

2011) discuss the linear functional regression model Yt = Ψ(Xt)+ ǫt, where Yt is scalar and

Ψ : H → R is a linear functional. Treating Xt as fixed which is common in the regression

context, they prove that the residual-based bootstrap and, for heteroscedastic residuals ǫt,

the wild bootstrap works. In the same model, (González-Manteiga et al., 2014) apply the

pairwise bootstrap and the wild bootstrap to a test of the hypothesis Ψ = 0. (Ferraty et al.,

2010) consider the functional regression model with general, not necessarily linear operators

Ψ and prove that the residual-based and the wild bootstrap works for nonparametric kernel

estimates of Ψ. (Ferraty et al., 2012) extend those results to the case where the response

variable is also of functional nature, e.g. Yt ∈ H. (Zhu and Politis, 2017) and (Raña et al.,

2016) discuss the analogous situation for nonparametric functional autoregressions, consid-

ering the regression bootstrap and the wild bootstrap respectively (compare (Franke et al.,

2002) for these concepts, their advantages and drawbacks in the scalar case), but not the

residual-based bootstrap.

Bootstrap techniques are also quite popular in approximating the distribution of statis-

tics from functional time series data. (Horváth and Kokoszka, 2010) use in their section

14.1 the residual-based bootstrap for evaluating the performance of a test for a change in

the autoregressive operator of a FAR(1)-process. (Aneiros-Pérez et al., 2011) consider the
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nonparametric FAR(d)-model Xt = m(Xt−1, . . . , Xt−d)+ǫt, estimate the autoregression op-

erator m(.) nonparametrically by kernel and local linear estimates and apply the residual-

based bootstrap to get prediction intervals. (Mingotti et al., 2015) discuss the residual-

based bootstrap for the integrated FAR(1)-model, i.e. for the special case Ψ = IdH, the

Hilbert space identity. They derive bootstrap approximations of critical bounds for unit

root tests where, under the hypothesis, Ψ is known. (Fernández de Castro et al., 2005)

investigate among other bootstrap techniques a variant of the residual-based bootstrap

in forecasting applications. They start from the centered sample residuals, but do not

resample directly from their empirical distribution. They first consider a finite principal

component decomposition of the sample residuals and, then, resample the coefficients of

this decomposition separately. In a similar spirit, (Hyndman and Shang, 2009) assume

from the start that the time series has a finite Karhunen-Loève expansion which allows to

reduce the functional time series to the finite-dimensional time series of the coefficients.

They derive bootstrap prediction intervals based on bootstrap confidence intervals for the

scalar coefficient time series. All these papers focus on simulations and applications and

do not consider the accompanying theory. This gap is filled for the stationary bootstrap,

which is a variant of the well-known block bootstrap with random block lengths, in an

early paper of (Politis and Romano, 1994). They consider general Hilbert space valued

times series and prove, based on a central limit theorem for triangular arrays of such data,

that this bootstrap provides valid approximations for the asymptotic distribution of certain

statistics.

Based on the thesis (Nyarige, 2016), we show in this paper that the residual-based boot-

strap is applicable to FAR(1)-processes. The theory has direct practical implications as,

e.g., the necessary centering of the lag-1 autocovariance operator in the bootstrap world is

different from what one would naively expect due to the particular nature of the estimate of

Ψ. For the proof, we cannot use the approach of (González-Manteiga and Mart́ınez-Calvo,

2011) for the residual-based bootstrap in regression and of (Politis and Romano, 1994) for

the stationary bootstrap who, for the bootstrap data, both mimic the proof of asymptotic

normality of the corresponding functions of the real data. We have to use different meth-

ods which are similar to the scalar situation presented by (Kreiss and Franke, 1992); more
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details will be given in section 4.

In section 2 we describe the details of our model including the relevant assumptions,

and we introduce some estimates from the literature which we need later on.

In section 3 we present the crucial result that the empirical distribution of the centered

sample innovations converges to the distribution of the innovations.

In section 4 we give the details for the residual-based bootstrap and, as an illustration,

state that it works for estimates of the mean and of the first two covariance operators of

the data.

Finally, technical results and proofs are given in the appendix.

2 The Model and the Estimates

In this section, we mainly collect some properties of our model and some estimates which

are standard in the literature on functional autoregressions and which we need later on.

This also serves to introduce notation.

Let H be separable Hilbert space with scalar product 〈., .〉 and norm ‖.‖. As a norm

for bounded linear operators from H to H like Ψ we use

‖Ψ‖L = sup{‖Ψ(x)‖; ‖x‖ = 1}.

A sufficient condition for the existence of a stationary solution of (1) is ‖Ψ‖L < 1 (compare

(Bosq, 2000), section 3.2). We call a linear operator Ψ compact if for two orthonormal

bases vj , j ≥ 1, and uj, j ≥ 1, of H and a sequence of real numbers γj, j ≥ 1, converging to

0,

Ψ(x) =

∞
∑

j=1

γj〈x, vj〉uj, x ∈ H.

Ψ is, in particular, a Hilbert-Schmidt operator if ‖Ψ‖2S =
∑∞

j=1 ‖Ψ(vj)‖2 =
∑∞

j=1 γ
2
j <

∞. The Hilbert-Schmidt norm ‖Ψ‖S is an upper bound for ‖Ψ‖L. The Hilbert-Schmidt

operators A,B : H → H form a Hilbert space themselves with a scalar product given by

〈A,B〉S =

∞
∑

j=1

〈A(uj), B(uj)〉
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for an arbitrary orthonormal basis u1, u2, . . . of H (compare (Horváth and Kokoszka, 2010),

section 2.1).

For the definition of covariance operators, it is convenient to introduce the Kronecker

product y ⊗ z of y, z ∈ H which is a linear operator defined by

(y ⊗ z)(x) = 〈y, x〉z, x ∈ H.

For later reference, we state two rules of calculation which we use repeatedly and which

follow immediately from the definition

z ⊗ y = (y ⊗ z)T , A(y)⊗B(z) = B(y ⊗ z)AT , y, z ∈ H, (2)

where A,B are two linear operators onH and here and the following AT denotes the adjoint

of the linear operator A which is characterized by 〈A(y), z〉 = 〈y, AT (z)〉 for all y, z ∈ H.

We assume throughout the paper that the data X0, . . . , Xn are part of a stationary

functional autoregression (1) with mean EXt = 0. Correspondingly, the covariance operator

and the lag 1-autocovariance operator are given by Γ = EXt ⊗ Xt and C = EXt ⊗ Xt+1.

Furthermore, we always assume that 0 is not an eigenvalue of Γ. Then, all eigenvalues

λ1 ≥ λ2 ≥ . . . of Γ are positive. Let v1, v2, . . . denote the corresponding orthonormal

eigenvectors in H.

Γ, C are related to the autoregressive operator Ψ by the analogue to the scalar Yule-

Walker equation

ΨΓ = C (3)

The mean EXt is estimated as usual by the sample mean

X̄n =
1

n

n−1
∑

j=0

Xj.

As estimates of Γ, C we follow (Horváth and Kokoszka, 2010) and use the simplified sample

versions

Γ̂n =
1

n

n−1
∑

j=0

Xj ⊗Xj, Ĉn =
1

n

n−1
∑

j=0

Xj ⊗Xj+1.
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We use the last observation Xn only in estimating C to streamline notation later on. Due

to the same reason, we do not center the Xj around X̄n in the definitions of Γ̂n, Ĉn. Under

our assumption EXt = 0, this has an asymptotically neglible effect. All results remain true

in the general case EXt = µ ∈ H but then we of course have to center the data around 0

in calculating the covariance estimates.

λ̂j , v̂j denote the eigenvalues and eigenvectors of Γ̂n. Solving the Yule-Walker equation

(3) is an ill-conditioned problem as Γ−1 is not a bounded linear operator defined on the

whole space H. Therefore, Γ̂−1
n has to be regularized. We use the popular approach via

a finite principal component expansion, compare (Bosq, 2000), (Horváth and Kokoszka,

2010), and consider

Γ̂†
n =

kn
∑

j=1

1

λ̂j

v̂j ⊗ v̂j,

where kn → ∞ slowly for n → ∞ to get a consistent estimate of Ψ. Note that λ̂−1
j is an

eigenvector of Γ̂−1
n , and v̂j ⊗ v̂j(x) is the orthogonal projection of x onto the span of the

eigenvector v̂j. Then, we get as an estimate of Ψ

Ψ̂n = ĈnΓ̂
†
n.

3 Approximation of the innovation distribution by the

empirical measure of sample residuals

The basis for residual-based bootstrapping in scalar regression and autoregression models

is the approximability of the innovations by the bootstrap innovations where the latter are

drawn from the centered sample residuals. This is stated in the following theorem in terms

of the Mallows metric d2 which is discussed in detail by (Bickel and Freedman, 1981). For

two distributions F,G on H, it is defined by

d22(F,G) = inf
X,Y

E‖X − Y ‖2,

where the infimum is taken over all H-valued random variables X and Y with marginal

distributions F resp. G. By Lemma 8.1. of (Bickel and Freedman, 1981) the infimum is

attained.
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By F, F̂n, we denote the distribution of ǫt respectively the empirical distribution of the

centered sample residuals ǫ̃1, . . . , ǫ̃n with

ǫ̃j = ǫ̂j −
1

n

n
∑

k=1

ǫ̂k, ǫ̂j = Xj − Ψ̂n (Xj−1) , j = 1, . . . , n. (4)

Theorem 3.1. Let X0, . . . , Xn be a sample from a stationary FAR(1) process satisfying

i) {ǫt} i.i.d., Eǫt = 0, E ‖ǫt‖4 < ∞,

ii) Ψ is a Hilbert-Schmidt operator with ‖Ψ‖L < 1,

iii) the eigenvalues λ1 > λ2 > . . . of Γ are all positive and have multiplicity 1.

