
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325906572

Effect of drift sampler exposure time and net mesh size on invertebrate drift

density in the Njoro River, Kenya

Article  in  African Journal of Aquatic Science · June 2018

DOI: 10.2989/16085914.2018.1465394

CITATIONS

0
READS

142

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Assessment of water quality in selected shallow wells of keiyo Highlands, kenya View project

Dynamics of Invertebrate Drift in Kenyan Highland Streams View project

Priscilla Wangari Mureithi

Egerton University

6 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

John Gichimu Mbaka

Kenya Marine and Fisheries Research Institute (KMFRI)

25 PUBLICATIONS   56 CITATIONS   

SEE PROFILE

All content following this page was uploaded by John Gichimu Mbaka on 25 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325906572_Effect_of_drift_sampler_exposure_time_and_net_mesh_size_on_invertebrate_drift_density_in_the_Njoro_River_Kenya?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325906572_Effect_of_drift_sampler_exposure_time_and_net_mesh_size_on_invertebrate_drift_density_in_the_Njoro_River_Kenya?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Assessment-of-water-quality-in-selected-shallow-wells-of-keiyo-Highlands-kenya-2?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dynamics-of-Invertebrate-Drift-in-Kenyan-Highland-Streams?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Priscilla_Mureithi?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Priscilla_Mureithi?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Egerton_University?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Priscilla_Mureithi?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Mbaka?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Mbaka?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kenya_Marine_and_Fisheries_Research_Institute_KMFRI?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Mbaka?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Mbaka?enrichId=rgreq-79e931983853d77e5f7557a921954cec-XXX&enrichSource=Y292ZXJQYWdlOzMyNTkwNjU3MjtBUzo2NDE0Mjk2MDQ5NTAwMThAMTUyOTk0MDE0MzE1NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=taas20

African Journal of Aquatic Science

ISSN: 1608-5914 (Print) 1727-9364 (Online) Journal homepage: http://www.tandfonline.com/loi/taas20

Effect of drift sampler exposure time and net
mesh size on invertebrate drift density in the
Njoro River, Kenya

PW Mureithi, JG Mbaka, CM M’Erimba & JM Mathooko

To cite this article: PW Mureithi, JG Mbaka, CM M’Erimba & JM Mathooko (2018): Effect of drift
sampler exposure time and net mesh size on invertebrate drift density in the Njoro River, Kenya,
African Journal of Aquatic Science, DOI: 10.2989/16085914.2018.1465394

To link to this article:  https://doi.org/10.2989/16085914.2018.1465394

View supplementary material 

Published online: 21 Jun 2018.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=taas20
http://www.tandfonline.com/loi/taas20
http://www.tandfonline.com/action/showCitFormats?doi=10.2989/16085914.2018.1465394
https://doi.org/10.2989/16085914.2018.1465394
http://www.tandfonline.com/doi/suppl/10.2989/16085914.2018.1465394
http://www.tandfonline.com/doi/suppl/10.2989/16085914.2018.1465394
http://www.tandfonline.com/action/authorSubmission?journalCode=taas20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=taas20&show=instructions
http://www.tandfonline.com/doi/mlt/10.2989/16085914.2018.1465394
http://www.tandfonline.com/doi/mlt/10.2989/16085914.2018.1465394
http://crossmark.crossref.org/dialog/?doi=10.2989/16085914.2018.1465394&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.2989/16085914.2018.1465394&domain=pdf&date_stamp=2018-06-21


African Journal of Aquatic Science 2018, 1–6
Printed in South Africa — All rights reserved

Copyright © NISC (Pty) Ltd
AFRICAN JOURNAL OF

AQUATIC SCIENCE
ISSN 1608-5914   EISSN 1727-9364

https://doi.org/10.2989/16085914.2018.1465394

African Journal of Aquatic Science is co-published by NISC (Pty) Ltd and Informa UK Limited (trading as Taylor & Francis Group)

This is the final version of the article that is published 
ahead of the print and online issue

Intensive investigations of invertebrate drift (Müller 1954; 
Waters 1965; Brittain and Eikeland 1988; Naman et al. 
2016) have resulted in different hypotheses regarding 
invertebrate drift. According to Müller (1954) and others 
(Williams and Williams 1993; Pachepsky et al. 2005), 
invertebrates drift in reaction to living in lotic ecosys-
tems by developing upstream flight, while others (Waters 
1966; Anholt 1995; Turner and Williams 2000) hypothe-
sised that invertebrate drift was dependent on the extent to 
which the carrying capacity of a lotic system is overloaded, 
thus providing a way of removing surplus production. It is 
generally recognised that invertebrate drift is a fundamental 
ecological process that plays a crucial role in recoloniza-
tion of perturbed areas, as well as being a food source for 
drift feeding fish, and helps stream invertebrates to avoid 
predators (Waters 1964; Brittain and Eikeland 1988; Naman 
et al. 2016). Invertebrate drift in lotic systems typically 
mirrors the benthic community, providing a valuable means 
of assessing benthic invertebrates (Koetsier et al. 1996; 
Pringle and Ramírez 1998; Shearer et al. 2003).

