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REFINED NODE POLYNOMIALS VIA LONG EDGE GRAPHS

LOTHAR GÖTTSCHE AND BENJAMIN KIKWAI

Abstract. The generating functions of the Severi degrees for sufficiently ample line

bundles on algebraic surfaces are multiplicative in the topological invariants of the sur-

face and the line bundle. Recently new proofs of this fact were given for toric surfaces by

Block, Colley, Kennedy and Liu, Osserman, using tropical geometry and in particular

the combinatorial tool of long-edged graphs. In the first part of this paper these results

are for P2 and rational ruled surfaces generalised to refined Severi degrees. In the second

part of the paper we give a number of mostly conjectural generalisations of this result

to singular surfaces, and curves with prescribed multiple points.

1. Introduction

The Severi degree nd,δ is the number of δ-nodal degree d curves in the projective plane

P2 through d(d+ 3)/2 − δ general points. More generally for a pair (S, L) of a complex

projective surface a line bundle on S, the Severi degree n(S,L),δ counts the number of δ-

nodal curves in the linear system |L| passing through dim |L|− δ general points. In [DFI]

is was conjectured that there are polynomials nδ(d) in d, called node polynomials, such

that nd,δ = nδ(d), for d sufficiently large with respect to δ. In [Göt] it was conjectured

that there are universal polynomials tδ(x, y, z, w), such that for L sufficiently ample with

respect to δ, n(S,L),δ is obtained by substituting the intersection numbers L2, LKS , K
2
S,

χ(OS): writing nδ(S, L) := tδ(L
2, LKS, K

2
S, χ(OS)) we should have nδ(S, L) = n(S,L),δ.

The conjectures of [Göt] furthermore express the generating functions

n(d) :=
∑

δ≥0

nδ(d)t
δ, n(S, L) :=

∑

δ≥0

nδ(S, L)t
δ

in terms of some universal power series. n(S, L) is multiplicative in the parameters, i.e.

(1.1) n(S, L) = A1(t)
L2

A2(t)
LKSA3(t)

K2
SA4(t)

χ(OS),

for some power series Ai(t) ∈ Q[[t]], and thus in particular

(1.2) n(d) = A1(t)
d2A2(t)

−3dA3(t)
9A4(t).

Furthermore explicit formulas for A1(t) and A4(t) are given in terms of modular forms.

We will call (1.1) and (1.2) the multiplicativity of n(S, L) and n(d). The Severi degrees

of P2 and toric surfaces can be computed via tropical geometry, by the Mikhalkin cor-

respondence theorem [Mik]. This was used in [FM] to prove the existence of the node

polynomials nδ(d), using Floor diagrams which are combinatorial devices for encoding
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tropical curves. The conjecture of [Göt] was proven in [Tze], [KST], using the methods

of complex geometry. In [BCK] and [L] the Severi degrees nd,δ were studied using long

edge graphs, a modification of floor diagrams, giving an alternative proof for the multi-

plicativity of the generating function n(d). This is done by taking the formal logarithm.

Q(d) := log(n(d)) =
∑

δ≥1

Qδ(d)t
δ.

The multiplicativity for n(d) is equivalent to the statement that Qδ(d) is a polynomial

of degree 2 in d for all δ. This is proven in [BCK] and [L], giving the first purely

combinatorial proofs of (1.2). In [LO] this result is generalized to a large class of toric

surfaces, and a generalisation is given to toric surfaces with rational singularities. This

note tries to extend these results to the refined Severi degrees defined in [GS] and [BG]

and thus also to the Welschinger numbers.

The Welschinger numbers W d,δ count δ-nodal degree d real curves in P2 through d(d+

3)/2−δ real points with suitable signs, andW (S,L),δ counts real δ-nodal curves in the linear

system |L| on a real algebraic surface S through a configuration of dim |L|−δ real points.

They are closely related to to the Welschinger invariants, deformation invariants defined

in genus 0. The Welschinger numbers depend in general on the point configuration, but

in [Mik] it is shown that, for a so called subtropical configuration of points, they coincide

with the tropical Welschinger invariants W trop
d,δ , W trop

(S,L),δ, defined via tropical geometry

(and these are independent of the tropical configuration of points). In future we will

assume that we are dealing with a subtropical configuation of points .

In [GS] and [BG] refined Severi degrees Nd,δ(y), and N (S,L),δ(y) for toric surfaces

are introduced via tropical geometry. These are symmetric Laurent polynomials in a

variable y, interpolating between the Severi degrees and the Welschinger numbers, i.e.

N (S,L),δ(1) = n(S,L),δ, N (S,L),δ(−1) = W (S,L),δ. In [GS] analogues of the conjectures of

[Göt] are formulated for the refined Severi degrees. In particular for δ ≤ 2d−2 the Nd,δ(y)

should be given by refined node polynomials Nδ(d; y) ∈ Q[d, y±1]. Similarly for pairs

(S, L) of a smooth toric surface and a δ-very ample toric line bundle the conjectures say

N (S,L),δ(y) = Nδ((S, L); y), for some polynomial in Nδ((S, L); y) in L2, LKS, K
2
S, χ(OS).

In the case of P2, P(1, 1, m) or a Hirzebruch surface Σm, these conjectures are (with

weaker bounds) proven in [BG, Thm. 4.2].

We introduce generating functions for the refined node polynomials. Let

N(d)(y, t) :=
∑

δ≥0

Nδ(d; y)t
δ, N(S, L)(y, t) :=

∑

δ≥0

Nδ(S, L; y)t
δ.

In [GS] it is again conjectured that N(S, L)(y, t) is multiplicative.
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Conjecture 1. [GS] There exist power series Ai(y, t) ∈ Q[y±1][[t]], i = 1, 2, 3, 4, such

that for all pairs (S, L) of a smooth toric surface and a toric line bundle we have

N(S, L)(y, t) = A1(y, t)
L2

A2(y, t)
LKSA3(t)

K2
SA4(t)

χ(OS),

N(d)(y, t) = A1(y, t)
d2A2(y, t)

−3dA3(y, t)
9A4(y, t).

(1.3)

Two of these power series are expressed in terms of Jacobi forms. One can rewrite

(1.3) in a different way:

(1.4) Nδ(S, L; y) = Coeff
qL(L−KS)/2

[
DG2(y, q)

L(L−KS)/2−δB1(y, q)
K2

SB2(y, q)
LKSB3(y, q)

χ(OS)
]

Here DG2(y, q), Bi(y, q) ∈ Q[y±1][[q]], and DG2(y, q), B3(y, q) are related to theta func-

tions. For more details see Section 4.

In the first part of the current note we adapt the method of long edge graphs and the

proofs of [BCK], [L], [LO] to refined Severi degrees, to prove the multiplicativity also

for the N(d)(y, t) and a weaker version of multiplicativity for rational ruled surfaces (see

Theorem 24). We combine this with computer calculations of the refined Severi degrees

and the Welschinger numbers of P2 and rational ruled surfaces. This allows to determine

the refined node polynomials of P2 and rational ruled surfaces for low values δ, confirming

the predictions of [GS] (see Corollary 31), and extending the results of [BG].

We then extend the results and conjectures to surfaces with singularities and to curves

passing through (smooth or singular) points of S with higher multiplicity. This in partic-

ular includes a conjectural generalisation of the results of [LO] to the refined invariants.

The conjectural formulas generalize (1.4). For every condition c that we can impose on

the curves at a point of S, we get a power series Dc(y, q) ∈ Q[y±1][[q]], such that the

refined count of curves in |L| on S satisfying conditions c1, . . . , cs will be given by

(1.5) Coeff
qL(L−KS)/2

[
B1(y, q)

K2
SB2(y, q)

LKSB3(y, q)
χ(OS)

s∏

i=1

Dci(y, q)
]

The formula (1.4) is the case that the conditions imposed are to pass through L(L −

KS)/2−δ general points, in particular DG2(y, q) is the power series corresponding to the

condition of passing through a point.

2. Refined Severi degrees and long edge graphs

2.1. Refined Severi degrees and Floor diagrams. In [GS], [BG] refined Severi de-

grees were introduced. We will briefly recall some of the results and definitions.

A lattice polygon ∆ ⊂ R2 is a polygon with vertices of integer coordiates. The lattice

length of an edge e of ∆ is #(e ∩ Z2) − 1. We denote by int(∆), ∂(∆) its interior and

its boundary. To a convex lattice polygon ∆ one can associate a pair S(∆), L(∆) of a

toric surface and a toric line bundle on S(∆). The toric surface is defined by the fan

given by the outer normal vectors of ∆. We have dimH0(S(∆), L(∆)) = #(∆ ∩ Z2).

The arithmetic genus of a curve in |L(∆)| is g(∆) = #(int(∆) ∩ Z2). In [BG, Def. 3.8]
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refined Severi degrees N∆,δ(y) are defined for any convex lattice polygon ∆. They are

a count of tropical curves in R2 satisfying suitable point conditions with multiplicities

which are Laurent polynomials in y. We also write NS(∆),L(∆),δ(y) := N∆,δ(y). The

N∆,δ(y) interpolate between the Severi degrees (at y = 1) and the tropical Welschinger

numbers (at y = −1).

Example 2. In the following we will be concerned only with the following lattice polygons

∆c,m,d =
{
(x, y) ∈ (R≥0

∣∣ y ≤ d; x +my ≤ md + c
}
, for d,≥ 0, m ≥ 0, c ≥ 0. These are

so called h-transversal lattice polygons, i.e. all the slopes of the outer normal vectors of

∆ are integers or ±∞. This covers three different cases:

(1) d ≥ 0, m = 1, c = 0. In this case S(∆0,1,d) = P2, L(∆0,1,d) = dH , with H the

hyperplane bundle on P2.

(2) d ≥ 0, m ≥ 1, c = 0. In this case S(∆0,m,d) = P(1, 1, m), L(∆0,m,d) = dH , with

H the hyperplane bundle on P(1, 1, m) with self intersection m.

(3) d ≥ 0, ≥ 0, m ≥ 0, c ≥ 0. In this case S(∆c,m,d) is the rational ruled surface Σm.

Let E be the class of a section with self intersection −m and F the class of a

fibre. Let H := E +mF . Then L(∆) = cF + dH .

Note that in some cases the same lattice polygon corresponds to different pairs of a surface

and a line bundle, but by the above the refined Severi degree only depends on ∆.

