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Abstract. Vegetation plays a key role in the global climate system via modification of the water and energy balance. Its 

coupling to climate is therefore important, particularly in the tropics where severe climate change impacts are expected. 10 

Consequently, understanding vegetation dynamics and response to present and projected climatic conditions for various land 

cover types in East Africa is vital. This study provides an assessment of the vegetation trends in East Africa using Leaf Area 

Index (LAI) time series for the period 1982 to 2011, regression analysis between LAI and Standardised Precipitation 

Evapotranspiration Index (SPEI), as well as analysis of the temporal non-stationarity in the LAI trends and vegetation response 

to climate. Our results show mean LAI over the region increased at a rate of about 4×10-3 units per year, while the rate of 15 

increase for annual mean temperature was 0.035°C per year. Annual precipitation did not show significant trends. Trend breaks 

and variations in the stability of LAI time series anomalies significantly alter the LAI trends across the period of study. Drought 

and wetness conditions also show significant influence on the vegetation dynamics in the region. Given the potential impacts 

of climate change on vegetation productivity in this region, this study provides the much-needed reference point for the 

disentanglement of historical climatic- and human-induced vegetation dynamics. In addition, the results indicate key areas of 20 

interest for the assessment of potential impacts of vegetation dynamics on land surface water and energy balance in the region. 

1 Introduction 

Terrestrial vegetation depends on and affects land surface-atmosphere interactions as the primary link for moisture 

(evapotranspiration) and energy (latent) exchange through its physiological properties (Leaf Area Index (LAI), rooting depth 

and stomatal resistance), and its influence on surface roughness, and albedo (Arora, 2002; Bao et al., 2014; Ning et al., 2015). 25 

For instance, recent studies have reported a strong land-atmosphere coupling in West Africa, whereby vegetation dynamics 

play a significant role in regulating the West African monsoon and therefore rainfall distribution (Hales et al., 2006; Xue et 

al., 2012; Zheng and Eltahir, 1998). In South Africa, Williams and Kniveton (2012) reported increases and decreases in annual 

rainfall, based on idealized scenarios of expanding savanna and desert cover, respectively. Recent studies on the climatic 

impacts of tropical deforestation have consistently shown increased warming and reduced evapotranspiration and precipitation 30 
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(Snyder, 2010; Snyder et al., 2004). An improved characterization of spatial and temporal vegetation patterns is therefore 

important to not only assess landscape conditions but also to improve land surface model predictions and identify significant 

regional and global scale climate teleconnections.   

The availability of long-term, repetitive satellite-derived datasets has greatly improved the monitoring and characterization of 

the land surface at varying spatial and temporal scales. Multispectral band combinations of these datasets have aided the 5 

retrieval of long time series of land surface variables widely used to examine trends in vegetation dynamics at global, regional 

and national scales (Bao et al., 2014; Julien and Sobrino, 2009), impacts of vegetation on water and energy flux (Hu et al., 

2009), as well as the correlation between vegetation  and climate conditions (Bao et al., 2014). Particularly, LAI, which is 

defined in broadleaf canopies as the one-sided green leaf area per unit vegetated ground area, and in coniferous canopies as 

one-half the total needle surface area per unit vegetated ground area, characterizes the physiologically functioning surface area 10 

for energy, mass and momentum exchange between the vegetated land surface and the planetary boundary layer. Hence, it is 

widely used by the global change research community to assess and quantify vegetation dynamics and their effects (Bobée et 

al., 2012; Cook and Pau, 2013; Pfeifer et al., 2014). This dataset is also a pertinent input or state variable in land surface 

process-based models for simulating land-atmosphere dynamics. For instance, Hu et al. (2009) used satellite-derived LAI data 

to scale up estimates of evapotranspiration based on an energy balance model. Verhoef et al. (2012) used LAI data to account 15 

for the effect of canopy in calculation of surface soil heat flux. In a study by Ford and Quiring (2013), LAI  was used to 

estimate the effects of dynamic inter-annual vegetation conditions on soil moisture, and they recommended that dynamic, 

rather than static, LAI parameters should be used to provide better estimates of intensity and duration of drought conditions.  

Global and regional studies on the causes of variations in vegetation have shown that climatic factors, particularly precipitation 

and temperature, significantly influence vegetation dynamics (Jiapaer et al., 2015; Liu et al., 2015; Montaldo et al., 2008; 20 

Tagesson et al., 2015). For instance, Tagesson et al. (2015) reported a strong link between inter-annual variation in species 

composition and rainfall distribution in a semiarid savanna grassland study site in West Africa region. The East Africa region, 

covered in this study, exhibits a wide range of climatic and ecological zones leading to diverse land cover types and land cover 

change dynamics (Brink et al., 2014). Due to the high dependence of livelihoods on rain-fed agriculture, there is high 

vulnerability to extreme negative effects of climate change in the region (Ayana et al., 2016; Grace et al., 2014; Pricope et al., 25 

2013). Land cover/use change is a major threat to the ecological systems in East Africa (Brink et al., 2014; Jacobson et al., 

2015; Maitima et al., 2009; Pricope et al., 2013). As reported by Jacobson et al. (2015), approximately 30% of the region has 

been converted to cropland or urban areas with Burundi and Rwanda showing the highest proportions, 85.99% and 82.27% 

respectively. Between 1990 and 2010, Brink et al. (2014) found that agricultural area in East Africa (comprising Djibouti, 

