
 
International Journal of Statistical Distributions and Applications 
2019; 5(3): 67-75 
http://www.sciencepublishinggroup.com/j/ijsda 
doi: 10.11648/j.ijsd.20190503.14 
ISSN: 2472-3487 (Print); ISSN: 2472-3509 (Online)  

 

Extreme Value Modelling of Rainfall Using  
Poisson-generalized Pareto Distribution: A Case Study 
Tanzania 

Emmanuel Iyamuremye
1
, Joseph Mung'atu

1
, Peter Mwita

2 

1Department of Statistics and Actuarial Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 
2Department of Mathematics and Statistics, Machakos University, Machakos, Kenya 

Email address: 

 

To cite this article: 
Emmanuel Iyamuremye, Joseph Mung'atu, Peter Mwita. Extreme Value Modelling of Rainfall Using Poisson-generalized Pareto Distribution: 
A Case Study Tanzania. International Journal of Statistical Distributions and Applications. Vol. 5, No. 3, 2019, pp. 67-75.  
doi: 10.11648/j.ijsd.20190503.14 

Received: July 31, 2019; Accepted: August 21, 2019; Published: September 10, 2019 

 

Abstract: Extreme rainfall events have caused significant damage to agriculture, ecology and infrastructure, disruption of 
human activities, injury and loss of life. They have also significant social, economical and environmental consequences 
because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to 
implement strategies and measures, before they occur. Extreme value theory has been used widely in modelling extreme 
rainfall and in various disciplines, such as financial markets, insurance industry, failure cases. Climatic extremes have been 
analysed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions which provides evidence of 
the importance of modelling extreme rainfall from different regions of the world. In this paper, we focus on Peak Over 
Thresholds approach where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of 
the exceedances. This research considers also use of the generalized Pareto (GP) distribution with a Poisson model for arrivals 
to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in 
Tanzania. The results indicate that the proposed Poisson-GP distribution provide a better fit to maximum monthly rainfall data. 
Further, the Poisson-GP models are able to estimate various return levels. Research found also a slowly increase in return 
levels for maximum monthly rainfall for higher return periods and further the intervals are increasingly wider as the return 
period is increasing. 

Keywords: Extreme Value Theory, Generalized Pareto Distribution (GPD),  
Poisson Generalized Pareto Distribution (Poisson-GPD), Maximum Likelihood Estimation,  
Likelihood Ration Test, Exceedances 

 

1. Introduction 

Extreme rainfall events have caused significant damage to 
agriculture, ecology and infrastructure, disruption of human 
activities, injury and loss of life. Since such extremes 
significantly affect societies [1], it becomes necessary to 
understand and analyse changes in them. However, analysing 
patterns of change in extreme rainfall over Tanzania is 
challenging because of the variability associated with 
Tanzanian rainfall [2]. In addition, extreme events are rare by 
their definition, making it difficult to analyse or model them 
[3]. 

In recent years, floods have become more frequent in 
Tanzania which necessitate investigating their cause. For 
example, many areas are affected by heavy rainfall and the 
associated floods and landslides. Some examples of the loss 
caused by floods are the damage both to life and property 
experienced throughout the country during the 1997-1998 El 
Nino associated with floods, and the 2011 floods that 
wrecked the coastal city of Dar es Salaam [4]. In years [5], 
heavy rains accompanied with strong winds have left 
thousands of people displaced and without food in Muleba, 
Kilosa, Same and Dar es Salaam. The flooding of 2009-2010 
in Kilosa proved as serious, that over three quarters of the 
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farmers reported their households were affected [6]. 
Furthermore, in 2010, floods occurred in Kilosa (Morogoro), 
Mpwapwa and Kondoa (Dodoma) where more than 50000 
people were affected, 5100 hectares of crops were destroyed 
and agricultural land was covered with mud and sand; public 
facilities were also destroyed [7]. According to the study [8], 
some towns in Tanzania, for example Dar es Salaam and 
Mwanza, experience floods almost every rainy season and 
causes significant damage. Over the last 50 years, extreme 
value theory has been used widely in modelling extreme 
rainfall and in various disciplines, such as financial markets, 
insurance industry, failure cases, and so on [9]. In An 
introduction to statistical modelling of extreme values by the 
paper [10], statistical models for extreme values are presented. 
Block maxima, for which annual maxima rainfall could be an 
example, converges to Generalized Extreme Value (GEV) 
distribution. Exceedances over threshold can be modelled by 
Generalized Pareto (GP) distribution, and dependence of 
exceedances can be modelled by de-clustering method. Return 
levels are derived, based on the estimation results of GEV and 
GP models. For non-stationary sequences, generalized linear 
models (GLM) are used for analysing trends in GEV and GP 
models [11]. 