Then,

d2

(

F̂n, F
)

→
p
0 for n → ∞,

if kn → ∞ and, with a1 = λ1 − λ2, aj = min(λj−1 − λj, λj − λj+1), j ≥ 2,

kn

n

kn
∑

j=1

1

a2j
→ 0 for n → ∞ and

1

λkn

= O

(

n1/4

(log n)β

)

for some β >
1

2
. (5)

A fourth moment condition like i) is not unexpected, as Ψ̂n depends on Γ̂n, Ĉn which

are quadratic in the data and which we want to be
√
n-consistent estimates. Condition ii)

may be relaxed to ‖Ψj0‖L < 1 for some j0 ≥ 1 as in the work of (Bosq, 2000); we prefer

the somewhat stronger assumption to simplify the proofs. The positivity of the eigenvalues

in iii) is necessary to exclude singular cases. Assuming dimension 1 of all eigenspaces

is standard in the literature on functional autoregressions to circumvent the notational

problems with the nonuniqueness of eigenvectors generating a particular eigenspace, but it

is not essential for the validity of the results.

The following lemma illustrates the meaning of the rate condition (5) for two particular

examples where we impose lower bounds on κj = λj − λj+1 which is related to the rate of

decrease of the eigenvalues. If κj is allowed to decrease exponentially fast, then kn may

increase at most logarithmically in n. If κj may converge to 0 only with a polynomial rate

in j−1 then kn may increase faster like nc for appropriate c > 0. These kinds of relationship

between kn and the rate of decrease of the eigenvalues λj is quite plausible regarding the

character of kn as a regularization parameter. In similar situations, (Guillas, 2001) found

the same kind of rate conditions in his study of the convergence rate of Ψ̂n.
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Lemma 3.1. a) Let λj − λj+1 ≥ baj , j = 1, 2, . . . for some 0 < a < 1, b > 0. Then, (5) is

satisfied for n, kn → ∞ if, for all large enough n,

kn ≤
(

1

4 log 1
a

− δ

)

log n for some δ > 0.

b) Let λj − λj+1 ≥ bj−a, j = 1, 2, . . . for some a > 1, b > 0. Then, (5) is satisfied for

n, kn → ∞ if

kn = O
(

n
1
4a

−δ
)

for some δ > 0.

Proof. a) From the condition of the lemma, we immediately have λj ≥ aj ≥ baj . Using the

formula for geometric sums,

kn

n

kn
∑

j=1

1

a2j
≤ kn

nb2a2kn

kn
∑

j=1

a2(kn−j) ≤ 1

b2(1− a2)

kn

na2kn
→ 0

as logn− 2kn log
1
a
− log kn ≥ 1

2
log n− log log n− log c → ∞. Moreover we have

1

λkn

≤ 1

bakn
≤ 1

b

n1/4

(log n)β

for large enough n, as, for some δ > 0 and all β > 0, again for large enough n,

kn log
1

a
≤ (c log

1

a
) logn ≤ (

1

4
− δ) logn ≤ 1

4
logn− β log log n.

b) The proof proceeds in a similar manner as for part a), using λ−1
j ≤ a−1

j ≤ 1
b
ja and

kn
∑

j=1

j2a ≤
kn
∑

j=1

∫ j+1

j

u2adu =

∫ kn+1

1

u2adu ≤ 1

2a+ 1
(kn + 1)2a+1.

4 The residual-based bootstrap

We start with a sample X0, . . . , Xn from a stationary functional autoregression (1). The

basic idea of the bootstrap is to replace the data Xt by pseudodata X∗
t , calculated from

the given sample, with two features:

i) The distribution of certain functions T (X0, . . . , Xn) of the data can be approximated by
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the conditional distribution of the corresponding functions T (X∗
0 , . . . , X

∗
n) of the pseudo-

data given X0, . . . , Xn.

ii) The conditional distribution of T (X∗
0 , . . . , X

∗
n) given X0, . . . , Xn is known such that

distributional characteristics like moments or quantiles can be numerically calculated by

Monte Carlo simulation.

In this section, we generalize the well-known residual-based bootstrap for scalar ARMA-

processes, compare, e.g. (Kreiss and Paparoditis, 2011), to the functional setting. Let

ǫ̃1, . . . , ǫ̃n be the centered sample residuals given by (4), and let F̂n be their empirical

distribution function. The procedure for generating the pseudodata X∗
t is the following:

1) Draw bootstrap innovations ǫ∗t , t = 1, . . . , n, purely randomly from the centered

sample residuals:

pr ∗(ǫ∗t = ǫ̃k) =
1

n
, t, k = 1, . . . , n,

such that the ǫ∗t are i.i.d. with distribution F̂n conditional on the original data. Here

and in the following, we write pr ∗,E∗ for conditional probabilities and expectations given

X0, . . . , Xn.

2) We generate the bootstrap data X∗
t , t = 1, . . . , n, recursively by

X∗
t = Ψ̂n(X

∗
t−1) + ǫ∗t , t = 1, . . . , n,

for some suitable initial value X∗
0 .

If n is large, the choice of X∗
0 is of minor importance due to the exponentially decreas-

ing memory of our stationary FAR(1)-process. This follows from its representation as an

infinite moving average process (e.g. Theorem 13.1 of (Horváth and Kokoszka, 2010)) to-

gether with ‖Ψj‖L ≤ ‖Ψ‖jL and ‖Ψ‖L < 1. Popular choices are X∗
0 = X0, which are used

in the simulations of (Nyarige, 2016), or X∗
0 = EX0 = 0.

Let us remark that the theory of the residual bootstrap has already been studied for the

quite similar functional linear regression model Yj = Ψ(Xj)+ ǫj with real-valued Yj, ǫj and

functional regressors Xj by (González-Manteiga and Mart́ınez-Calvo, 2011). Note that the

situation there is much simpler, not only due to the lack of dependence, but equally due

to the fact that, by construction, X∗
j = Xj. Therefore, the regressors X∗

j in the bootstrap
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world trivially satisfy exactly the same assumptions as the real regressors Xj which is quite

useful in showing that the same kind of asymptotics holds for functions of the real resp.

the bootstrap data. In particular, the critical covariance operator estimate Γ̂n, for which

we need a regularized inverse, and its eigenvalues and eigenfunctions are the same for the

real and the bootstrap data, i.e. Theorem 4.2 below is trivially satisfied in the regression

context. Obviously, for functional autoregressions, those assertions do not hold, and we

cannot use the proof of validity of the bootstrap for the regression case at all, but have to

use quite different arguments.

The regression and wild bootstrap, considered by (Zhu and Politis, 2017) respectively

(Raña et al., 2016) for nonparametric functional autoregressions, also use X∗
j = Xj, i.e.

they do not mimic the whole time series in the bootstrap world but only the local predictor

relationship. So, for proofs, they can rely on the same kind of simpler methods as in the

case of regression with independent data.

4.1 Bootstrapping the sample mean

In this subsection we investigate the sample mean and its analogue in the bootstrap world

X̄n =
1

n

n−1
∑

t=0

Xt, X̄∗
n =

1

n

n−1
∑

t=0

X∗
t .

Note that EX̄n = 0. In the proof, we show that for the bootstrap analogue E∗X̄∗
n = 0 also

holds. Therefore, we have to compare the distributions of X̄n and X̄∗
n without additional

centering. In the next theorem and in the following, we use a common convention and

write d2(X, Y ) for the Mallows distance d2(F,G) between the marginal distributions F,G

of the random variables X resp. Y .

Theorem 4.1. Under the assumptions of Theorem 3.1 and if kn satisfies additionally

1

λkn

kn
∑

j=1

1

aj
= O

(

n1/4

(log n)β

)

for some β > 1. (6)
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we have for n → ∞
nd22

(

X̄n, X̄
∗
n

)

→
p
0

The following lemma provides two examples of a sufficient rate condition for kn de-

pending on the rate of decrease of λj − λj+1, It is proven in the same manner as Lemma

3.1.

Lemma 4.1. a) Let λj − λj+1 ≥ baj , j = 1, 2, . . . for some 0 < a < 1, b > 0. Then, (5)

and (6) are satisfied for n, kn → ∞ if, for all large enough n,

kn ≤
(

1

8 log 1
a

− δ

)

log n for some δ > 0.

b) Let λj −λj+1 ≥ bj−a, j = 1, 2, . . . for some a > 1, b > 0. Then, (5) and (6) are satisfied

for n, kn → ∞ if

kn = O
(

n
1

4(2a+1)
−δ
)

for some δ > 0.

4.2 Bootstrapping the covariance operators

In this section, we show that the bootstrap works for the covariance operator estimates

Γ̂n, Ĉn, too. We compare them with their bootstrap analogues

Γ̂∗
n =

1

n

n−1
∑

t=0

X∗
t ⊗X∗

t , Ĉ∗
n =

1

n

n−1
∑

t=0

X∗
t ⊗X∗

t+1.

We again consider the Mallows metric, which, for bounded linear operators A,B : H → H,

we define with respect to the operator norm ‖.‖L:

d22(A,B) = inf
A′,B′

E‖A′ − B′‖2L,

where the infimum is taken over all random operators A′ and B′ with the same marginal

distribution as A resp. B.

Note that Γ̂n is an unbiased estimate of Γ as EXt = 0. In the bootstrap world, we

have an analogous property asymptotically. More precisely, we show in Lemma 5.4 that

E∗Γ̂∗
n = Γ̂n + Op(

1
n
). Therefore, we have to compare the estimation error Γ̂n − Γ with

Γ̂∗
n − Γ̂n.
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Theorem 4.2. Under the assumptions of Theorem 4.1, we have for n → ∞

nd22

(

Γ̂n − Γ, Γ̂∗
n − Γ̂n

)

→
p
0

The theorem, in particular, implies that
√
n(Γ̂n − Γ) and, conditional on X0, . . . , Xn,

√
n(Γ̂∗

n−Γ̂n) have the same asymptotic distribution by Lemma 8.3 of (Bickel and Freedman,

1981).