In [BG] it was also shown that the refined Severi degrees can for h-transversal lattice

polygons be computed in terms of Floor diagrams. Here we will not recall the definition

of the refined Severi degrees as a count of tropical curves, but directly review them in

terms of Floor diagrams which are very closely related to long-edge graphs. We will

also restrict our attention to the lattice polygons ∆c,m,d of Example 2, and thus to P2,

P(1, 1, m) and Σm. In the following we fix d,m, c and write ∆ = ∆c,m,d.

Definition 3. A ∆-floor diagram D consists of:

(1) A graph on a vertex set {1, . . . , d}, possibly with multiple edges, with edges di-

rected i → j if i < j. Edges e carry a weight w(e) ∈ Z>0.

(2) A sequence (s1, . . . , sd) of non-negative integers such that s1 + · · ·+ sd = c.

(3) (Divergence Condition) For each vertex j of D, we have

div(j)
def
=

∑

edges e

j
e
→ k

w(e)−
∑

edges e

i
e
→ j

w(e) ≤ m+ sj .

Notation 4. For an integer n we introduce the quantum number [n]y by

[n]y =
yn/2 − y−n/2

y1/2 − y−1/2
= yn−1/2 + yn−3/2 + . . .+ y−n+3/2 + y−n+1/2.
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Definition 5. We define the refined multiplicity mult(D, y) of a floor diagram D as

mult(D, y) =
∏

edges e

([w(e)]y)
2 .

By definition mult(D, y) is a Laurent polynomial in y with positive integral coefficients.

Definition 6. A marking of a floor diagram D is defined by the following four step

process

Step 1: For each vertex j of D create sj new indistinguishable vertices and connect

them to j with new edges directed towards j.

Step 2: For each vertex j of D create m + sj − div(j) new indistinguishable vertices

and connect them to j with new edges directed away from j. This makes the divergence

of vertex j equal to m.

Step 3: Subdivide each edge of the original floor diagram D into two directed edges

by introducing a new vertex for each edge. The new edges inherit their weights and

orientations. Denote the resulting graph D̃.

Step 4: Linearly order the vertices of D̃ extending the order of the vertices of the

original floor diagram D such that, as before, each edge is directed from a smaller vertex

to a larger vertex.

The extended graph D̃ together with the linear order on its vertices is called a marked

floor diagram or marking of the floor diagram D.

The cogenus of a marked floor diagram D̃ is δ(D̃) := #(∆ ∩ Z2) − 1 − k, where k is

the total number of vertices of D̃ (this coincides with the cogenus of the tropical curve

corresponding to D̃, see e.g. [BG2, Def. 4.2]). We count marked floor diagrams up to

equivalence. Two markings D̃1, D̃2 of a floor diagram D are equivalent if there exists an

automorphism of weighted graphs which preserves the vertices of D and maps D̃1 to D̃2.

We denote ν(D) the number of markings D̃ of D up to equivalence. Denote by FD(∆, δ)

the set of ∆-floor diagrams D with cogenus δ.

Theorem 7. ([BG, Thm. 5.7]) For ∆ = ∆c,m,d as in Example 2 and δ ≥ 0, we have

N∆,δ(y) =
∑

D∈FD(∆,δ)

mult(D; y) · ν(D).

2.2. Caporaso-Harris type recursion. In [BG] also a Caporaso-Harris type recursion

is proven for the refined Severi degrees of P2, P(1, 1, m) and Σm, thus showing that they

coincide with the refined Severi degrees as defined in [GS]. This recursion can be easily

programmed in Maple, and has been extensively used in the course of this paper to find

conjectural generating functions for the refined Severi degrees. In this section let S be

P2, P(1, 1, m) and Σm. We first recall the notations.

By a sequence we mean a collection α = (α1, α2, . . .) of nonnegative integers, almost

all of which are zero. For two sequences α, β we define |α| =
∑

i αi, Iα =
∑

i iαi,
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α+β = (α1+β1, α2+β2, . . .), and
(
α
β

)
=
∏

i

(
αi

βi

)
. We write α ≤ β to mean αi ≤ βi for all

i. We write ek for the sequence whose k-th element is 1 and all other ones 0. We usually

omit trailing zeros. For sequences α, β, and δ ≥ 0, let γ(L, β, δ) = dim |L|−HL+ |β|−δ.

The relative refined Severi degrees N (S,L),δ(α, β)(y) is defined in [BG, Def. 7.2]. Here

N (S,L),δ(α, β)(1) is the relative Severi degree, i.e. the number of δ-nodal curves in |L|

not containing H , through γ(L, β, δ) general points, and with αk given points of contact

of order k with H , and βk arbitrary points of contact of order k with H . By defini-

tion the relative refined Severi degrees contain the refined Severi degrees as special case:

N (S,L),δ(0, (LH))(y) = N (S,L),δ(y).

Theorem 8. ([BG, Thm. 7.5]) Let L be a line bundle on S and let α, β be sequences

with Iα+ Iβ = HL, and let δ ≥ 0 be an integer. If γ(L, β, δ) > 0, then

N (S,L),δ(α, β)(y) =
∑

k:βk>0

[k]y ·N
(S,L),δ(α + ek, β − ek)(y)

+
∑

α′,β′,δ′

(
∏

i

[i]
β′
i−βi

y

)(
α

α′

)(
β ′

β

)
N (S,L−H),δ′(α′, β ′)(y).

(2.1)

Here the second sum runs through all α′, β ′, δ′ satisfying the condition

α′ ≤ α, β ′ ≥ β, Iα′ + Iβ ′ = H(L−H),

δ′ = δ + g(L−H)− g(L) + |β ′ − β| − 1 = δ −H(L−H) + |β ′ − β|.
(2.2)

Initial conditions: if γ(L, β, δ) = 0 we have N (S,L),δ(α, β)(y) = 0, except for N (P2,H),0((1), (0))(y) =

1, N (P(1,1,m),H),0((1), (0))(y) = 1 and N (Σm,kF ),0((k), (0))(y) = 1, for all k ≥ 0.

2.3. Long edge graphs. We review long edge graphs from [BCK], [L], [LO], working

in the context of refined invariants. They are very close related to Floor diagrams. We

follow the presentation in [L], [LO]. The arguments used are similar to those of [L], [LO].

Definition 9. A long edge graph G is a graph (V,E) with a weight function w : E → Z>0

satisfying the following.

(1) The vertex set is V = Z≥0, the edge set E is finite.

(2) G can have multiple edges, but no loops.

(3) G has no short edges, i.e. no edges connecting i and i+ 1 of weight 1.

An edge connecting i and j with i < j will be denoted (i → j) (note that there can be

more than one such edge). The length of an edge e = (i → j) is ℓ(e) := j − i.

Definition 10. Given a long edge graph G = (V,E, w), the refined multiplicity of G is

M(G)(y) :=
∏

e∈E

([w(e)]y)
2.
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The Severi multiplicity m(G) and the Welschinger multiplicity of G are

m(G) := M(G)(1) =
∏

e∈E

w(e)2, r(G) := M(G)(−1) =




1 all w(e) are odd,

0 otherwise.

The cogenus of G is δ(G) :=
∑

e∈E(ℓ(e)w(e)− 1).

We denote minv(G) (resp. maxv(G)) the smallest (resp. largest) vertex i of G adjacent

to an edge. The length of G is l(G) := maxv(G)−minv(G).

We denote G(k) the graph obtained by shifting all edges of G to the right by k.

Definition 11. Let G be a long edge graph. For any j ∈ Z≥0 let λj(G) :=
∑

ew(e), for

e running through the edges (i → k) with i < j ≤ k.

For β = (β0, . . . , βM) a sequence of nonnegative integers, G is called β-allowable if

maxv(G) ≤ M + 1 and βj−1 ≥ λj(G) for all j = 1, . . . ,M + 1. G is called strictly β-

allowable if it is β-allowable and furthermore all edges incident to 0 or M +1 have weight

1. Also write λj(G) := λj(G) − #{edges (j − 1 → j)}. G is called β-semiallowable if

maxv(G) ≤ M + 1 and βj−1 ≥ λj(G) for all j.

In this paper we will mostly consider the following sequences.

Notation 12. Let c, d,m ∈ Z≥0. We put s(c,m, d) := (e0, . . . , ed) with ei = c+mi.

Definition 13. A long edge graph Γ is a template if for any vertex 1 ≤ i ≤ ℓ(Γ)−1 there

exists at least one edge (j → k) with j < i < k. A long edge graph G is called a shifted

template if G = Γ(k) for some template k ∈ Z≥0.

Definition 14. Let G be β-allowable for β = (β0, . . . , βM). Define a new graph extβ(G)

by adding βj−1−λj(G) edges of weight 1 connecting j− 1 and j for all j = 1, . . . ,M +1.

A β-extended ordering of G is a total ordering of the vertices and edges of extβ(G),

such that

(1) it extends the natural ordering of the vertices 0, 1, 2, . . .,

(2) if an edge e connects vertices i and j, then e is between i and j.

Two extended orderings o, o′ of G are considered equivalent if there is an automorphism

of the edges, permuting only edges connecting the same vertices and of the same weight

which sends o to o′.

Definition 15. For a long edge graph let Pβ(G) be the number of β-extended orderings of

G up to equivalence. Here Pβ(G) is defined to be 0, if G is not β-allowable. Furthermore

let P s
β(G) :=




Pβ(G) G strictly β-allowable,

0 otherwise.

Definition 16. Given β ∈ ZM+1
≥0 , define

N δ
β(y) :=

∑

G

M(G)P s
β(G), nδ

β :=
∑

G

m(G)P s
β(G), W δ

β :=
∑

G

r(G)P s
β(G),
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where the summation is over all long edge graphs G of cogenus δ.

Notation 17. We denote Σm := P(O ⊕ O(m)) the m-th rational ruled surface. Let F

be the class of the fibre of the ruling and let E be the class of a section with E2 = −m.

We denote H := E +mF .

The connection to the refined Severi and tropical Welschinger numbers is given by

Theorem 18. (1) For the refined Severi degrees of P2, P(1, 1, m) and Σm we have

Nd,δ(y) = N δ
s(0,d,1)(y), N

(P(1,1,m),dH),δ(y) = N δ
s(0,m,d)(y), N

(Σm,cF+dH),δ(y) = N δ
s(c,m,d)(y).

(2) For the Severi degrees we have nd,δ = nδ
s(0,d,1), n

(P(1,1,m),dH),δ = nδ
s(0,m,d), n

(Σm,cF+dH),δ =

nδ
s(c,m,d).

(3) For the Welschinger numbers we have W d,δ = W δ
s(0,d,1), W

(P(1,1,m),dH),δ = W δ
s(0,m,d),

W (Σm,cF+dH),δ = W δ
s(c,m,d).

