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Preface

Ideas from quantum physics play important roles in many parts of modern
mathematics. Many parts of representation theory, for example, are moti-
vated by quantum mechanics, including the Wigner-Mackey theory of in-
duced representations, the Kirillov—Kostant orbit method, and, of course,
quantum groups. The Jones polynomial in knot theory, the Gromov—Witten
invariants in topology, and mirror symmetry in algebraic topology are other
notable examples. The awarding of the 1990 Fields Medal to Ed Witten, a
physicist, gives an idea of the scope of the influence of quantum theory in
mathematics.

Despite the importance of quantum mechanics to mathematics, there is
no easy way for mathematicians to learn the subject. Quantum mechan-
ics books in the physics literature are generally not easily understood by
most mathematicians. There is, of course, a lower level of mathematical
precision in such books than mathematicians are accustomed to. In addi-
tion, physics books on quantum mechanics assume knowledge of classical
mechanics that mathematicians often do not have. And, finally, there is a
subtle difference in “culture”—differences in terminology and notation—
that can make reading the physics literature like reading a foreign language
for the mathematician. There are few books that attempt to translate quan-
tum theory into terms that mathematicians can understand.

This book is intended as an introduction to quantum mechanics for math-
ematicians with little prior exposure to physics. The twin goals of the book
are (1) to explain the physical ideas of quantum mechanics in language
mathematicians will be comfortable with, and (2) to develop the neces-
sary mathematical tools to treat those ideas in a rigorous fashion. I have

vii



viii Preface

attempted to give a reasonably comprehensive treatment of nonrelativistic
quantum mechanics, including topics found in typical physics texts (e.g.,
the harmonic oscillator, the hydrogen atom, and the WKB approximation)
as well as more mathematical topics (e.g., quantization schemes, the Stone—
von Neumann theorem, and geometric quantization). I have also attempted
to minimize the mathematical prerequisites. I do not assume, for example,
any prior knowledge of spectral theory or unbounded operators, but pro-
vide a full treatment of those topics in Chaps.6 through 10 of the text.
Similarly, I do not assume familiarity with the theory of Lie groups and
Lie algebras, but provide a detailed account of those topics in Chap. 16.
Whenever possible, I provide full proofs of the stated results.

Most of the text will be accessible to graduate students in mathematics
who have had a first course in real analysis, covering the basics of L? spaces
and Hilbert spaces. Appendix A reviews some of the results that are used in
the main body of the text. In Chaps. 21 and 23, however, I assume knowl-
edge of the theory of manifolds. I have attempted to provide motivation for
many of the definitions and proofs in the text, with the result that there
is a fair amount of discussion interspersed with the standard definition-
theorem-proof style of mathematical exposition. There are exercises at the
end of each chapter, making the book suitable for graduate courses as well
as for independent study.

In comparison to the present work, classics such as Reed and Simon [34]
and Glimm and Jaffe [14], along with the recent book of Schmiidgen [35],
are more focused on the mathematical underpinnings of the theory than
on the physical ideas. Hannabuss’s text [22] is fairly accessible to math-
ematicians, but—despite the word “graduate” in the title of the series—
uses an undergraduate level of mathematics. The recent book of Takhtajan
[39], meanwhile, has an expository bent to it, but provides less physical
motivation and is less self-contained than the present book. Whereas, for
example, Takhtajan begins with Lagrangian and Hamiltonian mechanics
on manifolds, I begin with “low-tech” classical mechanics on the real line.
Similarly, Takhtajan assumes knowledge of unbounded operators and Lie
groups, while I provide substantial expositions of both of those subjects.
Finally, there is the work of Folland [13], which I highly recommend, but
which deals with quantum field theory, whereas the present book treats
only nonrelativistic quantum mechanics, except for a very brief discussion
of quantum field theory in Sect. 20.6.

The book begins with a quick introduction to the main ideas of classical
and quantum mechanics. After a brief account in Chap. 1 of the historical
origins of quantum theory, I turn in Chap. 2 to a discussion of the neces-
sary background from classical mechanics. This includes Newton’s equa-
tion in varying degrees of generality, along with a discussion of important
physical quantities such as energy, momentum, and angular momentum,
and conditions under which these quantities are “conserved” (i.e., constant
along each solution of Newton’s equation). I give a short treatment here
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of Poisson brackets and Hamilton’s form of Newton’s equation, deferring a
full discussion of “fancy” classical mechanics to Chap. 21.

In Chap. 3, I attempt to motivate the structures of quantum mechanics in
the simplest setting. Although I discuss the “axioms” (in standard physics
terminology) of quantum mechanics, I resolutely avoid a strictly axiomatic
approach to the subject (using, say, C*-algebras). Rather, I try to provide
some motivation for the position and momentum operators and the Hilbert
space approach to quantum theory, as they connect to the probabilistic as-
pect of the theory. I do not attempt to explain the strange probabilistic
nature of quantum theory, if, indeed, there is any explanation of it. Rather,
I try to elucidate how the wave function, along with the position and mo-
mentum operators, encodes the relevant probabilities.

In Chaps.4 and 5, we look into two illustrative cases of the Schrodinger
equation in one space dimension: a free particle and a particle in a square
well. In these chapters, we encounter such important concepts as the dis-
tinction between phase velocity and group velocity and the distinction be-
tween a discrete and a continuous spectrum.

In Chaps. 6 through 10, we look into some of the technical mathematical
issues that are swept under the carpet in earlier chapters. I have tried to
design this section of the book in such a way that a reader can take in as
much or as little of the mathematical details as desired. For a reader who
simply wants the big picture, I outline the main ideas and results of spec-
tral theory in Chap. 6, including a discussion of the prototypical example
of an operator with a continuous spectrum: the momentum operator. For
a reader who wants more information, I provide statements of the spec-
tral theorem (in two different forms) for bounded self-adjoint operators in
Chap. 7, and an introduction to the notion of unbounded self-adjoint op-
erators in Chap. 9. Finally, for the reader who wants all the details, I give
proofs of the spectral theorem for bounded and unbounded self-adjoint
operators, in Chaps. 8 and 10, respectively.

In Chaps. 11 through 14, we turn to the vitally important canonical com-
mutation relations. These are used in Chap. 11 to derive algebraically the
spectrum of the quantum harmonic oscillator. In Chap. 12, we discuss the
uncertainty principle, both in its general form (for arbitrary pairs of non-
commuting operators) and in its specific form (for the position and momen-
tum operators). We pay careful attention to subtle domain issues that are
usually glossed over in the physics literature. In Chap. 13, we look at differ-
ent “quantization schemes” (i.e., different ways of ordering products of the
noncommuting position and momentum operators). In Chap. 14, we turn to
the celebrated Stone—von Neumann theorem, which provides a uniqueness
result for representations of the canonical commutation relations. As in the
case of the uncertainty principle, there are some subtle domain issues here
that require attention.

In Chaps. 15 through 18, we examine some less elementary issues in quan-
tum theory. Chapter 15 addresses the WKB (Wentzel-Kramers-Brillouin)
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approximation, which gives simple but approximate formulas for the eigen-
vectors and eigenvalues for the Hamiltonian operator in one dimension.
After this, we introduce (Chap.16) the notion of Lie groups, Lie alge-
bras, and their representations, all of which play an important role in
many parts of quantum mechanics. In Chap. 17, we consider the example
of angular momentum and spin, which can be understood in terms of the
representations of the rotation group SO(3). Here a more mathematical
approach—especially the relationship between Lie group representations
and Lie algebra representations—can substantially clarify a topic that is
rather mysterious in the physics literature. In particular, the concept of
“fractional spin” can be understood as describing a representation of the
Lie algebra of the rotation group for which there is no associated represen-
tation of the rotation group itself. In Chap. 18, we illustrate these ideas by
describing the energy levels of the hydrogen atom, including a discussion
of the hidden symmetries of hydrogen, which account for the “accidental
degeneracy” in the levels. In Chap. 19, we look more closely at the concept
of the “state” of a system in quantum mechanics. We look at the notion
of subsystems of a quantum system in terms of tensor products of Hilbert
spaces, and we see in this setting that the notion of “pure state” (a unit
vector in the relevant Hilbert space) is not adequate. We are led, then, to
the notion of a mixed state (or density matrix). We also examine the idea
that, in quantum mechanics, “identical particles are indistinguishable.”

Finally, in Chaps. 21 through 23, we examine some advanced topics in
classical and quantum mechanics. We begin, in Chap. 20, by considering the
path integral formulation of quantum mechanics, both from the heuristic
perspective of the Feynman path integral, and from the rigorous perspective
of the Feynman—Kac formula. Then, in Chap. 21, we give a brief treatment
of Hamiltonian mechanics on manifolds. Finally, we consider the machinery
of geometric quantization, beginning with the Euclidean case in Chap. 22
and continuing with the general case in Chap. 23.

I am grateful to all who have offered suggestions or made corrections
to the manuscript, including Renato Bettiol, Edward Burkard, Matt Cecil,
Tiancong Chen, Bo Jacoby, Will Kirwin, Nicole Kroeger, Wicharn Lewkeer-
atiyutkul, Jeff Mitchell, Eleanor Pettus, Ambar Sengupta, and Augusto
Stoffel. I am particularly grateful to Michel Talagrand who read almost
the entire manuscript and made numerous corrections and suggestions. Fi-
nally, I offer a special word of thanks to my advisor and friend, Leonard
Gross, who started me on the path toward understanding the mathemati-
cal foundations of quantum mechanics. Readers are encouraged to send me
comments or corrections at bhall@nd.edu.

Notre Dame, IN, USA Brian C. Hall
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1

The Experimental Origins of Quantum
Mechanics

Quantum mechanics, with its controversial probabilistic nature and curious
blending of waves and particles, is a very strange theory. It was not
invented because anyone thought this is the way the world should behave,
but because various experiments showed that this is the way the world
does behave, like it or not. Craig Hogan, director of the Fermilab Particle
Astrophysics Center, put it this way:

No theorist in his right mind would have invented quantum
mechanics unless forced to by data.’

Although the first hint of quantum mechanics came in 1900 with Planck’s
solution to the problem of blackbody radiation, the full theory did not
emerge until 1925-1926, with Heisenberg’s matrix model, Schrodinger’s
wave model, and Born’s statistical interpretation of the wave model.

1.1 Is Light a Wave or a Particle?

1.1.1 Newton Versus Huygens

Beginning in the late seventeenth century and continuing into the early
eighteenth century, there was a vigorous debate in the scientific community

1Quoted in “Is Space Digital?” by Michael Moyer, Scientific American, February
2012, pp. 30-36.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 1
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_1,
© Springer Science+Business Media New York 2013



2 1. The Experimental Origins of Quantum Mechanics

over the nature of light. One camp, following the views of Isaac
Newton, claimed that light consisted of a group of particles or “corpus-
cles.” The other camp, led by the Dutch physicist Christiaan Huygens,
claimed that light was a wave. Newton argued that only a corpuscular the-
ory could account for the observed tendency of light to travel in straight
lines. Huygens and others, on the other hand, argued that a wave theory
could explain numerous observed aspects of light, including the bending
or “refraction” of light as it passes from one medium to another, as from
air into water. Newton’s reputation was such that his “corpuscular” theory
remained the dominant one until the early nineteenth century.

1.1.2 The Ascendance of the Wave Theory of Light

In 1804, Thomas Young published two papers describing and explaining
his double-slit experiment. In this experiment, sunlight passes through a
small hole in a piece of cardboard and strikes another piece of cardboard
containing two small holes. The light then strikes a third piece of cardboard,
where the pattern of light may be observed. Young observed “fringes” or
alternating regions of high and low intensity for the light. Young believed
that light was a wave and he postulated that these fringes were the result
of interference between the waves emanating from the two holes. Young
drew an analogy between light and water, where in the case of water,
interference is readily observed. If two circular waves of water cross each
other, there will be some points where a peak of one wave matches up with
a trough of another wave, resulting in destructive interference, that is, a
partial cancellation between the two waves, resulting in a small amplitude
of the combined wave at that point. At other points, on the other hand, a
peak in one wave will line up with a peak in the other, or a trough with
a trough. At such points, there is constructive interference, with the result
that the amplitude of the combined wave is large at that point. The pattern
of constructive and destructive interference will produce something like a
checkerboard pattern of alternating regions of large and small amplitudes
in the combined wave. The dimensions of each region will be roughly on
the order of the wavelength of the individual waves.

Based on this analogy with water waves, Young was able to explain the
interference fringes that he observed and to predict the wavelength that
light must have in order for the specific patterns he observed to occur.
Based on his observations, Young claimed that the wavelength of visible
light ranged from about 1/36,000 in. (about 700nm) at the red end of the
spectrum to about 1/60,000 in. (about 425nm) at the violet end of the
spectrum, results that agree with modern measurements.

Figure 1.1 shows how circular waves emitted from two different points
form an interference pattern. One should think of Young’s second piece of
cardboard as being at the top of the figure, with holes near the top left and
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FIGURE 1.1. Interference of waves emitted from two slits.

top right of the figure. Figure 1.2 then plots the intensity (i.e., the square of
the displacement) as a function of x, with y having the value corresponding
to the bottom of Fig.1.1.

Despite the convincing nature of Young’s experiment, many proponents
of the corpuscular theory of light remained unconvinced. In 1818, the
French Academy of Sciences set up a competition for papers explaining
the observed properties of light. One of the submissions was a paper by
Augustin-Jean Fresnel in which he elaborated on Huygens’s wave model
of refraction. A supporter of the corpuscular theory of light, Siméon-Denis
Poisson read Fresnel’s submission and ridiculed it by pointing out that
if that theory were true, light passing by an opaque disk would diffract
around the edges of the disk to produce a bright spot in the center of the
shadow of the disk, a prediction that Poisson considered absurd. Never-
theless, the head of the judging committee for the competition, Francois
Arago, decided to put the issue to an experimental test and found that
such a spot does in fact occur. Although this spot is often called “Arago’s
spot,” or even, ironically, “Poisson’s spot,” Arago eventually realized that
the spot had been observed 100 years earlier in separate experiments by
Delisle and Maraldi.

Arago’s observation of Poisson’s spot led to widespread acceptance of
the wave theory of light. This theory gained even greater acceptance in
1865, when James Clerk Maxwell put together what are today known as
Maxwell’s equations. Maxwell showed that his equations predicted that
electromagnetic waves would propagate at a certain speed, which agreed
with the observed speed of light. Maxwell thus concluded that light is sim-
ply an electromagnetic wave. From 1865 until the end of the nineteenth
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FIGURE 1.2. Intensity plot for a horizontal line across the bottom of Fig. 1.1

century, the debate over the wave-versus-particle nature of light was con-
sidered to have been conclusively settled in favor of the wave theory.

1.1.3 Blackbody Radiation

In the early twentieth century, the wave theory of light began to experience
new challenges. The first challenge came from the theory of blackbody radia-
tion. In physics, a blackbody is an idealized object that perfectly absorbs all
electromagnetic radiation that hits it. A blackbody can be approximated in
the real world by an object with a highly absorbent surface such as “lamp
black.” The problem of blackbody radiation concerns the distribution of
electromagnetic radiation in a cavity within a blackbody. Although the
walls of the blackbody absorb the radiation that hits it, thermal vibrations
of the atoms making up the walls cause the blackbody to emit electromag-
netic radiation. (At normal temperatures, most of the radiation emitted
would be in the infrared range.)

In the cavity, then, electromagnetic radiation is constantly absorbed and
re-emitted until thermal equilibrium is reached, at which point the absorp-
tion and emission of radiation are perfectly balanced at each frequency.
According to the “equipartition theorem” of (classical) statistical mechan-
ics, the energy in any given mode of electromagnetic radiation should be
exponentially distributed, with an average value equal to kgT, where T is
the temperature and kp is Boltzmann’s constant. (The temperature should
be measured on a scale where absolute zero corresponds to T' = 0.) The dif-
ficulty with this prediction is that the average amount of energy is the same
for every mode (hence the term “equipartition”). Thus, once one adds up
over all modes—of which there are infinitely many—the predicted amount
of energy in the cavity is infinite. This strange prediction is referred to as
the ultraviolet catastrophe, since the infinitude of the energy comes from the
ultraviolet (high-frequency) end of the spectrum. This ultraviolet catastro-
phe does not seem to make physical sense and certainly does not match up
with the observed energy spectrum within real-world blackbodies.
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An alternative prediction of the blackbody energy spectrum was offered
by Max Planck in a paper published in 1900. Planck postulated that
the energy in the electromagnetic field at a given frequency w should be
“quantized,” meaning that this energy should come only in integer mul-
tiples of a certain basic unit equal to fw, where & is a constant, which
we now call Planck’s constant. Planck postulated that the energy would
again be exponentially distributed, but only over integer multiples of fw.
At low frequencies, Planck’s theory predicts essentially the same energy as
in classical statistical mechanics. At high frequencies, namely at frequen-
cies where hw is large compared to kT, Planck’s theory predicts a rapid
fall-off of the average energy (see Exercise 2 for details). Indeed, if we mea-
sure mass, distance, and time in units of grams, centimeters, and seconds,
respectively, and we assign 7 the numerical value

h=1.054 x 107%7,

then Planck’s predictions match the experimentally observed blackbody
spectrum.

Planck pictured the walls of the blackbody as being made up of inde-
pendent oscillators of different frequencies, each of which is restricted to
have energies of hw. Although this picture was clearly not intended as a
realistic physical explanation of the quantization of electromagnetic energy
in blackbodies, it does suggest that Planck thought that energy quantiza-
tion arose from properties of the walls of the cavity, rather than in intrinsic
properties of the electromagnetic radiation. Einstein, on the other hand, in
assessing Planck’s model, argued that energy quantization was inherent in
the radiation itself. In Einstein’s picture, then, electromagnetic energy at
a given frequency—whether in a blackbody cavity or not—comes in pack-
ets or quanta having energy proportional to the frequency. Each quantum
of electromagnetic energy constitutes what we now call a photon, which
we may think of as a particle of light. Thus, Planck’s model of blackbody
radiation began a rebirth of the particle theory of light.

It is worth mentioning, in passing, that in 1900, the same year in which
Planck’s paper on blackbody radiation appeared, Lord Kelvin gave a lec-
ture that drew attention to another difficulty with the classical theory
of statistical mechanics. Kelvin described two “clouds” over nineteenth-
century physics at the dawn of the twentieth century. The first of these
clouds concerned aether—a hypothetical medium through which electro-
magnetic radiation propagates—and the failure of Michelson and Morley to
observe the motion of earth relative to the aether. Under this cloud lurked
the theory of special relativity. The second of Kelvin’s clouds concerned
heat capacities in gases. The equipartition theorem of classical statisti-
cal mechanics made predictions for the ratio of heat capacity at constant
pressure (c,) and the heat capacity at constant volume (c,). These pre-
dictions deviated substantially from the experimentally measured ratios.
Under the second cloud lurked the theory of quantum mechanics, because
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the resolution of this discrepancy is similar to Planck’s resolution of the
blackbody problem. As in the case of blackbody radiation, quantum me-
chanics gives rise to a correction to the equipartition theorem, thus result-
ing in different predictions for the ratio of ¢, to c,, predictions that can be
reconciled with the observed ratios.

