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Abstract. Extreme events have large impact throughout the span of engineering, 
science and economics. This is because extreme events often lead to failure and losses 
due to the nature unobservable of extra ordinary occurrences. In this context this 
paper focuses on appropriate statistical methods relating to a combination of quantile 
regression approach and extreme value theory to model the excesses. This plays a 
vital role in risk management. Locally, nonparametric quantile regression is used, a 
method that is flexible and best suited when one knows little about the functional 
forms of the object being estimated. The conditions are derived in order to estimate 
the extreme value distribution function. The threshold model of extreme values is 
used to circumvent the lack of adequate observation problem at the tail of the 
distribution function. The application of a selection of these techniques is 
demonstrated on the volatile fuel market. The results indicate that the method used 
can extract maximum possible reliable information from the data. The key attraction 
of this method is that it offers a set of ready made approaches to the most difficult 
problem of risk modeling   

 
 
1. Introduction 
The extreme rate of change of production factors and their corresponding factor payments expose 
both the producers and consumers to significant risks, which they can hedge provided that they have 
good modeling tools of which they can forecast these changes well enough [1]. One major 
determinant that affects production capacity and the market mechanism structure is the cost of energy 
[2]. There exists a wide range of mathematical approaches to modeling and forecasting costs as well 
as price dynamics, but often do perform poorly in case of extreme events [3]. In this paper we focus 
on regression quantiles to capture the complete underlying structure of a time series data and model 
the observations that exceed central limit, focusing on the tail of the distribution. We apply Extreme 
Value Theory (EVT) to capture extremism [4]. Value at risk, the minimal loss which may occur under 
extra ordinary market circumstances is also discussed.   
 
2. Empirical quantiles 
When data has non-constant mean and variance, typically skewed and contains some outliers, it 
creates difficulties in empirical modelling [5]. More of interest is where the data pattern shows 
heteroscedasticity and asymmetries. In such data, quantile regression an order statistic is more 
explicable and robust than the mean regression [6].  
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     2.1 Definition  
The qth quantile estimate of the distribution function 𝐹 that is 𝐹!!! 𝑞   is defined as 
                                    𝑞 = 𝑖𝑛𝑓 𝑥 𝐹! 𝑥 ≥ 𝑞 , 0 < 𝑞 < 1                                                                             (1) 
where,  𝐹! is the empirical distribution function that put mass 1 𝑘 at each 𝑋! , 1 ≤ 𝑖 ≤ 𝑘 that is 

𝐹! 𝑥 =
1
𝑘

𝐼 !!!! ,      − ∞ < 𝑥 < ∞
!

!!!

 

with 𝐼 being the indicator function and 𝑖𝑛𝑓 denotes the smallest real number 𝑥 satisfying 𝐹! 𝑥 ≥ 𝑞. 
If a random variable 𝐾 𝑘  of 𝐹! 𝑥  is continuous, then  𝑞 = 𝑃𝑟 𝐾 𝑘 ≤ 𝐹!!! . 
Applying the Rosenblatt-Parzen kernel estimators of the density function 𝑓 we get   
                                                𝑓 𝑥 = !

!
!
!
𝑤 !!!!

!
, −∞ < 𝑥 < ∞              !

!!!                                        (2) 

where   𝑤 is a kernel which is non negative and that    𝑤 𝑥 𝑑𝑥 = 1∞
!∞ . ℎ, is a positive integer which 

governs the smoothness of the fluctuations. A relatively large value of ℎ gives too much smoothness 
and a relatively small value of ℎ give big fluctuations. Consequently, with  𝑊 𝑥 = 𝑤 𝑦 𝑑𝑦!

!∞  the 
distribution function corresponding to the density   𝑤 is given by 
                                                               𝐹! 𝑥 = !

!
𝑊 !!!!

!
,      − ∞ < 𝑥 < ∞!

!!!                                  (3) 
which is a kernel estimator of the distribution function 𝐹.  A smooth alternative to equation (1) may 
be defined by 
                             𝐹!!! 𝑞 = 𝑖𝑛𝑓 𝑥 !

!
𝑊 !!!!

!
≥ 𝑞!

!!! ,        0 < 𝑞 < 1  .                                         (4) 
Let the observations 𝑌! be as a realization of the model; 
                                                               𝑌! = 𝑞!

! + 𝜖!
!                                                                               (5) 

where 𝑞!
!  is an estimate of the quantile defined in equation (4) and 𝜖!

! = 𝑌! − 𝑞!
!  are the standardized 

quantile residuals. It turns out that 

                                                        !!
!

!!
! =

!!!!!
!

!!
! = !!

!!
! − 1                                                                        (6) 

𝜃, corresponds to a reasonably low probability for which the quantile can be estimated 
nonparametrically. Let 𝑝 denote a very small probability of interest, reformulating the definition of 
the 𝑝 − 𝑡ℎ of the variable rate of change in terms of the 𝜃 − 𝑡ℎ quantile yields 
                                               𝑃 𝑌! < 𝑞!! = 𝑃 𝑌! < 𝑞!