For the lag-1 autocovariance operator, we have, again from Lemma 5.4, that E∗Ĉ∗
n =

ĈnΠ̂kn +Op(
1
n
) where Π̂kn denotes the projection onto the span of the first kn eigenvectors

of Γ̂n. So, this provides the appropriate reference point in the bootstrap world if we want

to approximate the distribution of the estimation error Ĉn − C. More precisely,

Theorem 4.3. Under the assumptions of Theorem 4.1, we have for n → ∞

nd22

(

Ĉn − C, Ĉ∗
n − ĈnΠ̂kn

)

→
p
0

5 Appendix - Technical Lemmas and Proofs

Throughout this section,

Πp =

p
∑

j=1

vj ⊗ vj, Π̂p =

p
∑

j=1

v̂j ⊗ v̂j

denote the projections onto the span of the first p orthonormal eigenfunctions v1, . . . , vp

resp. empirical eigenfunctions v̂1, . . . , v̂p. As the eigenfunctions are only uniquely deter-

mined up to their sign, we have to compare later on vj with ĉj v̂j where

ĉj = sgn(〈v̂j, vj〉).

The first two auxiliary results have been essentially used already by (Mas, 2007). We defer

their proofs to the supplement 6.

Lemma 5.1. Π̂kn = Γ̂nΓ̂
†
n = Γ̂†

nΓ̂n, Ψ̂nΠ̂kn = Ψ̂n.

Lemma 5.2. Ψ̂n −ΨΠ̂p =
1

n
SnΓ̂

†
n with Sn =

∑n
t=1 Xt−1 ⊗ ǫt = n

(

Ĉn −ΨΓ̂n

)

.
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Next we state that the well-known strong consistency of Ψ̂n as an estimate of Ψ in

particular holds under our set of assumptions, and we collect some immediate consequences

for reference.

Lemma 5.3. Let ||Ψ||L < δ̂ < 1. Under the conditions of Theorem 4.1, we have

a)
∥

∥

∥
Ψ̂n −Ψ

∥

∥

∥

L
→
a.s.

0 for n → ∞.

b)
∥

∥

∥
Ψ̂n

∥

∥

∥

L
≤ δ̂ for all large enough n,

c)
∥

∥

∥
Ψ̂k

n −Ψk
∥

∥

∥

L
= δ̂k

∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
Op(1).

Proof. a) The result is a slight modification of Theorem 8.7 of (Bosq, 2000), and the proof

is defered to the supplement 6.

b) From a) we immediately have ‖Ψ̂n‖L ≤ ‖Ψ‖L + ‖Ψ̂n −Ψ‖L ≤ δ̂ for large enough n.

c) First, we note that

Ψ̂k
n −Ψk =

(

Ψ̂n −Ψ
)

k−1
∑

j=0

ΨjΨ̂k−1−j
n

The assertion follows from, using b) and ||Ψ||L < δ̂,

∥

∥

∥

∥

∥

k−1
∑

j=0

ΨjΨ̂k−1−j
n

∥

∥

∥

∥

∥

L

≤
k−1
∑

j=0

∥

∥Ψj
∥

∥

L

∥

∥

∥
Ψ̂k−1−j

n

∥

∥

∥

L
≤

k−1
∑

j=0

‖Ψ‖jL
∥

∥

∥
Ψ̂n

∥

∥

∥

k−1−j

L

≤ δ̂k−1
k−1
∑

j=0

(‖Ψ‖L
δ̂

)j

≤ δ̂k−1

1− ‖Ψ‖L
δ̂

=
δ̂k

δ̂ − ‖Ψ‖L

for all large enough n.

Proof. (Theorem 3.1)

Let Fn denote the empirical distribution of ǫ1, . . . , ǫn. Then, from Lemma 8.4 of (Bickel and Freedman,

1981), we have d2 (Fn, F ) → 0 a.s. Hence it suffices to show that d2

(

Fn, F̂n

)

→
p
0. Let

U0 = ǫJ , V0 = ǫ̃J = ǫ̂J − 1

n

n
∑

j=1

ǫ̂j ,

where J is Laplace distributed on {1, . . . , n}, i.e. pr(J = t) =
1

n
, 1 ≤ t ≤ n. The random

variables U0, V0 have marginal distributions Fn respectively F̂n. As in the proof of Theorem

14



3.1 of (Kreiss and Franke, 1992), we have from the definition of the Mallows metric

d22

(

Fn, F̂n

)

≤ 1

n

n
∑

k=1

∥

∥

∥

∥

∥

ǫk − ǫ̂k +
1

n

n
∑

j=1

ǫ̂j

∥

∥

∥

∥

∥

2

≤ 6

n

n
∑

k=1

‖ǫ̂k − ǫk‖2 +
3

n2

∥

∥

∥

∥

∥

n
∑

j=1

ǫj

∥

∥

∥

∥

∥

2

From the law of large numbers for i.i.d. random variables we have

1

n

n
∑

j=1

ǫj →
p
Eǫj = 0, n → ∞

such that the second term on the right-hand side vanishes for n → ∞. For the first term,

we show in the following parts a)-c) of the proof

‖ǫ̂t − ǫt‖2 ≤ ‖Xt−1‖2Rn + 3 ‖Πkn (Xt−1)−Xt−1‖2

where Rn does not depend on t, and Rn →
p
0. Hence, for n → ∞,

1

n

n
∑

t=1

‖ǫ̂t − ǫt‖2 ≤
1

n

n
∑

t=1

‖Xt−1‖2Rn + 3
1

n

n
∑

t=1

‖Πkn (Xt−1)−Xt−1‖2 →
p
0,

as, by Corollary 6.2 of (Bosq, 2000),
1

n

∑n
t=1 ‖Xt−1‖2 →

p
E ‖X1‖2 < ∞, and, by stationarity

of {Xt}

E

(

1

n

n
∑

t=1

‖Πkn (Xt−1)−Xt−1‖2
)

= E
∞
∑

j=kn+1

〈X1, vj〉2 → 0

for kn → ∞, using a monotone convergence argument and E
∑∞

j=1 〈X1, vj〉2 = E ‖X1‖2 <

∞.

a) By definition of ǫt, ǫ̂t, we have

‖ǫt − ǫ̂t‖2 =
∥

∥

∥
Xt −Ψ (Xt−1)−Xt + Ψ̂n (Xt−1)

∥

∥

∥

2

=
∥

∥

∥

(

Ψ̂n −Ψ
)

(Xt−1)
∥

∥

∥

2

=
∥

∥

∥

(

Ψ̂n −ΨΠ̂kn

)

(Xt−1) + Ψ
(

Π̂kn −Πkn

)

(Xt−1) + Ψ (Πkn (Xt−1)−Xt−1)
∥

∥

∥

2

≤ 3
∥

∥

∥

(

Ψ̂n −ΨΠ̂kn

)

(Xt−1)
∥

∥

∥

2

+ 3
∥

∥

∥

(

Π̂kn − Πkn

)

(Xt−1)
∥

∥

∥

2

+ 3 ‖Πkn (Xt−1)−Xt−1‖2

using ‖Ψ‖L < 1. We now show that the first and the second terms are bounded in the

required manner.
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b) We split
(

Π̂kn − Πkn

)

(Xt−1) into two terms

(

Π̂kn − Πkn

)

(Xt−1) =
kn
∑

j=1

〈Xt−1, v̂j〉 v̂j −
kn
∑

j=1

〈Xt−1, vj〉 vj

=
kn
∑

j=1

〈Xt−1, ĉj v̂j〉 (ĉj v̂j − vj) +
kn
∑

j=1

〈Xt−1, ĉj v̂j − vj〉 vj.

As v1, v2, . . . are orthonormal, we have for the second term
∥

∥

∥

∥

∥

kn
∑

j=1

〈Xt−1, ĉj v̂j − vj〉 vj

∥

∥

∥

∥

∥

2

=

kn
∑

j=1

〈Xt−1, ĉj v̂j − vj〉2

≤ ‖Xt−1‖2
kn
∑

j=1

‖ĉj v̂j − vj‖2

where the right hand side converges to 0 in probability, as, from the remarks after Theorem

16.1 of (Horváth and Kokoszka, 2010) and (5)

E
kn
∑

j=1

‖ĉj v̂j − vj‖2 =
1

n

kn
∑

j=1

1

a2j
O(1) → 0 for n → ∞.

For the first term, we have, as ‖ĉj v̂j‖ = 1,
∥

∥

∥

∥

∥

kn
∑

j=1

〈Xt−1, ĉj v̂j〉 (ĉj v̂j − vj)

∥

∥

∥

∥

∥

2

≤ kn

kn
∑

j=1

〈Xt−1, ĉj v̂j〉2 ‖ĉj v̂j − vj‖2

≤ ‖Xt−1‖2 kn
kn
∑

j=1

‖ĉj v̂j − vj‖2

where again the right hand side converges to 0 in probability as, from above,

Ekn

n
∑

j=1

‖ĉj v̂j − vj‖2 =
kn

n

kn
∑

j=1

1

a2j
O(1) → 0 for n → ∞.

c) Using Lemma 5.2, we have

∥

∥

∥

(

Ψ̂n −ΨΠ̂kn

)

(Xt−1)
∥

∥

∥

2

=

∥

∥

∥

∥

1

n
SnΓ̂

†
n (Xt−1)

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

∥

∥

∥
Γ̂†
n (Xt−1)

∥

∥

∥

2

=

∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

∥

∥

∥

∥

∥

kn
∑

j=1

1

λ̂j

〈Xt−1, v̂j〉 v̂j

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

‖Xt−1‖2
kn
∑

j=1

1

λ̂2
j

16



using the Cauchy-Schwarz inequality. Moreover, as C = ΨΓ and ‖Ψ‖L ≤ 1,

∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

=
∥

∥

∥
Ĉn −ΨΓ̂n

∥

∥

∥

2

≤ 2
∥

∥

∥
Ĉn − C

∥

∥

∥

2

L
+ 2

∥

∥

∥
Ψ
(

Γ− Γ̂n

)
∥

∥

∥

2

L

≤ 2
∥

∥

∥
Ĉn − C

∥

∥

∥

2

L
+ 2

∥

∥

∥
Γ̂n − Γ

∥

∥

∥

2

L
= Op

(

1

n

)

,

as, from the remarks after Theorem 16.1 of (Horváth and Kokoszka, 2010), we have E
∥

∥

∥
Γ̂n − Γ

∥

∥

∥

2

L
=

O

(

1

n

)

, and from Theorem 3 of (Mas and Pumo, 2009), analogously E
∥

∥

∥
Ĉn − C

∥

∥

∥

2

L
=

O

(

1

n

)

.