1.1.4 The Photoelectric Effect

The year 1905 was Einstein’s annus mirabilis (miraculous year), in which
Einstein published four ground-breaking papers, two on the special theory
of relativity and one each on Brownian motion and the photoelectric effect.
It was for the photoelectric effect that Einstein won the Nobel Prize in
physics in 1921. In the photoelectric effect, electromagnetic radiation strik-
ing a metal causes electrons to be emitted from the metal. Einstein found
that as one increases the intensity of the incident light, the number of emit-
ted electrons increases, but the energy of each electron does not change.
This result is difficult to explain from the perspective of the wave theory of
light. After all, if light is simply an electromagnetic wave, then increasing
the intensity of the light amounts to increasing the strength of the electric
and magnetic fields involved. Increasing the strength of the fields, in turn,
ought to increase the amount of energy transferred to the electrons.

Einstein’s results, on the other hand, are readily explained from a particle
theory of light. Suppose light is actually a stream of particles (photons) with
the energy of each particle determined by its frequency. Then increasing
the intensity of light at a given frequency simply increases the number of
photons and does not affect the energy of each photon. If each photon has
a certain likelihood of hitting an electron and causing it to escape from
the metal, then the energy of the escaping electron will be determined
by the frequency of the incident light and not by the intensity of that
light. The photoelectric effect, then, provided another compelling reason
for believing that light can behave in a particlelike manner.

1.1.5 The Double-Slit Experiment, Revisited

Although the work of Planck and Einstein suggests that there is a par-
ticlelike aspect to light, there is certainly also a wavelike aspect to light,
as shown by Young, Arago, and Maxwell, among others. Thus, somehow,
light must in some situations behave like a wave and in some situations
like a particle, a phenomenon known as “wave—particle duality.” William
Lawrence Bragg described the situation thus:

God runs electromagnetics on Monday, Wednesday, and Friday
by the wave theory, and the devil runs them by quantum theory
on Tuesday, Thursday, and Saturday.

(Apparently Sunday, being a day of rest, did not need to be accounted for.)
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In particular, we have already seen that Young’s double-slit experiment
in the early nineteenth century was one important piece of evidence in fa-
vor of the wave theory of light. If light is really made up of particles, as
blackbody radiation and the photoelectric effect suggest, one must give a
particle-based explanation of the double-slit experiment. J.J. Thomson sug-
gested in 1907 that the patterns of light seen in the double-slit experiment
could be the result of different photons somehow interfering with one an-
other. Thomson thus suggested that if the intensity of light were sufficiently
reduced, the photons in the light would become widely separated and the
interference pattern might disappear. In 1909, Geoffrey Ingram Taylor set
out to test this suggestion and found that even when the intensity of light
was drastically reduced (to the point that it took three months for one of
the images to form), the interference pattern remained the same.

Since Taylor’s results suggest that interference remains even when the
photons are widely separated, the photons are not interfering with one an-
other. Rather, as Paul Dirac put it in Chap. 1 of [6], “Each photon then
interferes only with itself.” To state this in a different way, since there is no
interference when there is only one slit, Taylor’s results suggest that each
individual photon passes through both slits. By the early 1960s, it became
possible to perform double-slit experiments with electrons instead of pho-
tons, yielding even more dramatic confirmations of the strange behavior of
matter in the quantum realm. (See Sect. 1.2.4.)

1.2 Is an Electron a Wave or a Particle?

In the early part of the twentieth century, the atomic theory of matter
became firmly established. (Einstein’s 1905 paper on Brownian motion was
an important confirmation of the theory and provided the first calculation
of atomic masses in everyday units.) Experiments performed in 1909 by
Hans Geiger and Ernest Marsden, under the direction of Ernest Rutherford,
led Rutherford to put forward in 1911 a picture of atoms in which a small
nucleus contains most of the mass of the atom. In Rutherford’s model,
each atom has a positively charged nucleus with charge ng, where n is
a positive integer (the atomic number) and ¢ is the basic unit of charge
first observed in Millikan’s famous oil-drop experiment. Surrounding the
nucleus is a cloud of n electrons, each having negative charge —g. When
atoms bind into molecules, some of the electrons of one atom may be shared
with another atom to form a bond between the atoms. This picture of atoms
and their binding led to the modern theory of chemistry.

Basic to the atomic theory is that electrons are particles; indeed, the
number of electrons per atom is supposed to be the atomic number. Never-
theless, it did not take long after the atomic theory of matter was confirmed
before wavelike properties of electrons began to be observed. The situation,
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then, is the reverse of that with light. While light was long thought to be
a wave (at least from the publication of Maxwell’s equations in 1865 until
Planck’s work in 1900) and was only later seen to have particlelike behavior,
electrons were initially thought to be particles and were only later seen to
have wavelike properties. In the end, however, both light and electrons have
both wavelike and particlelike properties.

1.2.1  The Spectrum of Hydrogen

If electricity is passed through a tube containing hydrogen gas, the gas will
emit light. If that light is separated into different frequencies by means
of a prism, bands will become apparent, indicating that the light is not a
continuous mix of many different frequencies, but rather consists only of a
discrete family of frequencies. In view of the photonic theory of light, the
energy in each photon is proportional to its frequency. Thus, each observed
frequency corresponds to a certain amount of energy being transferred from
a hydrogen atom to the electromagnetic field.

Now, a hydrogen atom consists of a single proton surrounded by a single
electron. Since the proton is much more massive than the electron, one
can picture the proton as being stationary, with the electron orbiting it.
The idea, then, is that the current being passed through the gas causes some
of the electrons to move to a higher-energy state. Eventually, that electron
will return to a lower-energy state, emitting a photon in the process. In this
way, by observing the energies (or, equivalently, the frequencies) of the
emitted photons, one can work backwards to the change in energy of the
electron.

The curious thing about the state of affairs in the preceding paragraph
is that the energies of the emitted photons—and hence, also, the energies
of the electron—come only in a discrete family of possible values. Based
on the observed frequencies, Johannes Rydberg concluded in 1888 that the
possible energies of the electron were of the form

R
B, =——. (1.1)

Here, R is the “Rydberg constant,” given (in “Gaussian units”) by

- mQ*
2hr2

where @ is the charge of the electron and m. is the mass of the electron.
(Technically, m. should be replaced by the reduced mass p of the proton—
electron system; that is, u = memy,/(me + my), where my, is the mass
of the proton. However, since the proton mass is much greater than the
electron mass, p is almost the same as m. and we will neglect the difference
between the two.) The energies in (1.1) agree with experiment, in that all
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the observed frequencies in hydrogen are (at least to the precision available
at the time of Rydberg) of the form

w:%(En—Em), (1.2)
for some n > m. It should be noted that Johann Balmer had already
observed in 1885 frequencies of the same form, but only in the case m = 2,
and that Balmer’s work influenced Rydberg.

The frequencies in (1.2) are known as the spectrum of hydrogen. Balmer
and Rydberg were merely attempting to find a simple formula that would
match the observed frequencies in hydrogen. Neither of them had a the-
oretical explanation for why only these particular frequencies occur. Such
an explanation would have to wait until the beginnings of quantum theory
in the twentieth century.

1.2.2  The Bohr—de Broglie Model of the Hydrogen Atom

In 1913, Niels Bohr introduced a model of the hydrogen atom that at-
tempted to explain the observed spectrum of hydrogen. Bohr pictured the
hydrogen atom as consisting of an electron orbiting a positively charged
nucleus, in much the same way that a planet orbits the sun. Classically,
the force exerted on the electron by the proton follows the inverse square
law of the form

QQ

F=—= 1.3
5 (13)
where @ is the charge of the electron, in appropriate units.

If the electron is in a circular orbit, its trajectory in the plane of the
orbit will take the form

((t),y(t)) = (rcos(wt), rsin(wt)).

If we take the second derivative with respect to time to obtain the acceler-
ation vector a, we obtain

a(t) = (—w?r cos(wt), —w?rsin(wt)),

so that the magnitude of the acceleration vector is w?r. Newton’s second
law, F' = ma, then requires that
2
e
Mmew?r = ok
so that
Q2

w = )
Mers
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From the formula for the frequency, we can calculate that the momentum
(mass times velocity) has magnitude

2T w0

We can also calculate the angular momentum J, which for a circular orbit
is just the momentum times the distance from the nucleus, as

J = /mQr.

Bohr postulated that the electron obeys classical mechanics, except that
its angular momentum is “quantized.” Specifically, in Bohr’s model, the
angular momentum is required to be an integer multiple of h (Planck’s
constant). Setting J equal to nh yields

n2h?

meQ?

(1.5)

Th =

If one calculates the energy of an orbit with radius r,,, one finds (Exercise 3)
that it agrees precisely with the Rydberg energies in (1.1). Bohr further
postulated that an electron could move from one allowed state to another,
emitting a packet of light in the process with frequency given by (1.2).

Bohr did not explain why the angular momentum of an electron is quan-
tized, nor how it moved from one allowed orbit to another. As such, his
theory of atomic behavior was clearly not complete; it belongs to the “old
quantum mechanics” that was superseded by the matrix model of Heisen-
berg and the wave model of Schrodinger. Nevertheless, Bohr’s model was an
important step in the process of understanding the behavior of atoms, and
Bohr was awarded the 1922 Nobel Prize in physics for his work. Some rem-
nant of Bohr’s approach survives in modern quantum theory, in the WKB
approximation (Chap. 15), where the Bohr—Sommerfeld condition gives an
approximation to the energy levels of a one-dimensional quantum system.

In 1924, Louis de Broglie reinterpreted Bohr’s condition on the angular
momentum as a wave condition. The de Broglie hypothesis is that an elec-
tron can be described by a wave, where the spatial frequency k of the wave
is related to the momentum of the electron by the relation

p = hk. (1.6)

Here, “frequency” is defined so that the frequency of the function cos(kx)
is k. This is “angular” frequency, which differs by a factor of 27 from the
cycles-per-unit-distance frequency. Thus, the period associated with a given
frequency k is 27 /k.

In de Broglie’s approach, we are supposed to imagine a wave super-
imposed on the classical trajectory of the electron, with the quantization
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FIGURE 1.3. The Bohr radii for n = 1 to n = 10, with de Broglie waves super-
imposed for n = 8 and n = 10.

condition now being that the wave should match up with itself when going
all the way around the orbit. This condition means that the orbit should
consist of an integer number of periods of the wave:

2
2Tr = n—.
T =n 3

Using (1.6) along with the expression (1.4) for p, we obtain

2y = n27ri—i = 2mnh L
p meQ?

Solving this equation for r gives precisely the Bohr radii in (1.5).

Thus, de Broglie’s wave hypothesis gives an alternative to Bohr’s quan-
tization of angular momentum as an explanation of the allowed energies of
hydrogen. Of course, if one accepts de Broglie’s wave hypothesis for elec-
trons, one would expect to see wavelike behavior of electrons not just in the
hydrogen atom, but in other situations as well, an expectation that would
soon be fulfilled. Figure 1.3 shows the first 10 Bohr radii. For the 8th and
10th radii, the de Broglie wave is shown superimposed onto the orbit.

1.2.3  FElectron Diffraction

In 1925, Clinton Davisson and Lester Germer were studying properties of
nickel by bombarding a thin film of nickel with low-energy electrons. As a
result of a problem with their equipment, the nickel was accidentally heated
to a very high temperature. When the nickel cooled, it formed into large
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crystalline pieces, rather than the small crystals in the original sample.
After this recrystallization, Davisson and Germer observed peaks in the
pattern of electrons reflecting off of the nickel sample that had not been
present when using the original sample. They were at a loss to explain this
pattern until, in 1926, Davisson learned of the de Broglie hypothesis and
suspected that they were observing the wavelike behavior of electrons that
de Broglie had predicted.

After this realization, Davisson and Germer began to look systemati-
cally for wavelike peaks in their experiments. Specifically, they attempted
to show that the pattern of angles at which the electrons reflected matched
the patterns one sees in x-ray diffraction. After numerous additional mea-
surements, they were able to show a very close correspondence between
the pattern of electrons and the patterns seen in x-ray diffraction. Since
x-rays were by this time known to be waves of electromagnetic radiation,
the Davisson—Germer experiment was a strong confirmation of de Broglie’s
wave picture of electrons. Davisson and Germer published their results in
two papers in 1927, and Davisson shared the 1937 Nobel Prize in physics
with George Paget, who had observed electron diffraction shortly after
Davisson and Germer.

1.2.4  The Double-Slit Fxperiment with Electrons

Although quantum theory clearly predicts that electrons passing through
a double slit will experience interference similar to that observed in light,
it was not until Clauss Jonsson’s work in 1961 that this prediction was
confirmed experimentally. The main difficulty is the much smaller wave-
length for electrons of reasonable energy than for visible light. Jonsson’s
electrons, for example, had a de Broglie wavelength of 5 nm, as compared to
a wavelength of roughly 500 nm for visible light (depending on the color).
In results published in 1989, a team led by Akira Tonomura at Hitachi
performed a double-slit experiment in which they were able to record the
results one electron at a time. (Similar but less definitive experiments were
carried out by Pier Giorgio Merli, GianFranco Missiroli and Giulio Pozzi
in Bologna in 1974 and published in the American Journal of Physics in
1976.) In the Hitachi experiment, each electron passes through the slits and
then strikes a screen, causing a small spot of light to appear. The location of
this spot is then recorded for each electron, one at a time. The key point is
that each individual electron strikes the screen at a single point. That is to
say, individual electrons are not smeared out across the screen in a wavelike
pattern, but rather behave like point particles, in that the observed location
of the electron is indeed a point. Each electron, however, strikes the screen
at a different point, and once a large number of the electrons have struck
and their locations have been recorded, an interference pattern emerges.
It is not the variability of the locations of the electrons that is surprising,
since this could be accounted for by small variations in the way the electrons
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FIGURE 1.4. Four images from the 1989 experiment at Hitachi showing the
impact of individual electrons gradually building up to form an interference pat-
tern. Image by Akira Tonomura and Wikimedia Commons user Belsazar. File
is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license.

are shot toward the slits. Rather, it is the distinctive interference pattern
that is surprising, with rapid variations in the pattern of electron strikes
over short distances, including regions where almost no electron strikes
occur. (Compare Fig. 1.4 to Fig. 1.2.) Note also that in the experiment, the
electrons are widely separated, so that there is never more than one electron
in the apparatus at any one time. Thus, the electrons cannot interfere with
one another; rather, each electron interferes with itself. Figure 1.4 shows
results from the Hitachi experiment, with the number of observed electrons
increasing from about 150 in the first image to 160,000 in the last image.

1.3 Schrodinger and Heisenberg

In 1925, Werner Heisenberg proposed a model of quantum mechanics based
on treating the position and momentum of the particle as, essentially,
matrices of size oo x co. Actually, Heisenberg himself was not familiar with
the theory of matrices, which was not a standard part of the mathematical
education of physicists at the time. Nevertheless, he had quantities of the
form z;;, and pj; (where j and k each vary over all integers), which we
can recognize as matrices, as well as expressions such as ), z;;pix, which
we can recognize as a matrix product. After Heisenberg explained his the-
ory to Max Born, Born recognized the connection of Heisenberg’s formulas
to matrix theory and made the matrix point of view explicit, in a paper
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coauthored by Born and his assistant, Pascual Jordan. Born, Heisenberg,
and Jordan then all published a paper together elaborating upon their the-
ory. The papers of Heisenberg, of Born and Jordan, and of Born, Heisen-
berg, and Jordan all appeared in 1925. Heisenberg received the 1932 Nobel
Prize in physics (actually awarded in 1933) for his work. Born’s exclusion
from this prize was controversial, and may have been influenced by Jordan’s
connections with the Nazi party in Germany. (Heisenberg’s own work for
the Nazis during World War II was also a source of much controversy after
the war.) In any case, Born was awarded the Nobel Prize in physics in
1954 for his work on the statistical interpretation of quantum mechanics
(Sect. 1.4).

Meanwhile, in 1926, Erwin Schrodinger published four remarkable papers
in which he proposed a wave theory of quantum mechanics, along the lines
of the de Broglie hypothesis. In these papers, Schrodinger described how the
waves evolve over time and showed that the energy levels of, for example,
the hydrogen atom could be understood as eigenvalues of a certain oper-
ator. (See Chap. 18 for the computation for hydrogen.) Schréodinger also
showed that the Heisenberg-Born-Jordan matrix model could be incorpo-
rated into the wave theory, thus showing that the matrix theory and the
wave theory were equivalent (see Sect. 3.8). This book describes the math-
ematical structure of quantum mechanics in essentially the form proposed
by Schrodinger in 1926. Schrodinger shared the 1933 Nobel Prize in physics
with Paul Dirac.

1.4 A Matter of Interpretation

Although Schrédinger’s 1926 papers gave the correct mathematical descrip-
tion of quantum mechanics (as it is generally accepted today), he did not
provide a widely accepted interpretation of the theory. That task fell to
Born, who in a 1926 paper proposed that the “wave function” (as the wave
appearing in the Schrodinger equation is generally called) should be inter-
preted statistically, that is, as determining the probabilities for observations
of the system. Over time, Born’s statistical approach developed into the
Copenhagen interpretation of quantum mechanics. Under this interpreta-
tion, the wave function v of the system is not directly observable. Rather,
1) merely determines the probability of observing a particular result.

In particular, if 1 is properly normalized, then the quantity |¢(z)|* is
the probability distribution for the position of the particle. Even if v itself
is spread out over a large region in space, any measurement of the position
of the particle will show that the particle is located at a single point, just
as we see for the electrons in the two-slit experiment in Fig.1.4. Thus, a
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measurement of a particle’s position does not show the particle “smeared
out” over a large region of space, even if the wave function ¢ is smeared
out over a large region.

Consider, for example, how Born’s interpretation of the Schrodinger
equation would play out in the context of the Hitachi double-slit exper-
iment depicted in Fig. 1.4. Born would say that each electron has a wave
function that evolves in time according to the Schrodinger equation (an
equation of wave type). Each particle’s wave function, then, will propa-
gate through the slits in a manner similar to that pictured in Fig.1.1. If
there is a screen at the bottom of Fig.1.1, then the electron will hit the
screen at a single point, even though the wave function is very spread out.
The wave function does not determine where the particle hits the screen; it
merely determines the probabilities for where the particle hits the screen. If
a whole sequence of electrons passes through the slits, one after the other,
over time a probability distribution will emerge, determined by the square
of the magnitude of the wave function, which is shown in Fig.1.2. Thus,
the probability distribution of electrons, as seen from a large number of
electrons as in Fig. 1.4, shows wavelike interference patterns, even though
each individual electron strikes the screen at a single point.

It is essential to the theory that the wave function () itself is not the
probability density for the location of the particle. Rather, the probability
density is |¢(z)|°. The difference is crucial, because probability densities
are intrinsically positive and thus do not exhibit destructive interference.
The wave function itself, however, is complex-valued, and the real and
imaginary parts of the wave function take on both positive and negative
values, which can interfere constructively or destructively. The part of the
wave function passing through the first slit, for example, can interfere with
the part of the wave function passing through the second slit. Only after
this interference has taken place do we take the magnitude squared of the
wave function to obtain the probability distribution, which will, therefore,
show the sorts of peaks and valleys we see in Fig. 1.2.

