

MACHAKOS UNIVERSITY

UNIVERSITY EXAMINATIONS 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

SECOND YEAR FIRST SEMESTER EXAMINATION FOR

BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

SMA 405: GROUP THEORY II

DATE: 10/5/2019		TIME: 2:00 – 4:00 PM		
INST	INSTRUCTION: Answer Question ONE which is compulsory			
QUESTION ONE (COMPULSORY) (30 MARKS)				
a)	Differentiate between a centre of a group and centralizer	(4 marks)		
b)	Prove that p –group G is nilpotent	(4 marks)		
c)	Show that the alternating group A_4 has no subgroup of order	6 (5 marks)		
d)	Show that if H is a subset of a group G and $g \in G$, then $ g^{-1}H $	$ g = H $, where $g^{-1}Hg =$		
	$\{g^{-1}hg h \in H\}$	(5 marks)		
e)	State without proving the second Sylow theorem	(2 marks)		
f)	Prove if G is a group of order $p^r, r \ge 1$, then G has a normal subgroup of order p^{r-1}			
		(5 marks)		

g) Find all Sylow p-subgroups of A_4 for p=2 and 3. (5 marks)

QUESTION TWO (20 MARKS)

a)	Prove that if G is a group with subgroups H and K such that $H \cap K = \{1\}$, the elements			
	of H commute with those of K,and HK=G. Then $G \cong H \times K$	(8 marks)		
b)	Prove G is a finite abelian group, G is solvable	(5 marks)		
c)	Prove that $G = H \times K$ is the direct product of the groups H and K, then the se	that $G = H \times K$ is the direct product of the groups H and K, then the sets		
	$\mathcal{H} = \{(h, 1) h \in H, 1 \text{ the identity of } H \}$			
	$\mathcal{K} = \{(1,k) k \in K, 1 \text{ the identity of } K \}$ are subgroups of G.	(5 marks)		
d)	State the Jordan-Holder theorem	(2 marks)		
QUE	STION THREE (20 MARKS)			
a) b)	Prove that if $p \neq \emptyset$ is a subset of G and $\mathcal{A} = \{g^{-1} pg g \in G\}$. Then $ \mathcal{A} = \sum_{R \in \mathcal{R}} [H: N_H(R)] = [G: N_G(P)]$ Prove that a finite group G is a p-group if and only if every element of G has a			
	power of p	(5 marks)		
c)	Show that S_4 is solvable	(5 marks)		
QUE	STION FOUR (20 MARKS)			
a)	State and prove first Sylow theorem	(10 marks)		
b)	Prove if G is a finite group, P a Sylow of G, and H is a subgroup of G of order a power			
	of P, then $N_H(P) = H \cap P$	(5 marks)		
c)	Show that the symmetric group S_n is solvable for n=1,2,3.	(5 marks)		
QUE	STION FIVE (20 MARKS)			
a)	Prove that if G is a finite group with subgroup H and non-empty subset A, the number of distinct subsets of G with distinct H-conjugates of A is the index of $N_H(A)$ in H			
b)	State without proving the third Sylow theorem	(8 marks) (2 marks)		
c)	Prove that A_4 is not nilpotent	(2 marks)		
d)	Prove that if two groups have the same composition factors, are they isomorphic?			
e)	Prove that any subgroup of a solvable group is solvable	(3 marks) (5 marks)		