MACHAKOS UNIVERSITY

University Examinations 2018/2019
 SCHOOL OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING
 FIRST YEAR SECOND SEMESTER EXAMINATION FOR
 CRAFT CERTIFICATE IN MECHANICAL ENGINEERING
 MECHANICAL SCIENCE I

DATE: 18/4/2019
TIME:8.30-11.30 AM

INSTRUCTIONS:

This paper contains FIVE questions

Answer all questions.

QUESTION ONE. (20 MARKS)

a) Define the following terms with reference to angular motion giving their S.I units.
i. Angular displacement
ii. Angular Velocity
iii. Angular acceleration
b) A flywheel of diameter 0.9 m revolves 75 times about its axis.If it is uniformly accelerated from rest to $150 \mathrm{rev} / \mathrm{min}$, determine;
i. The linear acceleration in $\mathrm{m} / \mathrm{s}^{2}$
ii. The time taken.
(Take I rev $=2 \pi$ radians
c) A wheel that is initially at rest is subjected to a uniform angular acceleration of $2.5 \mathrm{rad} / \mathrm{s}^{2}$ for 80 seconds and is then immediately retarded uniformly until it comes to rest 100 seconds later. Using a velocity -Time graph calculate;
i. Maximum angular velocity in rad/s.
ii. Total number of complete revolutions.
iii. Angular retardation in $\mathrm{rad} / \mathrm{s}^{2}$.

QUESTION TWO (20 MARKS)

a) A flywheel of diameter 1.2 m is accelerated from rest to a speed of750rev/min in 15 seconds.It is the maintained at this speed for a further distance of 1250 revolutions.Sketch a velocity- time graph and determine;
i. The linear acceleration of the flywheel.
ii. Total linear distance travelled by a point on the wheel periphery.
b) A car of mass 750 kg is travelling on a level road at a constant speed of $15 \mathrm{~km} / \mathrm{h}$.It is accelerated uniformly to a speed of $85 \mathrm{~km} / \mathrm{h}$ in 30 seconds.Neglecting frictional resistance or effects, Determine;
i. The workdone.
ii. Power Supplied.

QUESTION THREE (20 MARKS)

a) Define the following terms terms.
i. Power.
ii. Potential Energy
iii. Work
(6 marks)
b) A lathe rotates at $60 \mathrm{rev} / \mathrm{min}$ while turning a 150 mm diameter cylinder. The force on the tool is 2.4 KN and the efficiency of the lathe is 80%.Determine the power required to drive the motor.
(7 marks)
c) A Vehicle having a mass of 1600 kg increases its speed uniformly from $36 \mathrm{~km} / \mathrm{h}$ to $72 \mathrm{~km} / \mathrm{h}$ by the action of an accelerating force of 2.4 KN . Determine the increase in kinetic energy of the vehicle during the acceleration period.
(7 marks)

QUESTION FOUR (20 MARKS)

a) A vehicle hauls a trailer at $72 \mathrm{~km} / \mathrm{h}$ when exerting a steady pull of 800 N at the tow rope. Calculate the work done in 20 minutes and power required to tow the trailer.
(9 marks)
b) An Engine has mass of 150 kg and is suspended from a crane by a sling 4 m above the ground.
i. Determine the potential energy of the engine.
ii. Due to a fault in the sling the engine falls freely to the ground from that ${ }^{*}$ eight. Calculate the velocity and kinetic energy of the engine at the point of impact with the ground.
iii. Determine the kinetic and potential energy of the engine after falling 3 m .

QUESTION FIVE (20 MARKS)

a) State any three laws of dry friction.
b) A casting of mass 400 kg is pulled horizontally by a force of 1177.2 N along a horizontal floor.
i. Calculate the coefficient of friction between the casting and the floor.
ii. Determine the force that would move the same casting if it was a push inclined at 30° to the horizontal.
c) A force of 883 N is applied to drag a casting along a horizontal floor. If the casting has a mass of 300 kg , Determine the value of a force that would drag the casting if it is
i. A pull inclined at 25^{0} to the horizontal.
ii. A push inclined at 25^{0} to the horizontal.