Born’s introduction of a probabilistic element into the interpretation of
quantum mechanics was—and to some extent still is—controversial. Ein-
stein, for example, is often quoted as saying something along the lines of,
“God does not play at dice with the universe.” Einstein expressed the same
sentiment in various ways over the years. His earliest known statement to
this effect was in a letter to Born in December 1926, in which he said,

Quantum mechanics is certainly imposing. But an inner voice
tells me that it is not yet the real thing. The theory says a lot,
but does not really bring us any closer to the secret of the “old
one.” I, at any rate, am convinced that He does not throw dice.

Many other physicists and philosophers have questioned the probabilistic
interpretation of quantum mechanics, and have sought alternatives, such
as “hidden variable” theories. Nevertheless, the Copenhagen interpretation
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of quantum mechanics, essentially as proposed by Born in 1926, remains
the standard one. This book resolutely avoids all controversies surround-
ing the interpretation of quantum mechanics. Chapter 3, for example,
presents the standard statistical interpretation of the theory without ques-
tion. The book may nevertheless be of use to the more philosophically
minded reader, in that one must learn something of quantum mechanics
before delving into the (often highly technical) discussions about its inter-
pretation.

1.5 Exercises

1. Beginning with the formula for the sum of a geometric series, use
differentiation to obtain the identity

Znei "=
_ »—A)2
o (1 —e4)

2. In Planck’s model of blackbody radiation, the energy in a given fre-
quency w of electromagnetic radiation is distributed randomly over
all numbers of the form nhw, where n = 0,1,2,.... Specifically, the
likelihood of finding energy nfw is postulated to be

1
p(E = nhw) = Ee_ﬁnhw,

Z= 1 — e Phw

where Z is a normalization constant, which is chosen so that the sum
over n of the probabilities is 1. Here 8 = 1/(kpT), where T is the
temperature and kp is Boltzmann’s constant. The ezpected value of
the energy, denoted (F), is defined to be

(E) = % Z(nhw)e_ﬁnh“’.

n=0
(a) Using Exercise 1, show that

hw

<E> = eBhw _ 1"

(b) Show that (F) behaves like 1/8 = kpT for small w, but that
(E) decays exponentially as w tends to infinity.

Note: In applying the above calculation to blackbody radiation, one
must also take into account the number of modes having frequency
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in a given range, say between wy and wy + €. The exact number of
such frequencies depends on the shape of the cavity, but according to
Weyl’s law, this number will be approximately proportional to ew3 for
large values of wg. Thus, the amount of energy per unit of frequency is

th

o (1.7)

where C is a constant involving the volume of the cavity and the
speed of light. The relation (1.7) is known as Planck’s law.

. In classical mechanics, the kinetic energy of an electron is m.v?/2,
where v is the magnitude of the velocity. Meanwhile, the potential
energy associated with the force law (1.3) is V(r) = —Q?/r, since
dV/dr = F. Show that if the particle is moving in a circular orbit
with radius 7, given by (1.5), then the total energy (kinetic plus
potential) of the particle is F,, as given in (1.1).



2

A First Approach to Classical
Mechanics

2.1 Motion in R!

2.1.1 Newton’s law

We begin by considering the motion of a single particle in R, which may
be thought of as a particle sliding along a wire, or a particle with motion
that just happens to lie in a line. We let z(¢) denote the particle’s position
as a function of time. The particle’s velocity is then

u(t) == z(t),

where we use a dot over a symbol to denote the derivative of that quantity
with respect to the time t¢.
The particle’s acceleration is then

where & denotes the second derivative of x with respect to ¢t. We assume
that there is a force acting on the particle and we assume at first that the
force F' is a function of the particle’s position only. (Later, we will look at
the case of forces that depend also on velocity.)

Under these assumptions, Newton’s second law (F' = ma) takes the form

F(z(t)) = ma = mi(t), (2.1)

where m is the mass of the particle, which is assumed to be positive. We will
henceforth abbreviate Newton’s second law as simply “Newton’s law,” since

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 19
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_2,
© Springer Science+Business Media New York 2013
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we will use the second law much more frequently than the others. Since
(2.1) is of second order, the appropriate initial conditions (needed to get
a unique solution) are the position and velocity at some initial time ¢g. So
we look for solutions of (2.1) subject to

,T(to) = X0
i(fo) = 10.

Assuming that F' is a smooth function, standard results from the ele-
mentary theory of differential equations tell us that there exists a unique
local solution to (2.1) for each pair of initial conditions. (A local solution
is one defined for ¢ in a neighborhood of the initial time ¢y.) Since (2.1) is
in general a nonlinear equation, one cannot expect that, for a general force
function F, the solutions will exist for all ¢. If, for example, F(x) = 22, then
any solution with positive initial position and positive initial velocity will
escape to infinity in finite time. (Apply Exercise 4 with V(z) = —23/3.)
For a proof existence and uniqueness, see Example 8.2 and Theorem 8.13
in [28].

Definition 2.1 A solution x(t) to Newton’s law is called a trajectory.

Example 2.2 (Harmonic Oscillator) If the force is given by Hooke’s
law, F(x) = —kx, where k is a positive constant, then Newton’s law can be
written as mZ + kx = 0. The general solution of this equation is

x(t) = acos(wt) + bsin(wt),
where w := +/k/m is the frequency of oscillation.

The system in Example 2.2 is referred to as a (classical) harmonic os-
cillator. This system can describe a mass on a spring, where the force is
proportional to the distance = that the spring is stretched from its equi-
librium position. The minus sign in —kz indicates that the force pulls the
oscillator back toward equilibrium. Here and elsewhere in the book, we
use the “angular” notion of frequency, which is the rate of change of the
argument of a sine or cosine function. If w is the angular frequency, then
the “ordinary” frequency—i.e., the number of cycles per unit of time—is
w/2m. Saying that = has (angular) frequency w means that x is periodic
with period 27 /w.

2.1.2  Conservation of Energy

We return now to the case of a general force function F(x). We define
the kinetic energy of the system to be %mv? We also define the potential
energy of the system as the function

Viz)=— /F(:c) dzx, (2.2)
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so that F(x) = —dV/dx. (The potential energy is defined only up to adding
a constant.) The total energy E of the system is then

E(z,v) = %mv2 + V(z). (2.3)

The chief significance of the energy function is that it is conserved, meaning
that its value along any trajectory is constant.

Theorem 2.3 Suppose a particle satisfies Newton’s law in the form mi =
F(z). Let V and E be as in (2.2) and (2.83). Then the energy E is conserved,
meaning that for each solution x(t) of Newton’s law, E(x(t),z(t)) is inde-
pendent of t.

Proof. We verify this by differentiation, using the chain rule:

GEE0.50) = 4 (5m0)? + V)
dv .

= ma(0)i(t) + (1)
— &(t)[mi(t) - F(1))]

This last expression is zero by Newton’s law. Thus, the time-derivative of
the energy along any trajectory is zero, so E(z(t),4(t)) is independent of
t, as claimed. m

We may call the energy a conserved quantity (or constant of motion),
since the particle neither gains nor loses energy as the particle moves
according to Newton’s law.

Let us see how conservation of energy helps us understand the solution
to Newton’s law. We may reduce the second-order equation mi = F(z) to
a pair of first-order equations, simply by introducing the velocity v as a
new variable. That is, we look for pairs of functions (x(t),v(t)) that satisfy
the following system of equations

dx

a =W

dv 1

= = —F(a(t)). (24)

If (z(t),v(t)) is a solution to this system, then we can immediately see that
x(t) satisfies Newton’s law, just by substituting dz/dt for v in the second
equation. We refer to the set of possible pairs of the form (z,v) (i.e., R?)
as the phase space of the particle in R'. The appropriate initial conditions
for this first-order system are x(0) = z¢ and v(0) = vy.

Once we are working in phase space, we can use the conservation of
energy to help us. Conservation of energy means that each solution to
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the system (2.4) must lie entirely on a single “level curve” of the energy
function, that is, the set

{(z,v) € R*| E(z,v) = E(zo,v0)} - (2.5)

If F—and therefore also V—is smooth, then F is a smooth function of x
and v. Then as long as (2.5) contains no critical points of F, this set will
be a smooth curve in R2, by the implicit function theorem. If the level set
(2.5) is also a simple closed curve, then the solutions of (2.5) will simply
wind around and around this curve. Thus, the set that the solutions to (2.5)
trace out in phase space can be determined simply from the conservation
of energy. The only thing not apparent at the moment is how this curve is
parameterized as a function of time.

In mechanics, a conserved quantity—such as the energy in the one-
dimensional version of Newton’s law—is often referred to as an “integral
of motion.” The reason for this is that although Newton’s second law is a
second-order equation in x, the energy depends only on x and & and not
on Z. Thus, the equation

m

5(@'?(@)2 + V(x(t)) = Eo,

where Fj is the value of the energy at time to, is actually a first-order
differential equation. We can solve for @ to put this equation into a more

standard form:
i(t) = i\/w' (2.6)

m

What this means is that by using conservation of energy we have turned the
original second-order equation into a first-order equation. We have therefore
“integrated” the original equation once, that is, changed an equation of
the form #(t) = --- into an equation of the form #(t) = --- . The first-
order equation (2.6) is separable and can be solved more-or-less explicitly
(Exercise 1).

2.1.8  Systems with Damping

Up to now, we have considered forces that depend only on position. It is
common, however, to consider forces that depend on the velocity as well
as the position. In the case of a damped harmonic oscillator, for example,
one typically assumes that there is, in addition to the force of the spring,
a damping force (friction, say) that is proportional to the velocity. Thus,
F = —kx — v, where k is, as before, the spring constant and where v > 0
is the damping constant. The minus sign in front of vz reflects that the
damping force operates in the opposite direction to the velocity, causing
the particle to slow down. The equation of motion for such a system is then

mi + vyt + kx = 0.
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If v is small, the solutions to this equation display decaying oscillation,
meaning sines and cosines multiplied by a decaying exponential; if ~ is
large, the solutions are pure decaying exponentials (Exercise 5).

In the case of the damped harmonic oscillator, there is no longer a
conserved energy. Specifically, there is no nonconstant continuous func-
tion E on R? such that E(xz(t),(t)) is independent of ¢ for all solutions of
Newton’s law. To see this, we simply observe that for v > 0, all solutions
x(t) have the property that (z(t),Z(t)) tends to the origin in the plane as ¢
tends to infinity. Thus, if FE is continuous and constant along each trajec-
tory, the value of E at the starting point has to be the same as the value
at the origin.

We now consider a general system with damping.

Proposition 2.4 Suppose a particle moves in the presence of a force law
given by F(x,2) = Fi(x) — v&, with v > 0. Define the energy E of the
system by

1
E(z,7) = §mj:2 + V(z),
where dV/dx = —Fy(x). Then along any trajectory xz(t), we have

d
T B(@(t),3(1)) = —vi(t)* <O0.

Thus, although the energy is not conserved, it is decreasing with time,
which gives us some information about the behavior of the system.
Proof. We differentiate as in the proof of Theorem 2.3, except that now
dV/dx = —Fy(z):

& B(a(r),a(0) = #(0)mi(t) — Fi (1)

Since F} is not the full force function, the quantity in square brackets equals
not zero but —vyi. Thus, dE/dt = —vi?. =

We can interpret Proposition 2.4 as saying that in the presence of friction,
the system we are studying gives up some of its energy to heat energy in
the environment, so that the energy of our system decreases with time.
We will see that in higher dimensions, it is possible to have conservation
of energy in the presence of velocity-dependent forces, provided that these
forces act perpendicularly to the velocity.

2.2 Motion in R"

We now consider a particle moving in R™. The position x = (z1,...,2y,)
of a particle is now a vector in R™, as is the velocity v and acceleration a.
We let

%= (i1, dn)
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denote the derivative of x with respect to ¢t and we let X denote the second
derivative of x with respect to t. Newton’s law now takes the form

mx(t) = F(x(t),%x(t)), (2.7)

where F : R” x R® — R” is some force law, which in general may depend
on both the position and velocity of the particle.

We begin by considering forces that are independent of velocity, and we
look for a conserved energy function in this setting.

Proposition 2.5 Consider Newton’s law (2.7) in the case of a velocity-
independent force: m%(t) = F(x(t)). Then an energy function of the form
. 1 .2
E(x,%x) = 3m |%|” + V(x)
1s conserved if and only if V' satisfies
—VV =F,
where VV is the gradient of V.

Saying that E is “conserved” means that F(x(t),%(t)) is independent of
t for each solution x(t) of Newton’s law. The function V' is the potential
energy of the system.
Proof. Differentiating gives

& (3mIsOF + V) = S0+ i)

= %(t) - [m&(t) + VV]
=%(t) - [F(x) + VV(x)]

Thus, dE/dt will always be equal to zero if and only if we have
—VV(x) = F(x)

for all x. m

We now encounter something that did not occur in the one-dimensional
case. In R!, any smooth function can be expressed as the derivative of some
other function. In R™, however, not every vector-valued function F(x) can
be expressed as the (negative of) the gradient of some scalar-valued function
V.

Definition 2.6 Suppose F is a smooth, R™-valued function on a domain
U C R™. Then F is called conservative if there exists a smooth, real-valued
function V on U such that F = —VV.

If the domain U is simply connected, then there is a simple local condition
that characterizes conservative functions.
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Proposition 2.7 Suppose U is a simply connected domain in R"™ and F
s a smooth, R™-valued function on U. Then F is conservative if and only
if F satisfies

8Fj 8Fk

. 2.
Oz, Oz, 0 (28)

at each point in U.

When n = 3, it is easy to check that the condition (2.8) is equivalent
to the curl V x F of F being zero on U. The hypothesis that U be simply
connected cannot be omitted; see Exercise 7.

Proof. If F is conservative, then
OF; 0%V 0%V OFy,

oxy COxpdr;  Ox;0xry (’“)_967

at every point in U. In the other direction, if F satisfies (2.8), V can be
obtained by integrating F along paths and using the Stokes theorem to
establish independence of choice of path. See, for example, Theorem 4.3 on
p. 549 of [44] for a proof in the n = 3 case. The proof in higher dimensions
is the same, provided one knows the general version of the Stokes theorem.
[ ]

We may also consider velocity-dependent forces. If, for example, F(x,v)
= —yv + Fi(x), where v is a positive constant, then we will again have
energy that is decreasing with time. There is another new phenomenon,
however, in dimension greater than 1, namely the possibility of having a
conserved energy even when the force depends on velocity.

Proposition 2.8 Suppose a particle in R™ mowves in the presence of a force
F of the form
F(x,v) = -VV(x) + Fa(x, V),

where V' is a smooth function and where Fo satisfies
v -Fy(x,v) =0 (2.9)

: . 2
for all x and v in R™. Then the energy function E(x,v) = 2m |v|" + V(x)
s constant along each trajectory.

If, for example, F5 is the force exerted on a charged particle in R? by a
magnetic field B(x), then

Fs(x,v) = qv x B(x),

where ¢ is the charge of the particle, which clearly satisfies (2.9).
Proof. See Exercise 8. m
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2.3 Systems of Particles

If we have a system if IV particles, each moving in R”, then we denote the
position of the jth particle by
x) = (zl,...,20).
Thus, in the expression a:f;, the superscript j indicates the jth particle, while
the subscript k£ indicates the kth component. Newton’s law then takes the
form ‘ ‘
mi¥xl =FI(xt, XNk %N, i=1,2,... N,

where m; is the mass of the jth particle. Here, F/ is the force on the jth

particle, which in general will depend on the position and velocity not only
of that particle, but also on the position and velocity of the other particles.

2.3.1 Conservation of Energy

In a system of particles, we cannot expect that the energy of each individ-
ual particle will be conserved, because as the particles interact, they can
exchange energy. Rather, we should expect that, under suitable assump-
tions on the forces F7, we can define a conserved energy function for the
whole system (the total energy of the system).

Let us consider forces depending only on the position of the particles,
and let us assume that the energy function will be of the form

N
1 _
Bt xN v v = Zimj |VJ|2+V(X1,...,XN). (2.10)
j=1

We will now try to see what form for V' (if any) will allow E to be constant
along each trajectory.

Proposition 2.9 An energy function of the form (2.10) is constant along
each trajectory if ‘ ‘

VIV = —F/ (2.11)
for each j, where V7 is the gradient with respect to the variable x7.

Proof. We compute that

dE
dt

I
WE

[mj)'cj Y 4 AVZAVES X]}
1

<.
Il

I
M=

% [mjij + VjV}

<.
Il
-

I
.MZ

<
Il
-

X [F)+VV].
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If VIV = —FJ, then E will be conserved. m
As in the one-particle case, there is a simple condition for the existence
of a potential function V satisfying (2.11).

Proposition 2.10 Suppose a force function F = (F! ..., FY) is defined
on a simply connected domain U in R™. Then there exists a smooth
function V' on U satisfying

VIV = -FI
for all j if and only if we have

OF]  OF!,

(2.12)

for all j, k, 1, and m.

Proof. Apply Proposition 2.7 with n replaced by nN and with j and k
replaced by the pairs (j, k) and (I,m). m

2.3.2  Conservation of Momentum

We now introduce the notion of the momentum of a particle.

Definition 2.11 In an N-particle system, the momentum of the jth
particle, denoted p?, is the product of the mass and the velocity of that
particle:

pj = mjfcj .

The total momentum of the system, denoted p, is defined as

N .
p=> p.
j=1

Observe that

g = mjiij: Fj.
Thus, Newton’s law may be reformulated as saying, “The force is the rate
of change of the momentum.” This is how Newton originally formulated
his second law.

Newton’s third law says, “For every action, there is an equal and opposite
reaction.” This law will apply if all forces are of the “two-particle” variety
and satisfy a natural symmetry property. Having two-particle forces means
that the force F7 on the jth particle is a sum of terms F7**, j # k, where
F7F depends only x/ and x*. The relevant symmetry property is that
Fik(x7 xF) = —FkJ(x¥ x7); that is, the force exerted by the jth particle
on the kth particle is the negative (i.e., “equal and opposite”) of the force
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exerted by the kth particle on the jth particle. If the forces are assumed
also to be conservative, then the potential energy of the system will be of
the form
V(xl,x2,...,xN):ZVj’k(xj—xk). (2.13)
i<k
One important consequence of Newton’s third law is conservation of the
total momentum of the system.

Proposition 2.12 Suppose that for each j, the force on the jth particle is
of the form
Fi(x!, x%,...,xV) = ZFj’k(xj,xk),
k#j
for certain functions F3F. Suppose also that we have the “equal and
opposite” condition

Fj’k(xj,xk) — _FkiJ (xj,xk).
Then the total momentum of the system is conserved.

Note that since the rate of change of p’ is F7, the force on the jth
particle, the momentum of each individual particle is not constant in time,
except in the trivial case of a noninteracting system (one in which all forces
are zero).