Invertebrates may drift, because of accidental dislodge-
ment from the substratum, the presence of toxicants and 
sediment input, as well as changes in food resources, 
physical habitat structure, temperature and photoperiod 
(Brittain and Eikeland 1988; Naman et al. 2016; Katano et 
al. 2017). Drift can also be influenced by the presence of 
predators, high benthic densities, riparian land use activi-
ties, seasonality, or physical disturbances within the 
stream-bed (Ormerod et al. 2004; Naman et al. 2016; 
Weber et al. 2017). In a study evaluating invertebrate 

drift in adjacent sand-bed and riffle habitats, Gibbins et 
al. (2010) demonstrated that although water velocity did 
not differ between the habitats, deposited and suspended 
sediment concentrations were higher in the sand-bed 
habitat. Drift densities were considerably higher in the 
sandbed compared with the riffle suggesting that, based 
on the composition of invertebrates in benthic and drift 
samples, the riffle contributed to the higher drift densities 
in the downstream sand-bed habitat. Leung et al. (2009) 
in another study on the effect of habitat on invertebrate 
drift in Canada, found no relationship between inverte-
brate drift density and water velocity within individual pools 
or riffles, suggesting that turbulence and short distances 
between high-and low velocity habitats minimise changes 
in drift densities through settlement of invertebrates in areas 
with low velocity. Structurally complex riffles (Brown and 
Brussock 1991; Degani et al. 1993; Capderrey et al. 2013) 
provide invertebrates with refuge areas against predators 
and offer great food supply to benthic communities (Brown 
and Brussock 1991; Mathooko 1995; Wallace and Webster 
1996). Hansen and Closs (2007) found that invertebrate 
drift densities increased with riffle area and length, while 
Grzybkowska et al. (2004) found that invertebrate drift 
densities were highest in riffles than in pools.

Research on invertebrate drift to date has largely focused 
on temporal patterns, effect of physico-chemical variables, 
such as light intensity, water temperature, sediment, 
habitat type, predator presence, life stage, disturbance 
and competition for resources (Brittain and Eikeland 1988; 
Naman et al. 2016; Béjar et al. 2017; Weber et al. 2017). 
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Measurement of invertebrate drift composition and density 
is, however, also influenced by the duration of sampling, 
and the mesh size of nets (Slack et al. 1991; Culp et al. 
1994; Leung et al. 2009). Slack et al. (1991) evaluating 
the effect of net mesh-size on observed invertebrate drift 
composition in a USA mountain stream observed a general 
trend of increasing abundance and number of inverte-
brate taxa with decreasing mesh size. Comparatively 
higher numbers of invertebrates occurred in the nets 
with a larger mesh size at night than during the day (see 
also diel periodicity in Flecker 1992; Ramírez and Pringle 
1998; Huhta et al. 2000). Generally, driftnet mesh size 
and exposure time depend on the size and density of the 
organisms studied and the amount of suspended coarse 
sediment and organic matter (Muehlbauer et al. 2017). 
However, drift sampler exposure times vary greatly between 
studies, ranging from a few minutes to hours, using varied 
net mesh sizes (Flecker 1992; Kerby et al. 1995; Kennedy 
et al. 2014).

Despite the ecological importance of invertebrate drift 
and international interest in its dynamics, comparatively few 
studies have assessed this phenomenon in Kenyan rivers 
(e.g. Mathooko and Mavuti 1992), where most studies have 
primarily focused on benthic communities (e.g. Mathooko 
2000; M’Erimba et al. 2014; Mbaka et al. 2016). The main 
aim of this study is to evaluate the effect of driftnet mesh 
size and exposure time on invertebrate drift densities in 
the Njoro River, Kenya. It is hypothesised that drift sampler 
exposure time and net mesh size have an effect on inverte-
brate drift densities and composition.