Eritrea, Ethiopia, Kenya, Somalia, Sudan and Uganda) increased by 28% with an alarming shift in the rate of deforestation 30 

from 0.2% per year in 1990-2000 period to 0.4% per year in 2000-2010 period. Pricope et al. (2013) addressed the spatial 

interaction between climate, vegetation variations and degradation, and population density changes in the East Africa Horn’s 

pastoral and agro-pastoral livelihoods zones. They established a potential long-term degradation of rangelands mainly due to 

population pressures and land use change.  
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One of the most disastrous and damaging hazards in East Africa is drought. As noted by Ayana et al. (2016), the frequency of 

drought in the greater horn of Africa has doubled from once every 6 years to once every 3 years, and has partly contributed to 

the increase in resource-based conflicts in the region. Despite the central role of combined precipitation and temperature effects 

on vegetation productivity in East Africa, the vegetation trends and the vegetation-climatic relationships across the East Africa 

region have not been adequately evaluated based on the readily available LAI data set covering the period 1982-2011. 5 

Investigation of the vegetation trends and its response to the precipitation and temperature conditions across the region will 

help in better understanding of the impacts on terrestrial ecosystems and identification of emerging vulnerable areas in the 

region. This is vital for better planning and management to mitigate ecological and economic loss. This study seeks to shed 

new light on vegetation trends and responses to climate anomalies across East Africa and in different land cover types in the 

region. In addition, we have evaluated the impacts of biogeographical factors on vegetation response to combined precipitation 10 

and temperature index. Specifically, this study aims to: (i) investigate spatiotemporal patterns of long-term vegetation trends 

based on LAI dataset for the period 1982-2011 at 8 km spatial resolution; (ii) evaluate vegetation response to a simple multi-

scalar drought index (the Standardised Precipitation-Evaporation Index (SPEI,  Vicente-Serrano et al., 2010) that combines 

precipitation and temperature data at varying time scales, and (iii) understand the relations between vegetation responses to 

SPEI and biogeographical factors.   15 

2 Study area and data 

2.1 Study area 

Our study area spans 2,267,136 km2 (bounded by 5.52ºN and 11.76ºS latitude, 28.8ºW and 41.92ºE longitude) and comprises 

the countries of Burundi, Kenya, Tanzania, Rwanda and Uganda, and portions of the Congo, Ethiopia, Malawi, Mozambique, 

Somalia, South Sudan and Zambia (Figure 1). A broad overview of the relation between climate and the key vegetation zones 20 

in the region is described in White (1983). The northward migration of the Intertropical Convergence Zone (ITCZ) in the 

summer months initiates a bimodal precipitation pattern in the majority of the region with a main rain season during March to 

May and short (monsoonal) rains during October to November (McNally et al., 2016). The Somalia-Masai ecoregion covers 

most of Kenya between the highlands and coastal belt as well as the dry lowlands of north and central Tanzania. This ecoregion 

consists mainly of arid and semi-arid climate with a mean annual rainfall less than 500 mm and high mean monthly temperature 25 

of between 25°C and 30°C.  

The Sudanian ecoregion extends from South Sudan to West Uganda and it is mainly characterized by a semi-arid and equatorial 

savanna type of climate with a severe dry season. The highlands and mountain areas of Kenya as well as most of the southern 

and western parts of Uganda, with more than 1000 mm mean annual rainfall in the forest zone are defined as Afromontane. 

Along the Kenyan, Tanzania and Southern Somalia coastline is the Zanzibar-Inhambane ecoregion, which consists of forests 30 

and Mangroves and is characterised by mean annual rainfall between 800 and 1200 mm. Most parts of Uganda, and some parts 
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of western Kenya, northern Tanzania and Eastern Congo as well as the whole of Eastern Rwanda and Burundi comprise the 

Lake Victoria ecoregion, which is characterized by rain forest with semi-evergreen forest and woodland/shrubland as the 

dominant vegetation type. 

2.2 Data 

We used the third generation Global Inventory Monitoring and Modelling Studies LAI (GIMMS LAI3g) dataset spanning the 5 

period 1982 to 2011, at approximately 8 km spatial resolution and a 15-day interval, to characterize vegetation dynamics. As 

described in Zhu et al. (2013), the dataset was produced by the fusion of GIMMS NDVI3g (Pinzon and Tucker, 2014) and an 

improved version of the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI using a Feed Forward Neural 

Network (FFNN) algorithm. The GIMMS LAI3g data has been validated using ground based observations measured across 

East Africa (Pfeifer et al., 2014) and has also been used to study vegetation dynamics at a global scale (Cook and Pau, 2013). 10 

To remove superfluous values in the data, the biweekly LAI data were smoothed using an optimized Savitzky-Golay (S-G) 

filter commonly used to correct Earth observation data (Chen et al., 2004). The smoothed biweekly dataset was then aggregated 

using the maximum value composites (MVC) approach to create a monthly LAI time series from 1982 to 2011. The MVC 

approach obtains monthly values as the maximum value per pixel in each pair of bi-monthly datasets.  

The climatic data sets used included precipitation, minimum and maximum temperature. The precipitation data was obtained 15 

from version 2 of the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset (Funk et al., 2015). The 

CHIRPS dataset is a 0.05° (~5 km) spatial resolution global gridded dataset of daily precipitation available from 1981 to 2015. 

It is obtained by merging satellite observations, weighted average precipitation from stations for a given pixel, and precipitation 

predictors such as elevation, latitude and longitude (Funk et al., 2015). It has been compared with other satellite precipitation 

estimates and observed rain gauge data (Ceccherini et al., 2015; Dembélé and Zwart, 2016; Toté et al., 2015) and has also been 20 

used in previous studies in East Africa (Ayana et al., 2016; Pricope et al., 2013). Minimum and maximum air temperature data 

were obtained from a high resolution daily meteorological dataset developed by the Princeton university hydrology group for 

East Africa (Chaney et al., 2014; Sheffield et al., 2006). The datasets were also resampled to 8km spatial resolution at a monthly 

time-step. 