Proof. Differentiating gives

dp al dp’ Ay k(i ok
T g = =D D G ),
j=1

Jj=1 J k#j

By the equal and opposite condition, F/** (x7, x¥) cancels with F¥J (x7, x*),
so dp/dt=0. m

Let us consider, now, a more general situation in which we have con-
servative forces, but not necessarily of the “two-particle” form. It is still
possible to have conservation of momentum, as the following result shows.

Proposition 2.13 If a multiparticle system has a force law coming from
a potential V, then the total momentum of the system is conserved if and

only if
V(x' +a,x*+a,...,xN +a)=V(x'x%... xV) (2.14)

for all a € R™.

Proof. Apply (2.14) with a = tex, where ey, is the vector with a 1 in the
kth spot and zeros elsewhere. Differentiating with respect to ¢t at t = 0

gives
N N i
Z 0 Z j dp; dpy,
O = —_— = — F‘] = - —k = -
o), ~ k = dt dt’
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where py is the kth component of the total momentum p. Thus, if (2.14)
holds, p is constant in time.

Conversely, if the momentum is conserved, then the sum of the forces is
zero at every point, and so

d
%V(xl +ta,x? +ta,...,x" +ta)
N
zzvjV(xl+ta,x2—|—ta,...,xN+ta)-a
j=1
N
ZFJ(xl+ta,x2+ta,...,xN+ta) -a
j=1
=0

for all t. Thus, the value of the quantity being differentiated is the same at
t =0 as at t = 1, which establishes (2.14). m

The moral of the story is that conservation of momentum is a consequence
of translation-invariance of the system, where “translation invariance ”
means invariance under simultaneous translations of every particle by the
same amount. (See Exercise 11 for a more general version of this result.)
If the potential is of the “two-particle” form (2.13), then it is evident that
the condition (2.14) is satisfied.

2.3.8  Center of Mass

We now consider an important application of momentum conservation.

Definition 2.14 For a system of N particles moving in R™, the center
of mass of the system at a fized time is the vector ¢ € R™ given by

Nm
°=2 3x

where M = Z _, my; is the total mass of the system.

The center of mass is a weighted average of the positions of the various
particles. Differentiating c(¢) with respect to ¢ gives

N
1 j_ P
= — g m;x! = —, (2.15)
M = M

where p is the total momentum.
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Proposition 2.15 Suppose the total momentum p of a system is conserved.
Then the center of mass moves in a straight line at constant speed.
Specifically,

el(t) = e(to) + (t = to) 17

where c(to) is the center of mass at some initial time to.

Proof. The result follows easily from (2.15). m

The notion of center of mass is particularly useful in a system of two
particles in which momentum is conserved. For a system of two particles, if
the potential energy V (x!,x?) is invariant under simultaneous translations
of x! and x2, then it is of the form

V(x!,x?) = V(x! —x?),
where V(a) = V(a,0).

Now, the positions x!, x2 of the particles can be recovered from knowledge
of the center of mass and the relative position

1

y =x! —x2
as follows:
1 C + may
X = —
mi + mo
2 CcC—miy
X = —
mi + mo
Meanwhile, we may compute that
. el 9 1 < 1 2 1 7 1 2
yit)=%X —xX*=——VV(x —x°)— —VV(x" —x°).
mq ma

This calculation gives the following result.

Proposition 2.16 For a two-particle system with potential energy of the
form V(x!,x%) = V(x! — x?), the relative position y := x* — x? satisfies
the differential equation

puy =—-VV(y),

where p is the reduced mass given by

mims

M:

1
1 1 .
T o mi + ma

Thus, when the total momentum of a two-particle system is conserved,
the relative position evolves as a one-particle system with “effective” mass p,
while the center of mass moves “trivially,” as described in Proposition 2.15.
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FIGURE 2.1. A(t) is the area of the shaded region.

2.4 Angular Momentum

We start by considering angular momentum in the simplest nontrivial case,
motion in R2.

Definition 2.17 Consider a particle moving in R?, having position X,
velocity v, and momentum p = mv. Then the angular momentum of
the particle, denoted J, is given by

J = T1P2 — T2P1- (216)
In more geometric terms, J = |x| |p| sin ¢, where ¢ is the angle (measured
counterclockwise) between x and p. We can look at J in yet another way

as follows. If @ is the usual angle in polar coordinates on R2, then an
elementary calculation (Exercise 9) shows that

,do

J = —. 2.17
e (2.17)
It then follows that
dA
J =2m— 2.18
mi, (2.18)

where A = (1/2) [r? d is the area being swept out by the curve x(t).
See Fig.2.1.

One significant property of the angular momentum is that it (like the
energy) is conserved in certain situations.

Proposition 2.18 Suppose a particle of mass m is moving in R? under
the influence of a conservative force with the potential function V (x). If
V is invariant under rotations in R?, then the angular momentum J =
T1p2 —x2p1 is independent of time along any solution of Newton’s equation.
Conversely, if J is independent of time along every solution of Newton’s
equation, then V is invariant under rotations.
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Proof. Differentiating (2.16) along a solution of Newton’s law gives

dJ  dx; N dps  dxo dp1
_— = — rT1——— — —— — roQ—
- @ Py T T Ty
1 v 1 1%
= —p1p2 — T17— — —pPap1 + Toa——
m Ors m 0x1
oV oV

25 — iy -
8$1 8$2

On the other hand, consider rotations Ry in R? given by

Ry — ( cosf) —sinf )

sin 6 cosf

If we differentiate V' along this family of rotations, we obtain

oVdx OV dy ov oV dJ
= +r1— = —E(x).

d
@ F| = arwt oy o om

do

Thus, the angular derivative of V is zero if and only if J is constant. m
Conservation of J [together with the relation (2.18)] gives the following
result.

Corollary 2.19 (Kepler’s Second Law) Suppose a particle is moving
in R? in the presence of a force associated with a rotationally invariant
potential. If x(t) is the trajectory of the particle, then the area swept out by
x(t) between timest = a andt = b is (b—a)J/(2m), where J is the constant
value of the angular momentum along the trajectory. Since the area swept
out depends only on b — a, we may say that “equal areas are swept out in
equal times.”

Kepler, of course, was interested in the motion of planets in R?, not in
R2. The motion of a planet moving in the “inverse square” force of a sun
will, however, always lie in a plane. (This claim follows from the three-
dimensional version of conservation of angular momentum, as explained in
Sect. 2.6.1.)

In R3, the angular momentum of the particle is a vector, given by

J=xxp, (2.19)
where x denotes the cross product (or vector product). Thus, for example,
J3 = x1p2 — w2p1. (2.20)

If, then, we have a particle in R? that just happens to be moving in R?
(i.e., xz3 = 0 and p3 = 0), then the angular momentum will be in the z-
direction with z-component given by the quantity J defined in
Definition 2.17.
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The representation of the angular momentum of a particle in R? as a
vector is a low-dimensional peculiarity. For a particle in R™, the angular
momentum is a skew-symmetric matrix given by

Jjk = Xjpr — TEpj. (2.21)

In the R? case, the entries of the 3 x 3 angular momentum matriz are made
up by the three components of the angular momentum vector together with
their negatives, with zeros along the diagonal. [Compare, e.g., (2.20) and
(2.21).]

Definition 2.20 For a system of N particles moving in R™, the total
angular momentum of the system is the skew-symmetric matriz J given

by

N
Too= Y (el — ohat) 2.22)
=1

Theorem 2.21 Suppose a system of N particles in R™ is moving under
the influence of conservative forces with potential function V. If V' satisfies

V(Rx', Rx? ..., Rx™) =V (x!,x%, ..., x") (2.23)

for every rotation matrix R, then the total angular momentum of the system
is conserved (constant along each trajectory). Conversely, if the total an-
gular momentum is constant along each trajectory, then V satisfies (2.23).

The proof of this result is similar to that of Proposition 2.18 and is left
as an exercise (Exercise 10). We will re-examine the concept of angular
momentum in the next section using the language of Poisson brackets and
Hamiltonian flows.

2.5 Poisson Brackets and Hamiltonian Mechanics

We consider now the Hamiltonian approach to classical mechanics. (There
is also the Lagrangian approach, but that approach is not as relevant for
our purposes.) The Hamiltonian approach, and in particular the Poisson
bracket, will help us to understand the general phenomenon of conserved
quantities. The Poisson bracket is also an important source of motivation
for the use of commutators in quantum mechanics.

In the Hamiltonian approach to mechanics, we think of the energy func-
tion as a function of position and momentum, rather than position and
velocity, and we refer to it as the “Hamiltonian.” If a particle in R™ has
the usual sort of energy function (kinetic energy plus potential energy), we
have

H(x,p) = ﬁ pr— +V(x). (2.24)
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Here, as usual, p; = m;&;. We now observe that Newton’s law can be
expressed in the following form:

de o 8H

dt N 3pj

dpj 8H

VA 2.2
dt 6,Tj ( 5)

After all, with H of the indicated form, these equations read dz;/dt =
pj/m, which is just the definition of p;, and dp; /dt = —0V/dz; = F}, which
is just Newton’s law, in the form originally given by Newton. We refer to
Newton’s law, in the form (2.25) as Hamilton’s equations.

Although it is not obvious at the moment that we have gained anything
by writing Newton’s law in the form (2.25), let us proceed on a bit further
and see. Our next step is to introduce the Poisson bracket.

Definition 2.22 Let f and g be two smooth functions on R*", where an
element of R?™ is thought of as a pair (x,p), with x € R™ representing the
position of a particle and p € R™ representing the momentum of a particle.
Then the Poisson bracket of f and g, denoted {f, g}, is the function on
R2™ given by

" of 0 of 0
o) em) =Y (%%— %%)

Jj=1
The Poisson bracket has the following properties.

Proposition 2.23 For all smooth functions f, g, and h on R2™ we have
the following:

1. {f,g+ch}y={f,g} +c{f,h} forallc€R
2. {9,/ =—{f.9}

3. {f.gh} ={f.gth+g{f I}

4- AfAg.hyt={{f. 9} 1} +{g.{f, h}}

Properties 1 and 2 of Proposition 2.23 say that the Poisson bracket is
bilinear and skew-symmetric. Property 3 says that the operation of “bracket
with f” satisfies the derivation property (similar to the product rule for
derivatives) with respect to pointwise multiplication of functions, while
Property 4 says that “bracket with f” satisfies the derivation property
with respect to the Poisson bracket itself. Property 4 is equivalent to the
Jacobi identity:

{f: g, hiy+1{h.{f, 91 +{9.{h, [}} =0, (2.26)
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as may easily be seen using the skew-symmetry of the Poisson bracket.
The Jacobi identity, along with bilinearity and skew-symmetry, means that
the space of C* functions on R?" forms a Lie algebra under the operation
of a Poisson bracket. (See Chap. 16.)

Proof. The first two properties of the Poisson bracket are obvious and the
third is an easy consequence of the product rule. Let us think about what
goes into proving Property 4 by direct computation. (An alternative proof
is given in Exercise 15.) We compute that

" of 0 <6g oh g 5h>
A9 =) 2o o 5 o
{f:{g:h}} j;axj dpj \Ox; dp;  Op; Ox;

_i af o (89 Oh 9y 8h)
= 3pj 8Ij 8Ij 3pj 3pj 8Ij '
Just the first term in the expression for {f,{g, h}} generates the following
four terms (all summed over j) after we use the product rule:

af 0%g Oh of dg 0*h  Of 0%g Oh af dg 0%h

dxj Ox;j0p; Op; ~ Oxj Ox; Op;  Ox; Op3 dx;  Ox; Opj Ox;0p;

We see, then, that the left-hand side of (2.26) will have a total of 24 terms,
each summed over j. Each term will have a single derivative on two of the
three functions, and two derivatives on the third function. There are three
possibilities for which function gets two derivatives. Once that function is
chosen, there are four possibilities for which derivatives go on the other
two functions, with the function that gets two derivatives getting whatever
derivatives remain (for a total of two z-derivatives and two p-derivatives).
That makes 12 possible terms. It is a tedious but straightforward exercise
to check that each of these 12 possible terms occurs twice in the left-hand
side of (2.26), with opposite signs. To check just one case explicitly, in
computing {h,{f,g}}, we will get a term like the second term in (2.27),
but with (f, g, h) replaced by (h, f,g):

oh Of d%g

dx;j Oz Ops-
This term (in the computation of {h,{f,g}}) cancels with the third term
in (2.27) (in the computation of {f,{g,h}}). m

The following elementary result will provide a helpful analogy to the
“canonical commutation relations” in quantum mechanics.

(2.27)

Proposition 2.24 The position and momentum functions satisfy the fol-
lowing Poisson bracket relations:

{‘ijxk} =0
{pjvpk} =0
{xjvpk} = 0jk-
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Proof. Direct calculation. m
One of the main reasons for considering the Poisson bracket is the
following simple result.

Proposition 2.25 If (x(t),p(t)) is a solution to Hamilton’s equation
(2.25), then for any smooth function f on R®*" we have

%(ﬂﬂm@»z{ﬁHHﬂmp@)

We generally write Proposition 2.25 in a more concise form as

4 ym,

where the time derivative is understood as being along some trajectory.
Proof. Using the chain rule and Hamilton’s equations, we have

i Bf dx] Bf dpj
817] dt apj dt

orom of (_om
dx; dp; ' Op; Ox;

f ),

Il
f—H < b
HM:

as claimed. m

Observe that Proposition 2.25 includes Hamilton’s equations themselves
as special cases, by taking f(z,p) = x; and by taking f(z,p) = p;. Thus,
this proposition gives a more coordinate-independent way of expressing the
time-evolution.

Corollary 2.26 Call a smooth function f on R2™ a conserved quantity if
f(x(t),p(t)) is independent of t for each solution (x(t), p(t)) of Hamilton’s
equations. Then f is a conserved quantity if and only if

{f, H}=0.
In particular, the Hamiltonian H is a conserved quantity.

Conserved quantities are also called constants of motion. See Conclusion
2.31 for another perspective on this result. Conserved quantities (when one
can find them) are useful in that we know that trajectories must lie in
the level surfaces of any conserved quantity. Suppose, for example, that
we have a particle moving in R? and that the Hamiltonian H and one
other independent function f (such as, say, the angular momentum) are
conserved quantities. Then, rather than looking for trajectories in the four-
dimensional phase space, we look for them inside the joint level sets of H
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and f (sets of the form H(xz,p) = a, f(x,p) = b, for some constants a
and b). These joint level sets are (generically) two-dimensional instead of
four-dimensional, so using the constants of motion greatly simplifies the
problem—from an equation in four variables to one in only two variables.
Solving Hamilton’s equations on R?” gives rise to a flow on R2", that is, a
family ®; of diffeomorphisms of R?", where ®;(x, p) is equal to the solution
at time ¢ of Hamilton’s equations with initial condition (x,p). Since it is
possible (depending on the choice of potential function V') that a particle
can escape to infinity in finite time, the maps ®; are not necessarily defined
on all of R?", but only on some open subset thereof. If ®, does happen to
be defined on all of R?" (for all t), then we say that the flow is complete.

Theorem 2.27 (Liouville’s Theorem) The flow associated with Hamil-
ton’s equations, for an arbitrary Hamiltonian function H, preserves the
(2n)-dimensional volume measure

dxidxsy - - - drpdpirdps - - - dp,.

What this means, more precisely, is that if a measurable set E is con-
tained in the domain of ®, for some ¢t € R, then the volume of ®,(E) is
equal to the volume of F.

Proof. Hamilton’s equations may be written as

- 1 [ 24 7
T Op1
d | x, g—H
— = 22 2.28
dt | m —giﬁ ( )
Lo b [ =5

This means that Hamilton’s Equations describe the flow along the vector
field on R?" appearing on the right-hand side of (2.28). By a standard result
from vector calculus (see, e.g., Proposition 16.33 in [29]), this flow will be
volume-preserving if and only if the divergence of the vector field is zero.
We compute this divergence as

0 0OH 0 OH 0 0OH 0 OH

o =R e ewil = ol = et

Since
0*°H 0°H

8:17j8pj - 3pj3xj’

the divergence is zero. m

The existence of an invariant volume has important consequences for
the dynamics of a system. For example, for “confined” systems, an invari-
ant volume implies that the system exhibits “recurrence,” which means
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(roughly) that for most initial conditions, the particle will eventually come
back arbitrarily close to its initial state in phase space. We will not, how-
ever, delve into this aspect of the theory.

Note that the divergence of Xy, computed in (2.29), vanishes in a very
particular way, namely the sum of the jth and (n + j)th terms vanishes
for all 1 < j < n. This stronger condition turns out to be equivalent to
the condition that the Hamiltonian flow ®; associated with an arbitrary
smooth function on R?" preserves the symplectic form w, defined by

w((x,p), (x,p)) =x-p'—p-x.

What this means, more precisely, is that for any ¢t € R and any (x, p) € R?",
the matrix of partial derivatives of ®; at the point (x, p)—thought of as a
linear map of R?” to R?"—preserves w. This property of ®, as it turns out,
is equivalent to the property that ®; preserves Poisson brackets, meaning
that

{fo®igo®} ={f.g}od:

for all f,g € C°(R"). A map ¥ : R*® — R?" that preserves w is called
a symplectomorphism (in mathematics notation) or a canonical transfor-
mation (in physics notation). We defer the proofs of these claims until
Chap. 21, where we can consider them in a more general setting.

Definition 2.28 For any smooth function f on R?", the Hamiltonian
flow generated by f is the flow obtained by solving Hamilton’s equation (2.25)
with the Hamiltonian H replaced by f. The function f is called the Hamil-
tonian generator of the associated flow.

Although any smooth function on R?" can be inserted into Hamilton’s
equations to produce a flow, physically one should think that there is a
distinguished function, the Hamiltonian H of the system, such that the
flow generated by H is the time-evolution of the system. For any other
function f, the Hamiltonian flow generated by f should not be thought
of as time-evolution, but as some other flow, which might, for example,
represent some family of symmetries of our system.

Proposition 2.29 The Hamiltonian flow generated by the function
fa(x,p):=a-p (2.30)
s gwen by

x(t) =xo +ta
p(t) = po, (2.31)

and the Hamiltonian flow generated by the function

gb(x,p) :=b-x (2.32)
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is given by

x(t) = xo
p(t) = po — tb.

Proof. Direct calculation. m

What this means is that the Hamiltonian flow generated by a linear
combination of the momentum functions consists of translations in position
of the particle. That is to say, in the flow (2.31) generated by the function
fa in (2.30), the particle’s initial position xq is translated by ta while the
particle’s momentum is independent of ¢. Similarly, the Hamiltonian flow
generated by a linear combination of the position functions [the function
gb in (2.32)] consists of translations in the particle’s momentum.