Proof. The proof is similar to that of [BCK, Thm. 2.7], we include it for completeness.

It is enough to prove (1), because by Definition 16 and Definition 10 we have nδ
β = N δ

β(1)

and W δ
β = N δ

β(−1), and we know N (S,L),δ(1) = n(S,L),δ, N (S,L),δ(−1) = W (S,L),δ for any

pair (S, L) of toric surface and toric line bundle. Furthermore it is enough to prove (1)

in case S = Σm, because by Theorem 7 we have N (P(1,1,m),dH),δ(y) = N (Σ(1,1,m),dH),δ(y).

Let ∆ = ∆c,m,d for c,m, d ∈ Z≥0. Let β := s(c,m, d). We will show that N δ
β is equal

to the right hand side of Theorem 7, thus finishing the proof. First we show that there

is a bijection between ∆-floor diagrams and strictly β-allowable long-edge graphs which

respects the cogenus, by showing that both are in bijection to another set of graphs,

which for the moment we will call β-graphs. A β-graph is defined precisely like a long

edge graph, except that we also allow for short edges (i → i + 1) of weight 1, and we

require βj−1 = λj(G) for j = 1, . . . , d + 1, where as before λj(G) =
∑

e w(e), with e

running through the edges (i → k) with i < j ≤ k. By definition it is clear that the map

G 7→ extβ(G)) defines a bijection from the strictly β-allowable long-edge graphs to the

β-graphs, and the inverse is given by removing all short edges (i → i + 1) of weight 1

from a β-graph. We define the cogenus of a β-graph by δ(G) =
∑

e(l(e)w(e)− 1), with e

running over all edges of G. It is obvious that δ(G) = δ(extβ(G)).

If D is a ∆-floor diagram, we first perform steps (1) and (2) in Definition 6. Then

we identify all vertices we have created in step (1) to a vertex 0, and we identify all

vertices we have created in step (2) to a vertex d+ 1, in addition we add vertices Z≥d+2

to the graph obtained this way. It is easy to see that in this way we get a β-graph G(D).

Clearly the map D 7→ G(D) is injective, as all the steps are injective, and by definition

is is also clear that it is surjective. If D̃ is a marking of D, then we see that the total

number of vertices of D̃ is equal to d+#E where E is the set of edges of G(D). Defining

M(F ) :=
∏

e[w(e)]
2
y with e running through the edges of the β-graph F , Definitions 10

and 5 imply mult(D) = M(G(D)) for a floor diagram D and M(G) = M(extβ(G)) for a
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long edge graph G. From the definitions we also see that

δ(G(D)) =
∑

e∈E

w(e)l(e)−#E =

d∑

i=1

λi(G(D))−#E = #(∆∩Z2)− d−#E − 1 = δ(D̃).

Note that the markings of the ∆-floor diagram D are in bijection with the number of

diagrams obtained by putting one vertex on every edge of G(D) and ordering all the

vertices of the new diagram, preserving the order of the vertices of G(D), and such that

the vertex introduced on an edge (i → j) lies between i and j. But this number clearly is

the same as the number of linear orders on the union of the vertices and edges of G(D),

again preserving the order of the vertices and and such that the edge (i → j) lies between

i and j. By definition this is just the number of β-extended orderings of the long edge

graph corresponding to D.

�

Remark 19. More generally the methods of [BG] will show (using also the notations

from [LO] ) the following refined version of [LO, Thm. 2.12] (see [BG, Rem. 5.8]).

(1) For any δ ≥ 0, any h-transversal lattice polygon the refined Severi degree is

N∆,δ(y) =
∑

(l,r)

N
δ−δ(l,r)
β(dt,r−l)(y).

Here the summation is over all reorderings l and r of the multisets of left and

right directions of ∆, satisfying δ(l, r) ≤ δ, β(dt, r− l) ∈ ZM+1
≥0 .

(2) With the same index of summation we have

n∆,δ =
∑

(l,r)

n
δ−δ(l,r)
β(dt,r−l), W∆,δ =

∑

(l,r)

W
δ−δ(l,r)
β(dt,r−l),

Following [L],[LO], we consider logarithmic versions of Pβ(G) and P s
β(G),

Definition 20. A partition of a long edge graph G = (V,E, w) is a tuple (G1, . . . , Gn)

of nonempty long edge graphs such that the disjoint union of the (weighted) edge sets of

G1, . . . , Gn is the (weighted) edge set of G.

For any long edge graph define

Φβ(G) :=
∑

n≥1

(−1)n+1

n

∑

G1,...,Gn

n∏

j=1

Pβ(Gj),

Φs
β(G) :=

∑

n≥1

(−1)n+1

n

∑

G1,...,Gn

n∏

j=1

P s
β(Gj),

where both summations are over the partitions of G.

Let

N (β, y, t) := 1 +
∑

δ>0

N δ
β(y)t

δ, Q(β, y, t) := log(N (β, y, t)) =
∑

δ>0

Qδ
β(y)t

δ.
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Then the same arguments as in [LO] show that

(2.3) Qδ
β(y) =

∑

G

M(G)Φs
β(G),

where the summation is again over all long-edge graphs of cogenus δ.

Definition 21. Let G be a long edge graph. Let ǫ0(G) := 1, if all edges adjacent to

minv(G) have weight 1, and ǫ0(G) := 0 otherwise. Similarly let ǫ1(G) := 1, if all edges

adjacent to maxv(G) have weight 1, and ǫ1(G) := 0 otherwise.

By [L, Lem. 2.15] we have Φs
β(G) = 0, if G is not a shifted template. On the other

hand [L, Cor. 3.5] says that for a template Γ we have

Φs
β(Γ(k)) =




Φβ(Γ(k)) 1− ǫ0(Γ) ≤ k ≤ M + ǫ1(Γ)− ℓ(Γ)

0 otherwise.

Together with (2.3), this gives the following refined version of [LO, Cor. 3.6].

Corollary 22. Let β = (β0, . . . , βM) ∈ ZM+1
≥0 . Then

Qδ
β(y) =

∑

Γ

M(Γ)

M−ℓ(Γ)+ǫ1(Γ)∑

k=1−ǫ0(Γ)

Φβ(Γ(k)),

where the first sum runs over all templates Γ of cogenus δ.

Theorem 23. [LO, Thm. 3.8] Let G be a long edge graph. There exists a linear multivari-

ate function Φ(G, β) in β, such that for any β such that G is β-semiallowable, we have

Φβ(G) = Φ(G, β). Furthermore writing β = (β0, . . . , βM) ∈ ZM+1
≥0 , the linear function

Φ(G, β) is a linear combination of the βi with minv(G) ≤ i ≤ maxv(G).

3. Multiplicativity theorems

In this section we will show that the generating functions for the refined Severi degrees

on weighted projective spaces and rational ruled surfaces are multiplicative.

Theorem 24. (1) Let c ≥ δ and d ≥ δ, then Q(Σm,cF+dH),δ(y) is a Q[y±1]-linear

combination of 1, c, d, cd, m, md, md2.

(2) In particular if c ≥ δ, d ≥ δ, then Q(P1×P1,cF+dH),δ(y) is a Q[y±1]-linear combina-

tion of 1, c + d, cd.

(3) Fix m ≥ 0, c ≥ 0. If d ≥ δ then Q(Σm,dH+cF ),δ(y) is a polynomial of degree 2 in d.

(4) Fix m ≥ 0. If d ≥ δ, then Q(P(1,1,m),dH),δ(y) is a polynomial of degree 2 in d. In

particular for d ≥ δ, Qd,δ(y) is a polynomial of degree 2 in d.

(5) If d,m ≥ δ, then Q(P(1,1,m),dH),δ(y) is a Q[y±1]-linear combination of 1, m, d, dm,

d2m.
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Proof. (1) By Corollary 22 and Theorem 18, we have

(3.1) Q(Σm,cF+dH),δ(y) = Qδ
s(c,m,d)(y) =

∑

Γ

M(Γ)

d−ℓ(Γ)+ǫ1(Γ)∑

k=1−ǫ0(Γ)

Φs(c,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ.

Let Γ now be a template of cogenus δ, and let k be an integer in [1− ǫ0(Γ), d− ℓ(Γ) +

ǫ1(Γ)]. Then by definition we get Φs(c,m,d)(Γ(k)) = Φs(c+km,m,ℓ(Γ)−1)(Γ). On the other hand

by [LO, Lem. 4.2] we have λi(Γ) ≤ δ for all i. By our assumption we have c ≥ δ ≥ λi(Γ),

thus Γ is s(c + km,m, ℓ(Γ) − 1)-semiallowable. Therefore Φs(c+km,m,ℓ(Γ)−1)(Γ) is a linear

function in the c+ lm, k ≤ l ≤ k + ℓ(Γ)− 1, thus it is linear function in c and km of the

form α + β(c+ km) + γm, with α, β, γ ∈ Q.

Let M1 := d− ℓ(Γ)+ ǫ1(Γ)+ ǫ0(Γ), M2 := d− ℓ(Γ)+ ǫ1(Γ)− ǫ0(Γ)+ 1. It is easy to see

(and was already used in [L]) that for a template Γ of cogenus δ we have ℓ(Γ)−ǫ1(Γ) ≤ δ,

so, by our assumption d ≥ δ, we have M1 ≥ 0. Recall that for integers b ≥ a− 1 we have

the trivial identity
b∑

k=a

k =
(a+ b)(b− a+ 1)

2
.

Thus we get

d−ℓ(Γ)+ǫ1(Γ)∑

k=1−ǫ0(Γ)

Φs(c,m,d)(Γ(k)) =

d−ℓ(Γ)+ǫ1(Γ)∑

k=1−ǫ0(Γ)

(
α + β(c+ km) + γm

)

= M1(α + βc+ γm) +
M1M2

2
βm,

which is a Q-linear combination of 1, c, d, cd,m,md,md2. Thus the claim follows by (3.1).

(2) By (1) Q(P1×P1,cF+dH),δ(y) is a linear combination of 1, c, d, cd. It is clearly sym-

metric under exchange of c and d, and thus a linear combination of 1, c+ d, cd.

(3) By Corollary 22 and Theorem 18,

(3.2) Q(Σm,cF+dH),δ(y) = Qδ
s(c,m,d)(y) =

∑

Γ

M(Γ)

d−ℓ(Γ)+ǫ1(Γ)∑

k=1−ǫo(Γ)

Φs(c,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ.