The Synergetic land cover product (SYNMAP) (Jung et al., 2006) was used in this study to delineate major land cover classes. 25 

This is an improved global land cover product reflecting global land covers around year 2000 at 1-km spatial resolution and 

consisting of 48 different classes. This dataset was selected particularly for this study as it covers a period approximately at 

the middle of our study period. The dataset is derived based on fuzzy agreement of different global land cover products, 

including, Global Land Cover Characterization Database (GLCC), GLC2000, and the 2001 MODIS land cover product, with 

consideration of individual strengths and weaknesses of mapping approaches. The main land cover types in our study area 30 

include evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), mixed forest (MF), shrubs, grasses, crops and 

bare areas (Figure 1). In this study, dynamic land cover changes were not considered, which may bring in uncertainties due to 

change of vegetation type and land use activities. The land cover data was reclassified in to six main classes namely forest 
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(evergreen broadleaf trees, deciduous broadleaf trees and mixed trees), shrubland (shrubs, trees-shrubs mosaic, and shrub-

barren mosaic), wooded grassland (trees-grasses mosaic, and shrubs-grasses mosaic), grassland (grasses), cropland (cropland 

and cropland/natural vegetation mosaic) and bare areas. The reclassified land cover data was then aggregated to grid cells of 

approximately 8km x 8km to be consistent with the resolution of LAI and climate datasets. The Global Human Footprint Index 

dataset (LWP-2) was used as a proxy for anthropogenic effects (WCS and CIESIN, 2005) to assess the human influence on 5 

vegetation dynamics and response to climatic conditions.  

3 Methods  

3.1 Trend analysis 

3.1.1 Long-term trend analysis 

We applied the Mann-Kendall (MK) trend test method to verify the existence and direction of significant long-term trends in 10 

the data, and Thiel-Sen median slope estimator (TSE) to quantify the strength of the trend. The MK test is a non-parametric 

method which measures the degree to which a trend is a monotonic increase or decrease over time. Kendall’s τ ranges from -

1 to 1 where -1 indicates a consistently decreasing trend while 1 indicates a consistently increasing trend and zero indicates no 

consistent trend. The MK test for the statistical significance (p<0.05) of Kendall’s τ was considered appropriate since the 

assumption of normality in data distribution does not affect its validity. The TSE, used to quantify the strength of a trend, 15 

computes the trend as the median of the slopes between all n(n − 1)/2 pair wise combinations over time. It is a rank-based 

regression approach and is resistant to outliers. Its wide application has demonstrated good potential in estimating trends in 

vegetation and climatic time series data (Fensholt et al., 2012, 2013; Marshall et al., 2012; Teferi et al., 2015).  

The serial correlation in high frequency time series data (daily, weekly or monthly) has been shown as a major challenge in 

long-term trend analysis due to its effects on trend overestimation and detection even when there is none, thereby creating 20 

false rejections of the null hypothesis of a trend test (Wang et al., 2015; Yue and Wang, 2002). To address this, we opted to 

avoid seasonality in the time series data by using yearly aggregated data, which has been suggested inprevious studies 

(Boschetti et al., 2013; de Jong et al., 2011; de Jong and de Bruin, 2012). Furthermore, the Trend Free Pre-whitening (TFPW) 

procedure proposed by Yue et al. (2002) was used remove serial correlation from the time series based on a lag-one 

autoregressive model. In this procedure, if the slope estimated by the TSE is not equal to zero, a linear trend is removed from 25 

the data. A lag-1 serial correlation coefficient of the de-trended data is then computed and the AR(1) is removed. The pre-

whitened residuals and the initially estimated trend are then blended, and the MK test is applied to the blended series to measure 

the significance of the trend. 

We used monthly LAI values as a proxy for vegetation dynamics in the region. This dataset has been used previously to 

investigate long-term vegetation trends (Cook and Pau, 2013). The long-term trends were analysed on the region-wide 30 

averaged data and per-pixel on annual and seasonal basis. The two main rain seasons in the region (long rains: March to May 
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(MAM) and short rains: October to December (OND)) were considered. To obtain the area-averaged data, first we calculated 

per-pixel annual and seasonal mean temperature, total precipitation and maximum LAI values. Anomalies of LAI, precipitation 

and temperature were then calculated against 30-year mean. The resultant per-pixel anomalies for each dataset were then 

averaged to obtain region-wide average time series which were used for long-term trend analysis. Although region-wide trends 

provide useful information about changes in vegetation and climatic condition, they do not reflect the spatial inconsistencies 5 

within the region. Consequently, we also evaluated the spatial heterogeneity in the long-term vegetation trends based on per-

pixel analysis of LAI anomalies.  

3.1.2 Temporal non-stationarity of LAI trends 

We used the Breaks For Additive Season and Trend (BFAST) algorithm (Verbesselt et al., 2010) to identify shifts in the trend 

and seasonal components of the LAI time series. This algorithm iteratively splits the time series into seasonal, trend, and 10 

residual components, while trend and seasonal breakpoints and their associated confidence intervals are estimated for the 

seasonality and trend components. This allows extraction of the anomaly time series while explicitly accounting for the non-

stationarity (gradual and abrupt changes) in the trend and seasonal components of the time series. Based on the information 

output by BFAST, the largest magnitude break was detected, and its sign was used to characterize the non-stationarity of LAI 

trends. These trends were categorized into the following 6 classes: (i) monotonic increase, (ii) monotonic decrease, (iii) 15 

greening with a setback (increase with negative break), (vi) browning with a burst (decrease with positive break), (vii) reversal: 

increase to decrease, (viii) reversal: decrease to increase (De Jong et al., 2013).  