Proposition 2.30 For a particle moving in R?, the Hamiltonian flow gen-
erated by the angular momentum function

J(X7 P) = X1p2 — T2P1

consists of simultaneous rotations of x and p. That is to say,

B R
(

,Tl(t _
IQ(

[ pi( _
pa(

t

t

)
)
)
t)

)
)
cost —sint p1(0)
] [ sint  cost } { p2(0) |- (2.33)
Proof. If we plug the angular momentum function J into Hamilton’s equa-
tions in place of H, we obtain

dacl_aJ__x_ dpl__aJ__
dt B 8])1 B > dt o 8$1 -
dey _0J _ . dp2_ 9T _
dt _8p2_ b dt - (91:2 —h

The solution to this system is given by the expression in the proposition,
as is easily verified by differentiation of (2.33). m

Note that since the Hamiltonian flow generated by J does not have the
interpretation of the time-evolution of the particle, the parameter ¢ in (2.33)
should not be interpreted as the physical time; it is just the parameter in a
one-parameter group of diffeomorphisms. In this case, ¢ is the angle of rota-
tion. Thus, one answer to the question, “What is the angular momentum?”
is that J is the Hamiltonian generator of rotations.

If f is any smooth function, then by the proof of Proposition 2.25, the
time derivative of any other function g along the Hamiltonian flow gener-
ated by f is given by dg/dt = {g, f}. In particular, the derivative of the
Hamiltonian H along the flow generated by f is {H, f}. Thus, f is constant
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along the flow generated by H if and only if {f, H} = 0, which holds if and
only if {f, H} = 0, which holds if and only if H is constant along the flow
generated by f. This line of reasoning leads to the following result.

Conclusion 2.31 A function f is a conserved quantity for solutions of
Hamilton’s equation (2.25) if and only if H is invariant under the Hamil-
tonian flow generated by f. In particular, the angular momentum J is con-
served if and only if H is invariant under simultaneous rotations of x and p.

We will return to this way of thinking about conserved quantities in
Chap. 21. Compare Exercise 12.

The Hamiltonian framework can be extended in a straightforward way
to systems of particles.

Proposition 2.32 Consider the phase space for a system of N particles
moving in R™, namely R*"N  thought of as the set of (2N)-tuples of the
form

(xl,...,xN,pl,...,pN)

with x7 and p’ belonging to R™. Define the Poisson bracket of two smooth
functions f and g on the phase space by

N n
pa-s (2 ot o)

j=1k=1 axi api Ip;, (%ci

and consider a Hamiltonian function of the form

N
1 12
H(x! N op! Ny = I+ v(xt, .. xN).
(X; X Py ap) ;2m]‘p‘+ (X; ;X)
Then Newton’s law in the form m;%) = —NVJV is equivalent to Hamilton’s
equations in the form
dwi _OH
dt op;,
dp] oH
@y _ 92 (2.34)
dt oz,

For any smooth function f, the derivative of [ along a solution of Hamil-
ton’s equations is given by

af
E _{faH}'

The proof of these results is entirely similar to the one-particle case and
is omitted.
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2.6 The Kepler Problem and the Runge-Lenz
Vector

2.6.1 The Kepler Problem

We consider now the classical Kepler problem, that of finding the
trajectories of a planet orbiting the sun. Since the sun is very much more
massive than any of the planets, we may consider the position of the sun
to be fixed at the origin of our coordinate system. The sun exerts a force
on a planet given by

F=—k—. (2.35)

Here k = GmM, where m is the mass of the planet, M is the mass of the
sun, and G is the universal gravitational constant. Note that the magnitude
of F is proportional to the reciprocal of the square of the distance from the
origin; thus, the force follows an inverse square law. Since k contains a
factor of the mass m of the planet, this quantity drops out of the equation
of motion, m¥X = F. The potential associated with the force (2.35) is easily
seen to be

(2.36)

Since our potential V' is invariant under rotations, the angular momentum
vector J = x X p is a conserved quantity (Theorem 2.21 with N = 1 and
n = 3). If J = 0, the particle is moving along a ray through the origin.
In that case, either the particle will pass through the origin at some point
in the future (if the initial momentum points toward the origin), or else
the particle must have passed through the origin at some point in the past
(if the initial momentum points away from the origin). Trajectories of this
sort are called collision trajectories, and we will regard such trajectories as
pathological.

We will, from now on, consider only trajectories along which the angular
momentum vector is nonzero. Fixing the energy and angular momentum of
the particle guarantees that the particle stays a certain minimum distance
from the origin (Exercise 20). Meanwhile, since J = x X p, the position
x(t) of the particle will always be perpendicular to the constant value of J.
We will therefore refer to the plane (through the origin) perpendicular to
J as the “plane of motion.”

2.6.2 Conservation of the Runge—Lenz Vector

We are going to obtain a description of the classical trajectories in an
indirect way, using something called the Runge-Lenz vector.
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Definition 2.33 The Runge—Lenz vector is the vector-valued function
on R3\{0} x R?® given by

1
A(x,p) = o

Here x represents the position of a classical particle and p its momentum.

The significance of this vector is that it is a conserved quantity for the
Kepler problem. Of course, whenever the potential energy is radial (a func-
tion of the distance from the origin), the angular momentum vector is a
conserved quantity. What is special about the 1/r potential of the Kepler
problem is that there is another conserved vector-valued quantity.

Proposition 2.34 The Runge—Lenz vector is conserved quantity for New-
ton’s law with force given by (2.35).

Proof. Since J is conserved, we compute that

; 1 0 x| dz;
A“)—W?”—;a 22 oe, di

11 Tj Pj
=———xX(XxXXPp)— L2
m [x|’ le [x? Z x| m
-2 —>1X@ p)+ 1p& ﬂ—l)+X&'m
m o\ x|” <
=0.

Here we have used the identity b x (c xd) = ¢(b-d) —d(b-c), which holds
for all vectors b,c,d € R?. m

2.6.3 Ellipses, Hyperbolas, and Parabolas

We now use the Runge—Lenz vector to determine the trajectories for the
Kepler problem.

Proposition 2.35 The magnitude of the Runge—Lenz vector A satisfies

213
E
mk2 "’

AP =1+

where E = |p|* /(2m) — k/ |x| is the energy of the particle. Furthermore,
if X :=x/ |x]| is the unit vector in the x-direction, we have

I
mk |x|

A %= —1 (2.37)



2.6 The Kepler Problem and the Runge-Lenz Vector 43

for all nonzero x. It follows from (2.37) that

|X|*L
T mk(1+A-%)

Note that from (2.37), A - % > —1 for all points (x,p) with x # 0.
Proof. Using the identity b - (¢ x d) =d - (b X c), we see that

- (pxJ)=J-(%xp)= I /Ix|.

Since J and p are orthogonal, we get

1 2
|A|2=W|P|2|J|2+1—%X'(PXJ)

2
mk? \ 2m  |x]

2|J°
2

=1+ E.

mk

Using again the identity for b - (¢ x d), we next compute that

We may now divide by |x| to obtain the desired expression for A - X. It is
then straightforward to solve for |x|. m

Corollary 2.36 Choose orthonormal coordinates in the plane of motion
so that A lies along the positive x1-azis. If r and 0 are the polar coor-
dinates associated with this coordinate system, then along each trajectory
(r(¢),6(t)), we have

9° 1
)= ————— 2.38
r(t) mk 1+ Acos6(t)’ (2:38)
where A = |A].

If A =0, any orthonormal coordinates can be used.

Proposition 2.37 If A := |A| < 1, (2.38) is the equation of an ellipse with
eccentricity A and with the origin being one focus of the ellipse. If A > 1,
(2.88) is the equation of a hyperbola, and if A =1, (2.38) is the equation
of a parabola.

The orbit of the particle in the plane of motion is an ellipse if the energy
of the particle is negative, a hyperbola if the energy is positive, and a
parabola if the energy is zero.
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FIGURE 2.2. Elliptical orbit for the Kepler problem, with two equal areas shaded.

Kepler’s first law is the assertion that planets move in elliptical trajec-
tories with the sun at one focus, as shown in Fig.2.2. The shaded regions
indicate two equal areas that are swept out in equal times, in accordance
with Kepler’s second law (Corollary 2.19).

Recall that the eccentricity of an ellipse is /1 — (b/a)?, where a is half
the length of the major axis and b is half the length of the minor axis.
Thus, when A = 0, we have b = a, meaning that the ellipse is a circle.
Proof. We continue to work in a coordinate system in which A is along
the positive x;-axis. Then (2.38) becomes

\/9024‘3/220114_14;17
Vatty?

where a = |J|* /(mk). From this we obtain

1=~ (Vi h gt 4 ).

Now we can solve for \/z2 + 32, square both sides of the equation, and
simplify. Assuming A? # 1, we obtain

a? (1_1A2) —(1- A% (;v+ 1?22>2+y2. (2.39)

This is the equation of an ellipse (if A% < 1) or a hyperbola (if A% > 1),
where the center of the ellipse or hyperbola is the point (—a/(1 — A2),0).
In light of the formula for A := |A| in Proposition 2.35, we obtain an ellipse
if the energy of the particle is negative and a hyperbola if the energy is
positive.

In the case A? < 1, we may readily compute the half-lengths a and b of
the major and minor axes as

T 1-A427 71— A2

From this, we readily calculate that the eccentricity is A. Now, the distance
between the foci of an ellipse is the length of the major axis times the
eccentricity, in our case, 2Aa/(1 — A?). Since the center of the ellipse in
(2.39) is at the point (Aa/(1— A?),0), the origin is one focus of the ellipse.

a
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If A2 =1, then when we perform the same analysis, 22 drops out of the
equation and we obtain

1

xr = % (—y2 + az)
which is the equation of a parabola opening along the x-axis. This case
corresponds to energy zero. W

Note that Proposition 2.37 does not tell us how the particle moves along
the ellipse, hyperbola, or parabola as a function of time. We can, however,
determine this, at least in principle, by making use of the angular momen-
tum. After all, applying (2.17) in the plane of motion gives

o1

(2.40)

- =—1J,

dt  mr? 7]
where 6 is the polar angle variable in the plane of motion. Since we have
computed 7 as a function of 8 in Corollary 2.36, (2.40) gives us a (first-
order, separable) differential equation, from which we can attempt to solve
to obtain #—and thus also r—as a function of ¢.

2.6.4 Special Properties of the Kepler Problem

As we have said, the existence of another conserved vector-valued function—
in addition to the conserved energy and angular momentum—is special to
a potential of the form —k/ |x|. For a general radial potential, the energy
and the angular momentum will be the only conserved quantities. Assuming
J # 0, the motion of a particle in any radial potential will always lie in the
plane perpendicular to J. Taking this into account, we think of our particle

FIGURE 2.3. Trajectory in the plane of motion for a typical radial potential.
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as moving in R? rather than R?, and accordingly think of our phase space
as being four-dimensional rather than six-dimensional. From this point of
view, there are two remaining conserved quantities, the energy E and the
scalar angular momentum J in the plane, as given by Definition 2.17. Thus,
each trajectory will lie in a set of the form

{(x,p) e R* x R*| E(x,p) =a, J(x,p) =b}.

We refer to such a set as a joint level set of E and J. These sets are two-
dimensional surfaces inside our four-dimensional phase space.

For a general radial potential, a trajectory (x(t),p(t)) in phase space
may not be a closed curve, but may fill up a dense subset of the joint
level surface on which it lives. In particular, the trajectory x(¢) in position
space will typically not be a closed curve. For example, x(¢) may trace out
a roughly elliptical region in the plane, but where the axes of the ellipse
“precess,” that is, vary with time. Such a trajectory is shown in Fig. 2.3,
which should be contrasted with Fig. 2.2.

In the Kepler problem, even after restricting attention to the plane of
motion, we still have one conserved quantity in addition to £ and J, namely
the direction of A, which can be expressed in terms of the angle ¢ between
A and the z;-axis in the plane of motion. (Note that both terms in the
definition of A lie in the plane of motion. Note also that the magnitude of A
is, by Proposition 2.35, computable in terms of F and J.) The trajectories
of the Kepler problem, then, lie in the joint level sets of E and J and ¢,
which are one-dimensional. When E < 0, the joint level sets of E and J are
compact, in which case the joint level sets of £ and J and ¢ are compact
and one-dimensional, that is, simple closed curves.

Another special property of the Kepler problem is that the period of the
closed trajectories (the trajectories with negative energy) is the same for all
trajectories with the same energy (Exercise 21). This apparent coincidence
can be explained by showing that the Hamiltonian flows (Definition 2.28)
generated by J and A act transitively on the energy surfaces. These flows
commute with the time evolution of the system, because they are all con-
served quantities (Conclusion 2.31). Thus, any two points with the same
energy are “equivalent” with respect to time evolution. Although we will
not go into the details of this analysis, we will gain a better understanding
of the flows generated by the components of A in Sect. 18.4.

2.7 Hxercises

1. Consider a particle moving in the real line in the presence of a force
coming from a potential function V. Given some value Fy for the
energy of the particle, suppose that V(z) < Ey for all z in some
closed interval [xg,x1]. Then a particle with initial position zo and
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positive initial velocity will continue to move to the right until it
reaches z1. Using (2.6), show that the time needed to travel from x

to x1 is given by
T m
t= ——— dy.
/xg V 2(Eo — V(y))

Note: This shows that we can solve Newton’s equation in R! more
or less explicitly for time as a function of position, which in principle
determines the position as a function of time.

. In the notation of the previous problem, suppose now that V(z) < Ey
for g < x < x1, but that V(z1) = Ep.

(a) Show that if V’(x1) # 0, then the particle reaches 1 in a finite
time.

(b) Show that if V'(z1) = 0, then the time it takes the particle to
reach x; is infinite; that is, the particle approaches but never
actual reaches x;.

Note: In Part (b), the point x; is an unstable equilibrium for the
system, that is, a critical point for V' that is not a local minimum.

. Consider the equation of motion of a pendulum of length L,

d%6 g .

W + Z Sin 9 = 0,
where g is the acceleration of gravity. Here 6 is the angle between the
pendulum and the negative y-axis in the plane. This system has a
stable equilibrium at 6§ = 0 and an unstable equilibrium at 6 = .

Consider initial conditions of the form 6(0) = = — 6, #(0) = 0, for
0 < 6 < m/4. Fix some angle 0y and let T'(d) denote the time it takes
for the pendulum with the given initial conditions to reach the angle
0o. (Here 0y represents an arbitrarily chosen cutoff point at which the
pendulum is no longer “close” to § = 7.) Show that T'(§) grows only
logarithmically as 0 tends to zero.

Note: Logarithmic growth of T as a function of ¢ corresponds to
exponential decay of § as a function of 7. Thus, if we want T to be
large, we must choose d to be very small.

. Consider a particle moving in the real line in the presence of a
“repelling potential,” such that there is an A with V'(z) < 0 for
all x > A. Then a particle with initial position zy > A and positive
initial velocity will have positive velocity for all positive times. Sup-
pose now that V(z) = —x® for all z > 1, for some positive constant
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a. Suppose also that the particle is given initial position zy > 1 and
positive initial velocity. Show that for a > 2, the particle escapes to
infinity in finite time, but that for a < 2, the position of the particle
remains finite for all finite times.

Hint: Use Problem 1.

. Counsider the equation ma + v& + kx = 0, where v and k are positive

constants (the damping constant and spring constant, respectively).
Find the critical value 7. of v (for a fixed m and k) such that for
v < 7., we get solutions that are sines and cosines times a decaying
exponential and for v > ~., we get pure decaying exponentials.

. Continue with the notation of Exercise 5. Given particular choices

for m, «, and k, let r be the rate of exponential decay of a “generic”
solution to the equation of motion. Here, if the solution is of the form
ae” " cos(wt) + be "t sin(wt), the rate of exponential decay is r. If the
solution is of the form ae™"'* 4 be~"2!, then r = min(ry,rs), since
the slower-decaying term will dominate as long as a and b are both
nonzero.

For a fixed value of m and k, show that the maximum value for r
is achieved by taking v = ~.. (This accounts for the terminology
“critical damping” for the case in which v = ~..)

. Consider the R%-valued function F on R? \ {0} given by

F(xl,x2)=< 2 o )

_a:%—i-:z:%’ x%—i—:z:%
Show that OF) /0xe — OF/0x1 = 0 but that there does not exist any
smooth function V on R?\ {0} with F = —VV.
Hint: If F were of the form —VV, we would have

b
V) - Vixta)) = - [ Fexte) - G de

for every smooth path x() : [a,b] — R?*\{0}, by the fundamental
theorem of calculus and the chain rule.

. Counsider a particle moving in R™ with a velocity-dependent force law

given by
F(x,v) = -VV(x) + Fa(x,V),

where the velocity-dependent term Fo acts perpendicularly to the
velocity of the particle. (That is, we assume that v - Fo(x,v) = 0
for all x and v.) Let E denote the usual energy function E(x,v) =
im |v]>+V (x), unmodified by the presence of the velocity-dependent
term in the force. Show that E is conserved.



2.7 Exercises 49

9. (a) Ifr and 6 are the usual polar coordinates on R?, compute 90/
and 00/0xs.

(b) If x(-) denotes the trajectory of a particle of mass m moving in
R?, show that

d 1
O(x(1)) =

J(x(t), p(t))-

mr?

10. Prove Theorem 2.21, by imitating the proof of Proposition 2.18. You
may assume that every rotation can be built up as a product of
repeated rotations in the various coordinate planes (i.e., rotations in
the (z;, k) plane, for various pairs (j, k), where the same plane may
be used more than once).

11. Consider Hamilton’s equations for N particles moving in R", as in
Proposition 2.32. Show that the total momentum p = Zivzl p’ of the
system is a conserved quantity if and only if the quantity

Hx'4+a,....,x"4+ap'+a,...,pY +a), acR",

is independent of a for all x!,...,x" and p!,...,p" in R".

Hint: Use (the N-particle version of) Conclusion 2.31.

12. Let J denote the angular momentum of a particle moving in R2.
Let Rg denote a counterclockwise rotation by angle 6 in R2.

(a) If f is any smooth function on R*, show that

d
,JH(x,p) = —f (Rox, R
(.7} (o) = g (R Rop)

(b) Let H be any smooth function on R* and consider Hamilton’s
equations with this function playing the role of the Hamilto-
nian. Show that J is conserved (i.e., constant in time along any
solution of Hamilton’s equations) if and only if

H(Rgx, Rop) = H(x,p)

for all 6 in R and all x and p in R2. (This argument is a more
explicit way to obtain Conclusion 2.31.)

13. Suppose that f and g are smooth functions on R?" and that at least
one of the two functions has compact support. Show that

/n Rn{fvg}(x,p) d"x dnp —0.

Hint: Use integration by parts or Liouville’s theorem.
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14.

15.

16.
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Let X and Y be “vector fields” on R™, viewed as first-order differential
operators. This means that X and Y are of the form

X =
J

- 0 - 0
aj(x)%; Y:ij(x)%-
— J J

1 j=1

[If X(x) = (a1(x),...,an (x)), then the operator X is the directional
derivative in the direction of X. It is common to identify the vector-

valued function X with the associated first-order differential operator
X

Show that the commutator [X,Y] of X and Y, defined by
X,Y]= XY - VX
is again a vector field (i.e., a first-order differential operator).

Given a smooth function f on R?", define an operator Xy, acting on
C°°(R?"), by the formula

Xplg) =1{f. 9}
That is to say,
" of 0 of 0 >
X =Y (- L2,
! ; dz; dp;  Opj O,

The operator X; is called the Hamiltonian vector field associated
with the function f. (Here, as in Exercise 14, we identify vector fields
with first-order differential operators.)