! − 𝑞!
! + 𝑞!!                                                          (7) 

Assuming that 𝑞!!  is a negative number, we switch the inequality sign to obtain 

                                                      𝑃 !!
!!
! − 1 >

!!!

!!
! − 1 = 𝜃                                                                     (8) 

Let 
!!!

!!
! − 1 ≡ 𝑧! denote the 𝑝 − 𝑡ℎ quantile of the standardized residuals. Then  

                                                              𝑞!! = 𝑧! + 1 𝑞!
!   .                                                                         (9) 

Since data sparseness is more severe in extreme quantiles, we embark upon refining nonparametric 
quantile regression methods with extreme value theory so as to be proficient to model extreme 
quantiles accurately. To obtain 𝑧! in equation (9) we apply the idea of the standard peaks over 
threshold 𝑃𝑂𝑇  methods [7].  
  
3. Modeling Extreme Changes 
The distribution function of the excesses over the threshold 𝑢 can be defined by 
                                   𝐹! 𝑥 = 𝑃𝑟 𝑋 − 𝑢 ≤ 𝑥 𝑋 > 𝑢 = ! !!! !! !

!!! !
                                                      (10) 

      Theorem: For a large class of underlying distribution function  𝐹, the conditional excess 
distribution function  𝐹! 𝑥 , for   𝑢 large is well approximated by Pickands and Balkema [8], that is 
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                                lim!→!! sup!!!!!!!! 𝐹! 𝑥 − 𝐻!,! 𝑥 = 0                                                       (11) 
where 

                                    𝐻!,! 𝑥 = 1 − 1 + 𝜉 !
!

!! !
      𝜉 ≠ 0

1 − 𝑒 !! !                                 𝜉 = 0
                                                             (12) 

 ξ is the shape parameter and !
!
  is the tail index.  The tail index sets the rate at which the tails of 

𝐻!,! 𝑥  decay away. 𝜎 > 0, is the scale parameter. The tail index as well as the scaling parameter has 
to be determined by fitting equation (12) to the actual data and estimate the parameters with the 
maximum likelihood method.  
 
4. Peak over a high threshold (POT) 
Denote the random variable of interest by  𝑟!. Let 𝑢 be a specified high threshold. Suppose that the 
𝑖 − 𝑡ℎ exceedance at time  𝑡! is    𝑟!" ≤ 𝑢, we shall focus on the data 𝑡! , 𝑟!" − 𝑢  where  𝑟!" − 𝑢, are the 
excesses over the threshold  𝑢. The occurrence times 𝑡!  provides useful information about the 
intensity of the occurrence of important “rare events”. A cluster of 𝑡! indicates a period of large 
declines and the exceeding amount provides the actual quantity of interest. Different choices of the 
threshold 𝑢 leads to different estimates of the tail index !

!
 and is based on risk tolerance. Since 

different institutions and investors have different risk tolerance, the choice of 𝑢  is a statistical 
problem as well as an institutional one. Too low 𝑢 value and the asymptotic theory breaks down, too 
high threshold value and one does not have enough data points to estimate the parameters [9]. 
Rearranging equation (10) and using  𝐹! ∙ ≈ 𝐻!,! 𝑟! , it holds that  

1 − 𝐹 𝑟! + 𝑢 ≈ 1 − 𝐹 𝑢 1 − 𝐻!,! 𝑟!  
We estimate 1 − 𝐹 𝑢 = 𝑧 𝑢  by use of empirical distribution function and 

                                                 𝑧 𝑢 + 𝑟! = !!
!

1 + 𝜉 !!
!

!!
!
                                                         (13) 

where, 𝑁! denotes the number of excesses  over the threshold 𝑢. Employing the change in variables 
𝑦 = 𝑢 + 𝑟! and fixing the distribution value at the probability of interest, 𝐹 𝑦 = 𝜃, we estimate the 
quantile estimator 𝑞! by inverting equation (13) to obtain 

1 − 𝜃 = !!
!

1 + 𝜉 !!!
!

!!
!
. 

                                                                                𝑞! = 𝑢 + !
!

1 − 𝜃 !
!!

!!

− 1                                      (14) 

Thus the 𝜃!! quantile value at risk of 𝐹 𝑦  can be estimated by  

                                               𝑉𝑎𝑅! = 𝑢 − !
!
1 − !

!!
1 − 𝜃

!!
                                                (15) 

Equation (15) is an analytical tool which can be used for assessing riskiness of trading activities 
therein, Value at risk (𝑉𝑎𝑅). Consequently, the conditional expectation of loss given that the loss is 
beyond 𝑉𝑎𝑅 level is the expected shortfall.  
 