3.2 Vegetation response to climatic conditions 

3.2.1 Characterising drought/wetness conditions  

We used the Standardized Precipitation-Evaporation Index (SPEI), which is based on precipitation and Potential 20 

Evapotranspiration (PET) data, to characterise the drought/wetness conditions in a given area at dynamic time-scales. 

Compared to climatic indices based on precipitation or temperature data alone, SPEI is considered a superior climatic indicator 

as it considers the effect of temperature on water balance through its influence on the atmospheric evaporative demand. SPEI 

is multi-scalar, and can therefore be calculated at a range of time-scales (1 to 48 months) to assess water deficit impacts at 

short- and long-time scales. A user-defined calibration period (reference period) is used to calculate the average water balance 25 

while the deviations from this average are determined at varying time-scales. Positive SPEI values represent wet conditions, 

whereas negative values represent drought conditions. Due to differences in physiological or edaphic factors, some vegetation 

types may respond to short-term soil water deficit periods, while others may be more resistant and only respond to soil water 

deficits of longer durations. Therefore, at a regional scale, time scales of optimum SPEI-vegetation correlation are expected to 

vary spatially (Vicente-Serrano et al., 2013). We used the climate data described in section 2.2 to compute PET based on a 30 

modified-Hargreaves (MH) method, which includes a rainfall term (Droogers and Allen, 2002; Hargreaves, 1994). SPEI was 
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then estimated using the climatic water balance defined as precipitation minus PET  (Vicente-Serrano et al., 2010, 2013) in R 

software using the SPEI package.  

3.2.2 Short-term vegetation response to climate  

We analysed vegetation response to climatic conditions using LAI anomaly obtained from BFAST analysis to account for the 

breakpoints in the trend and seasonal components of the time series.  In addition, SPEI obtained at a three-month timescale 5 

(i.e. SPEI calculated on cumulative water balance over previous 3 months) was used. Although the maximum LAI-SPEI 

correlation is characterised by variations in the SPEI timescales in different vegetation types, we used a three-month time-

scale to assess the short-term vegetation response. Following De Keersmaecker et al., (2015 and 2017), three response metrics 

were used to described the short-term vegetation response: (i) variance metric (the standard deviation of the LAI anomaly time 

series); (ii) resistance metric (the association between the LAI anomaly and SPEI time series); and (iii) resilience metric (the 10 

auto-correlation at lag one of the LAI anomaly). 

To obtain the latter two metrics, we used a linear relationship between monthly LAI anomalies and SPEI at three-month 

timescale defined as follows. 

���� =  � ∙ ����� +  � ∙ ������ +  ��  

Where ���� is the standardised LAI anomaly at time t, �����  the standardized SPEI at time t, and �� is the residual term at 15 

time t. � and � are the model’s coefficients. α is an indicator of the extent to which the vegetation deviates from its 

equilibrium due to droughts anomalies, thus expressing the resistance against drought. Similarly, � relates to vegetation 

resilience as it gives an indication of the dependency of the anomalies on previous values. Large absolute values of � indicate 

a low resistance to droughts anomalies, hence a large vegetation response to short term droughts anomalies. On the other hand, 

large absolute values of ϕ imply that the anomalies are strongly determined by the anomaly at time t−1 and indicate a low 20 

resilience, i.e. a slow return to ecosystem equilibrium after disturbance. The time series were standardized to assure 

comparability between the model coefficients.  

In addition to the response metrics obtained for the entire study period, a twelve-year moving window was used to obtain time 

series of response metrics. The trend of these time series (obtained using the non-parametric Kendall τ rank correlation 

coefficient) was used to define the temporal non-Stationarity of the short-term vegetation response to climatic conditions. To 25 

reveal the climatic impacts on LAI variance metric, we applied a similar approach on monthly SPEI data to obtain the time 

series of climatic variance. We further calculated the Kendal τ rank correlation coefficient between the vegetation and climatic 

variance time series.  

As noted by Hawinkel et al. (2016), vegetation response to climate variability in East Africa is influenced by a set of 

biogeographical factors. We therefore analysed the spatial variations in the vegetation response metrics based on their 30 

relationship with the annual average water balance and Human Footprint Index. As the vegetation response is not linearly 

related to all explanatory factors, we used a generalized additive model with integrated smoothness estimation (Hastie and 
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Tibshirani, 1990). The global effect of these factors on vegetation response is modelled using data across the region while 

local effects are analysed per land cover type.  

4 Results  

4.1 Trend analysis 

4.1.1 Long-term trends in LAI and climatic conditions 5 

When averaged across the region, both mean LAI and temperature showed significant increasing trends during the period 

1982-2011, while total precipitation showed no significant trend during the study period (Table 1). Mean LAI increased at a 

rate of about 4×10-3 per year while the rate of increase for annual mean temperature was 0.035°C per year. On a seasonal basis, 

average temperature increased significantly in the OND season at a rate of 0.036°C per year, while LAI and precipitation did 

not show significant trends. In the MAM season, LAI and average temperature increased significantly while precipitation did 10 

not show significant trend.  