(a) Show that for all f,g € C°°(R?*"), we have
Xirgy = X5, X,

where [Xf, Xg] = XfXg — Xng.

Hint: By Exercise 14, all terms in the computation of [ X, X 4] (h)
involving second derivatives of h can be neglected, since they will
always cancel out to zero.

(b) Use Part (a) to compute {{f, g}, h} = X(¢ 41 (h) and thereby ob-
tain another proof of the Jacobi identity for the Poisson bracket.

Recall the definition of a Hamiltonian vector field X ¢ in Exercise 15.

(a) Consider a smooth vector field X on R? (viewed as a first-order
differential operator as in Exercise 14) of the form

0 0
X(x) = gl(I,p)% +gz(x,p)a—p-
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Show that X can be expressed as X = Xy, for some f €
C®°(R?), if and only X is divergence free, that is, if and only
if

991 , 99>
or dp

Hint: As in Proposition 2.7, given a pair of functions h; and ho
on R?, there exists a function f with df/0z = hy and 0f/0p =
he if and only if we have Ohq/0p = Oha/0x.

(b) Show that there exists a smooth vector field X on R* of the form

= Zi: (gg oz, " gj+2(x )aij)

V- X == =0.

such that

9yg; 89 j+2
VX ( iy Q02
Z oz: " op,
but such that there does not exist f € C*°(R*) with X = X;.

Hint: You should be able to find a counterexample in which the
coefficient functions g; are linear.

Show that the space of homogeneous polynomials of degree 2 on R?"
is closed under the Poisson bracket.

Determine the Hamiltonian flow on R? generated by the function
f(z,p) = zp.
Let J denote the angular momentum vector for a particle moving in

R3, namely J = x x p. Show that the components J;, Jo, and Js of
J satisty the following Poisson bracket relations:

{J1, 02} = T3y {J2,J3} = J1; {J3, i} = Jo.

In the Kepler problem, show that for each real number E and positive
number J, there exists e > 0 such that for all (x, p) with E(x,p) = E
and |J(x,p)| = J, we have |x| > .

Hint: Suppose that (x,,pn) is a sequence with |J(x,,p,)| = J and
|x,| tending to zero. Show that E(x,,py) tends to +oo.
(a) Determine the area of the ellipse in the plane of motion in Propo-
sition 2.37, in the case A < 1.

(b) Show that the time T it takes the particle to travel once around
the ellipse is given by

GM(_E)*3/2,

Sk
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where E is the “massless energy” of the particle, given by

E 1. GM

E=—=_|%--—".
m 2|X| |x|

Note in the case where the trajectory in the plane of motion is
elliptical, the energy of the particle is negative.

Note: The result of Part (b) is closely related to Kepler’s third law.



3

A First Approach to Quantum
Mechanics

In this chapter, we try to understand the main ideas of quantum mechanics.
In quantum mechanics, the outcome of a measurement cannot—even in
principle—be predicted beforehand; only the probabilities for the outcome
of the measurement can be predicted. These probabilities are encoded in a
wave function, which is a function of a position variable x € R™. The square
of the absolute value of the wave function encodes the probabilities for the
position of the particle. Meanwhile, the probabilities for the momentum of
the particle are encoded in the frequency of oscillation of the wave function.
The probabilities can be described using the position operator and the
momentum operator. The time-evolution of the wave function is described
by the Hamiltonian operator, which is analogous to the Hamiltonian (or
energy) function in Hamilton’s equations.

3.1 Waves, Particles, and Probabilities

There are two key ingredients to quantum theory, both of which arose from
experiments. The first ingredient is wave—particle duality, in which objects
are observed to have both wavelike and particlelike behavior. Light, for
example, was thought to be a wave throughout much of the nineteenth
century, but was observed in the early twentieth century to have parti-
cle behavior as well. Electrons, meanwhile, were originally thought to be
particles, but were then observed to have wave behavior.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 53
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_3,
© Springer Science+Business Media New York 2013
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The second ingredient of quantum theory is its probabilistic behavior.
In the two-slit experiment, for example, electrons that are “identically
prepared” do not all hit the screen at the same point. Quantum theory
postulates that this randomness is fundamental to the way nature behaves.
According to quantum mechanics, it is impossible (theoretically, not just
in practice) to predict ahead of time what the outcome of an experiment
will be. The best that can be done is to predict the probabilities for the
outcome of an experiment.

These two aspects of quantum theory come together in the wave function.
The wave function is a function of a variable x € R™, which we interpret as
describing the possible values of the position of a particle, and it evolves in
time according to a wavelike equation (the Schrodinger equation). The wave
function and its time-evolution account for the wave aspect of quantum
theory. The particle aspect of the theory comes from the interpretation of
the wave function. Although it is tempting to interpret the wave function
as a sort of cloud, where we have, say, a little bit of electron-cloud over
here, and little bit of electron-cloud over there, this interpretation is not
consistent with experiment. Whenever we attempt to measure the position
of a single electron, we always find the electron at a single point. A single
electron in the two-slit experiment is observed at a single point on the
screen, not spread out over the screen the way the wave function is. The
wave function does not describe something that is directly observable for a
single particle; rather, the wave function determines the statistical behavior
of a whole sequence of identically prepared particles. See Fig.1.4 for a
dramatic experimental demonstration of this effect.

In the two-slit experiment, for example, it is possible to determine how
the wave function behaves as a function of time by solving the (determin-
istic) Schrodinger equation. Knowledge of the wave function of an individ-
ual electron, however, does not determine where that electron will hit the
screen. The wave function merely tells us the probability distribution for
where the electron might hit the screen, something that is only observable
by shooting a whole sequence of electrons at the screen.

It is an oversimplification, but a useful one, to describe the wave—particle
aspect of quantum theory in this way: a single electron (or photon, or
whatever) acts like a particle, but a large collection of electrons behaves
like a wave. A single measurement of a single electron always gives its
position as a point, just as we would expect for a particle. This point,
however, varies from one electron to the next, even if we shoot each electron
toward the screen in precisely the same way. Repeated measurements of
identically prepared electrons give a distribution that can, for example,
exhibit interference patterns, just as we would expect for a wave. See, again,
Fig. 1.4, which should be compared to Figs. 1.1 and 1.2.

It is interesting to note that at the macroscopic scale, where quantum ef-
fects are not apparent, light appears to be a wave, whereas electrons appear
to be particles. This is the case even though both light and electrons are
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really wave-particle hybrids, described in probabilistic terms by a wave
function. The difference between the two situations is that photons (the par-
ticles of light) have mass zero, whereas electrons have positive mass. This
means that photons, unlike electrons, can easily be created and destroyed
even at low energies. Thus, the discrete aspect of light—namely, that the
energy in light comes only in discrete “quanta,” namely the photons—is
less evident than the corresponding discrete aspect of electrons.

3.2 A Few Words About Operators
and Their Adjoints

In quantum mechanics, physical quantities—such as position, momentum,
and energy—are represented by operators on a certain Hilbert space H.
These operators are unbounded operators, reflecting that in classical me-
chanics, these quantities are unbounded functions on the classical phase
space. In this section, we look briefly at some technical issues related to
unbounded operators and their adjoints. We will delay a full discussion of
these technicalities (Chap. 9) until after we have understood the basic ideas
of quantum mechanics.

Here and throughout the book, H will represent a Hilbert space over C,
always assumed to be separable. We follow the convention in the physics
literature that the inner product be linear in the second factor:

(@, M) = Mo, v) s (Ao, ) = Ao, 9)

for all ¢,% € H and all A\ € C.

Recall (Appendix A.3.4) that a linear operator A : H — H is bounded
if there is a constant C' such that ||Ay| < C'||¢|| for all p € H. For any
bounded operator A, there is a unique bounded operator A*, called the
adjoint of A, such that

(¢, AY) = (A"¢, )

for all ¢,1 € H. The existence of A* follows from the Riesz theorem (Ap-
pendix A.4.3), by observing that for each fixed ¢, the map ¢ — (¢, A)
is a bounded linear functional on H. A bounded operator is said to be
self-adjoint if A* = A.

For various reasons, both physical and mathematical, we want the
operators of quantum mechanics operators to be self-adjoint. Once one
sees the formulas for these operators, however, one is confronted with a
serious technical difficulty: the operators are not bounded.

If A is a linear operator defined on all of H and having the property
that (¢, Av) = (A¢,v) for all ¢,1 € H, then A is automatically bounded.
(See Corollary 9.9.) To put this fact the other way around, an unbounded
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self-adjoint operator cannot be defined on the entire Hilbert space. Thus, to
deal with the unbounded operators of quantum mechanics, we must deal
with operators that are defined only on a subspace of the relevant Hilbert
space, called the domain of the operator.

Definition 3.1 An unbounded operator A on H is a linear map from
a dense subspace Dom(A) C H into H.

More precisely, the operator A is “not necessarily bounded,” since noth-
ing in the definition prevents us from having Dom(A4) = H and having A
be bounded.

In defining the adjoint of an unbounded operator, we immediately en-
counter a difficulty: for a given ¢ € H, the linear functional (¢, A-) may
not be bounded, in which case we cannot use the Riesz theorem to define
A*¢. What this means is that the adjoint of A, like A itself, will be defined
not on all of H but only on some subspace thereof.

Definition 3.2 For an unbounded operator A on H, the adjoint A* of A
is defined as follows. A wvector ¢ € H belongs to the domain Dom(A*) of
A* if the linear functional

<¢7A> )

defined on Dom(A), is bounded. For ¢ € Dom(A*), let A*¢ be the unique
vector x such that

06 9) = (0, A)
for all ¢ € Dom(A).

Saying that the linear functional (¢, A-) is bounded means that there is
a constant C' such that |(¢, Ay)| < C||¢| for all b € Dom(A). If (¢, A-) is
bounded, then since Dom(A) is dense, the BLT theorem (Theorem A.36)
tells us that (¢, A-) has a unique bounded extension to all of H. The Riesz
theorem then guarantees the existence and uniqueness of x. The adjoint of
an unbounded linear operator is a linear operator on its domain.

We are now ready to define self-adjointness (and some related notions)
for unbounded operators.

Definition 3.3 An unbounded operator A on H is symmetric if

(¢, AYp) = (Ao, ¥)

for all ¢,vb € Dom(A). The operator A is self-adjoint if Dom(A*) =
Dom(A) and A*¢p = A for all ¢ € Dom(A). Finally, A is essentially
self-adjoint if the closure in H x H of the graph of A is the graph of a
self-adjoint operator.

That is to say, A is self-adjoint if A* and A are the same operator with
the same domain. Every self-adjoint or essentially self-adjoint operator is
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symmetric, but not every symmetric operator is essentially self-adjoint.
For any symmetric operator, Dom(A*) D Dom(A) and A* agrees with A
on Dom(A). The reason a symmetric operator may fail to be self-adjoint is
that Dom(A*) may be strictly larger than Dom(A).

Although the condition of being symmetric is certainly easier to
understand (and to verify) than the condition of being self-adjoint, self-
adjointness is the “right” condition. In particular, the spectral theorem,
which is essential to much of quantum mechanics, applies only to operators
that are self-adjoint and not to operators that are merely symmetric. If A
is essentially self-adjoint, then we can obtain a self-adjoint operator from
A simply by taking the closure of the graph of A, and we can then apply
the spectral theorem to this self-adjoint operator. Thus, for may purposes,
it is enough to have our operators be essentially self-adjoint rather than
self-adjoint.

It is generally easy to verify that the operators of quantum mechanics
(those representing position, momentum, and so forth) are symmetric on
some suitably chosen domain. Proving that these operators are essentially
self-adjoint, however, is substantially more difficult. Although establishing
essential self-adjointness is a crucial technical issue, it is best not to worry
too much about it on a first encounter with quantum mechanics. In this
chapter, we will not concern ourselves overly with technical details con-
cerning essential self-adjointness and the precise choice of domain for our
operators, depending on Chap. 9 to take care of such matters. For now, we
content ourselves with deriving some very elementary properties of sym-
metric (and thus also self-adjoint) operators.

Proposition 3.4 Suppose A is a symmetric operator on H.

1. For all i € Dom(A), the quantity (1, A) is real. More generally, if
W, A, ..., A1 all belong to Dom(A), then (1, A™)) is real.

2. Suppose X is an eigenvector for A, meaning that Ay = M\ for some
nonzero ¢ € Dom(A). Then A € R.

Proof. Since A is symmetric, we have

(¥, AY) = (A, ) = (¢, A)

for all 1 € Dom(A). If ¥, Ay, ..., A"~ all belong to the domain of A,
we can use the symmetry of A repeatedly to show that

(, A™p) = (A", ) = (¢, A™p).
Meanwhile, if 1 is an eigenvector for A with eigenvalue A, then

AW, ¥) = (1, AY) = (Ay,9) = A1), ¢)..

Since 1) is assumed to be nonzero, this implies that A = \. m
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Physically, (1, Av) represents—as we will see later in this chapter—
the expectation value for measurements of A in the state v, whereas the
eigenvalue A represents one of the possible values for this measurement.
On physical grounds, we want both of these numbers to be real. If A is
self-adjoint, and not just symmetric, then the spectral theorem will give
a canonical way of associating to each ¥ € H a probability measure on
the real line that encodes the probabilities for measurements of A in the
state 1.

3.3 Position and the Position Operator

Let us consider at first a single particle moving on the real line. The wave
function for such a particle is a map 1 : R' — C. Although this map will
evolve in time, let us think for now that the time is fixed. The function
|1/)(:1:)|2 is supposed to be the probability density for the position of the
particle. This means that the probability that the position of the particle
belongs to some set £ C R! is

[ 1w e

For this prescription to make sense, 1 should be normalized so that
/ [ (z)|* da = 1. (3.1)
R

That is, 1 should be a unit vector in the Hilbert space L?(R).

Now, if the function | (x)|* is the probability density for the position of
a particle, then according to the standard definitions of probability theory,
the expectation value of the position will be

Ez) :/R:v|z/1(x)|2 d. (3.2)

provided that the integral is absolutely convergent. More generally, we can
compute any moment of the position (i.e., the expectation value of some
power of the position) as

B(a™) = /Rxm (@) da, (3.3)

assuming, again, the convergence of the integral.

A key idea in quantum theory is to express expectation values of various
quantities (position, momentum, energy, etc.) in terms of operators and
the inner product on the relevant Hilbert space, in this case, L?(R). In the
case of position, we may introduce the position operator X defined by

(X9)(z) = wi(x).
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That is, X is the “multiplication by x” operator. The point of introducing
this operator is that the expectation value of the position [defined in (3.2)]
may now be expressed as

E(z) = (¢, X¢),

where the inner product is the usual one on L*(R):

00) = [T@wte)

(Recall that we are following the physics convention of putting the conju-
gate on the first factor in the inner product.)
We use the following notation for the expectation value of the operator
X in the state 1:
(X)y = (¥, X9).
The higher moments of the position, as defined in (3.3), are also computable
in terms of the position operator:

E(z™) = (¢, X))

At this point, it is not clear that we have gained anything by writing
our moments in terms of an operator and the inner product instead of in
terms of the integral (3.3). The operator description will, however, motivate
a parallel description of moments for the momentum, energy, or angular
momentum of a particle in terms of corresponding operators.

It should be noted that, for a given v € L?*(R), X1 might fail to be in
L?(R). This failure of X to be defined on all of our Hilbert space reflects
that X is an unbounded operator, something that we discussed briefly in
Sect. 3.2. Even if X1 is in L?(R), X™4) might fail to be in L?(R) for some
m. Nevertheless, for any unit vector 1 in L?(R), we have a well-defined
probability density on R, given by |z/1(x)|2 .

3.4 Momentum and the Momentum Operator

At any fixed time, the wave function ¢ (z) of a particle (according to the
wave theory postulated by Schrodinger) is a function of a “position” vari-
able x only. Although the wave function ¢ directly encodes the probabilities
for the position of the particle, through | (z)|®, it is not as clear how in-
formation about the particle’s momentum is encoded. As it turns out, the
momentum is encoded in the oscillations of the wave function. A crucial
idea in quantum mechanics is the de Broglie hypothesis, which we intro-
duced in Sect.1.2.2 as a way of understanding the allowed energies in the
Bohr model of the hydrogen atom. The de Broglie hypothesis proposes
a particular relationship between the frequency of oscillation of the wave
function—as a function of position at a fixed time—and its momentum.
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Proposition 3.5 (de Broglie hypothesis) If the wave function of a
particle has spatial frequency k, then the momentum p of the particle is

p = hk, (3.4)
where h is Planck’s constant.

The Davisson—Germer electron-diffraction experiments, described in Sect.
1.2.3, strongly support not only the idea that electrons have wavelike
behavior, but also the specific relationship (3.4) between the momentum
of an electron and the spatial frequency of the associated wave. Of course,
Proposition 3.5 is rather vague. To be a bit more precise, Proposition 3.5 is
supposed to mean that a wave function of the form 1 (z) = ¢’** represents
a particle with momentum p = hk. [Here, as in Chap.2, “frequency” is in
the angular sense. The cycles-per-unit-distance frequency is v = k/(2).]

Now, the function e*** is obviously not square integrable, so it is not
strictly possible for the wave function [which is supposed to satisfy (3.1)]
to be e’#*_ Let us therefore briefly switch to thinking of a particle on a circle,
so that we can avoid certain technicalities. We think of the wave function
1 for a particle on a circle as a 2m-periodic function on R, satisfying the
normalization condition

27
/ (@) de = 1.
0

For any integer k, it makes sense to say that the normalized wave function
() = e™*® /\/27 represents a particle with momentum p = hk. In this case,
we are supposed to think that the momentum of the particle is definite,
that is, nonrandom. If the particle’s wave function is e?**/ V27, then a
measurement of the particle’s momentum should (with probability 1) give
the value hk.

Now, the functions e/ V27, k € Z, form an orthonormal basis for the
Hilbert space of 2m-periodic, square-integrable functions, which may be
identified with L?([0, 27]). Thus, the typical wave function for a particle on

a circle is
eik;ﬂ

Y(x) = ak—=, (3.5)
k:z—oo ’ \/ﬂ

where the sum is convergent in L?([0,27]). If ¢ is normalized to be a unit
vector, then we have

o0

Z |ak|2 = ||7/1H2L2([0,27T]) =1 (3.6)

k=—o0

For a particle with wave function given by (3.5), the momentum of the
particle is no longer definite. Rather, we are supposed to think that a
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measurement of the particle’s momentum will yield one of the values hk,
k € Z, with the probability of getting a particular value fik being |ax|”.
Following elementary probability theory, then, the expectation values for
the momentum should be

E(p)= Y Bkl (3.7)

k=—oc0
and higher moments for the momentum should be
oo

E@™) = Y (k)" |axl®, (3.8)

k=—o0

assuming absolute convergence of the sum.