5. Results and discussion 
We focus on the distribution of daily gasoline price changes in Kenya from July 1, 2006 to June 20, 
2009 (data from Kenya National Oil Corporation). Since the price changes are so high we chose 
logarithmic changes instead of simple net returns. A problem of using simple net returns is that prices 
are bounded from below and that this makes the return distribution skewed for large positive and 
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negative returns. We focus only on the negative tail of the distribution even though the same concept 
applies to positive tails. 
Table 1, reports some statistics on the price changes series. The high volatility is confirmed as 
evidenced by the very high excess kurtosis. The very small P-value of the Pormanteau test (Ljung) 
together with visual inspection of figure 1 indicates a high degree of volatility clustering effect.  
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Table 1  Descriptive statistics of daily gasoil price   
    changes in Kenya. 
	  

Statistic	   Value	  
Mean	   	  	  	  	  	  	  	  	  	  	  	  	  −7.958×10!!	  
Standard	  deviation	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.209	  
Skewness	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0.289	  
Kurtosis	   	  	  	  	  	  	  	  	  	  	  	  	  	  23.379	  
Ljung	  P-‐Value	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2.20×10!!"	  

 
To get better tail estimates, we first filter the data to capture some of the most important dependencies 
and thereafter apply the ordinary extreme value technique. The advantage is that independent and 
identical assumption behind the EVT based tail quantile estimator is less likely to be violated. 
To pre filter the time series we combine the Autoregressive moving average (ARMA) with the 
simplest generalized autoregressive conditional heteroscedastic (GARCH (1, 1)) model. Thus we have 
the following model 

𝑟! = 𝑎! + 𝑎!𝑟!!! − 𝑏!𝑒!!! + 𝑒!. 
 
                                                       𝜎!! = 𝜑! + 𝜑!𝑒!!!! + 𝜑!𝜎!!!!                                                       (16)  

 
where    𝜎!! is the conditional variance of 𝑒! and 𝑒! = 𝜎!𝜀! with 𝜀!~  𝑁 0,1 . Let the unconditional EVT 
quantiles of the residual distribution be  𝑞!, the conditional tail quantiles of our original rate of change 
distribution will be given by 
                                                  𝑞!,! = 𝑎! + 𝑎!𝑟!!! − 𝑏!𝑒!!! + 𝜎!𝑞!                                             (17) 

 
In implementing POT method, we rely on a reasonable choice of the threshold that is approximately 
5.5%. We produce a one step a head forecast of the conditional mean volatility using equation (16) 
and use these values to scale up our residual quantiles with equation (17). The summary statistics are 
shown in table 2. From table 3, with 5% probability, the daily rate of change of gasoil price could be 
as low as -0.624% and given that the rate of change is less than -0.624 the average rate of change 
value is -1.404%. Likewise, with 1% probability the daily rate of change of gasoil price could be as 
low as -1.3818%, and given this rate of change, the average rate of change value is -2.1870.  
 
6. Conclusion 
In this paper we have shown that quantile regression posses a more flexible appealing properties 
enough to capture the underlying complex dependence structure of a time series data. We have also 
illustrated how extreme value theory can be used to model tail related risk measures depending on 
data availability, frequency, desired time horizon and the level of complexity one is willing to 
introduce in the model. It can also be seen from the empirical study that this method can be used to 
determine the threshold by quantification.  
 
 
 
 

IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences IOP Publishing
Journal of Physics: Conference Series 410 (2013) 012113 doi:10.1088/1742-6596/410/1/012113

4



5	  
	  

7. Acknowledgements 
We would like to thank The Kenya National Council for Science and Technology for their grant 
support towards this research. We would also like to thank The Kenya National Oil Corporation for 
enabling us access the data used for this study.  Finally we wish to thank the reviewers and the editors 
for their comments and suggestion. 
	  
                 
                 Table 2 ARMA-GARCH parameters, statistics of the standard residuals as well  
     as POT parameters. 

AR-‐GARCH	  	  parameters	  
𝑎!	   ***	  
𝑎!	   	  	  	  -‐0.0472	  (0.0576)***	  
𝑏!	   	  	  	  -‐0.6168	  (0.0263)	  

𝜑!×10!!	   1.0576	  (0.2733)	  
𝜑!	   0.1469	  (0.0120)	  
𝜑!	   0.8758	  (0.0090)	  
Standardized	  	  residuals	  descriptive	  statistics	  

Mean	   0.03256	  
Standard	  deviation	   1.01179	  
Skewness	   0.00122	  
Kurtosis	   10.60099	  
Ljung	  P-‐value	   0.97	  

POT	  parameters	  
𝜉	   0.04635	  (0.0393)	  
𝛽	   0.61109	  (0.0493)	  
𝑢	   0.055	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ***	  Not	  Significant	  parameter	  estimates.	  Figures	  in	  parenthesis	  are	  standard	  errors	  	  
 
 
                    Table 3 Risk measures computed via Peak over threshold measure at 5%, 1%  
        and 0.1%   probability. 
	  

Probability quantile Shortfall 
0.95 0.624 1.404 
0.99 1.3818 2.1870 
0.999 3.2574 4.7766 
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Figure1 Gasoil price changes (%) superimposed on the time series trend of gasoil daily prices. 
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