Climatic extreme events have had negative impacts to both 
the society and economy of a country. Therefore, the early 
warning system require adequate understanding of climatic 
extreme events. So far many publications have analysed 
climatic extremes using either generalized extreme value 

(GEV) or generalized pareto (GP) distributions which 
provides evidence of the importance of modelling extreme 
rainfall from different regions of the world: Europe [12]; 
France [13]; Taiwan [14]; China [15]; Australia [16]; 
Mozambique [16] and Bangladesh [17]. However, few 
studies on this subject have been carried out in Tanzania: [18, 
19]. For example, the study [18] using GEV and GP 
distributions to define the extreme, generalized pareto 
distribution was found to be the best to model extreme 
rainfall in Tanzania. However, this study did not determine 
how often extreme rainfall that causes floods occurs in a 
certain city and during which season, rainy or dry season and 
intensity of such extreme rainfall was not studied. 

In Tanzania, flooding has been reported in 5 regions 
since mid January, 2016. At least 400 people have been 
displaced in Dodoma municipality after 70 houses were 
destroyed or damaged after heavy rains between 17 and 18 
January 2016. Since then, flooding has been reported in 
Morogoro, Katavi, Mtwara and Dar es Salaam [7]. This 
research devotes special attention to Tanzania because of 
the obvious impacts of extreme events shown in figure 
below. This region is considered as one of the most 
vulnerable regions in East Africa due to the extreme 
rainfall and temperature events and high rate of mortality 
associated to them. In this research a threshold model 
(known as POT model) is used to model frequency of 
extreme rainfall occurrences and to quantify future return 
level of extreme rainfall in Tanzania. 

 

Figure 1. Rainfall in Dar-es-Salaam, Tanzania, 22 March 2015 and floods forced hundreds from their homes and roads were destroyed. 

2. Methodology 

Two methods are commonly used in modelling of extreme 
rainfall events; Block maxima approach and POT (Threshold 
exceedances) approach. The block maxima method is often 
wasteful of data, in particular when more data on the 
extremes are available, leading to large uncertainties on 
return level estimates. Unlike the block maxima method, the 
POT method provides a more efficient use of data. In the 
POT method, first a threshold is chosen and all the data 
above the threshold are being considered. Extreme rainfall is 
analysed by the Peaks Over Threshold (POT) approach in 
this study. 

2.1. Threshold Exceedances Model 

In this analysis, extremes are defined as exceedances over 
threshold distributed according to the generalized Pareto 
distribution (GPD), which is characterized by two parameters, 
the shape ξ and the scale σu. According to [20] the POT 
method is a formal statistical model, consisting of a Poisson 
process for the occurrence of an exceedance of a high 
threshold and a generalized Pareto distribution for the excess 
over the threshold (termed “Poisson - GP model”). In this 
research the POT method is used because it can investigate 
the frequency as well as magnitude of the extremes, and is 
recommended for the estimation of frequency and intensity 
of extreme events [21]. However, one of the the limitations 
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of POT is that it produces dependent data (extremes tend to 
occur in clusters), so we need to consider the dependence of 
data prior to its use. Another limitation is to make an optimal 
choice for the threshold u. A very high value of u leads to 
few exceedances and consequently high variance estimators. 
On the contrary, a very low value of u is likely to violate the 
asymptotic basis of the model, leading to biases. The 
selection of an appropriate threshold is another critical step 
of the POT analysis. It is essential to choose a threshold that 
is high enough to be in the asymptotic limit of the 
distribution of exceedances, but low enough to have ample 
data for the fit. 

2.1.1. Generalised Pareto Distribution 

Since other values in each block are not utilised then block 
maxima method is somewhat wasteful and potentially 
important information might be lost, especially considering 
that extreme events are rare by definition. An alternative 
definition of an extreme is used, namely, that an observation 
is extreme if it exceeds some high threshold u. In this case 
we introduce a threshold denoted by u. If an entire time 
series of daily observations are available peaks over 
threshold is a more suitable method than the block maxima 
method. Instead of splitting the data into different blocks, the 
peaks over threshold method is based on fitting generalized 
Pareto distribution to all values that exceed a certain 
threshold u. The distribution for the excesses over threshold 
u is obtained by using GEV distribution as an approximation 
to the new distribution GPD. 