Let Γ be a template of cogenus δ, and let k be an integer in [1− ǫ0(Γ), d− ℓ(Γ)+ ǫ1(Γ)].

Then by definition we get Φs(c,m,d)(Γ(k)) = Φs(c+km,m,ℓ(Γ)−1)(Γ). For a rational number a

we denote by ⌈a⌉ the smallest integer bigger or equal to a. We put

kmin := max

(
1,max

(⌈
λi(Γ)

m

⌉
− i+ 1

∣∣∣∣ i = 1, . . . , ℓ(Γ)

))
.

For k ≥ kmin we have that (k+i−1)m+c ≥ λi(Γ) for all i, thus Γ is s(c+km,m, ℓ(Γ)−1)-

semiallowable. Thus for k ≥ kmin, we have that Φs(c+km,m,ℓ(Γ)−1)(Γ) is a linear function in

the lm, k ≤ l ≤ k+ ℓ(Γ)− 1, thus it is a linear function α+βkm+ γm, with α, β, γ ∈ Q.
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By [LO, Lem. 4.2], we have λi(Γ) ≤ δ − ℓ(Γ) + i+ ǫ1(Γ). As λi(Γ) ≥ 0, this implies
⌈
λi(Γ)

m

⌉
− i+ 1 ≤ δ + ǫ1(Γ)− ℓ(Γ) + 1

for all i. By the inequality ℓ(Γ) − ǫ1(Γ) ≤ δ, already used in part (1), this implies

kmin ≤ δ+ǫ1(Γ)−ℓ(Γ)+1. By our assumption d ≥ δ, we have d−ℓ(Γ)+ǫ1(Γ)−kmin+1 ≥ 0.

Therefore the same argument as in (1) shows that the sum

σ(Γ, kmin) :=

d−ℓ(Γ)+ǫ1(Γ)∑

k=kmin

Φs(c,m,d)(Γ(k))

is a Q-linear combination of 1, d, m, md, md2. If we fix m, it is a linear combination of

1, d, d2. But

d−ℓ(Γ)+ǫ1(Γ)∑

k=1−ǫ0(Γ)

Φs(c+km,m,l(Γ)−1)(Γ) = σ(Γ, kmin) +

kmin−1∑

k=1−ǫ0(Γ)

Φs(c+km,m,l(Γ)−1)(Γ).

The second sum is for fixed m just a finite number, thus the claim follows.

(4) As Q(P(1,1,m),dH),δ(y) = Q(Σm,dH),δ(y), (4) is a special case of (3).

(5) By Corollary 22 and Theorem 18,

(3.3) Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y) =

∑

Γ

M(Γ)

d−ℓ(Γ)+ǫ1(Γ)∑

k=1

Φs(0,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ. According to Corollary 22, the inner

sum starts at k = 1−ǫ0(Γ). But Γ is a template and therefore not (0, m, d)-semiallowable.

Thus (in case ǫ0(Γ) = 1), the contribution for k = 0 vanishes.

We have Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y), which is computed by the case c = 0 of (3.3).

If m ≥ δ, then kmin = 1 for all templates Γ of cogenus δ, thus

Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y) =

∑

Γ

M(Γ)σ(Γ, 1),

with Γ again running through the templates of cogenus δ. By (3) this is a Q[y±1]-linear

combination of 1, d, m, md, md2. �

4. Relation to the conjectural generating functions of the refined

invariants

In [GS] refined invariants Ñ (S,L),δ(y) of pairs (S, L) of a smooth projective surface and

a line bundle on S were introduced. These are symmetric Laurent polynomials in a

variable y, whose coefficients can be expressed universally (independent of S and L) as

polynomials in the four intersection numbers L2, LKS K2
S and c2(S) on the surface. For

toric surfaces S and sufficiently ample line bundles L the refined invariants Ñ (S,L),δ(y)

and refined Severi degrees N (S,L),δ(y) are conjectured to agree ([GS, Conj. 80]).

Conjecture 25. Let (S, L) be a pair of a smooth toric surface and a line bundle on L.
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(1) If L is δ-very ample on S, then Ñ (S,L),δ(y) = N (S,L),δ(y).

(2) Ñd,δ(y) = Nd,δ(y) for δ ≤ 2d− 2.

(3) Ñ (P1×P1,dH+cF ),δ(y) = N (P1×P1,dH+cF ),δ(y) for δ ≤ min(2d, 2c).

(4) Ñ (Σm,dH+cF ),δ(y) = N (Σm,dH+cF ),δ(y) for δ ≤ min(2d, c).

Remark 26. Note that by definition, if Conjecture 25 is true, then Nδ(d; y) = Ñd,δ(y)

for all d, δ, and Nδ(Σm, dH + cF )(y) = Ñ (Σm,dH+cF ),δ(y) for all m, d, c, δ. This is because

both sides are polynomials in d (respectively d, c) with coefficients in Q[y], which coincide

for all sufficiently large d (respectively for all sufficiently large d, c).

In [GS, Conj. 67] also a generating function for the refined invariants Ñ (S,L),δ(y) is

conjectured (and thus by Remark 26 for the Nδ(d; y) and the Nδ((Σm, cF + dH); y)) [GS,

Conj.67]. We list a number of equivalent formulations.

Notation 27. We start by introducing some notations about quasimodular forms and

theta functions, and reviewing some standard facts, which we will use throughout the

paper. Modular forms depend on a variable τ in the complex upper half plane, and have

a Fourier development in terms of q := e2πiτ . We will write them as functions f(q),

because we are only interested in the coefficients of their Fourier development. Similarly

theta functions will be written as functions g(y, q), for y = e2πiz, with z ∈ C and q = e2πiτ .

The Eisenstein series

G2k(q) = −
B2k

4k
+
∑

n>0

∑

d|n

d2k−1qk

are for 2k ≥ 4 modular forms of weight 2k on SL2(Z), whereas G2(q) is only a quasimod-

ular form of weight 2 on SL2(Z). The Dirichlet η-function and the discriminant ∆(q)

are

η(q) := q1/24
∏

n>0

(1− qn), ∆(q) = η(q)24 = q
∏

n>0

(1− qn)24.

The discriminant is a cusp form of weight 12 on SL2(Z). The operator D := q ∂
∂q

sends

(quasi)modular forms of weight 2k to quasimodular forms of weight 2k + 2. We denote

two of the standard theta functions by

θ(y) = θ(y, q) :=
∑

n∈Z

(−1)nq
1
2
(n+ 1

2
)2yn+

1
2 = q

1
8 (y

1
2 − y−

1
2 )
∏

n>0

(1− qn)(1− qny)(1− qn/y),

θ2(y, q) :=
∑

n∈Z

(−1)nqn
2/2yn,

and the theta zero value θ2(q
2) := θ2(0, q

2) =
∑

n∈Z(−1)mqn
2
= η(q)2

η(q2)
. In addition to

D := q ∂
∂q

we also consider ′ = y ∂
∂y
. Let

∆̃(y, q) :=
η(q)18θ(y)2

y − 2 + y−1
= q

∞∏

n=1

(1− qn)20(1− yqn)2(1− y−1qn)2,
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D̃G2(y, q) :=

∞∑

m=1

∑

d|m

m

d
[d]2yq

m, DD̃G2(y, q) :=

∞∑

m=1

∑

d|m

m2

d
[d]2yq

m.

Conjecture 28. There exist universal power series B1(y, q), B2(y, q) in Q[y, y−1]JqK,

such that for all pairs (S, L) of a smooth projective surface and a line bundle on L, we

have

(4.1)
∑

δ≥0

Ñ (S,L),δ(y)(D̃G2)
δ =

(D̃G2/q)
χ(L)B1(y, q)

K2
SB2(y, q)

LKS

(∆̃(y, q) ·DD̃G2(y, q)/q2)χ(OS)/2

We give two equivalent reformulations. D̃G2 as a power series in q starts with q, let

g(t) := g(y, t) = t+ ((−y2 − 4y − 1)/y)t2 + ((y4 + 14y3 + 30y2 + 14y + 1)/y2)t3 +O(t4)

be its compositional inverse. Write g′(t) := ∂g
∂t
.

Remark 29. Let R ∈ Q[y±1][[q]] be a formal power series. For polynomials M (S,L),δ(y) ∈

Q[y±1] the following three formulas are equivalent:

(1)
∑

δ≥0

M (S,L),δ(y)(D̃G2)
δ =

(D̃G2/q)
χ(L)B1(y, q)

K2
SB2(y, q)

LKS

(∆̃(y, q) ·DD̃G2(y, q)/q2)χ(OS)/2
R(y, q)

(2)
∑

δ≥0

M (S,L),δ(y)tδ =
(t/g(t))χ(L)B1(y, g(t))

K2
S

B2(y, g(t))−LKS

(
g(t)g′(t)

∆̃(y, g)

)χ(OS)/2

R(y, g(t)),

(3) For all δ ≥ 0

M (S,L),δ(y) = Coeff
q(L

2−LKS )/2

[
D̃G2(y, q)

χ(L)−1−δB1(y, q)
K2

SB2(y, q)
LKSDD̃G2(y, q)

(∆̃(y, q) ·DD̃G2(y, q))χ(OS)/2
R(y, q)

]

Proof. (2) is equivalent to (1) by noting that DD̃G2(y, g(t)) =
g(t)
g′(t)

∂D̃G2(y,g(t))
∂t

= g(t)
g′(t)

.

Let A be a commutative ring, and let f ∈ A[[q]], g ∈ q + qA[[q]]. Then we get by the

residue formula that

f(q) =

∞∑

l=0

g(q)l Coeff
q0

[
f(q)Dg(q)

g(q)l+1

]
.

Applying this with g(q) = D̃G2 shows that (1) is equivalent to (3). �

Part (2) of Remark 29 shows in particular that according to Conjecture 28 theN (S,L),δ(y)

have a generating function of the form (1.1).

Remark 30. We will in the future use the formula (3) of Remark 29. Note that this also

has the following interpretation. Write

A(S,L)(y, q) :=
B1(y, q)

K2
SB2(y, q)

LKSDD̃G2(y, q)

(∆̃(y, q) ·DD̃G2(y, q))χ(OS)/2
.

