

MACHAKOS UNIVERSITY

University Examinations for 2018/2019

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTING AND INFORMATION TECHNOLOGY FIRST YEAR SECOND SEMESTER EXAMINATION FOR CERTIFICATE IN INFORMATION COMMUNICATION TECHNOLOGY 1920/106: OPERATING SYSTEM

DATE: 18/4/2019

TIME: 8.30-11.30 AM

INSTRUCTIONS

- 1. Answer **Any five (5)** questions
- 2. All the questions carry twenty (20) marks each
- 3. This paper consists of FIVE (5) printed pages

QUESTION ONE (20 MARKS)

- a) Discuss any **two** roles played by operating system while implementing the following functions associated with computer based systems.
 - i. Programs and subroutines loading (2 marks)
 - ii. Processor Management (2 marks)
 - iii. Main Memory Management (2 marks)
- b) Describe any **three** reasons that would cause an executing process to terminate. (6 marks)
- c) Explain how priority scheduling algorithm deals with the problem of starvation on processes with lower priority. (2 marks)
- d) Suppose we have 4 processes that arrived in the order P1, P2, P3 and P4 and their burst times is as provided.

Process	Arrival Time	Burst Time
P1	0	5
P2	2	8
P3	3	4
P4	4	1

Considering the First Come First Served (FCFS) scheduling algorithm,

i.	Draw the Ghant chart;	(2 marks)
ii.	Calculate the average waiting time for the processes;	(2 marks)
iii.	Calculate the average turn around time.	(2 marks)

QUESTION TWO (20 MARKS)

- a) With the help of a diagram, explain the various process states. (8 marks)
- b) Operating system employs a number of strategies to determine where to place incoming process. Critically discuss any two memory placement strategies that can be employed to achieve this. (4 marks)
- c) Priority scheduling algorithm is both pre-emptive and non-pre-emptive. Explain how this is achieved. (4 marks)
- d) Assuming a 2 kb page size and the virtual page 2 is mapped onto the physical page frame
 4, identify the physical address which will be accessed when a program tries to access address 5002. (4 marks)

QUESTION THREE (20 MARKS)

a) Suppose we have 4 processes with the following their burst times.

Process	Burst Time
P1	8
P2	9
P3	5
P4	2

Considering the round robin scheduling algorithm with a Quantum time of 3,

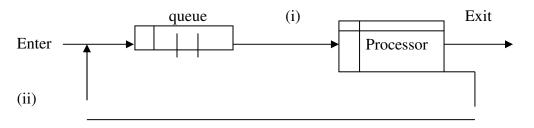
	i.	Draw the Ghant chart for the schedule	(3 marks)	
	ii.	Calculate the average waiting time for the processes;	(2 mark)	
	iii.	Calculate the average turn around time.	(2 marks)	
	iv.	Calculate the throughput of the system.	(1 mark)	
b)	Critic	ally discuss the four conditions that must exist for a deadlock to	lock to take place.	
			(8 marks)	
c)	Diffe	rentiate between contiguous and non-contiguous memory allocat	tion. (4 marks)	
QU	ESTION	FOUR (20 MARKS)		
a)	Expla	ain each of the following with reference to inter-process commun	nication:	
	i. (Critical sections;		
	ii. l	Busy waiting;		
	iii. I	Kernel.	(6 marks)	
b)	Expla	ain any two limitations associated with Shortest Job First schedu	ling algorithm.	
			(4 marks)	
c)	In a	paged-segmented system we have the virtual address space	of 32 KB, with 8	
	segm	ents and a page size of 512 bytes. Calculate:-		
	i.	The number of bits for the page number;		
	ii.	The maximum number of pages in a segment;		

- ii. The maximum number of pages in a segment;iii. The maximum segment size;
- iv. Draw how the logical address is partitioned. (8 marks)
- d) Describe the use of *semaphores* in management of concurrent process. (2 marks)

QUESTION FIVE (20 MARKS)

- a) Maendeleo Institute is experiencing data privacy problems within its file system. Explain **three** measures that the institute can put in place to mitigate this problem. (6 marks)
- b) Access to disk is much slower than access to memory, as a result of this difference many file systems have been designed with various optimizations to improve performance. Describe any two of this optimization techniques. (4 marks)
- c) Explain the following file operations:
 - i. Append;

	ii.	Write;	
	iii.	Seek. (6 r	marks)
d)	Differ	entiate between one level and two level directory systems.	(4 marks)
QUE	STION	SIX (20 MARKS)	
a)	Descri	ibe four main functions of an operating system.	(4 marks)
b)	Explai	in the following types of operating systems:	
	i.	Real time operating systems;	
	ii.	Distributed operating System.	(4 marks)
c)	While	preventing deadlock from happening, explain how the hold and wait co	ondition can
	be elir	ninated.	(2 marks)
d)	With	reference to variable partition, discuss any two techniques which can b	e employed
	by Op	erating System to handle external Fragmentation.	(4 marks)
e)	Outlin	e four ways in which external devices mainly differ in reference	e to device
	manag	gement	(4 marks)
f)	Expla	in the term <i>swapping</i> as used in memory management.	(2 marks)


QUESTION SEVEN (20 MARKS)

a)	Differentiate between virtual and physical memory addressing as used in	1 operating
	systems.	(4 marks)
b)	June was required to list objectives for a proposed file system in her compa	ny, outline
	four objectives that she was likely to list.	(4 marks)
c)	Outline two features of FAT16 file system.	(2 marks)
d)	Explain each of the following terms as used in I/O operations:	
	i. Spooling;	
	ii. Device controller;	
	iii. Device driver.	(6 marks)
e)	ICT module 1 students in Machakos University College were carrying out an	assignment

e) ICT module T students in Machakos University College were carrying out an assignment on objectives of memory management in operating systems. Explain **four** objectives that they could have mentioned. (4 marks)

QUESTION EIGHT (20 MARKS)

- a) Distinguish between *command Language* and *Job control Languages* (4 marks)
- b) Explain the following terms in relation to deadlocks:
 - i. Two phase locking
 - ii. Starvation
 - iii. Safe and unsafe states
- c) Explain the following terms as used in operating systems
 - i. Process
 - ii. Through put
 - iii. Turn around time
- d) The figure below shows a block diagram of a two state process diagram. Outline the role of the parts labelled (i) and (ii)

(4 marks)

(6 marks)

(6 marks)