Materials and methods

Study area and site
The study site was located on a reach of the Njoro River in 
Nakuru County, Kenya (Figure 1). This 55 km long second 
order stream rises in the eastern Mau hills at an elevation of 
2 880 m asl, draining a 250 km2 catchment (Osano 2015). 
The dry season typically lasts from December to March and 
the wet season from April to November (Mbaka et al. 2014). 
The soils are predominantly clay loam, though silt clay 
is common near Lake Nakuru (Karanja et al. 1986). The 
two main vegetation types include the montane Juniperus 
procera-Olea europaea subsp. africana and submontane 
Acacia abyssinica forests (Mathooko and Kariuki 2000).

The study was conducted in a 20 m long, 5.5 m wide 
riffle (Figure S1) in the middle reaches of the Njoro River 
at 2 263 m asl. The right and left banks of this river section 
border Njokerio trading centre and Egerton University, 
respectively. Human-related physical perturbations at 
the site were low, except for small-scale farming on the 
right bank. There was a 70% canopy cover of Syzygium 
cordatum, Euclea sp., Juniperus sp. and Maytenus senega-
lensis, the most common riparian plants. The riffle habitat 
was composed of 90% bedrock, 5% cobbles, and 5% silt 
and sand. Additional details on physical and chemical 
characteristics of the study site are presented in Table 1.

Water chemical and physical characteristics
Sampling was conducted seven times between 23 January 
and 8 March, 2017 (Table S1). Water temperature, pH, 

dissolved oxygen, oxygen saturation, turbidity and electrical 
conductivity were measured in-situ using portable sensors. 
Electrical conductivity, pH and temperature were measured 
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Figure 1: Location of sampling site in the Njoro River

Variable Mean (±SE) Range
Temperature (°C) 15.7 (0.3) 13.8–18.7
Conductivity (µS cm−1) 202.4 (17.4) 146.4–295.0
Dissolved oxygen (mg l−1) 7.8 (0.1) 7.0–8.9
Oxygen saturation (%) 92.2 (1.6) 80.0–103.8
Turbidity (NTU) 20.7 (0.6) 17.6–25.9
Velocity (m s−1) 0.8 (0.1) 0.3–1.3
Discharge (m3 s−1) 0.4 (0.1) 0.1–1.0

Table 1: Mean ± SE and range of chemical and physical variables 
in the Njoro River at the study site in 2017
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using a HACH HQ 40d meter. Turbidity was measured 
using a HACH HQ 11d meter and oxygen concentra-
tion using a HACH HQ 30d meter. Water velocity was 
measured at 60% of water depth using a portable automatic 
flow meter (Flo-Mate, model 2000, Marsh McBirney). The 
composition of river substrates and canopy cover were 
assessed visually.

Drift sampling and invertebrates processing
Drift sampling was conducted between 10:00 and 16:00 h 
during the day, using three drift samplers fitted with 100 µm, 
250 µm and 500 µm mesh nets, respectively. The samplers 
were placed side by side (right bank, midstream, left bank) 
in the riffle facing the upstream (Figure S1). The samplers 
were exposed for 5, 10, 15, 20, 25 and 120 minutes (Table 
S2). The procedure was repeated for three consecu-
tive days, with the position of the three drift samplers 
being interchanged, ensuring that each drift sampler was 
accorded an equal chance of being in each of the three 
riffle habitat positions. The mean current velocity of water 
passing through the mouth of each sampler was measured 
at 60% of the water depth. Invertebrates collected in the 
cup at the rear end of the driftnet were placed in labelled 
polythene bags, preserved with 4% formalin. In the labora-
tory the samples were sieved to remove coarse organic 
matter and sediment before the invertebrates were sorted 
under a dissecting microscope, enumerated and identified 
to the lowest possible taxonomic level following Gerber and 
Gabriel (2002), de Moor et al. (2003) and Day et al. (2003). 
All invertebrates present in the samples were considered, 
and drift density was expressed as ind. m−3.

Data analysis
The effect of driftnet mesh and exposure on invertebrate 
drift density was tested using Linear Mixed-Effect Models 
(LMM), with mesh size and exposure time as fixed factors, 
mesh size as an interaction term with exposure time and 
sampler position as a random factor. The p-values were 
corrected in multiple tests following Holm (1979) and data 
distribution was evaluated following Zuur et al. (2009) and 
Ghasemi and Zahediasl (2012). Post-hoc evaluations were 
made using Tukey contrasts (Hothorn et al. 2008). Data 
analysis was performed using the R statistical Package (R 
Development Core Team 2015).