Then the refined count of curves in |L| with only nodes as singularities satisfying k

general point conditions is Coeffq(L(L−KS)/2 [D̃G2(y, q)
kA(S,L)(y, q)]. Thus it seems natural

to expect the following general principle: To each condition c that we can impose at
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points of S to curves C in |L| (e.g. C passing through a point with given multiplicity),

or just to points in S, (e.g. S having a singular point) there corresponds a power series

Lc ∈ Q[y±1][[q]], such that, for L sufficiently ample, the refined count of curves in |L|

on S satisfying conditions c1, . . . , cn is Coeffq(L(L−KS)/2 [A(S,L)(y, q)
∏n

i=1 Lci]. According to

this principle the power series corresponding to passing through a point of S would be

D̃G2. In the second half of this paper we will give a number of instances of this principle.

By Remark 26 for P2 and rational ruled surfaces the conjecture says in particular

Nδ(d; y) = Coeff
q(d

2+3d)/2


D̃G2(y, q)

d(d+3)/2−δ B1(y, q)
9

B2(y, q)3d

(
DD̃G2(y, q)

∆̃(y, q)

)1/2

(4.2)

Nδ((Σm, cF + dH); y) =(4.3)

Coeff
q(d+1)(c+1+md/2)−1


D̃G2(y, q)

(d+1)(c+1+md/2)−1−δB1(y, q)
8

B2(y, q)2c+(m+2)d

(
DD̃G2(y, q)

∆̃(y, q)

)1/2



With B1(y, q), B2(y, g) given below modulo q18 we have the following corollary.

Corollary 31. (1) The formula (4.2) and Conjecture 25(2) are true for δ ≤ 17.

(2) In case m = 0 the formula (4.3) and Conjecture 25(2) is true for δ ≤ 12.

(3) The formula (4.3) and Conjecture 25(3) are true for all m and δ ≤ 8.

Proof. (1). Using the Caporaso-Harris recursion, we computed the Nd,δ(y) for d ≤ 19,

δ ≤ 19. This also computes the Qd,δ for d ≤ 19, δ ≤ 19. Part (4) of Theorem 24 gives

Qd,δ = Qδ(d) for d ≥ δ. As Qδ(d; y) is a polynomial of degree 2 in d, the computation

above determines Qδ(d; y) and thus the Nδ(y; d) for δ ≤ 17, giving the claim.

(2) and (3). Using again the Caporaso-Harris recursion we computed theN (P1×P1,cF+dH),δ(y)

for c, d ≤ 13, δ ≤ 13. Again this gives the Q(P1×P1,cF+dH),δ for c, d ≤ 13, δ ≤ 13. By part

(2) of Theorem 24 we have that Q(P1×P1,cF+dH),δ = Qδ((P
1×P1, cF + dH); y) for c, d ≥ δ.

As Qδ((P
1 × P1, cF + dH); y) is a polynomial of bidegree (1, 1) in c, d, the computation

above determines Qδ(((P
1×P1, cF+dH); y) and thus the Nδ((Σ0, cF+dH); y) for δ ≤ 12.

As Qδ((Σm, cF +dH); y) is a linear combination of 1, c, cd, m, md, md2, in order to prove

(2) we only need to determine the coefficients of m, md, md2. For this we can restrict to

the case m = 1, We computed N (Σ1,cF+dH),δ(y) for c,≤ 9, d ≤ 10. This determines the

coefficients of m, md, md2 of Qδ((Σm, cF + dH); y) for δ ≤ 8, giving the claim. �

We list the leading terms of B1(y, q) and B2(y, q), with omitted terms determined by

symmetry.

B1(y, q) = 1− q − (y + 3 + 1/y)q2 + (y2 + 10y + 17 + . . .)q3 − (18y2 + 87y + 135 + . . .)q4

+ (12y3 + 210y2 + 728y + 1061 + . . .)q5 − (2y4 + 259y3 + 2102y2 + 5952y + 8236 + . . .)q6

+ (162y4 + 3606y3 + 19668y2 + 48317y + 64253 + . . .)q7 − (47y5 + 3789y4 + 41999y3 + 177800y2

+ 392361y + 505678 + . . .)q8 + (5y6 + 2416y5 + 60202y4 + 445989y3 + 1576410y2 + 3197831y
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+ 4018919 + . . .)q9 − (896y6 + 58504y5 + 793194y4 + 4483755y3 + 13818256y2 + 26192369y

+ 32243357 + . . .)q10 + (176y7 + 38236y6 + 1017512y5 + 9382867y4 + 43520558y3 + 120325637y2

+ 215688799y + 260959201 + . . .)q11 − (14y8 + 16393y7 + 944954y6 + 14738959y5 + 103623419y4

+ 412518547y3 + 1043940859y2 + 1785764779y + 2129062780 + . . .)q12 + (4384y8 + 631224y7

+ 17534642y6 + 190488676y5 + 1092093647y4 + 3845977628y3 + 9041155627y2 + 14862430058y

+ 17497499443 + . . .)q13 − (658y9 + 298228y8 + 15816382y7 − 273455570y6 + 2279829046y5

+ 11131917064y4 + 35435770399y3 + 78257451025y2 + 124310761787y + 144758147754 + . . .)q14

+ (42y10 + 96604y9 + 10758628y8 + 308060184y7 + 3800583626y6 + 25834889754y5

+ 110712006552y4 + 323710356925y3 + 677516096371y2 + 1044598390812y + 1204824660925 + . . .)q15

− (20284y10 + 5452043y9 + 272316274y8 + 5094738491y7 + 48707795806y6 + 281165238614y5

+ 1080786159810y4 + 2938608835049y3 + 5869829083826y2 + 8816117002571y + 10082791437552 + . . .)q16

+ (2472y11 + 2015609y10 + 188032406y9 + 5506997958y8 + 75206548205y7 + 588088410636y6

+ 2967196356618y5 + 10400483736235y4 + 26552849592007y3 + 50907878544033y2 + 74707191955540y

+ 84801344804750 + . . .)q17 +O(q18),

B2(y, q) =
1

(1− yq)(1− q/y)

(
1 + 3q − (3y + 1 + 3/y)q2 + (y2 + 8y + 18 + . . .)q3

− (13y2 + 53y + 76 + . . .)q4 + (7y3 + 100y2 + 316y + 455 + . . .)q5 − (y4 + 112y3 + 779y2

+ 2076y + 2819 + . . .)q6 + (67y4 + 1243y3 + 6129y2 + 14386y + 18870 + . . .)q7 − (19y5

+ 1281y4 + 12417y3 + 48879y2 + 104034y + 132579 + . . .)q8 + (2y6 + 822y5 + 17542y4

+ 117829y3 + 393703y2 + 775411y + 965540 + . . .)q9 − (310y6 + 17206y5 + 207074y4

+ 1085712y3 + 3197506y2 + 5913778y + 7223539 + . . .)q10 + (62y7 + 11505y6 + 267658y5

+ 2249872y4 + 9825927y3 + 26163595y2 + 45935572y + 55208836 + . . .)q11 − (5y8 + 5076y7

+ 253785y6 + 3555348y5 + 23210920y4 + 87929247y3 + 215557414y3 + 362229349y

+ 429395117 + . . .)q12 + (1397y8 + 174456y7 + 4304488y6 + 42877083y5 + 231296838y4

+ 781220881y3 + 1787129788y2 + 2892830316y + 3388742192 + . . .)q13 − (215y9 + 85117y8

+ 3983060y7 + 62465678y6 + 484877903y5 + 2249516882y4 + 6909207376y3 + 14901830113y2

+ 23353834274y + 27076007072 + . . .)q14 + (14y10 + 28472y9 + 2793096y8 + 71942817y7

+ 818536892y6 + 5240193024y5 + 21495922606y4 + 60931593665y3 + 124910088474y2

+ 190304808803y + 218642432495 + . . .)q15 − (6158y10 + 1462435y9 + 65354234y8

+ 1118442331y7 + 9987960061y6 + 54777796045y5 + 202738958803y4 + 536439701989y3

+ 1052049129591y2 + 1563445962327y + 1781883877192 + . . .)q16 + (770y11 + 558612y10

+ 46524657y9 + 1238412474y8 + 15681201140y7 + 115681622517y6 + 558367283967y5

+ 1893273288345y4 + 4718572145488y3 + 8899835406922y2 + 12937087920811y

+ 14639451592197 + . . .)q17 +O(q18)
)
.
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As noted above, the refined Severi degrees N (S,L),δ(y) specialize at y = 1 to the tropical

Welschinger numbers W (S,L),δ. We specialize the above conjectures of [GS] to the tropical

Welschinger numbers. As the Caporaso-Harris recursion for the tropical Welschinger

numbers is computationally much more efficient than that for the refined Severi degrees,

the conjectures for the tropical Welschinger numbers can be proven for much higher δ.

Let η(q) := q1/24
∏

n>0(1−qn) the Dirichlet eta function, G2(q) := − 1
24
+
∑

n>0

∑
d|n dq

n

be the Eisenstein series, and write

G2(q) := D̃G2(−1, q) = G2(q)−G2(q
2) =

∑

n>0


 ∑

d|n, d odd

n

d


 qn.

We note that D̃G2(−1, q) = G2(q), and ∆̃(−1, q) = η(q)16η(q2)4. We write B1(q) :=

B1(−1, q), B2(q) := B2(−1, q). Conjecture 25 specializes to the following (see also [GS]).

Conjecture 32.

Wδ(d) = Coeff
q(d

3+3d)/2

[
G2(q)

d(d+3)/2−δB1(q)
9(DG2(q))

1/2

B2(q)3dη(q)8η(q2)2

]
,

(4.4)

Wδ((Σm, cF + dH)) = Coeff
q((d+1)(c+1+md/2)−1

[
G2(q)

(d+1)(c+1+md/2)−1−δB1(q)
8(DG2(q))

1/2

B2(q)2c+(m+2)dη(q)8η(q2)2

](4.5)

With B1(q), B2(q) given below modulo q31 we have the following corollary.

Corollary 33. (1) The formula (4.4) is true for δ ≤ 30. Furthermore for δ ≤ 30 and

d ≥ δ/3 + 1 we have W d,δ = Wδ(d).

(2) On P1 × P1 the formula (4.5) is true for δ ≤ 20. Furthermore for δ ≤ 20 and

δ ≤ min(20, 3c, 3d), we have W (P1×P1,cF+dH),δ = Wδ(P1 × P1, cF + dH).

(3) Form > 0, the formula (4.5) is true for δ ≤ 11. Furthermore for δ ≤ min(11, 3d, c)

we have W (Σm,cF+dH),δ = Wδ(Σm, cF + dH).