As ‖·‖L ≤ ‖·‖S , we get from (5) and Theorem 4.1 of (Bosq, 2000) with D denoting

some suitable constant

1

λkn

∥

∥

∥
Γ̂n − Γ

∥

∥

∥

L
≤ D

n1/4

(logn)β

∥

∥

∥
Γ̂n − Γ

∥

∥

∥

L
→
a.s.

0 for n → ∞.

Therefore, we have for all large enough n,
∥

∥

∥
Γ̂n − Γ

∥

∥

∥

L
≤ 1

2
λkn a.s. and, as in the proof of

Theorem 8.7 of (Bosq, 2000),

λ̂kn ≥ λkn −
∥

∥

∥
Γ̂n − Γ

∥

∥

∥

L
≥ 1

2
λkn a.s. (7)

using supj≥1

∣

∣

∣
λ̂j − λj

∣

∣

∣
≤
∥

∥

∥
Γ̂n − Γ

∥

∥

∥

L
. Therefore, for large enough n, using (5) again,

∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

kn
∑

j=1

1

λ̂2
j

≤ 4

∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

kn
∑

j=1

1

λ2
j

≤ 4

∥

∥

∥

∥

1

n
Sn

∥

∥

∥

∥

2

L

kn
∑

j=1

1

a2j
= op

(

1

n

)

.

Proof. (Theorem 4.1)

As in the proof of Theorem 4.1 of (Kreiss and Franke, 1992), we choose a particular real-

ization of innovation pairs (ǫ′t, ǫ
∗
t ) such that

i) (ǫ′t, ǫ
∗
t ) i.i.d. conditional on X0, . . . , Xn,

ii) the marginal distributions of ǫ′t and ǫ∗t are F resp. F̂n,

iii) E∗ ‖ǫ′t − ǫ∗t‖2 = d22

(

F, F̂n

)

.

The latter can be achieved by Lemma 8.1. of (Bickel and Freedman, 1981). Moreover, we
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choose X ′
0 distributed as, but independent of X0 and of (ǫ′t, ǫ

∗
t ) , t ≥ 1. Finally, we choose

X∗
0 = X ′

0, and we set

X ′
t = Ψ

(

X ′
t−1

)

+ ǫ′t, X∗
t = Ψ̂n

(

X∗
t−1

)

+ ǫ∗t , t ≥ 1.

X ′
0, . . . , X

′
n is a independent realization of the data X0, . . . , Xn, and X∗

0 , . . . , X
∗
n is a realiza-

tion of the bootstrap data of section 4. If we iterate the recursions, we get a representation

of X ′
t, X

∗
t in terms of X ′

0 and the innovations:

X ′
t = Ψt (X ′

0) +

t
∑

k=1

Ψt−k(ǫ′k), X∗
t = Ψ̂t

n (X
′
0) +

t
∑

k=1

Ψ̂t−k
n (ǫ∗k), t ≥ 1 (8)

a) As EX ′
0 = EX0 = 0 and, by definition, E∗ǫ∗t = 0, we get, using linearity of the autore-

gressive operator,

E∗X∗
t = E∗

(

Ψ̂t
n(X

′
0) +

t
∑

k=1

Ψ̂t−k
n (ǫ∗k)

)

= 0

immediately from (8).

b) We have to consider

nd22
(

X̄n, X̄
∗
n

)

≤ nE∗||X̄ ′
n − X̄∗

n||2 =
1

n

n−1
∑

t,s=0

E∗〈X ′
t −X∗

t , X
′
s −X∗

s 〉,

where X̄ ′
n denotes the sample mean of X ′

0, . . . , X
′
n−1. According to (8), we split the differ-

ences into 3 parts X ′
t −X∗

t = at + bt + ct, i.e.

X ′
t −X∗

t = +
t
∑

k=1

Ψt−k (ǫ′k − ǫ∗k) +
t
∑

k=1

(

Ψt−k − Ψ̂t−k
n

)

(ǫ∗k) = at + bt + ct.

So, we have to study

1

n

n−1
∑

t,s=0

E∗〈at + bt + ct, as + bs + cs〉.

We show in the following three parts of the proof that the terms

1

n

n−1
∑

t,s=0

E∗〈at, cs〉,
1

n

n−1
∑

t,s=0

E∗〈bt, bs〉 and
1

n

n−1
∑

t,s=0

E∗〈ct, cs〉 (9)

are of order op(1). The remaining terms can be handled analogously, and the assertion

follows.
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c) Due to independence of X ′
0 and ǫ∗k for k ≥ 1, and the fact that their mean is 0,

E∗〈at, cs〉 =

s
∑

k=1

E∗〈
(

Ψt − Ψ̂t
n

)

(X ′
0) ,
(

Ψs−k − Ψ̂s−k
n

)

(ǫ∗k)〉

=

s
∑

k=1

〈E∗
(

Ψt − Ψ̂t
n

)

(X ′
0) ,E

∗
(

Ψs−k − Ψ̂s−k
n

)

(ǫ∗k)〉 = 0

Therefore, the first term of (9) vanishes.

d) As (ǫ′k, ǫ
∗
k), k = 1, . . . , n, are independent with mean 0, we have for s ≤ t and

||Ψ||L ≤ δ̂ < 1

E∗〈bt, bs〉 =

t
∑

k=1

s
∑

l=1

〈Ψt−k (ǫ′k − ǫ∗k) ,Ψ
s−l (ǫ′l − ǫ∗l )〉

=
s
∑

k=1

E∗〈Ψt−k (ǫ′k − ǫ∗k) ,Ψ
s−k (ǫ′k − ǫ∗k)〉

≤
s
∑

k=1

||Ψt−k||L||Ψs−k||LE∗||ǫ′k − ǫ∗k||2

≤
s
∑

k=1

δ̂t+s−2kd22(F, F̂n)

= δ̂t−s

s
∑

k=1

δ̂2(s−k)d22(F, F̂n) ≤
δ̂t−s

1− δ̂2
d22(F, F̂n)

We conclude

1

n

n−1
∑

t,s=0

E∗〈bt, bs〉 ≤ 2

n

n−1
∑

t=0

t
∑

s=0

δ̂t−sd22(F, F̂n)
1

1− δ̂2

≤ 2

n

n−1
∑

t=0

1

1− δ̂
d22(F, F̂n)

1

1− δ̂2
= op(1)

by Theorem 3.1.

e) From Theorem 3.1 and Lemma 8.3 of (Bickel and Freedman, 1981)

E∗ ‖ǫ∗1‖2 =
1

n

n
∑

t=1

‖ǫ̂t‖2 →
p
E∗ ‖ǫ1‖2 , (10)
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i.e. E∗ ‖ǫ∗t‖2 = Op(1). As ǫ
∗
k, k = 1, . . . , n, are independent, we have for s ≤ t

E∗〈ct, cs〉 =
t
∑

k=1

s
∑

l=1

E∗〈
(

Ψt−k − Ψ̂t−k
n

)

(ǫ∗k) ,
(

Ψs−l − Ψ̂s−l
n

)

(ǫ∗l )〉

=
s
∑

k=1

E∗〈
(

Ψt−k − Ψ̂t−k
n

)

(ǫ∗k) ,
(

Ψs−k − Ψ̂s−k
n

)

(ǫ∗k)〉

≤
s
∑

k=1

δ̂t+s−2k||Ψ− Ψ̂n||2L E∗||ǫ∗k||2Op(1)

= δ̂t−s

s
∑

k=1

δ̂2(s−k)||Ψ− Ψ̂n||2L Op(1) = δ̂t−s||Ψ− Ψ̂n||2L Op(1)

using (10) and Lemma 5.3, b). We conclude

1

n

n−1
∑

t,s=0

E∗〈ct, cs〉 ≤
2

n

n−1
∑

t=0

t
∑

s=0

δ̂t−s||Ψ− Ψ̂n||2LOp(1) = ||Ψ− Ψ̂n||2LOp(1) = op(1)

by Lemma 5.3, a).

Lemma 5.4. Under the conditions of Theorem 4.1, we have

a) E∗Γ̂∗
n = Γ̂n +Op

(

1

n

)

b) E∗Ĉ∗
n = ĈnΠ̂kn +Op

(

1

n

)

Proof. a) Plugging in the recursive representation (8) of X∗
t into the definition of Γ̂∗

n, we

get

Γ̂∗
n =

1

n

n−1
∑

t=0

(

Ψ̂t
n (X

′
0)⊗ Ψ̂t

n (X
′
0) +

t
∑

k=1

Ψ̂t
n (X

′
0)⊗ Ψ̂t−k

n (ǫ∗k)

+

t
∑

k=1

Ψ̂t−k
n (ǫ∗k)⊗ Ψ̂t

n (X
′
0) +

t
∑

k,l=1

Ψ̂t−k
n (ǫ∗k)⊗ Ψ̂t−l

n (ǫ∗l )

)

As E∗ǫ∗k = 0 and, hence, E∗Ψ̂l (ǫ∗k) = 0 due to linearity and as ǫ∗1, . . . , ǫ
∗
n, X

′
0 are independent,

we get

E∗Γ̂∗
n =

1

n

n−1
∑

t=0

(

E∗Ψ̂t
n (X

′
0)⊗ Ψ̂t

n (X
′
0) +

t
∑

k=1

E∗Ψ̂t−k
n (ǫ∗k)⊗ Ψ̂t−k

n (ǫ∗k)

)

(11)

As in the bootstrap world, Ψ̂l
n are fixed operators, in view of (2) we have to investigate

mainly E∗ǫ∗k ⊗ ǫ∗k.