We would like to encode the moment conditions (3.7) and (3.8) in a
momentum operator P, which should be defined in such a way that if the
particle’s wave function ¢ is given by (3.5), then E(p™) = (¢, P™)).
We can achieve this relation if P satisfies

Pet*® = pketke, (3.9)
since then,
(W, Py = Y (k)™ Jag|* = E(p™). (3.10)
k=—oc0

The (presumably unique) choice for P satisfying (3.9) is

d
P=—ih—.

dx
Returning now to the setting of the real line, it is natural to postu-
late that the momentum operator P on the line should also be given by

P = —ih d/dz. This operator satisfies the relation
Peikw _ (hk)e“”,

which is supposed to capture the idea that the wave function e’** has
momentum /k. Although the function ¢?* is not square-integrable with re-
spect to x, the Fourier transform allows us to build up any square-integrable
function as a “superposition” of functions of the form e™**. (Superposition
is the term physicists use for a linear combination or the continuous analog
thereof, namely an integral.) This means that [by analogy to (3.5)] we have

1 o
- ike (kY dk, 3.11
vie) = o= [ it (3.11)
where z/}(k) is the Fourier transform of ¢, defined by

D(k) = \/% /_ " eme(a) da. (3.12)
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(See Appendix A.3.2 for information about the Fourier transform.)
The Plancherel theorem (Theorem A.19) then tells us that the Fourier
transform is a unitary map of L?(R) onto L?(R). Thus, for any unit vector

¥ € L3(R), N N
[ wr w= [ iw[ =1,

— 00 — 00

In light of what we have in the circle case, it is natural to think that |1/A1(k)|2
is essentially the probability density for the momentum of the particle.
(To be precise, |[)(k)|? is the probability density for p/Ah.)

We can now express the properties of the momentum operator entirely
within the Hilbert space L?(R), without making explicit mention of the
non-square-integrable functions e?*?.

Proposition 3.6 Define the momentum operator P by

d
P=—ih—.
! dz

Then for all sufficiently nice unit vectors ¢ in L*(R), we have

2
’ dk (3.13)

w.pm) = [ o)
for all positive integers m. The quantity in (3.13) is interpreted as the
expectation value of the mth power of the momentum, E(p™).

Equation (3.13) should be compared to (3.10) in the case of the circle.
Proof. If ¢ is in, say, the Schwartz space (Definition A.15), then, by ap-
plying Proposition A.17 m times, we see that the Fourier transform of the
nth derivative of ¢ is (ik)™(k), and so the Fourier transform of P™ is
(hk)™4)(k). Meanwhile, since the Fourier transform is unitary, we have

w.pri = [ ) (k)™ (k) d,

which gives (3.13). (The assumption that ¢ be in the Schwartz space is
stronger than necessary. The reader is invited to use integration by parts
and the definition of the Fourier transform to find weaker assumptions that
allow the same conclusion.) m

3.5 The Position and Momentum Operators

In the following definition, we summarize what we have learned, in the two
previous sections, about the position and momentum operators.
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Definition 3.7 For a particle moving in RY, let the quantum Hilbert space
be L2(R) and define the position and momentum operators X and P

by

Xy(x) = ay(x)
Pi(z) = —m%.

Neither the position nor the momentum operator is defined as mapping
the entire Hilbert space L?(R) into itself. After all, for ¢» € L?(R), the
function z1)(x) may fail to be in L?(R). Similarly, a function ¢ in L?(R) may
fail to be differentiable, and even if it is differentiable, the derivative may fail
to be in L*(R). What this means is that X and P are unbounded operators,
of the sort discussed briefly in Sect. 3.2. They are defined on suitable dense
subspaces Dom(X) and Dom(P) of L(R). We defer a detailed examination
of the domains of these operators until Chap. 9.

A vitally important property of this pair of operators is that they do not
commute.

Proposition 3.8 The position and momentum operators X and P do not
commute, but satisfy the relation

XP - PX =ill, (3.14)

This relation is known as the canonical commutation relation.
Proof. Using the product rule we calculate that

i (w())

dx
= —ih(z) — zhx%

— —il(z) + X Py,

PX

from which (3.14) follows. m

There are many important consequences of the relation (3.14), which we
will examine at length in Chaps. 11— 14 of the book. For now, we simply note
a parallel between (3.14) and the Poisson bracket relationship in classical
mechanics: {z,p} = 1, as follows directly from the definition of the Poisson
bracket. This hints at an analogy, which we will explore further in Sect. 3.7,
between the commutator of two operators A and B on the quantum side
(namely, the operator AB — BA) and the Poisson bracket of two functions
f and g on the classical side.

Proposition 3.9 For all sufficiently nice functions ¢ and v in L*(R),
we have

(9, X¢) = (X,9)
and

(0, PY) = (P9, ) -
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Proof. Suppose that ¢ and v belong to L?(R) and that the functions z¢(x)
and x1)(z) also belong to L?(R). Then since x is real, we have

/_O:O i) do = [ O:O 26@)(x) da,

where both integrals are convergent because they are both integrals of the
product of two L? functions.

Meanwhile, for the second claim, let us assume that ¢ and i are con-
tinuously differentiable and that ¢(x) and ¢ (x) tend to zero as z tends to
+00. Let us also assume that ¢, ¥, d¢/dx and di/dz belong to L?(R). We
note that d¢/dx is the same as d¢/dx. Thus, using integration by parts,
we obtain

—m/iﬁ% dx:—ih@d)(x)[‘ +zh/ —1/1( ) dx

Under our assumptions on ¢ and v, as A tends to infinity, the bound-
ary terms will vanish and the remaining integrals will tend (by dominated
convergence) to integrals over the whole real line. Thus,

/ @ (_zhi) da::zh/ d%( ) da
e

which is the second claim in the proposition. m

In the language of Definition 3.3, Proposition 3.9 means that X and P
are symmetric operators on certain dense subspaces of L?(R) (the space of
functions for which the proposition is proved). It is actually true that X
and P are essentially self-adjoint on these domains. The proof of essential
self-adjointness, however, will have to wait until Chap. 9.

3.6 Axioms of Quantum Mechanics: Operators
and Measurements

In this section we consider the general “axioms” of quantum mechanics.
These axioms are not to be understood in the mathematical sense as rules
from which all other results are derived in a strictly deductive fashion.
Rather, the axioms are the main principles of how quantum mechanics
works. Here we look at the “kinematic” axioms, those that apply at one
fixed time. There is one additional axiom, governing the time-evolution of
the system, which we consider in the next section.
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Axiom 1 The state of the system is represented by a unit vector ¢ in an
appropriate Hilbert space H. If 11 and ¥y are two unit vectors in H with
Yo = c1 for some constant ¢ € C, then ¥ and ¥y represent the same
physical state.

The Hilbert space H is frequently called the “quantum Hilbert space.”
This does not, however, mean that H is some variant of the notion of a
Hilbert space, the way a quantum group is a variant of the notion of a
group. Rather, “quantum Hilbert space” means simply, “the Hilbert space
associated with a given quantum system.”

In Axiom 1, it should be noted that unit vectors in H actually represent
only the “pure states” of the theory. There is a more general notion of a
“mixed state” (described by a “density matrix”) that we will consider in
Chap. 19. We will follow the custom in most physics texts of considering at
first only pure states.

Axiom 2 To each real-valued function f on the classical phase space there
1s associated a self-adjoint operator [ on the quantum Hilbert space.

In almost all cases, the operator f is unbounded. This unboundedness
is unsurprising when we realize that physically relevant functions f on
the classical phase space (e.g., position and momentum) are unbounded
functions. In the unbounded case, the notion of self-adjointness is rather
technical; see Definition 3.3 in Sect.3.2. In most applications, it is not
really necessary to define f for all functions on the classical phase space,
but only for certain basic functions, such as position, momentum, energy,
and angular momentum. We will describe the quantizations of these basic
functions in this chapter. If one really needs to define f for an arbitrary
function f (satisfying some regularity assumptions), the standard approach
is to use the Weyl quantization scheme, described in Chap. 13.

For a particle moving in R', the classical phase space is R?, which we
think of as pairs (z,p) with x being the particle’s position and p being
its momentum. The quantum Hilbert space in this case is usually taken
to be L?*(R) [not L?(R?)]. In that case, if the function f in Axiom 2 is
the position function, f(z,p) = z, then the associated operator f is the
position operator X, given by multiplication by x. If f is the momentum
function, f(z,p) = p, then f is the momentum operator P = —ih d/dz.

In the physics literature, a function f on the classical phase space is called
a classical observable, meaning that it is some physical quantity that could
be observed by taking a measurement of the system. The corresponding

operator f is then called a quantum observable.

Axiom 3 If a quantum system is in a state described by a unit vector
v € H, the probability distribution for the measurement of some observable
f satisfies

B(f™) = (. (f)"v). (3.15)
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In particular, the expectation value for a measurement of f is given by

<1/), f¢> : (3.16)

Note that we have adopted the point of view that even in a quantum
mechanical system, what one is measuring is the classical observable f.
In the quantum case, however, f no longer has a definite value, but only
probabilities, which are encoded by the quantum observable f and the
vector ¥ € H.

If ¢ is a nonzero vector in H but not a unit vector, then (3.16) should
be replaced by

(e foy
o =),

where © := 1)/ ||1)|| is the unit vector associated with 1. It is convenient to

assume that our vectors have been normalized to be unit vectors, simply

to avoid having to divide by (¢, ¢) in our expectation values.

Since f is assumed to be self-adjoint and every self-adjoint operator is
symmetric, Proposition 3.4 tells us that the moments E(f™), and in partic-
ular the expectation value E(f), are real numbers. Since f is assumed to be
self-adjoint and not just symmetric, the spectral theorem (Chaps. 7 and 10)
will give a canonical way of constructing a probability measure f14,, on R
that may be interpreted as the probability distribution for measurements
of A in the state ).

Axiom 3 provides motivation for the idea that two unit vectors that differ
by a constant represent the same physical state. If 15 = ¢y with |¢| = 1,
then for any operator A, we have

(tha, Atha) = (cib1, Acthr) = || (01, A1) = (b1, Agy) .

Thus, the expectation values of all observables are the same in the state
1o as in the state ;.

Notation 3.10 If A is a self-adjoint operator on H and b € H is a unit
vector, the expectation value of A in the state v is denoted (A)w and 1is
defined (in light of Aziom 3) to be

<A>¢ = (¥, AY). (3.17)

Proposition 3.11 (Eigenvectors) If a quantum system is in a state
described by a unit vector ¢» € H and for some quantum observable f we

have fz/J = M\ for some X\ € R, then

E(f™) = <(f)’”>w =" (3.18)
for all positive integers m. The unique probability measure consistent with
this condition is the one in which f has the definite value \, with probabil-
ity one.
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What the proposition means is that if ¢ is an eigenvector for f, then
measurements of f for a particle in the state ¢ are not actually random,

but rather always give the answer of A. If fi) = ¢, then <1/), (f)m1/1> =

A" (1 h) = A™. Thus, by (3.15), we want to find a probability measure u
on R such that

/:Cm dp =\, (3.19)
R

for all non-negative integers m. The proposition is claiming that there is
one and only one such measure, namely the J-measure at the point A.
Because f is assumed to be self-adjoint and therefore symmetric, Propo-
sition 3.4 thus tells us that the every eigenvalue for f is real.
Proof. The relation (3.18) follows from (3.15) and the fact that fy =
Mp. Meanwhile, if p is the d-measure at A, then certainly (3.19) holds.
Meanwhile, since the mth moment grows only exponentially with m, even
the most elementary uniqueness results for the moment problem show that
the d-measure is the only measure with these moments. (See, e.g., Theorem
8.1 in Chap.4 of [18].) m
If, more generally, the state of the system is a linear combination of
eigenvectors for f , measurements of f will no longer be deterministic.

Example 3.12 Suppose f has an orthonormal basis {e;} of eigenvectors
with distinct (real) eigenvalues A;. Suppose also that ¥ is a unit vector in
H with the expansion

1/) = Zajej. (320)
Jj=1

Then for a measurement in the state 1 of the observable f, the observed
value of f will always be one of the numbers \;. Furthermore, the probability
of observing the value \; is given by

Prob{f = \;} = |a . (3.21)

Assuming that 1 is in the domain of (f)™, it is easy to verify that the
probabilities in (3.21) are consistent with the expectation values given in
Axiom 3. After all, if ¢ is given as in (3.20), then we can readily calculate
that (1, (f)™) equals 3 |aj|2 AT', which is nothing but the mth moment
associated with the probability distribution in (3.21). In general, we can-
not quite derive (3.21) from Axiom 3, since the uniqueness results for the
moment problem might not apply. Nevertheless, (3.21) is the most natural
candidate for the probabilities, and we will assume that this formula holds.
It is not difficult to extend Example 3.12 to the case where the eigenvalues
are not distinct: For any sequence {\;} of eigenvalues, the probability of
observing some value A will be the sum of |aj|2 over all those values of j
for which A\; = A. For any self-adjoint operator A, the spectral theorem
implies that A has either an orthonormal basis of eigenvectors or some
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continuous analog thereof. In particular, given a self-adjoint operator A
and a unit vector ¥ € H, the spectral theorem will give us a probability
measure u$ on R that we interpret as describing the probabilities for a
measurement of A in the state 1. See Proposition 7.17 in the bounded case
and Definition 10.7 in the unbounded case.

Axiom 4 Suppose a quantum system is initially in a state v and that a
measurement of an observable [ is performed. If the result of the measure-
ment is the number A € R, then immediately after the measurement, the
system will be in a state ' that satisfies

fo' =Xy

The passage from 1 to ' is called the collapse of the wave function. Here
f is the self-adjoint operator associated with f by Aziom 2.

Let us assume again that f has an orthonormal basis of eigenvectors {e;}
with distinct eigenvalues A;. Then we can say, more specifically, that if we
observe the value ); in a measurement of f (and we will always observe
one of the A;’s) then ¢’ = e;. That is, the measurement “collapses” the
wave function by throwing away all the components of 1 in the direction
of the ex’s, except the one with k& = j.

This idea of the collapse of the wave function has generated an enormous
amount of discussion and controversy. One way to look at the situation is
to think that the wave function v is not actually the state of the system—
although we continue to use the standard physics term, “state.” Rather,
the wave function is the thing that encodes the probabilities for the state of
the system. The collapse of the wave function is then something similar to
a conditional probability; the probabilities for future measurements of the
system should be consistent with the outcome of the measurement we just
made. Paul Dirac has described the collapse of the wave function as being
not a discontinuous change in the state of the system, but a discontinuous
change in our knowledge of the state of the system.

In any case, Axiom 4 guarantees the following reasonable principle: If
we measure f and then measure f again a very short time later, the result
of the second measurement will agree with the result of the first measure-
ment. Thus, immediately after the first measurement, the probabilities for
a second measurement of f are not those associated with the vector 1, but
rather those associated with the state ¢’. (Since ¢’ is an eigenvector for f
with eigenvalue A, Proposition 3.11 tells us that measurements of f in the
state ¢’ always give the value of \.)

Note that Axiom 4 only tells us something about the state of the system
immediately after a measurement. Following the measurement, the state of
the system will evolve in time in the usual way (Sect.3.7). A significant
time after the measurement, then, the system will probably no longer be
in the state 1.
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Let us conclude this section by considering an example of how one makes
a measurement of a real-world physical system, namely, the hydrogen atom.
The Hamiltonian operator H for a hydrogen atom has negative eigenvalues

of the form
R

n2’

(3.22)

where R is the Rydberg constant and n = 1,2,3,... These energies will be
derived in Chap. 18. Negative eigenvalues are of greater interest than posi-
tive ones, because negative eigenvalues describes states where the electron
is bound to the nucleus. If an electron is placed into a state having energy
—R/n?, with ny > 1, it will eventually “decay” into a state with lower
energy, say, —R/n3, with ny < n;. (The most readily observed cases are
those with no = 2 and ny = 1.) In the process of decaying, the electron
emits a photon, with the energy of the photon being equal to the change
in energy of the electron, namely,

R R
Ephoton = n—% - n—% (323)
Meanwhile, the frequency of the photon is proportional to its energy. Thus,
by observing the frequency of the emitted photon, one can determine the
change in energy of the electron and thus determine the values of ny and n..
A general “bound state” of the hydrogen atom (a state in which the
electron is bound to the nucleus), will be a linear combination of eigenvec-
tors for H with various different eigenvalues of the form (3.22). To measure
the energy of the electron, we simply wait for the electron to decay into a
lower-energy state and emit a photon, observe the frequency of the photon,
and work backwards to the energy of the electron. If we consider many
“identically prepared” electrons, all having the same wave function that
is a linear combination of eigenvectors, we will observe many different fre-
quencies for the emitted photons, and thus many different energies for the
electron. The probabilities for the observed energies of the electron will
follow the principle spelled out in Example 3.12.
In basic probability theory, if Y is a random variable then the variance
o2 of Y is computed as

o? =E[(Y - E(Y))*],

where E denotes the mean or expectation value of a random variable. The
standard deviation o := Vo2 is a measure of the “typical” deviation from
the mean E(X). Observe that the variance may be computed as

o> =E[Y?-2E(Y)Y + E(Y)?]
=EB(Y?) - 2E(Y)>+ E(Y)?
= E(Y?) - B(Y)?. (3.24)
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Definition 3.13 If A is a self-adjoint operator on a Hilbert space H and
Y is a unit vector in H, let Ay A denote the standard deviation associated
with measurements of A in the state v, which is computed as

(8pA)* = (A= (4), 1)

2
—(42), - ((A)w) .
We refer to Ay A as the uncertainty of A in the state 1.

For any single observable A, it is possible to choose 1 so that AyA
is as small as we like. In Chap. 12, however, we will see that when two
observables A and B do not commute, then Ay A and AyB cannot both
be made arbitrarily small for the same . In particular, we will derive there
the famous Heisenberg uncertainty principle, which states that

(A X)(AyP) > L,

for all 4 for which Ay X and Ay P are defined.

3.7 Time-Evolution in Quantum Theory

3.7.1 The Schrodinger Equation

Up to now, we have been considering the wave function v at a fixed time.
We now consider the way in which the wave function evolves in time. Recall
that in the Hamiltonian formulation of classical mechanics (Sect. 2.5), the
time-evolution of the system is governed by the Hamiltonian (energy) func-
tion H, through Hamilton’s equations. According to Axiom 2, there is a
corresponding self-adjoint linear operator H on the quantum Hilbert space
H, which we call the Hamiltonian operator for the system. See Sect.3.7.4
for an example.

Recall that we motivated the definition of the momentum operator by
the de Broglie hypothesis, p = hk, where k is the spatial frequency of the
wave function. We can similarly motivate the time-evolution in quantum
mechanics by a similar relation between the energy and the temporal fre-
quency of our wave function:

E = hw. (3.25)

This relationship between energy and temporal frequency is nothing but the
relationship proposed by Planck in his model of blackbody radiation (Sect.
1.1.3). Suppose that a wave function 1y has definite energy F, meaning
that 1 is an eigenvector for H with eigenvalue E. Then (3.25) means that
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the time-dependence of the wave function should be purely at frequency
w = E/h. That is to say, if the state of the system at time ¢ = 0 is g, then
the state of the system at any other time ¢ should be

B(t) = e hpg = e FH My, (3.26)
We can rewrite (3.26) as a differential equation:

w_ B, F, .
dt h ih

Note that we are taking “temporal frequency w” to mean that the time-
dependence is of the form e~ whereas we took “spatial frequency k” to
mean that the space-dependence is of the form e?**, with no minus sign in
the exponent. This curious convention is convenient when we look at pure
exponential solutions to the free Schrédinger equation (Chap. 4) of the form
expli(kz — wt)], which describes a solution moving to the right with speed
w/k.

