

DATE: 18/4/2019

TIME: 11:00 – 1:00 PM

INSTRUCTION: Answer Question **ONE** which is compulsory

QUESTION ONE (COMPULSORY) (30 MARKS)

a)	Explain the meaning of the following terms as applied in theory of estimation		
	(i)	Population	

(ii) An estimator

(4 marks)

b) Let $x_1, x_2, \dots x_n$ be a random sample drawn from a population with mean μ

(unknown). Show that if $y = \sum_{i=1}^{n} a_i x_i$ is unbiased estimator for μ if $\sum_{i=1}^{n} a_i = 1$ (6 marks)

c) Let $x_1, x_2, \dots x_n$ denote a random sample from a pdf is $P(X = x) = \frac{e^{-\mu}\mu^x}{x!}$, x=0,1,....

Use the factorization theorem to show that $T = \sum x_i$ is a sufficient estimator of μ (4 marks)

d) Let $x_1, x_2, \dots x_n$ be a random sample from a population with mean μ and variance δ^2 .

Consider the following estimators for μ .

$$t_{1} = \frac{1}{2}(x_{1} + x_{2})$$

$$t_{2} = \frac{\frac{1}{2}x_{1} + x_{2} + \dots + x_{n-1}}{2(n-1)}$$

$$t_{3} = \bar{x}$$

i)	Show that each of 3 estimators is unbiased.	(5 marks)
ii)	Determine the efficiency of t_3 relative to t_2	(5 marks)

e) Let $x_1, x_2, ..., x_n$ be a random sample of size n from a normally distributed population with mean μ (unknown) and known variance δ^2 . Determine the maximum likelihood estimator (MLE) of μ . (6 marks)

QUESTION TWO (20 MARKS)

a) Use the following data to fit the regression line $y = \alpha + \beta x$

Х	-2	-1	0	1	2		
у	0	0	1	1	3		
(8marks)							

b) Let $x_1, x_2, \dots x_n$ be a random sample of size n from a population whose pdf is given by

 $f(x,\theta) = \theta e^{-\theta x}, x > 0,$

Determine the Cramer-Rao lower bound for θ . (12marks)

QUESTION THREE (20 MARKS)

- a) Let $x_1, x_2, .., x_n$ be a random sample from $x \sim N(\mu_0, \delta^2)$ where μ, δ^2 are both unknown. Determine a joint sufficient statistic of μ , and δ^2 (8 marks)
- b) A random sample of size n is drawn from a normal population with $(0,\delta^2)$. Determine the minimum variance unbiased estimator (MVUE) of δ^2 and its variance. (12 marks)

QUESTION FOUR (20 MARKS)

a) Let $x_1, x_2, \dots x_n$ denote a random sample from a pdf

$$f(x) = \begin{bmatrix} (\theta + 1)x^{\theta}, & 0 < x < 1, \ \theta > 0 \\ 0 & elsewhere \end{bmatrix}$$

Obtain the moment estimator of θ

(8 marks)

b) Given a random sample of size *n* from a population whose pdf is

$$f(x) = \frac{1}{2\sqrt{2\pi\theta}}e^{\frac{-1}{4\theta}(x-5)^2}$$

Obtain the maximum likelihood estimator (MLE) of θ and show that it's unbiased.

(12 marks)

QUESTION FIVE (20 MARKS)

- a) A population has a known mean μ and a standard deviation δ of 2.45. If a sample of 900 has a mean of 3.15cm and the population is normal obtain a 99% confidence intervals for the true mean. (8 marks)
- b) If $x_1, x_2, \dots x_n$ is a random sample of size n from a population whose pdf is given by

$$f(x,\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, ...$$

Determine the uniformly minimum variance unbiased estimator (UMVUE) of $e^{-\lambda}$ (12 marks)