MACHAKOS UNIVERSITY

UNIVERSITY EXAMINATIONS 2018/2019
SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE SECOND YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

SMA 405: GROUP THEORY II
DATE: 10/5/2019
TIME: 2:00-4:00 PM

INSTRUCTION: Answer Question ONE which is compulsory
QUESTION ONE (COMPULSORY) (30 MARKS)
a) Differentiate between a centre of a group and centralizer (4 marks)
b) Prove that p -group G is nilpotent
c) Show that the alternating group A_{4} has no subgroup of order 6
d) Show that if H is a subset of a group G and $g \in G$, then $\left|g^{-1} \mathrm{Hg}\right|=|H|$, where $g^{-1} \mathrm{Hg}=$
$\left\{g^{-1} h g \mid h \in H\right\}$
e) State without proving the second Sylow theorem
f) Prove if G is a group of order $p^{r}, r \geq 1$, then G has a normal subgroup of order p^{r-1}
g) Find all Sylow p-subgroups of A_{4} for $p=2$ and 3 .

QUESTION TWO (20 MARKS)

a) Prove that if G is a group with subgroups H and K such that $H \cap K=\{1\}$, the elements of H commute with those of K , and $\mathrm{HK}=\mathrm{G}$. Then $G \cong H \times K$
b) Prove G is a finite abelian group, G is solvable
c) Prove that $G=H \times K$ is the direct product of the groups H and K , then the sets $\mathcal{H}=\{(h, 1) \mid h \in H, 1$ the identity of $H\}$
$\mathcal{K}=\{(1, k) \mid k \in K, 1$ the identity of $K\}$ are subgroups of G.
d) State the Jordan-Holder theorem

QUESTION THREE (20 MARKS)

a) Prove that if $p \neq \emptyset$ is a subset of G and $\mathcal{A}=\left\{g^{-1} p g \mid g \in G\right\}$. Then $|\mathcal{A}|=$ $\sum_{R \in \mathcal{R}}\left[H: N_{H}(R)\right]=\left\lceil G: N_{G}(P)\right\rceil$
b) Prove that a finite group G is a p-group if and only if every element of G has order a power of p
c) Show that S_{4} is solvable

QUESTION FOUR (20 MARKS)

a) State and prove first Sylow theorem
b) Prove if G is a finite group, P a Sylow of G, and H is a subgroup of G of order a power of P, then $N_{H}(P)=H \cap P$
c) Show that the symmetric group S_{n} is solvable for $\mathrm{n}=1,2,3$.

QUESTION FIVE (20 MARKS)

a) Prove that if G is a finite group with subgroup H and non-empty subset A , the number of distinct subsets of G with distinct H -conjugates of A is the index of $N_{H}(A)$ in H
b) State without proving the third Sylow theorem
c) Prove that A_{4} is not nilpotent
d) Prove that if two groups have the same composition factors, are they isomorphic?
e) Prove that any subgroup of a solvable group is solvable