E∗ǫ∗k ⊗ ǫ∗k =
1

n

n
∑

t=1

ǫ̃t ⊗ ǫ̃t =
1

n

n
∑

t=1

(

ǫ̂t − ¯̂ǫn
)

⊗
(

ǫ̂t − ¯̂ǫn
)

=
1

n

n
∑

t=1

ǫ̂t ⊗ ǫ̂t − ¯̂ǫn ⊗ ¯̂ǫn
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with ¯̂ǫn =
1

n

∑n
k=1 ǫ̂k. As ǫ̂k = Xk − Ψ̂n (Xk−1),

1

n

n
∑

t=1

ǫ̂t ⊗ ǫ̂t =
1

n

n
∑

t=1

(

Xt − Ψ̂n (Xt−1)
)

⊗
(

Xt − Ψ̂n (Xt−1)
)

= Γ̂n +
1

n
(Xn ⊗Xn −X0 ⊗X0)−

1

n

n
∑

t=1

Ψ̂n (Xt−1)⊗Xt

−1

n

n
∑

t=1

Xt ⊗ Ψ̂n (Xt−1) + Ψ̂nΓ̂nΨ̂
T
n

Using (2), the second and third terms are −ĈnΨ̂
T
n and −Ψ̂nĈ

T
n respectively, such that, as

Ĉn = Ψ̂nΓ̂n

1

n

n
∑

t=1

ǫ̂t ⊗ ǫ̂t = Γ̂n − Ψ̂nΓ̂nΨ̂
T
n +

1

n
(Xn ⊗Xn −X0 ⊗X0)

= Γ̂n − Ψ̂nΓ̂nΨ̂
T
n +Op

(

1

n

)

Similarly, we have

¯̂ǫn ⊗ ¯̂ǫn =
1

n2

n
∑

k,l=1

ǫ̂k ⊗ ǫ̂l =
1

n2

n
∑

k,l=1

(

Xk − Ψ̂n (Xk−1)
)

⊗
(

Xl − Ψ̂n (Xl−1)
)

= X̄1:n ⊗ X̄1:n − Ψ̂n

(

X̄1:n ⊗ X̄0:(n−1)

)

−
(

X̄0:(n−1) ⊗ X̄1:n

)

Ψ̂T
n

Ψ̂n

(

X̄0:(n−1) ⊗ X̄0:(n−1)

)

Ψ̄T
n

where X̄1:n, X̄0:(n−1) denote the sample means of X1, . . . , Xn respectively X0, . . . , Xn−1.

As, from Lemma 5.3,
∥

∥

∥
Ψ̂n −Ψ

∥

∥

∥

L
→
a.s.

0 we have
∥

∥

∥
Ψ̂n

∥

∥

∥

L
= Op(1), and as X̄0:(n−1), X̄1:n are

Op

(

1√
n

)

from the law of large numbers of FAR(1)-processes (compare Theorem 3.7 of

(Bosq, 2000)), we immediately get that ¯̂ǫn ⊗ ¯̂ǫn = Op

(

1

n

)

. So we get

E∗ǫ∗k ⊗ ǫ∗k = Γ̂n − Ψ̂nΓ̂nΨ̂
T
n +

1

n
Rn

with Rn = Op(1). Hence, we have for the dominant term in E∗Γ̂∗
n

E∗
t
∑

k=1

Ψ̂t−k
n ǫ∗k ⊗ ǫ∗k

(

Ψ̂t−k
n

)T

=
t
∑

k=1

Ψ̂t−k
n

(

Γ̂n − Ψ̂nΓ̂nΨ̂
T
n

)(

Ψ̂t−k
n

)T

+
t
∑

k=1

Ψ̂t−k
n

1

n
Rn

(

Ψ̂t−k
n

)T

=
t
∑

k=1

Ψ̂t−k
n Γ̂n

(

Ψ̂t−k
n

)T

−
t−1
∑

l=0

Ψ̂t−l
n Γ̂n

(

Ψ̂t−l
n

)T

+Op

(

1

n

)

= Γ̂n − Ψ̂t
nΓ̂n

(

Ψ̂t
n

)T

+Op

(

1

n

)
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where we have used that Rn = Op(1),
∥

∥

∥
Ψ̂l

n

∥

∥

∥

L
≤
∥

∥

∥
Ψ̂n

∥

∥

∥

l

L
≤ δ̂l for some δ̂ < 1 and large

enough n from Lemma 5.3, and
∑t

k=1 δ̂
2(t−k) ≤ 1

1− δ̂2
. Finally,

E∗ 1

n

n−1
∑

t=0

t
∑

k=1

Ψ̂t−k
n ǫ∗k ⊗ ǫ∗k

(

Ψ̂t−k
n

)T

=
1

n

n−1
∑

t=0

(

Γ̂n − Ψ̂t
nΓ̂n

(

Ψ̂t
n

)T
)

+ Op

(

1

n

)

= Γ̂n +Op

(

1

n

)

as, using again the above argument that
∥

∥

∥
Ψ̂l

n

∥

∥

∥

L
≤ δ̂l

∥

∥

∥

∥

∥

n−1
∑

t=0

Ψ̂t
nΓ̂n

(

Ψ̂t
n

)T

∥

∥

∥

∥

∥

L

≤
n−1
∑

t=0

δ̂2t
∥

∥

∥
Γ̂n

∥

∥

∥

L
≤ 1

1− δ̂2

∥

∥

∥
Γ̂n

∥

∥

∥

L
= Op(1)

Using E∗X ′
0 ⊗ X ′

0 = EX0 ⊗ X0 = Γ, we get by the same kind of arguments that the first

term in (11) is Op

(

1

n

)

.

b) Using (8), we have

X∗
t ⊗X∗

t+1 =

(

Ψ̂t
n(X

′
0) +

t
∑

k=1

Ψ̂t−k
n (ǫ∗k)

)

⊗
(

Ψ̂t+1
n (X ′

0) +

t+1
∑

l=1

Ψ̂t+1−l
n (ǫ∗l )

)

.

Analogously to (11), we then conclude

E∗Ĉ∗
n =

1

n

n−1
∑

t=0

(

E∗Ψ̂t
n (X

′
0)⊗ Ψ̂t+1

n (X ′
0) +

t
∑

k=1

E∗Ψ̂t−k
n (ǫ∗k)⊗ Ψ̂t+1−k

n (ǫ∗k)

)

.

From the same kind of calculations as in a), we get

E∗Ĉ∗
n = Ψ̂nΓ̂n − Ψ̂t+1

n Γ̂n(Ψ̂
t
n)

T +Op(
1

n
) = Ψ̂nΓ̂n +Op(

1

n
).

As Ψ̂n = ĈnΓ̂
†
n and, by Lemma 5.1, Γ̂†

nΓ̂n = Π̂kn, we get the desired result.

The next two lemmas just state a rule of calculation and an operator norm inequality

needed in the following proof.

Lemma 5.5. If (U, U∗) , (V, V ∗) are i.i.d. L2-valued random variables such that d22 (U, U
∗) =

E ‖U − U∗‖2; then

E ‖U ⊗ V − U∗ ⊗ V ∗‖2L ≤ 2
(

E ‖U‖2 + E ‖U∗‖2
)

d22 (U, U
∗)

for any x in L2.
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Proof. From the definition of ⊗ and the Cauchy- Schwarz inequality, we have ‖x⊗ y‖L ≤
‖x‖‖y‖ such that

‖U ⊗ V − U∗ ⊗ V ∗‖2L = ‖(U − U∗)⊗ V + U∗ ⊗ (V − V ∗)‖2L
≤ 2‖U − U∗‖2‖V ‖2 + 2‖U∗‖2‖V − V ∗‖2

Using independence of (U, U∗) and (V, V ∗)

E ‖U ⊗ V − U∗ ⊗ V ∗‖2 ≤ 2E‖U − U∗‖2E‖V ‖2 + 2E‖U∗‖2E‖V − V ∗‖2

≤ 2d22(U, U
∗)
(

E ‖U‖2 + E ‖U∗‖2
)

as E ‖V − V ∗‖2 = E ‖U − U∗‖2 and E ‖V ‖2 = E ‖U‖2.

Lemma 5.6. a) Let A,B, S : H → H be bounded linear operators where, in particular, S

is a Hilbert-Schmidt operator. Then, ASB is a Hilbert-Schmidt operator and

‖ASB‖S ≤ ‖A‖L‖S‖S‖B‖L. (12)

b) For x, y ∈ H, x⊗ y is a Hilbert-Schmidt operator with

‖x⊗ y‖S = ‖x‖ ‖y‖. (13)

Proof. a) ASB is a Hilbert-Schmidt operator by Lemma 16.7 of (Meise and Vogt, 1997).

From their Lemma 16.6, we get that the singular values of ASB can be bounded by the

product of the operator norms of A and B and the singular values of S. This implies (12)

as the squared Hilbert-Schmidt norm is the sum of the squared singular values.

b) follows immediately from the definition of the Hilbert-Schmidt norm.