Figure 2 shows the spatial heterogeneity in LAI trends. Considering only the statistically significant pixels (p ≤ 0.05) and the 

total vegetated area in the region, the increasing and decreasing annual LAI trends accounted for 25.37% and 3.94% 

respectively. During the MAM season, positive trends showed a wider coverage at 31.04% compared to 3.87% for the negative 

trends. Compared to annual and MAM trends, the OND season shows more widespread declining vegetation trends at 12.68% 15 

while positive trends covered 18.91% of the area.  

Northern parts of Kenya show significant negative LAI trends, while increasing trends are prevalent in the East Sudanese 

Savanna (extending from South Sudan to North Uganda and mainly composed of trees and shrub cover) and the southern parts 

of Tanzania (mainly covered by deciduous broadleaf and mixed trees) for annual and MAM season. During the OND season, 

negative trends are prevalent in the deciduous broadleaf and mixed tree covered areas in Tanzania and Malawi. Along the 20 

coast region of Kenya (mainly composed of Evergreen broadleaf trees, tree/grass mosaic and cropland) and the East Sudanese 

Savanna significant positive trends were prevalent during the OND season.  

4.1.2 Temporal non-stationarity of LAI trends 

Based on the BFAST trend analysis, about 78.3% of the study area showed statistically significant (p<0.05) LAI changes for 

the study period (Figure 3). As shown in Figure 3, about 73.2% of the entire study area (or approx. 93.5% of all cases of 25 

significant LAI changes) indicated abrupt changes (composed of the interrupted and reversed trend classes) in the LAI 

timeseries. Pixels with interrupted trends accounted for 46.9% (composed of 26.6% showing greening with a setback while 

20.3% showed browning with a burst) of the area with vegetation cover. In comparison, reversed trends were identified in 

26.3% of the region, composed of greening to browning in 18.4% and browning to greening in 7.8%. On the other hand, 5.19% 

of the study area showed monotonic greening (4.72%) and monotonic browning (0.47%). The observed trend types in the 30 
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region were therefore dominated by, in a descending order, increasing trend with negative break, decreasing trend with positive 

break, reversed increase (increase to decrease) and reversed decrease (decrease to increase).  

Large patches of decreasing trend with a positive break were particularly noted in the North-eastern Kenya and Tanzania, areas 

mainly covered by grass and xeric shrubs.  Interruptions of decreasing trends were mainly recorded in the 1993-1997 period. 

Majority of the areas with significant change in both segments was characterized by an increasing trend with a negative break. 5 

Large areas showing significant change only in the second segment mainly showed a decreasing trend with a positive break 

while their timing of the break was predominantly 1993 – 1997 for Kenya and after 2002 for Tanzania. When compared across 

the region, these two classes of timing of trend shifts appeared to be the most common. A detailed analysis of significance of 

the trend segments showed that more than 25% of the respective total coverage of cropland, forest, wooded grassland and 

shrubland showed significant trends in both segments or no break and significant change. In addition, irrespective of the land 10 

cover type, pixels with significant change in only one of the two segments often showed significant trend in the second 

segment. This analysis also revealed that major changes observed in the LAI trends across the region occurred recently. 

Irrespective of the land cover type, more than 35% of the shifts in the LAI dynamics were noted in the period after 2002 while 

the periods before 1988 and between 1988 and 1992 are characterized by the lowest proportions of the detected trend shifts at 

3.02% and 10.7%, respectively.  Trends shifts in the 1998 – 2002 period were predominantly composed of increasing trend 15 

with negative break and reversed increasing trend (increase to decrease). 

Across the different land cover types, high proportion of pixels indicated increasing trend with a negative break (5), decreasing 

trend with a positive break (6), and reversed increasing trend (increase to decrease) (7).  Shrubland, which constitute the 

majority land cover type in the region, showed widespread monotonic greening (break types 1 and 3) compared to other land 

cover types.  A greater proportion of interrupted trends and a comparable proportion of pixels with reversed trends were found 20 

in cropland. Reversed greening and browning is predominant in grassland.  

4.3 Vegetation response to climatic conditions 

4.3.1 Regional average climatic water balance 

Figure 4 shows the spatial pattern of long-term average water balance (i.e precipitation minus PET) across East Africa. The 

water balance shows values increasing from the north-east to the south-west of the region. In northwest Kenya the long-term 25 

average water balance is below -1500 mm being a typical arid area also characterised by rock outcrops and bare areas. Semi-

arid areas are shown extending from south Ethiopia through central Kenya into north and central Tanzania. These areas are 

mainly composed of grasslands, cropland, wooded grassland and shrubland. The humid and semi-humid areas are found in 

west of the region, western Kenya and southern parts of the region. These areas are mainly composed of forests, 

tress/shrub/grass mosaics and cropland. We selected twelve regions representatively, shown by solid boxes in Figure 4, for 30 

case studies on LAI-SPEI correlation at various timescales.   
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4.3.2 Short-term vegetation response to climatic conditions 

Although three-month time scale was selected for vegetation response analysis in our study, the maximum LAI-SPEI 

correlation is expected to occur at varying timescales across the region. Figure 5 shows the variations in LAI-SPEI correlation 

at different time-scales for the selected case study areas (shown in Figure 4). While these selected locations represent different 

water balance regions in the study area, they also coincide with different land cover types. As shown in this figure, differing 5 

vegetation response to SPEI time-scales is evident in different water balance regions. Particularly, locations b, d, e, f, g and i 

show stronger positive LAI-SPEI correlation while locations a, k and l shows strong negative LAI-SPEI correlation. Weak 

correlation is shown in locations c, h, and j at varying time-scales. Location a, which comprises of trees-grass mosaic is 

characterised by prevalent negative correlations while potential weak positive relationship is indicated during the March-May 

season across all the time-scales. Both locations c and j, which are characterised by semi-arid and semi-humid climatic 10 

conditions as well as shrubs and trees-shrub mosaic land covert types, respectively, do not show distinctive patterns in the 

LAI-SPEI correlations. Locations f and h, which are respectively covered by crop-vegetation mosaic and grassland, showed a 

similar pattern in the LAI-SPEI correlation characterised by low correlation values in the May-August period.  