2.1.2. Poisson-GP Model for Exceedances 

The times at which the events occur can also provide 
important information to make the inference more exact. The 
Generalized Pareto (GP) distribution is the approximate 
distribution for excesses over a high threshold and a one-
dimensional Poisson process that describes the rate of 
exceedance. Poisson-GP model has two components. 

(a) the occurrences of exceedances of some high threshold 
u (i.e., Xi>u, for some i) are generated by a Poisson process 
with rate parameter λ, and 

(b) the excesses over threshold u (i.e., Xi−u, for some i) 
have a GP distribution with scale and shape parameters, σu 
and ξ, respectively. The number of exceedances in let us say 
one year, follows a Poisson distribution with mean λ and the 
exceedance values Y1,..., Yn are i.i.d from the GPD [21]. So, 
supposing x > u, the probability of the annual maximum 
being less than x for the GPD-Poisson model is 

��� − �; �, 	
, �� = ��� �−� �1 + � ���
�� ��
��
� �       (1) 

2.2. Threshold Selection 

Threshold choice involves a trade-off between bias and 
variance: if the threshold is too low then limiting forms may 
be poor models; if the threshold is too high. then there will be 
few observations with which to make inferences. Often, if a 
limiting form holds at one threshold then it holds also at all 

higher thresholds. Therefore, one strategy is to try several 
thresholds before selecting u to be the lowest in the range of 
thresholds for which estimates appear stable and models fit 
the data reasonably well. Procedures of threshold selection 
are suggested by the researchers [23, 24]. This paper 
considers two points to select a threshold. The first method is 
the use of mean residual plot, recommended by [25]. In this 
plot, estimator of the shape parameter should appear 
approximately linear in threshold u above a reasonable u0. 
Secondly, stability checking of shape parameters method is 
used where after choosing some values as the threshold 
candidates, we can then fit parameters in a GP distribution 
for each of the threshold. A suitable threshold can be chosen 
when the estimators of the shape parameter ξ keep stable 
above the threshold. 

2.3. Parameters Estimation Using MLE 

All the models described so far will be fitted by the method 
of Maximum Likelihood Estimation. In this section we give a 
very brief overview of the main principles behind this 
approach, with a view towards the GP and Poisson-GP models. 

2.3.1. Inference on Generalised Pareto Model 

Setting y1,..., yk to be only those values of x1,..., xn that 
exceed the threshold, the GP log-likelihood is given by 

��	
, �;  ! , . . . ,  #� = −$�%&	
 − �1 + !
'� ()*!# �%& +1 +

� �,-���.                                             (2) 

We maximize the log likelihood function of generalized 
Pareto distribution to find the estimates of the parameters. 

2.3.2. Inference on Poisson-Generalised Pareto Model 

For Poisson-GP model, the likelihood function must be 
written in two parts, one corresponding to the poisson 
component and the other to the GPD. If we observed N 
exceedances Y1,..., YN over a T −year period, then the 
poisson mean of N is λT, and the joint density of N and Y1,..., 
YN is 

�/0�12�34
5! 7)*!5 ℎ�9); 	
 , ��                         (3) 

The log-likelihood function of the Poisson-GP model is 
then 

�5,:��, 	
, �� = ;�%&� − �< − ;�%&	
 − �1 +
!
'�∑ �%& �1 + � ,-

���                           (4) 

2.4. Estimation of Return Levels 

Assume that a generalized Pareto distribution with 
parameters σu and ξ is a suitable model for exceedances of a 
threshold u by a variable X. In general it is often more 
suitable to present the return level on an annual scale so that 
the N-year return level is the level expected to be exceeded 
once every N years. Quantiles of the Poisson-GP model are 
functions of the parameters and the return period Tp. 
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and 

�> = � + ��
' �1 − ?�<>@�'�		for � ≠ 0            (6) 

2.5. Graphic Model Diagnostics 

As the reason for fitting a statistical model to a set of data 
is to draw conclusions on some aspects of the population of 
the observed data, such conclusions could be sensitive to the 
accuracy of the fitted model. Thus, it is necessary to check 
the model accuracy and goodness-of-fit by checking its 
agreement with the data that were actually used to estimate it 
(model descriptive ability) and also checking its ability to 
simulate future values (model predictive ability). To check 
whether GP-Poisson distribution will be a good fit for our 
data, the assessment will be done with reference to the 
observed data by using the following approach: 

2.5.1. Probability Plot 

Probability plot, which is a comparison of an empirical 
(usually percentage rank) and the fitted distribution function. 
In case of perfect fit, the data would line up on the diagonal 
of the probability plots. 