Proof. (Theorem 4.2)

We choose X∗
0 = X ′

0 and (ǫ′t, ǫ
∗
t ) , t = 1, . . . , n, as in the proof of Theorem 4.1. Let Γ̂′

n

denote the sample covariance operator calculated from X ′
0, . . . , X

′
n−1. Due to stationarity

of {X ′
t}, we have E∗Γ̂′

n = EΓ̂n = Γ, and, from Lemma 5.4, E∗Γ̂∗
n = Γ̂n + Op

(

1

n

)

. Hence,

up to terms of order
1

n
,

(

Γ̂′
n − Γ

)

−
(

Γ̂∗
n − Γ̂n

)

=
1

n

n−1
∑

t=0

At +Op

(

1

n

)

with

At = X ′
t ⊗X ′

t − E∗ (X ′
t ⊗X ′

t)− (X∗
t ⊗X∗

t − E∗ (X∗
t ⊗X∗

t )) ,
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Using the recursive representation (8) of X ′
t, X

∗
t and (2), we decompose At = at+ bt+ bTt +

ct + dt with

at = Ψt [X ′
0 ⊗X ′

0 − E∗ (X ′
0 ⊗X ′

0)]
(

Ψt
)T − Ψ̂t

n [X
′
0 ⊗X ′

0 − E∗ (X ′
0 ⊗X ′

0)]
(

Ψ̂t
n

)T

bt =

t
∑

k=1

[

Ψt−k (X ′
0 ⊗ ǫ′k)

(

Ψt
)T − Ψ̂t−k

n (X ′
0 ⊗ ǫ∗k)

(

Ψ̂t
n

)T
]

ct =

t
∑

k 6=l=1

[

Ψt−l (ǫ′k ⊗ ǫ′l)
(

Ψt−k
)T − Ψ̂t−l

n (ǫ∗k ⊗ ǫ∗l )
(

Ψ̂t−k
n

)T
]

dt =

t
∑

k=1

[

Ψt−k (ǫ′k ⊗ ǫ′k)− E∗ (ǫ′k ⊗ ǫ′k)
(

Ψt−k
)T − Ψ̂t−k

n (ǫ∗k ⊗ ǫ∗k) + E∗ (ǫ∗k ⊗ ǫ∗k)
(

Ψ̂t−k
n

)T
]

where we have used that (ǫ′k, ǫ
∗
k) are i.i.d. with mean 0 to get, e.g., E∗ǫ′k ⊗ ǫ′l = 0 for k 6= l.

By definition of the Mallows metric and from ‖.‖L ≤ ‖.‖S ,

d22

(

Γ̂n − Γ, Γ̂∗
n − Γ̂n

)

≤ E∗
∥

∥

∥

(

Γ̂′
n − Γ

)

−
(

Γ̂∗
n − Γ̂n

)
∥

∥

∥

2

L

≤ 2E∗
∥

∥

∥

(

Γ̂′
n − E∗Γ̂′

n

)

−
(

Γ̂∗
n − E∗Γ̂∗

n

)
∥

∥

∥

2

L
+ 2

∥

∥

∥
E∗Γ̂∗

n − Γ̂n

∥

∥

∥

2

L

≤ 2E∗
∥

∥

∥

(

Γ̂′
n − E∗Γ̂′

n

)

−
(

Γ̂∗
n − E∗Γ̂∗

n

)
∥

∥

∥

2

S
+ 2

∥

∥

∥
E∗Γ̂∗

n − Γ̂n

∥

∥

∥

2

L

=
2

n2

n−1
∑

s,t=0

E∗ 〈At, As〉S +Op

(

1

n2

)

, (14)

using Lemma 5.4. Hence, we have to study terms like

E∗
n−1
∑

s,t=0

〈at, bs〉S , E∗
n−1
∑

s,t=0

〈ct, cs〉S or E∗
n−1
∑

s,t=0

〈dt, ds〉S .

a) We start with
∑n−1

s,t=0 E
∗ 〈ct, cs〉S =

∑n−1
s,t=0

∑t
k 6=l=1

∑s
i 6=j=1E

∗B
(s,t)
klij where

B
(s,t)
klij =

〈

Ψt−l (ǫ′k ⊗ ǫ′l)
(

Ψt−k
)T − Ψ̂t−l

n (ǫ∗k ⊗ ǫ∗l )
(

Ψ̂t−k
n

)T

,

Ψs−j
(

ǫ′i ⊗ ǫ′j
) (

Ψs−i
)T − Ψ̂s−j

n

(

ǫ∗i ⊗ ǫ∗j
)

(

Ψ̂s−i
n

)T
〉

S

As k 6= l, we have E∗ǫ′k⊗ ǫ′l(z) = E∗ 〈ǫ′k, z〉 ǫ′l = E∗ 〈ǫ′k, z〉E∗ǫ′l = 0 for all z, i.e. E∗ǫ′k⊗ ǫ′l = 0

and, analogously, E∗ǫ∗k ⊗ ǫ∗l = 0. Moreover, if e.g. j 6= k, l, we have for arbitrary X, y ∈ H

E∗
〈

Ψt−l (ǫ′k ⊗ ǫ′l) (z),Ψ
s−j
(

ǫ′i ⊗ ǫ′j
)

(y)
〉

= E∗ 〈ǫ′k, z〉
〈

Ψt−lǫ′l,Ψ
s−jǫ′j

〉

〈ǫ′i, y〉

=
〈

E∗
{

〈ǫ′k, z〉 〈ǫ′i, y〉Ψt−lǫ′l
}

,E∗Ψs−jǫ′j
〉

= 0

24



as EΨs−jǫ′j = Ψs−j
(

E∗ǫ′j
)

= 0. Together with the definition of 〈., .〉S , we get

E∗
〈

Ψt−l (ǫ′k ⊗ ǫ′l) (Ψ
t−k)T ,Ψs−j

(

ǫ′i ⊗ ǫ′j
)

(Ψs−i)T
〉

S
= 0.

Analogously, the expectations of the other terms are vanishing, such that for k 6= l, i 6=
j, E∗B

(s,t)
klij = 0 except for k = i 6= l = j or k = j 6= l = i. To get the expectations of the

remaining terms, we decompose

Ψt−l (ǫ′k ⊗ ǫ′l)
(

Ψt−k
)T − Ψ̂t−l

n (ǫ∗k ⊗ ǫ∗l )
(

Ψ̂t−k
n

)T

=
(

Ψt−l − Ψ̂t−l
n

)

(ǫ′k ⊗ ǫ′l)
(

Ψt−k
)T

+ Ψ̂t−l
n (ǫ′k ⊗ ǫ′l)

(

Ψt−k − Ψ̂t−k
n

)T

+Ψ̂t−l
n (ǫ′k ⊗ ǫ′l − ǫ∗k ⊗ ǫ∗l )

(

Ψ̂t−k
n

)T

= β1,t + β2,t + β3,t.

Using ‖Ψj‖L ≤ ‖Ψ‖jL < δ̂j for some δ̂ < 1, (12) and (13),

‖β1,t‖S ≤
∥

∥

∥
Ψt−l − Ψ̂t−l

n

∥

∥

∥

L
‖ǫ′k ⊗ ǫ′l‖S

∥

∥Ψt−k
∥

∥

L

≤ Dδ̂2t−k−l
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
‖ǫ′k‖ ‖ǫ′l‖

for some generic constant D from Lemma 5.3. Analogously,

‖β2,t‖S ≤ Dδ̂2t−k−l
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
‖ǫ′k‖ ‖ǫ′l‖

‖β3,t‖S ≤ δ̂2t−k−l ‖ǫ′k ⊗ ǫ′l − ǫ∗k ⊗ ǫ∗l ‖S

where we use
∥

∥

∥
Ψ̂j

n

∥

∥

∥

L
≤
∥

∥

∥
Ψ̂n

∥

∥

∥

j

L
and

∥

∥

∥
Ψ̂n

∥

∥

∥

L
≤ δ̂ for large enough n again from Lemma 5.3.

By, again, (13)

‖ǫ′k ⊗ ǫ′l − ǫ∗k ⊗ ǫ∗l ‖S ≤ ‖(ǫ′k − ǫ∗k)⊗ ǫ′l‖S + ‖ǫ∗k ⊗ (ǫ′l − ǫ∗l )‖S
= ‖ǫ′k − ǫ∗k‖ ‖ǫ′l‖+ ‖ǫ∗k‖ ‖ǫ′l − ǫ∗l ‖ (15)

such that

‖β3t(x)‖S ≤ δ̂2t−k−l {‖ǫ′l‖ ‖ǫ′k − ǫ∗k‖+ ‖ǫ∗k‖ ‖ǫ′l − ǫ∗l ‖} .