Figure 6(a) shows the increase/decrease in LAI anomaly variance given by the Kendall τ coefficient for the standard deviation 

derived over a twelve-year running window. The trend in vegetation variance/stability is positive and statistically significant 15 

in most parts of the region. Figure 6(b) shows the Kendall τ rank correlation coefficient between the LAI and SPEI variance 

time series.  As shown in this figure, variations in vegetation stability can be linked to climatic conditions. Most of the pixels 

indicated a positive relationship between the LAI and SPEI variances which implies that an increase/decrease in vegetation 

variance is linked to increase/decrease in climate variability. Stronger positive trend in vegetation variance shows a similar 

spatial pattern compared to the LAI-SPEI stability correlation, implying widespread influence of precipitation on vegetation 20 

trends in the region.  

A correlation analysis between the two metrics (i.e. Kendall τ coefficient for LAI variance time series and Kendall τ rank 

correlation coefficient between the LAI and SPEI variance time series) showed that, although not strong (r = 0.44), the spatial 

relationship between both coefficients was positive and significant. This indicates that positive SPEI variance trends tend to 

favour positive LAI variance trends across the region. The spatial variations in vegetation stability and relationship between 25 

vegetation and SPEI variance also reflect differences in land cover types. The LAI variance shows widespread increasing trend 

across all the land cover types but predominantly in the grasslands and wooded grasslands. A similar pattern is indicated in the 

correlation between LAI variance and SPEI variance. However, a decrease in this correlation is prevalent in forests, shrubland 

and cropland which also showed large proportions of decreasing trend in LAI variance.  

Figure 7 shows the spatial distribution of vegetation drought-resistance and resilience coefficients over the complete period 30 

(1982 to 2011). Although the model converged effectively with RMSE <0.9 in all pixels, coefficients were not significant in 

some pixels at 95% confidence level, which were masked from the analysis. Vegetation drought-resistance coefficients were 

positive and largely significant, emphasizing the predominance of water balance forcing on vegetation in the region. The 
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spatial distribution of this coefficient generally reflects the spatial patterns of the different land cover types in the region. High 

and significant drought-resistance coefficient sis evident in the stretch extending from south-eastern area of South Sudan to 

east of Uganda and western Kenya into Norther parts of Tanzania. This is indicative of the low resistance thus large vegetation 

response to short term drought anomalies in these areas. These areas are mainly composed of grassland, cropland and 

crop/natural vegetation mosaic land cover types. However, some areas showed insignificant drought-resistance coefficients, 5 

mainly in western and southern parts of the region that composed of deciduous and evergreen broadleaf and mixed tree cover.   

On the other hand, resilience coefficients were positive and significant across the region. High vegetation resilience coefficients 

were prevalent in Kenya, Tanzania and eastern parts of Uganda, which implies slow return to ecosystem equilibrium after 

potential disturbance in those areas. In addition, the two coefficients (vegetation resistance and resilience) showed widespread 

contrast in their spatial distributions. The areas with low drought-resistance coefficients (i.e. high resistance to drought) also 10 

show high resilience coefficients (i.e. low resilience) and vice versa. For instance, the north-eastern Kenya region (mainly 

composed of grassland and shrubland) showed low drought resistance coefficient and a high resilience coefficient.  

The sensitivity of vegetation response to water balance and human footprint index in different land cover types was compared 

to the regional sensitivity across East Africa (Figure 8). Across the region, vegetation response to climatic conditions is most 

strongly determined by the climatic conditions, human factors as well as structural features of the vegetation itself. As shown 15 

in Figure 8a and b, vegetation resistance coefficient is significantly and negatively related to the annual water balance across 

the region which shows that vegetation in the low water balance areas is more sensitive to drought anomalies compared to 

relatively humid areas. The sensitivity of the resistance coefficient in different land cover types across the region also shows 

significant variations. Areas dominated by herbaceous vegetation cover (wooded grassland, grassland and croplands) show 

larger overall sensitivity to short-term SPEI anomalies in arid and humid areas. Particularly, cropland show higher sensitivity 20 

compared to the regional curve in the areas with annual water balance less than -750 mm and greater than -200 mm while 

resistance in grassland shows high sensitivity beyond -750 mm of annual water balance (Figure 8a). On the other hand, drought 

resistance in grassland and wooded grassland shows a higher sensitivity to human influence while cropland shows a lower 

sensitivity compared to the regional curve. In shrublands, the impact of annual average water balance on vegetation resistance 

approaches the average regional curve with a decreasing sensitivity beyond -250 mm of annual water balance. This land cover 25 

type also shows a lower sensitivity to human influence below 35% of the human footprint index. Drought resistance in forests 

shows a consistently lower sensitivity to both annual water balance and human influence.  