2.5.2. Quantile Plot 

Quantile plot is also a comparison of an empirical form for 
estimating the exceedance and the inverse of fitted 
distribution. Any departure from linearity indicates model 
failure in perfectly fitting the data. 

2.5.3. Return Level Plot 

To use this plot as a model diagnostic, the empirical 
estimates of the return level function are also added. For 
suitable models the model based curve and empirical 
estimates should be in agreement. 

2.5.4. Density Function Plot 

Density plot, which is a comparison of the probability 
density function of a fitted model with the histogram of the 
POT data. This is less informative diagnostic for model as a 
histogram varies substantially with the choice of grouping 
intervals, which makes its use difficult and subjective. 

2.6. Statistical Tests 

Before carrying out extreme value modelling, the data 
series must meet certain statistical criteria such as 
independence, and stationarity. According to the study [25], 
the elements of annual series of short-duration rainfall may, 
in practice, be assumed to be independent. In some cases, 
however, there may be significant dependence even between 
annual maximum values. The identification of extremes 
requires the use of an independency criterion. Extreme value 

theory assumes total statistical independency of the sampled 
extremes [26] thereby providing a theoretical basis for 
distribution fitting. 

2.6.1. Wald and Wolfowitz Test for Independence 

The Wald and Wolfowitz (W-W) Test is a test to 
determine if the observations are independent. It compares 
the following hypotheses: 

H0: The observations are independent against the 
alternative 

H1: The observations are dependent. 

2.6.2. Stationary Test 

It is essential that the stationarity assumption be fulfilled 
before the classical Poisson–GP model can be fitted. The 
Stationary Test combines the existing tests Augmented 
Dickey-Fullertest (adf. test), Phillips-Perron (pp. test) and 
Kwiatkowski-Phillips-Schmidt-Shin Test (kpss. test) for 
testing the stationarity of a univariate random variables. The 
Stationary test compares the following hypotheses: 

H0: The data is stationary and the alternative 
H1: The data is non stationary. 

2.6.3. Likelihood Ratio Test 

This is a statistical test used to test the statistical 
significance of nested models with additional parameters. 
The statistical significance of the parameter of the model M0 
can be assessed by the likelihood ratio test through 
comparison with model M 

D = −2{l(M)−l(M0)}                      (7) 

where l (M) and l (M0) are the maximized log likelihood 
function of the models M and M0, respectively. The statistic 
D is distributed according to a Chi-square distribution, with 
the degree of freedom parameter being the difference in 
number of parameters between models M and M0. In this 
work, the likelihood ratio test is conducted for two nested 
extreme value distribution models. Meaning, the parameters 
of one model must be a subset of the parameters of the 
second model. Suppose the base model, M0, is nested within 
the model M. Then, if P−value is smaller than alpha 
(significance level), the decision is to reject the null 
hypothesis in favour of the model with more parameters. 

3. Results and Discussion 

3.1. Statistical Description of the Data 

The analysis is based on monthly rainfall data in Tanzania 
available in World Meteorological Organization. The data 
have been recorded from 1901 up 2015 by considering 
available monthly rainfall data. The data set contains 1380 
values of monthly rainfall. The table below shows the 
statistical summaries of Tanzania monthly rainfall. 

Table 1. Statistical summaries of the monthly rainfall in Tanzania. 

Variable Period 1st Qu. Mean 3rd Qu. Min Max Std Median 

Rainfall 1901-2015 14.200 83.140 143.600 1.361 316.100 71.486 66.430 
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3.2. Graphical Description of Tanzania Monthly Rainfall 

A box plot of the monthly rainfall has been performed, 
showing the variability of the rainfall for each month. In the 
box plot, we can see that the variability of maxima is varying 
over the year. The rainfall rises during the wet season (from 

November to December and again from January to April) and 
declines during the dry period (from June to September). 
This graph shows that Tanzania faces extreme drought from 
June to September. 