Results

Chironomidae, Baetidae, Simuliidae, Caenidae and Culicidae 
were the most abundant taxa in the Njoro River drift samples 
(Table S3). The Chironomidae had the highest densities 
in all the three net sizes, followed by Baetidae, Simuliidae, 
Caenidae and Culicidae. In total, 23 invertebrate taxa were 
recorded in the drift samples (Table S4). The highest mean 
invertebrate drift density (1.8 ± 0.3 ind. m−3) was recorded for 
the drift sampler with the 100 µm driftnet, followed by the 250 
µm driftnet (1.7 ± 0.3 ind. m−3) and 500 µm driftnet (0.7 ± 0.1 
ind. m−3) (Figure 2). Mesh size had a statistically significant 
effect (F2,53 = 4.9, p = 0.01) on invertebrate drift densities, 
whereas Tukey contrasts indicated a statistically significant 
difference (p < 0.05) between the densities of invertebrates 
collected in 100 µm and 500 µm nets.

In general, invertebrate drift densities decreased with 
increased exposure time (Figure 3). The highest mean 
invertebrate drift density (3.9 ± 1.6 ind. m−3) was recorded 
for the 5-minute exposure using the 100 µm driftnet, 
whereas the lowest mean invertebrate drift density (0.2 ± 
0.05 ind. m−3) was recorded for the 120-minute exposure 
500 µm mesh driftnet (Figure 3). Drift sampler exposure 
time had a statistically significant effect (F5,53 = 3.4, p = 
0.01) on invertebrate drift densities and Tukey contrasts 
indicated that there was a significant difference (p = 0.007) 
between the 5-minute and 120-minute exposure times. 
There was an insignificant interaction term between mesh 
size and exposure time (F10,53 = 0.7, p = 0.73). The highest 
mean invertebrate drift density (3.8 ± 0.9 ind. m−3) occurred 
for the 100 µm mesh net at the left bank position, whereas 
the lowest mean invertebrate drift density (0.5 ± 0.06 ind. 
m−3) occurred for the 500 µm mesh net at the midstream 
sampling position (Figure 4).

Discussion

Mean invertebrate drift density decreased with increasing 
net mesh size, demonstrating that fine-meshed nets have 
the ability to collect more invertebrates than coarse-meshed 
nets. This difference can be attributed to the loss of small 
invertebrates passing through coarse-meshed nets. Mbaka 
et al. (2016) demonstrated that coarse-meshed sieves (500 
µm) resulted in the exclusion of meiofauna from samples 
and had a significant effect on mean invertebrate density 
(See also Hwang et al. 2007; Pinna et al. 2014; Hartwell and 
Fukuyuma 2015). In a study assessing the contribution of 
meiofauna to invertebrate drift, Perić et al. (2014) found that 
meiofauna constituted 35% of total invertebrate drift density. 
Given that small-sized fauna are likely to be lost from drift 
samples when using coarse-meshed nets, it is important to 
use fine-meshed nets when characterising invertebrates in 
stream ecosystems where the existing taxa are unknown.

The general tendency to use fine-meshed driftnets (Slack 
et al. 1991) is evident from previous studies on the effect 
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of mesh size on invertebrate drift density (Clifford 1972; 
Ferrington 1984; Slack et al. 1991). Although fine-meshed 
nets retain the small invertebrates, sample sorting time 
and rate of net clogging may possibly lead to underestima-
tion of invertebrate drift density and composition. Coarse-
meshed driftnets may, however, be more appropriate if the 
objective is to analyse macroinvertebrates. It is fundamental 
to determine the optimum exposure time in order to obtain 
representative samples and simultaneously avoid clogging 
when using fine-meshed nets.

Mean invertebrate drift densities decreased with 
increased exposure time. The 500 µm driftnet had the 
lowest mean density during the 120-minute exposure time. 
The optimum exposure time in this study was 5 minutes 
using the 100 µm driftnet. The invertebrate drift density 
consistently decreased with increasing time using the 100 
µm driftnet, possibly because of clogging (e.g. Slack et al. 
1991; Muehlbauer et al. 2017), whereas drift densities did 

not vary much from 15- to 120-minute exposure time for the 
500 µm driftnet (Figure 3). This implies that the fine-meshed 
driftnet was more appropriate for sampling invertebrate drift 
in the Njoro River within the shorter exposure time frame.