Proof. (1) Using the Caporaso-Harris recursion, we computed to the W d,δ for d ≤ 32,

δ ≤ 33. This also computes the Qd,δ(−1) for d ≤ 32, δ ≤ 33. The same argument as

in the proof of Corollary 31 shows (1). Using again the Caporaso-Harris recursion we

computed the W (P1×P1,cF+dH),δ for c, d ≤ 21, δ ≤ 22, and computed W (Σ1,cF+dH),δ(y) for

c, d, δ ≤ 13. The same argument as in the proof of Corollary 31 gives (2) and (3). �

B1(q) = 1− q − q2 − q3 + 3q4 + q5 − 22q6 + 67q7 − 42q8 − 319q9 + 1207q10 − 1409q11

− 3916q12 + 20871q13 − 34984q14 − 37195q15 + 343984q16 − 760804q17 − 81881q18
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+ 5390386q19 − 15355174q20 + 8697631q21 + 79048885q22 − 293748773q23 + 329255395q24

+ 1041894580q25 − 5367429980q26 + 8780479642q27 + 10991380947q28

− 93690763368q29 + 203324385877q30 +O(q31),

B2(q) = 1 + q + 2q2 − q3 + 4q4 + 2q5 − 11q6 + 24q7 + 4q8 − 122q9 + 313q10 − 162q11

− 1314q12 + 4532q13 − 4746q14 − 13943q15 + 68000q16 − 105786q17 − 124968q18

+ 1025182q19 − 2139668q20 − 443505q21 + 15157596q22 − 41007212q23 + 19514894q24

+ 214218876q25 − 755331892q26 + 780656576q27 + 2776494907q28

− 13420432234q29 + 20749875130q30 +O(q31).

5. Correction term for singularities

In this section we want to extend the above results and conjectures to surfaces with

singularities. This section is partially motivated by the paper [LO], where this question

is studied for the non-refined invariants for toric surfaces with rational double points. We

have conjectured above and given evidence that there exist generating functions for the

refined node polynomials on smooth toric surfaces S, of the form AL2

1 ALKS
2 A

K2
S

3 A
χ(OS)
4 for

universal power series Ai ∈ Q[y±1][[q]]. It seems natural to conjecture that this extends

to singular surfaces in the following form: for every analytic type of singularities c there

is a universal power series Fc(y, q) and the generating function for a singular surface S is

AL2

1 ALKS
2 A

K2
S

3 A
χ(OS)
4

∏
c F

nc
c , where nc is the number of singularities of S of type c. For

the case of toric surfaces given by h-transversal lattice polygons with only rational double

points this problem has been solved in [LO] for the (non-refined) Severi degrees.

We start out by formulating a conjecture for general singular toric surfaces, and then

give more precise results for specific singularities. For rational double points we conjecture

that somewhat surprisingly the power series Fc(y, q) is independent of y. In particular

this says that the correction factor for An-singularities, determined in [LO] for the Severi

degrees, is the same for the Severi degrees and the tropical Welschinger invariants.

Now let S be a normal toric surfaces. We want to formulate a conjecture about the

refined Severi degrees N (S,L),δ(y). Note that the tropical curves counted in N (S,L),δ(y) are

not required to pass through any of the singular points of S. One can also reformulate

the same conjecture in terms of the minimal resolution of S, i.e. a resolution π : Ŝ → S,

which contains no (−1) curves in the fibres of π.

Conjecture 34. For every analytic type of singularities c there are formal power series

Fc ∈ Q[y±1][[q]], F̂c ∈ Q[y±1][[q]] such that the following hold. Let (S, L) be a pair of a

projective toric surface and a toric line bundle on S. Let Ŝ be a minimal toric resolution

of S and denote by L also the pullback of L to Ŝ. Define N (Ŝ,L),δ(y) := N (S,L),δ(y). If L
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is δ-very ample on S, then

N (S,L),δ(y) = Coeff
qL(L−KS )/2


D̃G2(y, q)

χ(L)−1−δB1(y, q)
K2

S

B2(y, q)−LKS

(
DD̃G2(y, q)

∆̃(y, q)

)1/2∏

c

Fc(y, q)
nc


 ,

(5.1)

N (Ŝ,L),δ(y) = Coeff
q
L(L−K

Ŝ
)/2


D̃G2(y, q)

χ(L)−1−δB1(y, q)
K2

Ŝ

B2(y, q)
−LK

Ŝ

(
DD̃G2(y, q)

∆̃(y, q)

)1/2∏

c

F̂c(y, q)
nc


 .

(5.2)

Here c runs through the analytic types of singularities of S, and nc is the number of

singularities of S of type c.

We can see that the two formulas formulas (5.1), (5.2) are equivalent. Note that

LKS = LKŜ. On the other hand it is easy to see that K2
Ŝ
= K2

S −
∑

c ncec where ec is

a rational number depending only on the singularity type c. Thus the two formulas are

equivalent, via the identification

F̂c(y, q) = Fc(y, q)B1(y, q)
ec.

It turns out that the power series F̂c(y, q) are usually simpler, so we will restrict our

attention to them. Note that for a rational double point c we have ec = 0 and thus

Fc = F̂c.

We give a slightly more precise version of the conjecture for a weighted projective

space P(1, 1, m) and its minimal resolution Σm, and prove some special cases of it. In

this case the exceptional divisor is the section E with self intersection −m. The weighted

projective space P(1, 1, m) has one singularity of type 1
m
(1, 1), i.e. the cyclic quotient

of C2 by the m-th roots of unity µm acting by ǫ(x, y) = (ǫx, ǫy). We write cm for this

singularity. It is elementary to see that

KΣm = −2H + (m− 2)F = −
m+ 2

m
H −

m− 2

m
E, KP(1,1,m) = −

m+ 2

m
H,

ecm =
(m− 2)2

m
, K2

Σm
= 8, dHKΣm = d(m+ 2), χ(Σm, dH) = (md+ 2)(d+ 1)/2.

Conjecture 35. If δ ≤ 2d− 1, then

N (Σm,dH),δ(y) = Coeff
q
m
2 d2+(m2 +1)d

[
D̃G2(y, q)

m
2
d2+(m

2
+1)d−δB1(y, q)

8

B2(y, q)d(m+2)

(DD̃G2(y, q)

∆̃(y, q)

)1/2
F̂cm(y, q)

]
.

(5.3)

Furthermore we have for m ≥ 2

F̂cm = 1−mq + ((m− 2)y + (m2/2 + 3m/2− 5) + (m− 2)y−1)q2

− ((m2 + 5m− 14)y + (m3 + 9m2 + 44m− 132)/6 + (m2 + 5m− 14)y−1)q3 +O(q4),
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and

F̂c2 =
∑

n∈Z

(−1)nqn
2

= 1− 2q + 2q4 − 2q9 + . . . ,

F̂c3 = 1− 3q + (y + 4 + y−1)q2 − (10y + 18 + 10y−1)q3 + ((6y2 + 70y + 115 + 70y−1 + 6y−2)q4

− ((y3 + 94y2 + 473y + 721y + 473y−1 + 94y−2 + y−3)q5 +O(q6)

F̂c4 = 1− 4q + (2y + 9 + 2y−1)q2 − (22y + 42 + 22y−1)q3

+ ((14y2 + 164y + 273 + 164y−1 + 14y−2)q4 +O(q5).

Proposition 36. Let δ2 = 8, δ3 = 5, δ4 = 4, δm = 3 for m ≥ 5. Then (5.3) is correct

for m ≥ 2 and δ ≤ min(δm, d).

Proof. Using the Caporaso Harris recursion we computed N (Σm,dH),δ for 2 ≤ m ≤ 4,

δ ≤ δm and d ≤ dm with d2 = 10, d3 = 7, d4 = 6. We find that in this range (5.3)

holds for δ ≤ min(2d − 1, δm). By part (3) of Theorem 24 we have that Q(Σm,dH,δ) is a

polynomial of degree 2 in d for d ≥ δ. By the computation we know this polynomial in

the following cases: (m = 2, δ ≤ 8), (m = 3, δ ≤ 5), (m = 4, δ ≤ 4). This shows the

result for m = 2, 3, 4. Finally by part (5) of Theorem 24 we have that Q(Σm,dH,δ)(y) is for

d,m ≥ δ a polynomial in d and m of degree 2 in d and 1 in m. By the above we know this

polynomial as a polynomial in d for δ = 0, 1, 2, 3 and m = 3, 4. This determines it and

thus also Q(Σm,dH,δ)(y) and therefore also N (Σm,dH,δ)(y), for δ = 0, 1, 2, 3 and d,m ≥ δ.

The result follows. �

The non-refined Severi degrees for toric surfaces with only rational double points given

by h transversal lattice polygons have been studied in [LO]. The only rational double

points which can occur in this case are An singularities. For such surfaces they prove the

analogue of Conjecture 34 for y = 1 with precise bounds. Furthermore they show

Fan(1, q) =
η(q)n+1

η(qn+1)
=
∏

k>0

(1− qk)n+1

1− q(n+1)k
,

where we denote Fan(y, q) the power series Fc(y, q) for c an An singularity. We con-

jecture that the same result holds also for the refined Severi degrees with the Fan(y, q)

independent of y.

Conjecture 37. Let S be projective normal toric surface with only rational double points,

more precisely with nk singularities of type Ak for all k (with nk only nonzero for finitely

many k). If L is δ-very ample on S, then

N (S,L),δ(y) = Coeff
qL(L−KS )/2


D̃G2(y, q)

χ(L)−1−δ B1(y, q)
K2

Ŝ

B2(y, q)
−LK

Ŝ

(
DD̃G2(y, q)

∆̃(y, q)

)1/2∏

k

(
η(q)k+1

η(qk+1)

)nk

.


 .
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Remark 38. (1) P(1, 1, 2) has an A1 singularity, and as we saw Σ2 is a resolution of

P(1, 1, 2). It is standard that θ2(2τ) =
η(τ)2

η(2τ)
. Thus for P(1, 1, 2) Conjecture 37 is

a special case of Conjecture 35 and Proposition 36 gives evidence for it.

(2) We also used a version of the Caporaso Harris recursion for P(1, 2, 3). With the

line bundle dH with d small for H the hyperplane bundle. P(1, 2, 3) has one A1

and one A2 singularity, also in this case Conjecture 37 is confirmed in the realm

considered.

(3) Note that the conjecture that the Fan(y, q) are independent of y says in particular

that the correction factor for the An singularities is the same for Severi degrees

and tropical Welschinger invariants.

