

MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

FIRST YEAR FIRST SEMESTER EXAMINATION FOR

DOCTOR OF PHILOSOPHY IN FINANCE

BMS 900: STATISTICS FOR BUSINESS I

DATE:

TIME:

INSTRUCTIONS:

Attempt Question ONE and Any Other Two Questions

QUESTION (COMPULSORY)(30 MARKS)

a) Table 1 shows a frequency distribution of the weekly wages of 65 employees of a company.

Table 1:

Wages (\$)	Number of employees
250.00-259.99	8
260.00-269.99	10
270.00-279.99	16
280.00-289.99	14
290.00-299.99	10
300.00-309.99	5
310.00-319.99	2
	Total 65

Determine

- i) The class mark of the third class
- ii) The size of the fifth-class interval
- iii) The relative frequency of the third class (6 marks)

b) Table 2 show the frequency distribution of heights (in inch) of 100 males at a university.

Table 2

Height (inch)	Number of students
60-62	5
63-65	18
66-68	42
69-71	27
72-74	8
Total	100

Find

- i) the mean height
- ii) the median height
- iii) the modal class
- c) The revenue from an investment by an investor in three ventures is expected to be Ksh 2 m, Ksh 4m and Ksh 6m respectively. Calculate
 - i) arithmetic mean,
 - ii) Geometric mean,
 - iii) Harmonic mean of the revenue

Explain the preferable mean to apply in this case. (8 marks)

d) i) Let the X be a discrete random variable with probability mass function

f(x) = c, for x = 1, 2, 3, 4. Determine the value of c.

Hence, or otherwise calculate

- ii) E (X)
- iii) Var (X)
- e) Let a random variable X have the Poisson distribution with parameter m.
 - i) Write down the expression for the probability mass function
 - ii) Calculate the probability
 - $P(0 \le X \le 7)$ (5 marks)

(6 marks)

(5 marks)

QUESTION TWO (20 MARKS)

a) Suppose a random variable X has a normal distribution for which the mean is 1 and the variance is 4. Find the value of each of the following probabilities:

(i)P($X \le 3$) (ii) P(X > 1.5) (iii) P(X = 1) (iv) P($2 \le X \le 5$). (8 marks)

- b) Evaluate $\int_0^\infty \exp(-3x^2) dx$
- c) i) Define , for a random variable X, its moment generating function M(t).
 - ii) Show that Var (X) = $M''(0) [M'(0)]^2$, where M'(0) and M''(0) are the first and the second derivative of M(t) with respect to t, respectively.

(8 marks)

(6 marks)

QUESTION THREE (20 MARKS)

- a) Consider Table 1 in Question 1. Calculate
 - i) the mean wage
 - ii) the variance and
 - iii) the standard deviation of the wages (6 marks)
- b) Assuming that the data in Table 1 is a sample from some population, estimate the 95% confidence interval for the population mean. (4 marks)
- c) i) Give the expression for calculating the median for a grouped data.
 - ii) Using the formula specified in part (i), calculate the median wage for the data in Table 1. (6 marks)

QUESTION FOUR (20 MARKS)

a) Consider Table 2 in Question 1. Calculate

i) the mean deviation height, MD

Hence, determine the percentage of students' heights that fall within the ranges

- ii) Mean ± MD
- iii) Mean ± 3 MD (8 marks)
- b) i) Define the moment coefficient of skewness. (4 marks)
 - ii) Calculate the moment coefficient of skewness of the data in Table 2 in Question 1. (8 marks)

QUESTION FIVE (20 MARKS)

- a) Let X denote a continuous random variable .
 - i) Define the distribution function of X, F(x).

Hence

ii) Show that the probability

$$P(a \le X \le b) = F(b) - F(a)$$
 (8 marks)

b) The profits, in millions of Ksh., from some investment undertaking is random variable. However it is known to lie between zero and Ksh 4 million. Given that the probability density function of X is given by

f(x) = cx, 0 < X < 4;

Determine

i) c

ii) $P(1 \le X \le 2)$

iii) P (X > 2)

iv) Var (X)

(12 marks)