Now, as k 6= l,
∣

∣

∣
E∗B

(s,t)
klkl

∣

∣

∣
≤ E∗ |〈β1t + β2t + β3t, β1s + β2s + β3s〉S |

≤ 4D2δ̂2(t+s−k−l)
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

2

L
E∗ ‖ǫ′k‖

2
E∗ ‖ǫ′l‖

2

+4Dδ̂2(t+s−k−l)
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
E∗ ‖ǫ′l‖

2
E∗ (‖ǫ′k‖ ‖ǫ′k − ǫ∗k‖)

+4Dδ̂2(t+s−k−l)
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
E∗ (‖ǫ′k‖ ‖ǫ∗k‖) E∗ (‖ǫ′l‖ ‖ǫ′l − ǫ∗l ‖)

+δ̂2(t+s−k−l)E∗ {‖ǫ′l‖ ‖ǫ′k − ǫ∗k‖+ ‖ǫ∗k‖ ‖ǫ′l − ǫ∗l ‖}
2

(16)
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Note that the expectation in the last line of (16) may be written as

E∗ ‖ǫ′l‖
2
E∗ ‖ǫ′k − ǫ∗k‖

2
+ 2E∗ (‖ǫ′l‖ ‖ǫ′l − ǫ∗l ‖) E∗ (‖ǫ∗k‖ ‖ǫ′k − ǫ∗k‖) + E∗ ‖ǫ∗k‖2 E∗ ‖ǫ′l − ǫ∗l ‖

2

≤
(

E∗ ‖ǫ′l‖
2
+ 2

√

E∗ ‖ǫ′l‖
2
√

E∗ ‖ǫ∗k‖
2 + E∗ ‖ǫ∗k‖2

)

d22

(

F, F̂n

)

≤ 2
(

E∗ ‖ǫ′l‖
2
+ E∗ ‖ǫ∗k‖2

)

d22

(

F, F̂n

)

due to our particular choice of (ǫ′k, ǫ
∗
k). Analogously, we get for the sum of the two terms

involving expectations in the third and fourth line of (16) that it is bounded by, using that

ǫ′l, ǫ
′
k are identically distributed,

E∗ ‖ǫ′l‖
2
√

E∗ ‖ǫ′k‖
2
d2

(

F, F̂n

)

+

√

E∗ ‖ǫ′k‖
2
√

E∗ ‖ǫ∗k‖
2
√

E∗ ‖ǫ′l‖
2
d2

(

F, F̂n

)

= E∗ ‖ǫ′k‖
2

(

√

E∗ ‖ǫ′k‖
2 +

√

E∗ ‖ǫ∗k‖
2

)

d2

(

F, F̂n

)

From Theorem 3.1, we have d22

(

F, F̂n

)

= op(1) and, using Lemma 8.3 of (Bickel and Freedman,

1981), E∗ ‖ǫ∗t‖2 →
p

E ‖ǫt‖2, i.e. E∗ ‖ǫ∗t‖2 = Op(1). From Lemma 5.3,
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
→
a.s.

0. So,

we have with some generic constant D

∣

∣

∣
E∗B

(s,t)
klkl

∣

∣

∣
≤ Dδ̂2(t+s−k−l)op(1)

uniformly in k, l, s, t. Analogously, we have the same upper bound for
∣

∣

∣
E∗B

(s,t)
kllk

∣

∣

∣
too. Finally,

we conclude, using that k = i, l = j or k = j, l = i is only possible for k, l ≤ min(s, t),
∣

∣

∣

∣

∣

n−1
∑

s,t=0

E∗ 〈ct, cs〉S

∣

∣

∣

∣

∣

≤
n−1
∑

s,t=0

min(s,t)
∑

k 6=l=1

δ̂2(t+s−k−l)op(1)

≤ 2
∑

0≤s≤t≤n−1

δ̂2(t−s)
s
∑

k,l=1

δ̂2(s−k)+2(s−l)op(1)

≤
n
∑

t=1

1

(1− δ̂2)3
op(1) = op(n).

b) As the next term, we consider

n−1
∑

s,t=0

E∗ 〈dt, ds〉S =
n−1
∑

s,t=0

t
∑

k=1

s
∑

l=1

E∗B
(s,t)
kl

where B
(s,t)
kl = 〈C(t)

k , C
(s)
l 〉S and

C
(t)
k = Ψt−k (ǫ′k ⊗ ǫ′k − E∗ǫ′k ⊗ ǫ′k)

(

Ψt−k
)T − Ψ̂t−k

n (ǫ∗k ⊗ ǫ∗k − E∗ǫ∗k ⊗ ǫ∗k)
(

Ψ̂t−k
n

)T

.
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Due to the linearity of the operators involved, recalling that Ψ̂t−k
n is fixed in the boot-

strap world, we have E∗C
(t)
k = 0. Using the independence of (ǫ′k, ǫ

∗
k) , (ǫ′l, ǫ

∗
l ), we conclude

E∗B
(s,t)
kl = 0 for k 6= l. For the remaining case k = l, as in a), we decompose C

(t)
k into 3

terms, where now

β1t =
(

Ψt−k − Ψ̂t−k
n

)

(ǫ′k ⊗ ǫ′k − E∗ǫ′k ⊗ ǫ′k)
(

Ψt−k
)T

β2t = Ψ̂t−k
n (ǫ′k ⊗ ǫ′k − E∗ǫ′k ⊗ ǫ′k)

(

Ψt−k − Ψ̂t−k
n

)

β3t = Ψ̂t−k
n (ǫ′k ⊗ ǫ′k − E∗ǫ′k ⊗ ǫ′k − ǫ∗k ⊗ ǫ∗k + E∗ǫ∗k ⊗ ǫ∗k)

(

Ψ̂t−k
n

)T

such that

B
(s,t)
kk = 〈β1t + β2t + β3t, β1s + β2s + β3s〉S .

For the first two terms, we have, using (13),

‖ǫ′k ⊗ ǫ′k − E∗ (ǫ′k ⊗ ǫ′k)‖S ≤ ‖ǫ′k ⊗ ǫ′k‖S + E∗ ‖ǫ′k ⊗ ǫ′k‖S = ‖ǫ′k‖
2
+ E∗ ‖ǫ′k‖

2

and we conclude as in a),

‖βit‖S = Op(1)δ̂
2(t−k)

∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
, i = 1, 2.

with EOp(1) = O(1) uniformly in k, t. For the third term, we abbreviate ∆k = ǫ′k⊗ǫ′k−ǫ∗k⊗ǫ∗k

such that

‖β3t‖S ≤ δ̂2(t−k) ‖∆k − E∗∆k‖S .

Using Cauchy-Schwarz and those bounds on ‖βit‖S , i = 1, 2, 3, we have for some generic

constant D

∣

∣

∣
E∗B

(s,t)
kk

∣

∣

∣
≤ E∗ |〈β1t + β2t + β3t, β1s + β2s + β3s〉S |

≤ 4Dδ̂2(t+s−2k)
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

2

L

+4Dδ̂2(t+s−2k)
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
E∗ ‖∆k − E∗∆k‖S

+δ̂2(t+s−2k)E∗ ‖∆k − E∗∆k‖2S .

As
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
→
a.s.

0, and as, from Lemma 5.7 below,

E∗ ‖∆k − E∗∆k‖S ≤
√

E∗ ‖∆k − E∗∆k‖2S and E∗ ‖∆k − E∗∆k‖2S ≤ E∗ ‖∆k‖2S →
p
0
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uniformly in k as (ǫ′k, ǫ
∗
k) are identically distributed, we have

∣

∣

∣
E∗B

(s,t)
kk

∣

∣

∣
= δ̂2(t+s−2k)op(1)

uniformly in k, s, t. Hence, as for k = l, we have k ≤ min(s, t)

∣

∣

∣

∣

∣

n−1
∑

s,t=0

E∗ 〈dt, ds〉S

∣

∣

∣

∣

∣

≤
n−1
∑

s,t=0

min(s,t)
∑

k=1

δ̂2(t+s−2k) op(1) = op(n)

as the threefold sum is O(n) by the same calculations as at the end of part a).

c) We consider a third case in the supplement 6 and show in detail that

n−1
∑

s,t=0

E∗ 〈at, bs〉S = op(1),

i.e. it is of even smaller order than the terms considered in a) and b). The other components

of
∑n−1

s,t=0E
∗ 〈At, As〉S can be shown to be of order at most op(n) in the same manner, and

we conclude, from (14)

nd22

(

Γ̂n − Γ, Γ̂∗
n − Γ̂n

)

= ‖x‖2 op(1).

Lemma 5.7. Let (ǫ′t, ǫ
∗
t ) , t = 1, . . . , n, be defined as in the proof of Theorem 4.1. Then,

under the assumptions of that theorem, for all k ≥ 1

E∗ ‖ǫ′k ⊗ ǫ′k − ǫ∗k ⊗ ǫ∗k‖
2
S →

p
0 for n → ∞

Proof. From (15) with k = l

‖ǫ′k ⊗ ǫ′k − ǫ∗k ⊗ ǫ∗k‖
2
S ≤ ‖ǫ′k − ǫ∗k‖

2
(‖ǫ′k|+ ‖ǫ∗k‖)

2
.

For n → ∞, the right-hand side converges to 0 in probability as ‖ǫ′k − ǫ∗k‖ →
p

0, which

follows from d22

(

F, F̂n

)

= E∗ ‖ǫ′k − ǫ∗k‖2 →
p

0. The lemma then follows from a dominated

convergence argument where we specify a real random variable W = ‖ǫ′k‖+U with ‖ǫ∗k‖ ≤
U,E∗U4 < ∞. Then

‖ǫ′k − ǫ∗k‖
2
(‖ǫ′k|+ ‖ǫ∗k‖)

2 ≤ (‖ǫ′k|+ ‖ǫ∗k‖)
4 ≤ W 4.

28



Note that E∗ ‖ǫ′k‖4 = E ‖ǫk‖4 < ∞ by assumption, and, therefore, E∗U4 < ∞.

Recall that ǫ∗k can be written as ǫ̃J with J being a Laplace variable in {1, . . . , n}, i.e.
pr (J = k) =

1

n
, k = 1, . . . , n. Hence,

ǫ∗k = ǫ̃J = ǫ̂J − 1

n

n
∑

k=1

ǫ̂k = XJ − Ψ̂n (XJ−1)−
1

n

n
∑

k=1

Xk +
1

n

n
∑

k=1

Ψ̂n (Xk−1)

and using
∥

∥

∥
Ψ̂n

∥

∥

∥

L
≤ δ̂ for large enough n from Lemma 5.3, we get

‖ǫ∗k‖ ≤ ‖XJ‖+ δ̂ ‖XJ−1‖+
∥

∥

∥

∥

∥

1

n

n
∑

k=1

Xk

∥

∥

∥

∥

∥

+ δ̂

∥

∥

∥

∥

∥

1

n

n
∑

k=1

Xk−1

∥

∥

∥

∥

∥

= U

We have E∗U4 < ∞, as, e.g.,

E∗ ‖XJ‖4 =
1

n

n
∑

j=1

‖Xj‖4 ≤ C

for any C > E ‖XJ‖4 and all large enough n by the strong law of large numbers for strictly

stationary real-valued time series.