Modification of driftnet filtering efficiency because of 
clogging results in reduced net entrance velocities, resulting 
in incorrect calculation of sampled water volume, and 
consequently the invertebrate drift density (Faulkner and Copp 
2001). In a meta-analysis of 77 studies on the effect of driftnet 
clogging on drift concentrations, Muehlbauer et al. (2017) 
found that driftnets clog in a non-linear fashion over time, and 
that coarse suspended solids and net mesh size have a strong 
impact on clogging rates and the resultant drift data.

Given that linear models are typically used to derive 
the total volume of water filtered over a given exposure 
time, the most appropriate model (e.g. inverse exponen-
tial, logistic) should be considered where clogging occurs 
(Muehlbauer et al. 2017). The non-linear fashion in which 
driftnets clog also suggests that the typically used method 
of calculating average water velocity from measurements 
taken only at the start and end of sampling could result 
in considerable errors in density values. Despite this, the 
optimum sampling time for a driftnet of a given mesh size 
and the suspended material in a given lotic ecosystem 
are rarely taken into consideration. Studies can overcome 
the problem of fine-meshed nets clogging by reducing the 
exposure time or by modifying the sampling methods to 
avoid clogging if the size range of organisms does not lead 
to gross underestimation of drift densities and composi-
tion. Some smaller invertebrates, such as water mites, 
ostracods, etc., may be lost in large numbers if the mesh 
nets used have larger (>500 µm) pore openings.

Although exposure time and mesh size had a significant 
effect on drift density, there was no significant interaction 
between the two factors, suggesting that the effect of mesh 
size on drift density is not significantly modified (Baron and 
Kenny 1986; Aguinis and Gottfredson 2010) by exposure 
time, and vice versa. These two factors can thus be 
regarded as independent factors influencing drift.

The mean invertebrate drift densities (0.7–1.8 ind. m−3) 
recorded in this study are within the range (0.5–3 ind. m−3) 
of those measured in other previous drift studies (Boyero 
and Bosch 2002; Bruno et al. 2010; Astakhov and Bogatov 
2014). The high mean densities of individual taxa, such as 
Chironomidae, Baetidae, Simuliidae, Caenidae and Culicidae 
in this study have also been reported in other invertebrate 
studies (Pringle and Ramírez 1998; Bruno et al. 2010; 
Astakhov and Bogatov 2014). Although this study did not 
explicitly link drift densities to level of human disturbance, 
invertebrate drift has crucial ecological roles and is important 
in river biomonitoring (Pringle and Ramírez 1998; Gimenez 
et al. 2015; Naman et al. 2016). Pringle and Ramírez (1998) 
found that both benthic and drift sampling techniques 
indicated Chironomidae and Ephemeroptera as the 
dominant insect groups in a tropical stream. Chironomidae 
dominated the disturbed stream draining agricultural areas. 
Whereas insects were dominant (>90%) in benthic samples, 
larval Atyidae were dominant (>50%) in drift samples, 
demonstrating the importance of routinely measuring inverte-
brate drift. Gimenez et al. (2015) found a higher taxon 
diversity in a rural stream where sensitive taxa, such as 

5 10 15 20 25 120

5

10

15

20

25

30

35

40

45

EXPOSURE TIME (min)

IN
V

E
R

TE
B

R
AT

E
 D

R
IF

T 
D

E
N

S
IT

Y

100 µm
250 µm
500 µm
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Ephemeroptera, Plecoptera, Trichoptera and Coleoptera 
were dominant, while high densities of Chironomidae drifted 
in an urban stream. The composition of invertebrate drift 
therefore primarily reflects the benthic fauna and conditions. 
The invertebrate taxa recorded in the current study have 
also been found to be a major component in benthos (e.g. 
Mathooko 2001; M’Erimba et al. 2014; Mbaka et al. 2014).

The highest mean invertebrate drift density was recorded 
for the 100 µm drift sampler placed at the left side of the 
riffle. This can be attributed to the large hydraulic distur-
bance (Figure S2) experienced by invertebrates, making 
them more susceptible to drift. Large hydraulic disturbance 
in the benthic zone may also increase the drift of benthic 
organic matter greatly, and consequently the drift rate of 
invertebrates, because of reduction of refugia, food and 
attachment surfaces.

Conclusions

Driftnet mesh size and exposure time had significant 
independent effects on invertebrate drift density. Accordingly, 
mesh size and exposure duration are important factors to 
consider when sampling drift in streams. Fine-meshed (100 
µm) driftnets are the most appropriate for invertebrate drift 
density sampling, albeit with modified exposure time. Future 
studies should consider sampling different seasons, habitats 
and potential for drift to identify disturbance in streams.
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