3.3. Threshold Selection Techniques 

 

Figure 2. A boxplot of monthly rainfall. 

The choice of threshold is very crucial and challenging 
when one wants to apply the POT method and estimate the 
model parameters. To analyse extreme maximum rainfall 
using the POT method, first a threshold value u0 is 
determined and then the GPD or Poisson-GPD is fitted to the 
rainfall values above u0. Indeed the threshold should not be 
too high in order to have enough data to deal with, but 
neither too low. Methods for selecting a threshold u0 have 
been used, and it is then possible to compare the different 
values of thresholds obtained. 

3.3.1. Mean Residual Plot 

 

Figure 3. A Mean Residual Life Plot. 

Interpretation of a mean residual life plot is not always 
simple in practice. The idea is to find the lowest threshold 
where the plot is nearly linear; taking into account the 95% 
confidence bounds. Mean residual life plots have been 
performed for Tanzania monthly rainfall (see Figure 3). 

3.3.2. Shape Parameter Stability Plot 

The second method of trying to find a threshold involves 
plotting the modified scale parameter and the shape 
parameter against the threshold u0 for a range of threshold 
which has been chosen to go from the 25% quantile to the 99% 
quantile. 

 

Figure 4. Shape Parameter Stability Plot. 

The threshold value of 200 mm has been chosen using the 
threshold selection diagnostic plots presented above. 
Two graphs showing maximum likelihood estimates and 
confidence intervals of the shape and modified scale 
parameters over a range of thresholds are produced. The 
parameter estimates should be stable (i.e. constant) above the 
threshold at which the model becomes valid. 
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3.4. Modelling Maximum Rainfall Using POT Method 

In the POT method, first a threshold is chosen and then all 
the data above that threshold are being considered to be 

extremes. Extreme values analysis was performed on this 
study by fitting the Poisson-generalized Pareto distribution to 
the sample using method of maximum likelihood estimates. 

 

Figure 5. Monthly rainfall and excesses over threshold u0 = 200mm. 

 

Figure 6. Histogram of rainfall exceeding threshold u0 = 200mm. 

We calculate a new data set, excess, in which the threshold 
is subtracted from the rainfall values. Both the original 
rainfall values and the calculated excesses can be seen Figure 

6. The excesses over threshold are shown in red. 
Some statistics for the distribution of the monthly rainfall 

excesses are presented below: 

Table 2. Statistical summaries of Tanzania monthly rainfall excesses. 

Variable Period 1st Qu. Mean 3rd Qu Min Max Std Median 

Rainfall excesses 1901-2015 208.400 225.400 232.900 200.100 316.100 24.354 217.200 
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3.4.1. Stationary Test 

It is important to study the stationarity of rainfall data, the 
sequence of random variables represents the series of 
maximum rainfall, it must have constant properties through 
time. Random variables must be independent and identically 
distributed satisfying stationarity assumption in order to fit 
Poisson-GP distribution. The aim of the test is to check if 
data (monthly rainfall) in time periods is stationary. 
Stationary test compares the null hypothesis H0 states that 
data are stationary while H1 states that they are non 
stationary. The KPSS test was used as a stationary test. Since 
the KPSS statistic value is greater than the critical value, then 
we do not reject the null hypothesis. Therefore, extreme 

monthly rainfall in Tanzania is stationary. 

3.4.2. The Poisson-generalised Pareto Distribution 

By referring to what have been discussed in the 
methodology, the maximum monthly rainfall data need to be 
fitted to a Poisson-GP distribution to forecast the occurrences 
of flood in Tanzania. To analyse extreme rainfall using the 
POT method, first a threshold value u0 is determined and 
then the Poisson-GPD is fitted to the rainfall values above u0. 
The model requires checking the stationarity and also test if 
Poisson-GP is a good fit for the data. A Poisson-GP with 
covariates model has to be employed to fit non stationary 
series of maximum rainfall data. Table 3 presents results of 
estimated parameters for the Poisson-GP model. 

Table 3. Estimated parameters for Poisson-GP model. 