Proof. (Theorem 4.3)

As in the proof of Theorem 4.2, we get, using Lemma 5.4,

(

Ĉ ′
n − C

)

−
(

Ĉ∗
n − ĈnΠ̂kn

)

=
1

n

n−1
∑

t=0

At +Op

(

1

n

)

with now

At = X ′
t ⊗X ′

t+1 − E∗
(

X ′
t ⊗X ′

t+1

)

−
(

X∗
t ⊗X∗

t+1 − E∗
(

X∗
t ⊗X∗

t+1

))

,

From this point onwards, the proof follows exactly the same steps as the proof of Theorem

4.2 except that from the recursion (8) and (2) we get an additional factor Ψ resp. Ψ̂n on

the left hand side. E.g., we now have

ct =

t
∑

k=1

t+1
∑

l=1,l 6=k

[

Ψt+1−l (ǫ′k ⊗ ǫ′l)
(

Ψt−k
)T − Ψ̂t+1−l

n (ǫ∗k ⊗ ǫ∗l )
(

Ψ̂t−k
n

)T
]

.

As ‖Ψ‖L, ‖Ψ̂n‖L < δ̂ < 1 a.s. for all large enough n, all the bounds of the proof of Theorem

4.2 remain valid.
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6 Supplementary Material: Details of Proofs

Proof. (Lemma 5.1)

Γ̂nΓ̂
†
n (x) = Γ̂

(

kn
∑

k=1

1

λ̂k

〈v̂k, x〉 v̂k
)

=

kn
∑

k=1

1

λ̂k

〈v̂k, x〉 Γ̂n (v̂k)

=
kn
∑

k=1

v̂k ⊗ v̂k (x) = Π̂kn (x)

as Γ̂n (v̂k) = λ̂kv̂k. Analogously, we get Γ̂†
nΓ̂n (x) = Π̂kn (x). Now,

Ψ̂n (x) = ĈnΓ̂
†
n (x) =

kn
∑

k=1

1

λ̂k

〈v̂k, x〉 Ĉn (v̂k)

Ψ̂nΠ̂kn (x) = Ψ̂n

(

kn
∑

j=1

〈v̂j , x〉 v̂j
)

=
kn
∑

j=1

〈v̂j, x〉 Ψ̂n (v̂j)

=
kn
∑

j=1

〈v̂j, x〉
1

λ̂j

Ĉn (v̂j)

as Γ̂†
n (v̂j) =

1

λ̂j

v̂j .
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Proof. (Lemma 5.2) From Lemma 5.1, we have Ψ̂n −ΨΠ̂p =
(

Ĉn −ΨΓ̂n

)

Γ̂†
n

n
(

Ĉn −ΨΓ̂n

)

(x) =
n
∑

t=1

Xt−1 ⊗Xt (x)−Ψ

(

n
∑

t=1

Xt−1 ⊗Xt−1 (x)

)

=
n
∑

t=1

〈Xt−1, x〉Xt −
n
∑

t=1

Ψ (〈Xt−1, x〉Xt)

=
n
∑

t=1

〈Xt−1, x〉 (Xt −Ψ (Xt−1)) =
n
∑

t=1

Xt−1 ⊗ ǫt (x)

Proof. (Lemma 5.3 a)) Note that (Bosq, 2000) considers Ψ̃n = Π̂knΨ̂n instead of Ψ̂n as an

estimate of Ψ. From the discussion in the proof of Theorem 3.1, the conditions of Theorem

8.7 of (Bosq, 2000) are satisfied. In our notation,
∥

∥

∥
Ψ̂n −Ψ

∥

∥

∥

L
≤
∥

∥

∥
Ψ̂n −ΨΠkn

∥

∥

∥

L
+
∥

∥

∥
Ψ
(

Πkn − Π̂kn

)
∥

∥

∥

L
+
∥

∥

∥
ΨΠ̂kn −Ψ

∥

∥

∥

L

From the proof of Theorem 8.7 of (Bosq, 2000), in particular (8.92), (8.93), the second and

third terms converge to 0 a.s.

For the first term, we have in our notation for every x,

(

Ψ̂n −ΨΠkn

)

(x) = Ĉn

(

kn
∑

j=1

1

λ̂j

〈x, ĉj v̂j〉 ĉj v̂j
)

− C

(

kn
∑

j=1

1

λj
〈x, vj〉 vj

)

= Ĉn

(

kn
∑

j=1

(

1

λ̂j

− 1

λj

)

〈x, ĉj v̂j〉 ĉj v̂j
)

+Ĉn

(

kn
∑

j=1

1

λj
(〈x, ĉj v̂j〉 − 〈x, vj〉) ĉj v̂j

)

+Ĉn

(

kn
∑

j=1

1

λj
〈x, vj〉 (ĉj v̂j − vj)

)

+
(

Ĉn − C
)

(

kn
∑

j=1

1

λj
〈x, vj〉 vj

)

= an1(x) + an2(x) + an3(x) + an4(x).

With Ani = sup‖x‖≤1 ani(x), 1 ≤ i ≤ 4, we have
∥

∥

∥
Ψ̂n −ΨΠkn

∥

∥

∥

L
≤
∑4

i=1Ani and, from the

proof of Theorem 8.7 of (Bosq, 2000), (8.84), (8.86), (8.88) and (8.90), we have Ani →
a.s.

0

for i = 1, . . . , 4.
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Proof. (part of Theorem 4.2) As another component of
∑n−1

s,t=0E
∗ 〈At, As〉S , we study here

n−1
∑

s,t=0

E∗ 〈at, bs〉S =
n−1
∑

s,t=0

s
∑

k=1

E∗B
(s,t)
k

where, with Ξ0 = X ′
0 ⊗X ′

0 − E∗X ′
0 ⊗X ′

0,

B
(s,t)
k =

〈

ΨtΞ0

(

Ψt
)T − Ψ̂t

nΞ0

(

Ψ̂t
n

)T

,Ψs−k (X ′
0 ⊗ ǫ′k) (Ψ

s)T − Ψ̂s−k
n (X ′

0 ⊗ ǫ∗k)
(

Ψ̂s
n

)T
〉

S

.

We decompose the left factor of the scalar product into γ1t + γ2t with

γ1t =
(

Ψt − Ψ̂t
n

)

Ξ0

(

Ψt
)T

γ2t =
(

Ψt
)T

Ξ0

(

Ψt − Ψ̂t
n

)T

Analogously, the second factor is β1s + β2s + β3s with

β1s =
(

Ψs−k − Ψ̂s−k
n

)

(X ′
0 ⊗ ǫ′k) (Ψ

s)T

β2s = Ψ̂s−k
n (X ′

0 ⊗ ǫ′k)
(

Ψs − Ψ̂s
n

)T

β3s = Ψ̂s−k
n (X ′

0 ⊗ ǫ′k −X ′
0 ⊗ ǫ∗k)

(

Ψ̂s
n

)T

= Ψ̂s−k
n [X ′

0 ⊗ (ǫ′k − ǫ∗k)]
(

Ψ̂s
n

)T

As in part a) and b) of the proof, we have for some constant D

‖γit‖S ≤ Dδ̂2t
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
‖Ξ0‖S , i = 1, 2

‖βis‖S ≤ Dδ̂2s−k
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
‖X ′

0 ⊗ ǫ′k‖S , i = 1, 2

‖β3s‖S ≤ δ̂2s−k ‖X ′
0 ⊗ (ǫ′k − ǫ∗k)‖S .

We use

‖Ξ0‖S ≤ ‖X ′
0 ⊗X ′

0‖S + E∗ ‖X ′
0 ⊗X ′

0‖S = ‖X ′
0‖

2
+ E∗ ‖X ′

0‖
2

‖X ′
0 ⊗ ǫ′k‖S = ‖X ′

0‖ ‖ǫ′k‖

‖X ′
0 ⊗ (ǫ′k − ǫ∗k)‖S = ‖X ′

0‖ ‖ǫ′k − ǫ∗k‖

Using Cauchy-Schwarz and independence of X ′
0 and (ǫ′k, ǫ

∗
k), we have for some suitable

constant D

E∗ ‖Ξ0‖S ‖X ′
0 ⊗ ǫ′k‖S ≤ E∗

(

‖X ′
0‖

2
+ E∗ ‖X ′

0‖
2
)

‖ǫ′k‖ ‖X ′
0‖

≤ 2E∗ ‖X ′
0‖

3
E∗ ‖ǫ′k‖ < ∞

E∗ ‖Ξ0‖S ‖ǫ′k − ǫ∗k‖ ‖X ′
0‖ = E∗ ‖ǫ′k − ǫ∗k‖E∗ ‖Ξ0‖S ‖X ′

0‖

≤ d2

(

F, F̂n

)

2E∗ ‖X ′
0‖

3
,
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such that

∣

∣

∣
E∗B

(s,t)
k

∣

∣

∣
≤ E∗ |〈γ1t + γ2t, β1s + β2s + β3s〉S |

≤ 4Dδ̂2(t+s)−k
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

2

L

+2Dδ̂2(t+s)−k
∥

∥

∥
Ψ− Ψ̂n

∥

∥

∥

L
d2

(

F, F̂n

)

= δ̂2(t+s)−kop(1)

uniformly in t, s, k. Therefore,

n−1
∑

s,t=0

E∗ 〈at, bs〉 ≤
n−1
∑

s,t=0

s
∑

k=1

δ̂2(t+s)−kop(1) ≤
1

1− δ̂

n−1
∑

s,t=0

δ̂2t+sop(1) ≤
1

(1− δ̂)2
1

1− δ̂2
op(1).

Hence, this term is of order op(1).
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Horváth, L. and Kokoszka P. (2010) Inference for Functional Data with Applications.

Springer, Berlin-Heidelberg-New York.
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