We want to generalise this conjecture in another direction. Let S be a singular toric

surface with singular points p1, . . . , pr and a minimal toric resolution Ŝ with exceptional

divisors E1, . . . , Er. Let L be a toric line bundle on S. We have seen that N (Ŝ,L),δ(y) =

N (S,L),δ(y) is a refined count of δ-nodal curves on S, which are not required to pass

through the singular locus of S. In a similar way we can interpret N (Ŝ,L−k1E1−...−krEr),δ(y)

as a refined count of curves in |L| on S which pass through the singular points pi with

multiplicity −kiE
2
i . This even makes sense if L is only a class of Weil divisors on S, the

ki are not necessarily integral but L− k1E1− . . .− krEr is a Cartier divisor on Ŝ. In this

case the curves we count on S are Weil divisors.

Here we will consider this question only in the case that S has only A1 singularities.

Denote η(q) = q1/24
∏

n>0(1−qn) the Dirichlet eta function. Let θ2(q) :=
∑

n∈Z(−1)nqn
2/2

be one of the standard theta functions. Recall the Jacobi triple product formula

η(q2)3 = q1/4
∑

n≥0

(−1)n(2n + 1)qn(n+1).

We define functions fl(q), for l ∈ Z≥0 by

f2k(q) =
(−1)k

(2k)!

∑

n∈Z

(−1)n

(
k−1∏

i=0

(n2 − i2)

)
qn

2

=
(−1)k

(2k)!

(
k−1∏

i=0

(D − i2)

)
θ2(q

2)

f2k+1(q) =
(−1)k

(2k + 1)!

∑

n∈Z

(−1)n(n + 1/2)

(
k−1∏

i=0

((n+ 1/2)2 − (i+ 1/2)2)

)
q(n+1/2)2

=
(−1)k

(2k + 1)!

(
k−1∏

i=0

(D − (i+ 1/2)2)

)
η(q2)3.

(5.4)

Here as before we denote D = q d
dq
. In particular we have

f0(q) =
∑

n∈Z

(−1)nqn
2

, f1(q) =
∑

n≥0

(−1)n(2n+ 1)q(n+1/2)2 , f2(q) =
∑

n>0

(−1)n−1n2qn
2

.

We write N
(S,L),δ
[k1,...,knr]

:= N (Ŝ,L−k1E1−...−krEr),δ(y), to stress that we view it as a count of

curves on S with prescribed multiplicities at the A1-singularities.
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Conjecture 39. Let S be a toric surface with only A1 singularities p1, . . . , pr. Fix

k1, . . . , kr ∈ 1
2
Z≥0. Let δ ≥ 0. Let L be a Weil divisor on S, such that L −

∑
i kiEi

is a Cartier divisor on Ŝ, which is δ-very ample on any irreducible curve in Ŝ not con-

tained in E1 ∪ . . . ∪ Er.. Then

(5.5)

N
(S,L),δ
[k1,...,kr]

(y) = Coeff
qL(L−KS )/2


D̃G2(y, q)

χ(L)−
∑

i k
2
i−1−δB1(y, q)

K2
S

B2(y, q)LKS

(
DD̃G2(y, q)

∆̃(y, q)

)1/2 r∏

i=1

f2ki(q)


 .

Thus we claim that the correction factors for points of multiplicity k at A1 singularities

of S are given by the quasimodular forms fk(q).

Equivalently we can look at the same question on the blowup Ŝ. Write L̂ := L−k1E1−

. . .− krEr and

fk(q) =
fk(q)

qk2/4
, k ∈

1

2
Z≥0,

then (with the same assumptions) (5.5) is clearly equivalent to

(5.6)

N (Ŝ,L̂),δ(y) = Coeff
q
L̂(L̂−K

Ŝ
)/2


D̃G2(y, q)

χ(L̂)−1−δB1(y, q)
K2

Ŝ

B2(y, q)
L̂K

Ŝ

(
DD̃G2(y, q)

∆̃(y, q)

)1/2 r∏

i=1

f 2ki(q)


 .

In other words, the correction factors for L̂ not being sufficiently ample on Ŝ are the

f l(q).

Remark 40. Under the assumptions of the conjecture, if the ki are sufficiently large with

respect to δ, then L̂ will be δ-very ample on Ŝ. This means by Conjecture 28 that for

large l the correction factor f l(q) should be 1 modulo some high power of q. In fact we

find the following.

For l ∈ Z>0 we can rewrite

f l(q) =
∑

m≥0

(−1)m
2m+ l

m+ l

(
m+ l

l

)
qm(m+l).

In particular f l(q) ≡ 1 mod ql+1.

Proof. First we deal with the case l even. Note that

k−1∏

i=0

(n2 − i2) = n
k−1∏

i=−k−1

(n− i).

Thus we get for k > 0

f 2k(q) =
(−1)k

(2k)!

∑

n∈Z

(−1)n
k−1∏

i=0

(n2 − i2)qn
2−k2 =

∑

n≥k

(−1)n−k 2n

2k

(
n+ k − 1

2k − 1

)
qn

2−k2,
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where we also have used that
(
n+k−1
2k−1

)
= 0 for n < k. Finally put m = n − k, so that

2n
2k

(
n+k−1
2k−1

)
= 2m+2k

m+2k

(
m+2k
2k

)
and n2 − k2 = m(m+ 2k).

The case l odd is similar. Note that
k−1∏

i=0

((n + 1/2)2 − (i+ 1/2)2) =

k∏

i=−k+1

(n− i).

Thus we get

f 2k+1(q) =
(−1)k

(2k + 1)!

∑

n≥0

(−1)n(2n+ 1)

(
k−1∏

i=0

((n+ 1/2)2 − (i+ 1/2)2)

)
q(n+1/2)2−(k+1/2)2

=
∑

n∈Z

(−1)n−k 2n+ 1

2k + 2

(
n + k

2k

)
q(n+1/2)2−(k+1/2)2 ,

and put again m := n− k. �

Remark 41. It is again remarkable that the correction factors fk(q) are independent of

the variable y. In particular this means again that the correction factor is the same for

the Severi degrees and for the tropical Welschinger number.

We specialise the conjecture to case that S is the weighted projective space P(1, 1, 2)

with the resolution Σ2 with more precise bounds for the validity. Note that

χ(Σ2, dH−kE) = (d+1)2−k2, (dH−kE)KΣ2 = (dH−kE)(−2H) = −4d, K2
Σ2

= 8.

Conjecture 42. Let d, k ∈ 1
2
Z with d− k ∈ Z. Then for δ ≤ 2(d− k) + 1, we have

(5.7)

N (Σ2,dH−kE),δ(y) = Coeff
qd2+2d−k2


D̃G2(y, q)

d2+2d−k2−δB1(y, q)
8

B2(y, q)4d

(
DD̃G2(y, q)

∆̃(y, q)

)1/2

f2k(q)


 .

Proposition 43. (1) Conjecture 42 is true for all d, all k ≤ 5 and δ ≤ 4.

(2) The equation (5.7) holds for all d, k ≥ 0 with δ ≤ d− k and δ ≤ 4.

Proof. We use the Caporaso-Harris recursion to computeN (Σ2,dH+cF ),δ(y) = N (Σ2,(d+c/2)H−c/2E),δ(y)

for δ ≤ 8, d ≤ 6 and c ≤ 5. We find in this realm that N (Σ2,(nH−kE),δ(y) is equal to the

right hand side of Conjecture 42 for δ ≤ 2(n− k) + 1. By Theorem 24 Q(Σ2,dH+cF ),δ(y) is

for fixed c ≥ 0 and for d ≥ δ a polynomial of degree 2 in d. Thus the above computations

determine this polynomial for δ ≤ 4, and c ≤ 5. On the other hand in dependence of c

and d we have that Q(Σ2,dH+cF ),δ(y) is for c, d ≥ δ a polynomial in c and d of degree 2 in

d and 1 in c. By the above we know this polynomial as a polynomial in d for c = 4 and

c = 5. Thus it is determined and the claim follows. �

6. Counting curves with prescribed multiple points

Let S be a smooth projective surface, let p1, . . . , pr be general points on S, and let Ŝ be

the blowup of S in the pi with exceptional divisors Ei. Let n1, . . . , nr ∈ Z≥1. Let L be a
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sufficiently ample line bundle on S, and denote by the same letter its pullback to Ŝ. Note

that N (Ŝ,L−
∑

i niEi),δ(1) counts the complex curves on S in |L| with points of multiplicity

ni in pi which have in addition δ nodes and pass through dim(|L−
∑

i niEi)|)− δ general

points of S. If L is sufficiently ample, then the multiple points at the pi impose
∑

i

(
ni+1
2

)

independent conditions on curves in |L|. Furthermore we see that

χ(L−
∑

i

niEi) = χ(L)−
∑

i

(
ni + 1

2

)
.

Now assume that S is a smooth projective toric surface. Let the pi ∈ S be fixed points

of the torus action, so that Ŝ is again a toric surface and the exceptional divisors Ei are

torus-invariant divisors. Then by the above we can view N (Ŝ,L−
∑

i niEi),δ(y) as a refined

count of curves in |L| on S with points of multiplicity ni at pi for all i and in addition δ

nodes which pass through

dim(|L|)− δ −
∑

i

(
ni + 1

2

)

general points on S.

Notation 44. We denote N
(S,L),δ
n1,...,nr(y) := N (Ŝ,L−

∑
i niEi),δ(y).

For an Eisenstein series G2k(q), we denote

Gk(q) := Gk(q)−Gk(q
2) =

∑

n>0

∑

d|n
n
d

odd

d2k−1qn.

We write again D := q ∂
∂q
. Note that DlG2k(q) and DlG2k(q) are quasimodular forms of

weight 2k + 2l.

Conjecture 45. For each i ≥ 1 there exists a universal power series Hi ∈ Q[y±1][[q]],

such that, whenever L be sufficiently ample with respect to δ, r and n1, . . . , nr, we have

N (S,L),δ
n1,...,nr

(y) =

Coeff
q(L

2−LKS )/2

[
D̃G2(y, q)

χ(L)−1−δ−
∑

i (
ni+1

2 )B1(y, q)
K2

SB2(y, q)
LKSDD̃G2(y, q)

(∆̃(y, q) ·DD̃G2(y, q))χ(OS)/2

r∏

i=1

Hni
(y, q)

]
.

(6.1)

Furthermore we conjecture for all m > 0 the following:

(1) Hm(y, q) can be expressed in terms of Jacobi theta functions and quasimodular

forms.

(2) Hm(1, q) is a (usually non-homogeneous) polynomial in the DlG2k(q) of weight

≤ 4k.

(3) Hm(−1, q) is a (usually non-homogeneous) polynomial in the DlG2k(q), D
lG2k(q)

of weight ≤ 2k.