On the other hand, vegetation resilience coefficient is negatively related to both annual water balance and human footprint 

index in the region (Figure 8c and d). Unlike the resistance coefficient, the sensitivity of vegetation resilience to both factors 

does not vary widely across different land cover types. Except in cropland, the different land cover types show a rapid 30 

decreasing sensitivity of vegetation resilience coefficient to water balance below -1000 mm. Both shrubland and wooded 

grassland show a relatively complicated sensitivity of resilience to water balance. On the other hand, except in cropland, human 

influence on vegetation resilience is relatively higher in other land cover types compared to the regional curve. Sensitivity of 

forest resilience is fairly constant across the region.  
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In addition to the vegetation response across the complete period of analysis, the temporal changes in the drought resistance 

and resilience coefficients were also analysed. Figure 9 shows the spatial heterogeneity in the temporal variations of vegetation 

drought-resistance and vegetation resilience coefficients. The vegetation resistance metric shows the largest increase in forest, 

wooded grassland and grasslands. These land cover types are also characterised by the largest increase in the resilience metric.  

Forests and cropland showed the highest spatial variance in the trend of resistance metric while the trend of resilience metric 5 

varied widely in wooded grassland and grasslands.  

5 Discussion 

5.1 Spatio-temporal variations in vegetation 

The east Africa region, which is mainly characterised by vast dryland ecosystems, was focused in this study. These ecosystems 

are often over-utilised for pastoral grazing and mixed cereal cropping systems thus exacerbating their vulnerability to extended 10 

drought occurrences leading to severe negative implications on food security and community livelihoods (Hoscilo et al., 2015; 

Landmann and Dubovyk, 2013; Pricope et al., 2013). The results presented here provide a view of vegetation dynamics that 

could be used to fully appreciate where significant changes in ecosystem functioning have occurred in the region. Vegetation 

trend analysis using the GIMMS LAI showed a significant increase in the annual vegetation condition in over 25.37% of study 

area for the period 1982–2011. In northern parts of Uganda and DRC, increasing LAI trends were found in the annual and 15 

MAM time series. These areas are characterised by savanna-forest transition land cover types mainly composed of grassland, 

shrubland and wooded grassland. These areas were also identified by Mueller et al. (2014), in a global NDVI trend analysis, 

as part of eco-regional extremes for NDVI  increase. This increase in LAI could be attributed to increasing land cover transition 

to croplands. The southern parts of Tanzania, particularly the Tanzania’s Eastern Arc mountain ranges, also showed increasing 

LAI trends in the annual and MAM time series. Widespread decreasing LAI trend found in Tanzania during the OND season 20 

coincides with Vrieling et al. (2013)’s finding of a decrease in the length of growing season. The significant and persistent 

negative trends in north-central and southern Kenya coincide with a significant decline in precipitation and can be attributed 

to climatic effects, as also reported by Hoscilo et al. (2015). In addition, the decline in LAI shown in our analysis could also 

be a combined effect of climate as well as replacement of shrubs by grass and crops with lower LAI values in areas 

characterised by intensive pastoral activities.   25 

The temporal non-stationarity of LAI trends derived over the complete study period varies spatially and depends on the land 

cover type. Although the regional variations in LAI are closely linked to climatic and human-induced factors, it is still unclear 

how the increasing and decreasing trends shown from the timeseries analysis are influenced by the different land-use changes 

in the region. A wide coverage of significant reversed increasing trends (increase to decrease), particularly in Kenya and 

Tanzania, coincides with both significant and non-significant decreasing trend in the long-term trend analysis. This indicates 30 

the need to consider potential turning points in long-term vegetation index time series analysis. Interrupted positive trends 

(increase with negative break) across the region leads to a decline in areas identified as indicating increase in long-term trends.  
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5.2 Vegetation response to climate 

The stability of natural and productive ecosystems and their flow of services is crucial especially amid potential climate change 

impacts. Assessment and quantification of this stability has been largely aided by the availability of regional to global scale 

and long-term time series of vegetation indices derived from readily available remote sensing datasets. The vegetation response 

metrics derived in this study revealed contrasting spatial patterns. For instance, a sample set of pixels representing different 5 

land cover types under varied water balance regions across the study area showed highest LAI-SPEI monthly correlations at 

various time-scales.  

The vegetation variance, resistance, and resilience metrics obtained across the study period showed widespread spatial 

heterogeneity, which indicates the influence of land cover types on vegetation response to short-term droughts and memory 

effects. The fact that vegetation response is stronger for a given range of annual water balance emphasises also the effects of 10 

different vegetation formations. The vegetation resistance coefficient in forest environments was evidently very small and 

statistically insignificant, which implies that the greenness of trees is not largely influenced by short-term variations in the 

water balance. This corresponds with the findings of Camberlin et al. (2007) based on NDVI-rainfall regression analysis in 

tropical Africa. In addition to the lack of vegetation response to inter-annual water balance variability, seasonal LAI variations 

in most of these areas do not match seasonal rainfall variability. In these areas, leafing can be induced by rainfall amounts even 15 

lower than average while the effects of moisture deficit are hampered by the capability of the vegetation to tap deep soil water 

resources. In addition, the lack of significant vegetation response in such vegetation formations may be attributed to other 

biases in the LAI time series such as cloud contamination as well as predominance of other vegetation growth constraints 

(Huxman et al., 2004) .  