Threshold Parameter Symbol Estimates St. error C. I (95%) DEF 

�G = 200 
Shape � -0.063 0.118 (-0.254,0.216) 

87 Scale 	
I 26.989 4.295 (19.560,36.561) 
Exceedance rate � 90.103 4.012 (79.510,98.101) 

 
In statistics there is a close relationship between the test of 

hypothesis about any parameter, say θ, and the confidence 
interval for θ. The test of size α of the hypothesis 

H0: θ = θ0 

H1: θ = θ0 

will lead to rejection of H0 if and only if θ0 is not in the 

confidence interval for the parameter θ. From Table 3, the 
maximum likelihood estimate for ξ is negative, what would 
correspond to a Poisson-Beta distribution, but the confidence 
interval for ξ contains zero, then we fail to reject the null 
hypothesis, ξ = 0. 

Table 4. Estimated parameters for Poisson-exponential model. 

Threshold Parameter Symbol Estimates St. error C. I (95%) DEF 

�G = 200 
Scale 	 25.390 2.722 (20.054,30.724) 

87 
Exceedance rate � 86.947 3.002 (80.042,90.254) 

Table 5. Deviance table analysis for Poisson-exponential and Poisson-GP model. 

Model M. df Deviance AIC BIC Chi-square P-value Significance level 

M1 2 736.510 740.511 745.443 
0.261 0.609 0.05 

M0 1 736.070 738.772 741.234 

 
Using Deviance table analysis presented above (see, Table 

5), Poisson-exponential distribution is then a possible 
candidate to model maximum rainfall in Tanzania. 

3.4.3. Model Selection 

The value of shape parameter in Table 3 indicate that all 
the models obtained are classified as either Poisson-Beta 
distribution or Poisson-exponential distribution. The shape 
parameter of the distribution is negative, means that GPD 
distribution is Beta type, ξ< 0. But an exponential 
distribution must also be considered since zero is included in 
the confidence interval. We select the best distribution model 
on basis of likelihood ration test which is described below: 

Null hypothesis � = 0 while alternative hypothesis  � =≠ 0. 
The likelihood ration test results show that Poisson-

exponential distribution is the best fit for our data. 

3.4.4. Graphical Model Checking 

For our data in order to check whether the model fits well 
the data, the assessment can be done with reference to the 
observed data by using the following approach: Quantile plot 
should show a linearity. 

3.5. Return Level Estimation 

Return levels are essentially the same as quantiles. In the 
case of the GPD, they are very similar, but the exceedance 
rate is taken into consideration. Using estimated parameters 
of GPD, the maximum likelihood estimator of the return 
level Xp. Using Poisson-exponential distribution, return level 
which is expected to exceed the maximum of available data 
is calculated for different selected return period and results 
are presented below: 
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Figure 7. Model diagnostic Plots. 

Departure from linearity in quantile plot also indicates 
model failure. A probability plot is a comparison of the 
empirical and fitted distribution functions should lie closer to 
the first diagonal. Those model checking plots are presented 
below. 

Table 6. Return levels with corresponding return periods for Tanzania 

monthly rainfall. 

Variable 
Return periods 

(Months) 

Return 

levels 
C. I (95%) 

Significance 

level 

Monthly 
Rainfall 

12 388.541 (383,394) 

0.05 

24 407.249 (402,412) 
36 418.192 (413,423) 
48 425.956 (421,431) 
60 431.978 (427,437) 
72 436,899 (432,442) 
84 441.059 (436,446) 
96 444.663 (440,450) 
108 447.842 (443,453) 
120 450.686 (446,456) 

4. Conclusions 

After selecting suitable threshold, the data is fitted to the 
Poisson-GP model M1 and Poisson-exponential model M0. 
Likelihood ratio test is then used to select the preferred 
model for maximum monthly rainfall data. The likelihood 
ratio test, revealed that M0 is preferred over M1. This test 
agreed with Deviance Analysis Table by considering BIC, 
AIC and P−value obtained. The confidence interval confirms 
this conclusion. Hence, the Poisson-exponential distribution 
was found to be more suitable for extreme monthly rainfall in 
Tanzania. Poisson-exponential model was used to estimate 
the return levels for maximum rainfall. Further, we found 
that the return levels for maximum monthly rainfall increase 

slowly for higher return periods and further the intervals are 
increasingly wider as the return period is increasing. A 
typical question is to estimate what is the amount of rain on 
one month that is expected to be exceeded once every T 
years. Mathematically speaking, the problem is to estimate 
the T-years quantile q (1/(365 × 12T )) of the monthly 
rainfall. For example, from table above, the amount of rain 
on one month that is expected to be exceeded once every 100 
years is 450.686 mm. 
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