For small m we explicitly conjecture the following formulas:
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(1) For m ≤ 2 we conjecture

H1(y, q) = D̃G2(y, q), H2(y, q) =
F1(y, q)

(y1/2 − y−1/2)4
+

F2(y, q)

(y1/2 − y−1/2)2(y − y−1)
,

with

F1(y, q) =
∑

n>0

∑

d|n

1

2

(
−
n3

d3
+

n2

d
−

n

d

)
(yd/2 − y−d/2)2qn

F2(y, q) =
∑

n>0

∑

d|n

(
n2

d2
−

n

2

)
yd − y−d

y − y−1
qn.

(2) For the specialisation at y = 1 we conjecture the following (dropping the q from

the notation).

H1(1) = DG2,

H2(1) = −
1

24
DG2 +

1

6
D2G2 −

1

8
DG4 −

1

24
D3G2 +

1

24
D2G4

H3(1) =
DG2

90
−

D2G2

18
+

DG4

24
−

13D3G2

288
−

73D2G4

1440
+

DG6

120
−

D4G2

144
+

13D3G4

1440

−
D2G6

480
+

D5G2

2880
−

D4G4

2016
+

D3G6

6912
+

∆

241920

H4(1) = −
9DG2

1120
+

7D2G2

160
−

21DG4

640
−

1063D3G2

23040
+

1207D2G4

23040
−

3DG6

320
+

79D4G2

5760

−
43D3G4

2304
+

149D2G6

26880
−

DG8

2688
−

91D5G2

69120
+

95D4G4

48384
−

461D3G6

645120
+

101D2G8

1451520

−
11∆

5806080
+

D6G2

17280
−

89D5G4

967680
+

D4G6

25920
−

D3G8

207360
+

D∆

2903040
−

D7G2

967680

+
D6G4

580608
−

D5G6

1244160
+

D4G4

8211456
−

D2∆

84913920
+

∆G4

864864

(3) At y = −1 we conjecture

H1(−1) = G2(q),

H2(−1) =
1

8

(
G2 −DG2 +G4 −DG2

)
,

H3(−1) =
1

24
G2 −

1

24
DG2 +

7

96
G4 −

7

96
DG2 +

1

2
G

3

2 −
1

192
DG4 −

5

64
G4G2 +

1

96
D2G2

−
5

1024
DG4,

H4(−1) =
3G2

128
−

5DG2

192
−

67DG2

1536
+

67G4

1536
+

35D2G2

2304
−

247DG4

24576
+

55G
3

2

144
−

55G4G2

1536

−
11DG4

4608
+

D3G2

192
+

25D2G4

6144
−

7DG6

8192
+

11G
4

2

8
−

13G2D
2G2

192
+

35G2DG4

512

−
21G6G2

1024
+

D2G4

512
.
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Remark 46. Part (1) of Conjecture 45 is not formulated in a very precise way. We

want to illustrate the statement for H1(y, q) and H2(y, q), which we have conjecturally

determined. Writing D̃G2(y, q) =
F0(y,q)

y−2+y−1 we have

F0(y, q) = −
Dθ(y)

θ(y)
− 3G2,

F1(y, q) =
1

2

(Dθ(y))2

θ(y)2
+ 3

Dθ(y)

θ(y)
G2 +

1

2

Dθ(y)

θ(y)
+

15

8
G4 −

9

4
DG2 +

3

2
G2,

F2(y, q) = −
1

2

Dθ(y)θ′(y)

θ(y)2
−

1

6

Dθ′(y)

θ(y)
− 2G2

θ′(y)

θ(y)
.

Proof. A similar computation has been done in [GS2, Rem 1.4]. By definition we have

F0(y, q) =
∑

m>0

∑

d>0

m(yd − 2 + y−d)qmd =
∑

md>0

mydqmd − 2G2(q) +
1

12
.

In [Z, page 456, compare (iii) and (vii)] it is proved that

(6.2)
θ′(0)θ(wy)

θ(w)θ(y)
=

wy − 1

(w − 1)(y − 1)
−
∑

nd>0

sgn(d)wnydqnd.

Write w = ex and take the coefficient of x on both sides of (6.2). By the identity [Z,

eq. (7)] we have

xθ′(0)

θ(w)
= exp

(
2
∑

k≥2

Gk(q)
zk1
k!

)
.

This gives

Coeff
x

[
θ′(0)θ(wy)

θ(w)θ(y)

]
= Coeff

x2

[
θ(wy)

θ(y)

]
+G2(τ) =

1

2

θ′′(y)

θ(y)
+G2(τ) =

Dθ(y)

θ(y)
+G2(τ),

where the last step is by the heat equation 1
2
θ′′(y) = Dθ(y). On the other hand we

compute

Coeff
z1

[
wy − 1

(w − 1)(y − 1)
−
∑

nd>0

sgn(d)wnydqnd

]
=

1

12
−
∑

nd>0

nydqnd.

This proves the formula for F0.

We have

F2(y, q) =
∑

md>0

sgn(d)(m2 −md/2)yd)qmd.

In [GS2, Rem. 1.4] it is shown (the statement there contains a misprint) that

∑

md>0

sgn(d)m2ydqmd = −
1

θ(y)

(
2

3
Dθ′(y) + 2G2(q)θ

′(y)

)
.
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We see by (6.2) that

∑

md>0

sgn(d)(−md/2)yd)qmd =
1

2
D

(
θ′(0)θ(wy)

θ(w)θ(y)

∣∣∣
w=1

)
=

1

2
D

(
θ′(y)

θ(y)

)
.

This shows the formula for F2.

A similar but slightly more tedious computation shows the formula for F1. �

The conjectural formulas of Conjecture 45 were found by doing computations for P2

and its blowup Σ1 with exceptional divisor E. We use the Caporaso Harris recursion

formula to compute N (Σ1,dH+mF ),δ(y) = N (Σ1,(d+m)H−mcE,δ for d ≤ 11, m ≤ 4 and δ ≤ 22,

in this realm the following conjecture is true.

Conjecture 47. There are power series Hm(y, q) ∈ Q[y±1][[q]], such that the following

holds. For d > 0, and 0 ≤ m ≤ 4 and δ ≤ 2d+ 1 +m(m+ 1)/2 we have

N (P2,dH),δ
m (y) =

Coeff
q(d(d+3)/2

[
D̃G2(y, q)

d(d+3)/2−m(m+1)/2−δB1(y, q)
9(DD̃G2(y, q))

1/2

B2(y, q)−3d∆̃(y, q)1/2
Hm(y, q)

]
.

Furthermore H1(y, q), H2(y, q) coincide with the functions with the same name from

Conjecture 45, and Hi(1, q), Hi(−1, q) coincide for i = 1, 2, 3, 4 with the Hi(1), Hi(−1)

from Conjecture 45.

Proposition 48. Conjecture 47 is true from m ≤ 4 and δ ≤ 9.

Proof. The argument is the same as in several proofs before. By Theorem 24 we get that

Q(Σ1,dH+mF ),δ is for δ ≤ d a polynomial of degree 2 in d, which we know for 9 ≤ d ≤ 11.

The result follows. �

Let S be a toric surface and Ŝ be the blowup of S in torus fixed point. Given δ, if m is

sufficiently large and L is sufficiently ample on S, then L−mE will be sufficiently ample

on Ŝ, so that Conjecture 28 will apply to the pair (Ŝ, L−mE):

N (S,L),δ)
m (y) = N (Ŝ,L−mE),δ(y) =

Coeff
q
(L2−LKS)/2−(m+1

2 )

[
D̃G2(y, q)

χ(L)−1−δ−(m+1
2 )B1(y, q)

K2
S−1B2(y, q)

LKS+mDD̃G2(y, q)

(∆̃(y, q) ·DD̃G2(y, q))χ(OS)/2

]
.

Combined with Conjecture 45 this leads to the following conjecture.

Conjecture 49. We have

Hm(y, q)

q(
m+1

2 )
≡

B2(y, q)
m

B1(y, q)
mod qm+1.

Thus, if eventually one would find a way to explicitly determine the functions Hm(y, q)

for all m, this could give the unknown power series B1(y, q), B2(y, q) and thus complete

the conjectural formulas of [Göt],[GS].
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It is natural to assume that the specialisation of Conjecture 45 and also of the previous

conjectures Conjecture 34, Conjecture 39 to y = 1 hold for the usual Severi degrees n(S,L),δ

for projective algebraic surfaces, not just for toric surfaces. Thus we get in particular the

following generalisation of the original conjecture of [Göt].

Let S be a projective algebraic surface with A1-singularties q1, . . . , qs. Let p1, . . . pr
be distinct smooth points on S. Let m1, . . . , mr ∈ Z>0, n1, . . . , ns ∈ Z≥0. Let Ŝ be the

blowup of S in q1, . . . , qs, p1, . . . pr and denote Ei, Fj the exceptional divisors over qi, pj
respectively. Let L be a Q-Cartier Weil divisor on S, such that L̂ := L −

∑s
i=1miEi −∑r

i=1 niFi is a Cartier divisor on Ŝ, which is δ-very ample on all irreducible curves in Ŝ

not contained in E1 ∪ . . .∪Es ∪F1 ∪ . . .∪Fr. Denote n
(S,L),δ
(m1,...,mr),(n1,...,ns)

:= n(Ŝ,L̂),δ, which

we could informally interpret as the number of curves in |L| which have multiplicity mi

in pi and nj in qj for all i, j and pass in addition through

dim |L| −
r∑

i=1

(
mi + 1

2

)
−

s∑

j=1

n2
j

4

general points on S, and have δ nodes as other singularities.

Conjecture 50.

n
(S,L),δ
(m1,...,mr),(n1,...,ns)

= Coeff
q(L

2−LKS )/2

[
DG2(q)

χ(L)−
∑

i (
mi+1

2 )−
∑

j

n2
j
4
−1B1(q)

K2
SB2(q)

LKSD2G2(q)

(∆(q) ·D2G2(q))χ(OS)/2

(
r∏

i=1

Hni
(1, q)

)(
s∏

i=1

fmi
(q)

)]
.

(6.3)
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15 (2011), no. 1, 397–406.

[L] Fu Liu, A combinatorial analysis of Severi degrees, preprint arXiv:1304.1256.

[LO] Fu Liu, Brian Osserman, Severi degrees on toric surfaces, preprint arXiv:1401.7023.

[Mik] G. Mikhalkin, Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18.2 (2005),

313–377. math/0312530.
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