The annual average water balance emerged as the key factor determining the level of vegetation resistance to drought anomalies 20 

compared to the human footprint. A high sensitivity of vegetation resistance coefficient across the region coincides with 

intermediate water balance areas (-1000 to -500 mm). The major peak of the vegetation resilience sensitivity to water balance 

is shown at -750 mm. This relates with findings of Huxman et al. (2004) based on the correlation analysis of net primary 

production and annual precipitation data at sites sampled from major global biomes. However, the influence of annual average 

water balance on vegetation resistance coefficient is somewhat intricate: a positive effect is shown in areas with annual average 25 

water balance below -750 mm, which changes to decreasing influence between -750 mm and 0 mm and then to relatively 

constant sensitivity in areas with annual average water balance greater than 0 mm. The low sensitivity in drier areas has been 

linked to vegetation drought resistance strategies such as low specific leaf area, high root–shoot ratio and low stomatal 

conductance (Paruelo et al., 1999). While in wetter areas, the vegetation is also well-adapted to the temporary seasonal 

constraint in water availability (Camberlin et al., 2007).  30 

In addition to response metrics derived across the complete study period, this study also quantified the magnitude and direction 

of temporal vegetation response changes in east Africa. The temporal changes in the vegetation response metrics imply 

technical and ecological effects. Therefore, the assumption of stationarity in whole time series is not realistic for the analysis 
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of vegetation dynamics. In addition, results are likely to differ significantly depending on the time series length as well the 

data sources (De Keersmaecker et al., 2017). However, further analysis is required to disentangle human and climatic induced 

causes of these variations.  

6 Conclusions 

This paper focused on understanding the spatial-temporal variations in LAI during 1982-2011 period over East Africa based 5 

on robust non-parametric trend tests. We found hotspots with significant LAI declines over the last 30 years, thus signifying 

the areas of potential land degradation and increased vulnerability to climate change in the future. Although potential climatic 

degradation has been cited in these areas, other factors such as population pressures and declining land health should be 

considered in future studies in the region. The region is mainly characterized by sparse vegetation that is composed of grass 

and shrubs. At the 8km spatial resolution used in this study, some gradual and abrupt vegetation changes may have been 10 

masked. We therefore recommend further analysis at higher spatial resolution. The BFAST decomposition is a useful approach 

for the detection of abrupt intra-annual changes within the trend and seasonal components and their time of occurrence, as well 

as the quantification of the magnitude of these abrupt changes detected during the study period. This approach provides 

valuable support in decision-making on potential ecosystem degradation hot-spots and further unravelling of human and 

climatic related disturbances to ecosystem functioning.  15 

The vegetation-climate regression analysis provided a view of the interactions between vegetation and climate. However, there 

is need for further analysis of the multifaceted connection between vegetation production patterns to human and climatic 

drivers in region to account for the individual and coupled effects of both natural and anthropogenic determinants of terrestrial 

ecosystem functioning. This can be achieved through studies incorporating long-term climate change, variations in climatic 

extremes and CO2 fertilization, as well as potential land-atmosphere feedbacks of land use/cover changes and increased human 20 

footprint. Future studies in this region should also attempt to explore vegetation responses based on the use of well 

parameterized dynamic vegetation growth models that solve the land surface water and energy balance in a coupled manner. 

It is also worth noting that higher resolution LAI and climatic data might present a clearer picture of the vegetation dynamics 

since a large proportion of the study area is mainly arid and semi-arid thus at 8 km spatial resolution, the actual vegetation 

dynamics may not be well captured. 25 
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Table 1: The trends in annual and seasonal mean LAI, temperature and precipitation in the period 1982–2011 for different 
land cover types and across the whole region. The slope indicates change per year while significance is defined as + = p < .1, 
* = p < .05, ** = p < .01, *** = p < .001 

 

 5 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-123
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 15 January 2018
c© Author(s) 2018. CC BY 4.0 License.



20 
 

 

 

 

Figure 1: Location of the study area and land cover types based on the Synergetic land cover product (SYNMAP) at 1-km spatial 
resolution  5 
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Figure 2: Spatial patterns of long term (a) annual, (b) MAM, and (c) OND LAI trends. Significance of the trends is based on 95% 
confidence level. NS+ and NS- represents the non-significant positive and negative trends, respectively.  

 

 5 

 
Figure 3: (a) Type, (b) significance and (c) timing of trend shift in monthly LAI time series. Trends and breaks are considered as 
significant when P-value is below 0.05. Pixels with no significant (P < 0.05) change for all segments and/or no significant (P < 0.05) 
breakpoint are not shown. The trend shifts types in (a) are: (1) monotonic increase, (2) monotonic decrease, (3) monotonic increase 
(with positive break), (4) monotonic decrease (with negative break), (5) interruption: increase with negative break, (6) interruption: 10 
decrease with positive break, (7) reversal: increase to decrease, and (8) reversal: decrease to increase. The significance classes are: 
(1) both segments significant (or no break and significant), (2) only first segment significant, and (3) only 2nd segment significant.  
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Figure 4: Spatial distribution of average annual water balance during the period of 1982–2011. Regions circled by thick solid box 
are denoted as the typical water balance regions selected for case studies on LAI-SPEI correlation at various timescales. 
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Figure 5: Spearman correlation coefficient between LAI and SPEI at time scales from 1 to 24 months in the case study locations 
shown in Figure 4.  
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Figure 6: Spatial overview of the Kendall τ coefficient for (a) LAI standard deviation time series derived over a twelve-year running 
window and (b) correlation between the LAI and SPEI twelve-year running window standard deviation time series. Only significant 
pixels are shown. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-123
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 15 January 2018
c© Author(s) 2018. CC BY 4.0 License.



25 
 

 
Figure 7: Spatial patterns of vegetation (a) drought-resistance coefficient and (b) resilience coefficient. The pixels with insignificant 
coefficients are masked.   
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Figure 8: The effect of mean annual water balance and human footprint index on the inter-annual vegetation response to SPEI 
anomalies. The local response in different land cover types is compared to the overall curve for East Africa (red line). 
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Figure 9: Spatial overview of Kendall τ coefficient for (a) vegetation drought-resistance coefficient, and (b) vegetation resilience 
coefficient for the period 1982-2011. Only significant pixels are shown. 
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