Equation (3.27) tells us the time-evolution for a particle that is initially
in a state of definite energy, that is, an eigenvector for the Hamiltonian
operator. A natural way to generalize this equation is to recognize that Evy
is nothing but H v, since ¢ is just a multiple of ¢, which is an eigenvector
for H with eigenvalue F. Replacing E by H in (3.27) leads to the following
general prescription for the time-evolution of a quantum system.

Axiom 5 The time-evolution of the wave function i in a quantum system
is given by the Schrodinger equation,

w_ ifw (3.28)

dt  ih
Here H s the operator corresponding to the classical Hamiltonian H by
means of Aziom 2.

Although both Hamilton’s equations and the Schrédinger equation
involve a Hamiltonian, the two equations otherwise do not seem parallel.
Of course, since quantum mechanics is not classical mechanics, we should
not expect the two theories to have the same time-evolution. Neverthe-
less, we might hope to see some similarities between the time-evolution of
a classical system and that of the corresponding quantum system. Such
a similarity can be seen when we consider how the expectation values of
observables evolve in quantum mechanics.

Proposition 3.14 Suppose 1(t) is a solution of the Schridinger equation
and A is a self-adjoint operator on H. Assuming certain natural domain
conditions hold, we have

d
i Ao = () (3.29)
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where (A),, is as in Notation 3.10 and where [-,-] denotes the commutator,
defined as
[A, B] = AB — BA.

Equation (3.29) should be compared to the way a function f on the clas-
sical phase space evolves in time along a solution of Hamilton’s equations:
df /dt = {f, H}. We see, then, that the commutator of operators (divided
by ih) plays a role in quantum mechanics similar to the role of the Poisson
bracket in classical mechanics.

Proof. Let ¥ (t) be a solution to the Schrédinger equation and let us com-
pute at first without worrying about domains of the operators involved. If
we use the product rule (Exercise 1) for differentiation of the inner product,

we obtain
b= () (45
RREAVART
- Lo he)

where in the last step we have used the self-adjointness of H to move it
to the other side of the inner product. Recall that we are following the
convention of putting the complex conjugate on the first factor in the inner
product, which accounts for the plus sign in the first term on the second
line. Rewriting this using Notation 3.10 gives the desired result.

If A and H are (as usual) unbounded operators, then the preceding
calculation is not completely rigorous. Since, however, we are deferring a
detailed examination of issues of unbounded operators until Chap.9, let
us simply state the conditions needed for the calculation to be valid. For
every t € R, we need to have 9(t) € Dom(A) N Dom(H), we need Ai)(t) €
Dom(H), and we need Hy)(t) € Dom(A). (These conditions are needed for
[A, H]1)(t) to be defined.) In addition, we need At (t) to be a continuous
pathin H. =

Note that to see interesting behavior in the time-evolution of a quantum
system, there has to be noncommutativity present. If all the physically
interesting operators A commuted with the Hamiltonian operator H , then
[fl , A] would be zero and the expectation values of these operators would
be constant in time. Noncommutativity of the basic operators is therefore
an essential property of quantum mechanics. In the case of a particle in
R!, noncommutativity is built into the commutation relation for X and P,
given in Proposition 3.8.

Although it is not reasonable to have all physically interesting opera-
tors commute with H , there may be some operators with this property. If
(A, H ] = 0, then the expectation value of A (and, indeed, all the moments
of A) is independent of time along any solution of the Schrodinger equation.
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We may therefore call such an operator A a conserved quantity (or constant
of motion). Just as in the classical setting, conserved quantities (when we
can find them) are helpful in understanding how to solve the Schrédinger
equation.

Proposition 3.14 suggests that the map

(A,B) —> %[A,B],

where A and B are self-adjoint operators, plays a role similar to that of the
Poisson bracket in classical mechanics. This analogy is supported by the
following list of elementary properties of the commutator, which should be
compared to the properties of the Poisson bracket listed in Proposition 2.23.

Proposition 3.15 For any vector space V over C and linear operators A,
B, and C on V, the following relations hold.

1. [A,B+aC] = [A, Bl + a[A,C] for all a € C
2. [B,A] = —[A, B]
3. [A,BC] = [A, BIC + B[A, C)
4- [A,[B,C]| = [[A, B],C] + [B, [A, C]
Property 4 is equivalent to the Jacobi identity,
[A,[B,C]] + B, [C, A]] + [C, [A, B]] =0, (3.30)

as can easily be seen using the skew-symmetry of the commutator.
Proof. The first two properties of the commutator are obvious, and the
third is easily verified by writing things out. Property 4 can also be proved
by writing things out, but it is slightly messier. Each of the three double
commutators on the left-hand side of (3.30) generates four terms, for a total
of 12 terms. Fach term has the operators A, B, and C multiplied together
in some order. It is a straightforward but unenlightening calculation to
verify that each of the six possible orderings of A, B, and C occurs twice,
with opposite signs. m

If A and B are bounded self-adjoint operators on some Hilbert space,
then it is straightforward to check that (1/(ih))[A, B] is again self-adjoint
(Exercise 3). If A and B are unbounded self-adjoint operators, then the
operator (1/(ih))[A, B] will be self-adjoint under suitable assumptions on
the domains of A and B.

Proposition 3.16 If ¢(t) and 1(t) are solutions to the Schrodinger equa-
tion (3.28), the quantity (p(t),1(t)) is independent of t. In particular,
()|l is independent of t, for any solution 1 (t) of the Schridinger equation.
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Proof. Using again the product rule, we have

4 00.000) = ( 160,00 ) + (600, - 70(0)

1 /- 1 .
— ——{aw), t> —{o@t), H t>
— (Ho(t), (1)) + = (o(t), Hy(?)
Since H is self-adjoint, we can move H to the other side of the inner product
and the derivative is equal to 0. m

3.7.2  Solving the Schrodinger Equation by Exponentiation

The Schrodinger equation is an example of a equation of the form
dv

where A is a linear operator on a Hilbert space. (In the Schrodinger case,
we have A = —(i/h)H.) Let us think of (3.31) in the case where the Hilbert
space is the finite-dimensional space C™. In that case, we can think of A as
an n X n matrix, in which case (3.31) is the sort of equation encountered
in the elementary theory of ordinary differential equations. The solution of
this system (in the finite-dimensional case) can be expressed as

v(t) = ey,

where the matrix exponential e* is defined by a convergent power series
and where vy = v(0) is the initial condition. If A is diagonalizable, then
the exponential can by computed by using a basis of eigenvectors. (See
Sect. 16.4 for more information.)

The Schrodinger equation simply replaces C™ by a Hilbert space H and
the matrix A by the linear operator —(i/#)H.

Claim 3.17 Suppose H is a self-adjoint operator on H. If a reasonable
meaning can be given to the expression e~ /" then the Schrédinger equa-
tion can be solved by setting

W(t) = e~ HH /My (3.32)

To see why the claim should be true, we expect that we can differentiate
the operator-valued expression e /" with respect to ¢ as we would in the
finite-dimensional case. The differentiation, then, would pull down a factor
of —iH /h, which would indicate that (¢) indeed solves the Schrodinger

equation. Furthermore, when ¢t = 0, e~®*#/" should be equal to I, so that
1(0) is indeed .

If H is a bounded operator (which is rarely the case), then the expo-
nential e~*H/" can be defined by a convergent power series, precisely as
in the finite-dimensional case. In that case, Claim 3.17 is an easily proved

theorem.
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In the more typical case where H is unbounded, convergence of the series
for the exponential is a rather delicate matter, and it is better instead to
use the spectral theorem. We leave a general discussion of the spectral
theorem to Chaps.7 and 10, and here consider only the case of a pure
point spectrum. A (possibly unbounded) self-adjoint operator H is said to
have a pure point spectrum if there exists an orthonormal basis {e;} for H
consisting of eigenvectors for H. If He; = Eje; for some E; € R, then the
exponential can be defined by requiring that

e*itﬁ/ﬁej — e "Eilhe, (3.33)

The operator e /" is unitary and thus bounded; it is the unique bounded
operator on H satisfying (3.33).

It is not precisely true that every self-adjoint operator has an orthonor-
mal basis of eigenvectors, even if the operator is bounded. Nevertheless,
given a self-adjoint operator A, the spectral theorem tells us that there is a
decomposition of H into “generalized eigenspaces” for A. It is, however, a
bit complicated to state the precise sense of this decomposition, especially
in the case of unbounded operators. Still, Claim 3.17 allows us to identify
one goal for the spectral theorem: Whatever the spectral theorem says, it
ought to allow us to make sense of the expression ¢*4, for any self-adjoint
operator A and real number a. This goal will indeed be realized, in the
bounded case in Chap.7 and in the unbounded case in Chap. 10.

We should add two points of clarification regarding the expression (3.32).
First, in writing (3.32), we have not “really” solved the Schréodinger equa-
tion. For this expression to be useful, we need to compute e~ *#/" in some
relatively explicit way. If, for example, we can actually compute an or-
thonormal basis of eigenvectors for H, then in light of (3.33), we are on
our way to understanding the behavior of the operator e~/ Second,
although H is an unbounded operator, which is not defined on all of H
but only on a dense subspace, the operator e *//" is unitary and de-
fined on all of H. Thus, the right-hand side of (3.32) makes sense for any

1o in H. Nevertheless, we cannot expect that e—itd/ i)y actually solves the
Schrodinger equation (in the natural Hilbert space sense) unless 1y belongs
to the domain of H. (See Lemma 10.17 in Sect. 10.2.)

3.7.8  Figenvectors and the Time-Independent Schrodinger
Equation
As we saw in the preceding section, eigenvectors for the Hamiltonian oper-

ator are of great importance in solving the Schrédinger equation. In light
of this fact, we make the following definition.
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Definition 3.18 Ifﬁ is the Hamiltonian operator for a quantum system,
the eigenvector equation

Hy = Ey, E€R, (3.34)
1s called the time-independent Schrdodinger equation.

As always in eigenvector equations, we are trying to determine both the
numbers E for which (3.34) has a nonzero solution (the eigenvalues) and the
corresponding vectors ¥ (the eigenvectors). When quantum texts speak of
“solving,” say, the quantum harmonic oscillator, what they usually mean is
finding all of the solutions to the time-independent Schrédinger equation.
(See, e.g., Chaps.5 and 11.) If ¢ is a solution to the time-independent
Schrédinger equation, then the solution to the time-dependent Schrodinger
equation with initial condition 1) is simply () = e~*F/). Since (1) is
just a constant multiple of 1, we see that ¢ (¢) represents the same physical
state as ¥. Thus, a solution to the time-independent Schrodinger equation
is sometimes called a stationary state.

3.7.4 The Schridinger Equation in R

Let us now consider the simplest example for the Hamiltonian operator
H. For a particle moving in R!, recall (Sect.3.5) that we have identified
the position operator X as being multiplication by x and the momentum
operator as P = —ih d/dx. The classical Hamiltonian for such a particle
is typically taken to be of the form H(z,p) = p*/(2m) + V(z), where V is
the potential energy function. In that case, we may reasonably take
. P?
H=—+V(X).
5, T V(X)
Here the operator V(X) is simply multiplication by the potential energy
function V(z). (This operator may also be thought of as the function V'
applied to the operator X in the sense of the functional calculus coming
from the spectral theorem.) We see, then, that
- h? d*y
H =————+4V . 3.35
Y(a) =~ o+ V@)() (335)

An operator of the form (3.35), or an analogously defined operator in higher
dimensions, is referred to as a Schrdidinger operator. (The term Hamilto-
nian operator refers more generally to whatever operator governs the time-
evolution of a quantum system, regardless of its form.)
If our Hamiltonian is of the form given in (3.35), then the time-dependent
Schrédinger equation takes the form
ov(z,t)  ih O*P(w,t) i
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which is a linear partial differential equation. By contrast, Newton’s
equation for a particle in R! is a typically nonlinear ordinary differential
equation.

For a particle in R', the time-independent Schrédinger equation is an
ordinary differential equation, one that is linear but that has nonconstant
coeflicients, unless V' happens to be constant. For simple examples of the
potential function V, there are relatively standard methods of ordinary
differential equations that can be brought to bear on the time-independent
Schrédinger equation.

3.7.5  Time-FEvolution of the FExpected Position
and Expected Momentum

Since a quantum particle does not have a fixed position or momentum, it
does not make sense to ask whether the particle satisfies Newton’s equation.
It does, however, make sense to ask whether the expected values of the po-
sition and momentum satisfy Newton’s equation (in the form of Hamilton’s
equations).

Proposition 3.19 Suppose (t) is a solution to the Schridinger equa-
tion (3.36) for a sufficiently nice potential V' and for a sufficiently nice
initial condition ¥(0) = 1. Then the expected position and expected mo-
mentum in the state ¥(t) satisfy

% <X>¢(t) = % <P>¢(t) (3.37)
& Py =~ V(X (3.39)

The assumptions in the proposition are there for two reasons: First, to en-
sure that H is actually a self-adjoint operator (see Sect.9.9) and second, to
ensure that the domain assumptions in Proposition 3.14 are satisfied. If we
assume, for example, that V(x) is a bounded-below polynomial in z and
that 1 belongs to the Schwartz space (A.15), then both of these concerns
will be taken care of. Once these technicalities are addressed, the proof of
Proposition 3.19 is a straightforward application of Proposition 3.14; see
Exercise 4. Note that (3.37) says that in a certain sense, the velocity of a
quantum particle is 1/m times the momentum, just as in the classical case.

At first glance, it might appear that the pair ((X),, ), (P) ) is a solu-
tion to Hamilton’s equations, and indeed (3.37) is precisely what Hamilton’s
equations require. To get a solution to Hamilton’s equations, however, we
would need the right-hand side of (3.38) to equal —V’({X), ). But in
general,

V(X)) # V((X),):
Consider, for example, the case V'(z) = x® + 2. If ¢ is an even func-
tion, then (X), = 0 and so V'((X),) = 0. But (x3 +X2>w will not be
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zero, because the X? term will be zero and the X? term will be positive.
We conclude, then, that (X)) and (P), ) usually do not evolve along
solutions to Hamilton’s equations.

There is, however, one case in which (V'(X)),, coincides with V'({X),,),
and that is the case in which V is quadratic, in which case V"' is linear. In
that case we have

(V/(X)), = (aX +bI), = a(X), +b=V'((X),).

Thus, the expected position and expected momentum do follow classical
trajectories in the case of a quadratic potential. It is not surprising that
this case is special in quantum mechanics, since it is also special in classical
mechanics; this is the case in which Newton’s law is a linear differential
equation.

Although the expected position and expected momentum do not (in gen-
eral) exactly follow classical trajectories, they will do so approximately un-
der certain conditions. If the wave function (z) is concentrated mostly
near a single point x = o, then (V'(X)), and V'({X),) will both be
approximately equal to V’(zp). In that case, the expected position and
expected momentum of the particle will approzimately follow a classical
trajectory, at least for as long as the wave function remains concentrated
near a single point.

3.8 The Heisenberg Picture

The “Heisenberg picture” of quantum mechanics is based on Heisenberg’s
matrix model of quantum mechanics (Sect. 1.3). In the Heisenberg picture,
one thinks of the operators (quantum observables) as evolving in time, while
the vectors in the Hilbert space (quantum states) remain independent of
time. This is to be contrasted with the approach to quantum mechanics
we have been using up to now (the “Schrodinger picture”), in which the
observables are independent of time and the states evolve in time.

Definition 3.20 In the Heisenberg picture, each self-adjoint operator A
evolves in time according to the operator-valued differential equation

dA(t) 1 -
—— = —[A(),H 3.39
where H is the Hamiltonian operator of the system, and where [-,-] is the

commutator, given by [A, B] = AB — BA.

Note that since H commutes with itself, the operator H remains constant
in time, even in the Heisenberg picture. This observation is the quantum
counterpart to the fact that the classical Hamiltonian H remains constant
along a solution of Hamilton’s equations.
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Given the self-adjoint operator H , the spectral theorem will give us a way
to construct a family of unitary operators e ~**#/" t € R, and this family of
operators computes the time-evolution of states in the Schrédinger picture
(Sect.3.7.2). Tt is easy to check (at least formally) that the solution to
(3.39) can be expressed as

A(t) = etH/h ge=itH /R (3.40)

Now, if 4 is the state of the system (now considered to be independent of
time), then the expectation of A(t) in the state ¢ is defined to be (A(t)),, =
(1, A(t)y) . We may then compute that

<A(t)>1/; — <¢,eitﬁ/hAefitI:I/h1/}>
— <efitﬁ/hw7Aefitﬁ/ﬁw>
= (¥(1), Ap(1)) ,

where 1(t) is time-evolved state of the system in the Schrodinger picture.
Here, we have used that the adjoint of e*#/" is e=®#H/" which is formally
clear and which is a consequence of the spectral theorem.

Note that in the Schrodinger picture, (1(t), A (t)) is the expectation
value of A in the state 1(t). We conclude, then, that the Heisenberg picture
and the Schrodinger picture give rise to precisely the same expectation
values for observables as a function of time, and are therefore physically
equivalent. Although we will work primarily with the Schrodinger picture of
quantum mechanics, the Heisenberg picture is also important, for example,
in quantum field theory.

Proposition 3.21 Suppose H = P2/(2m)+V(X), where V is a bounded-
below polynomial. Then for any t € R we have
B = (P(1)? + V(X(1). (3.41)
2m
Note that since [fl JH ] = 0, the Hamiltonian H is independent of time,
even in the Heisenberg picture. Thus, the right-hand side of (3.41) is ac-
tually independent of ¢, even though P(t) and X (¢) depend on t. Equa-
tion (3.41) holds also for sufficiently nice nonpolynomial functions V, but
some limiting argument would be required in the proof. The assumption
that V be bounded below is to ensure that H is actually an (essentially)
self-adjoint operator; compare Sect. 9.10.

Lemma 3.22 Suppose A is a self-adjoint operator on H and that A(-) is
a solution to (3.39) with A(0) = A. Then for any positive integer m, the
map

e (A)™

is also a solution to (3.39).
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That is to say, the time-evolution of the mth power of A is the same as
the mth power of the time-evolution of A; that is, A™(t) = (A(t))™.
Proof. If we use (3.40), then the result holds because

eitﬁ/ﬁAme—itH/ﬁ _ eitﬁ/ﬁAe—itﬁ/ﬁeitﬁ/ﬁAe—itﬁ/ﬁ » .eitﬁ/ﬁAe—itﬁ/ﬁ
I Y m
_ (eth/ﬁAeﬂtH/h) '

It is also easy to check that A(t)™ satisfies the differential equation (3.39).
[ ]

With this lemma in hand, it is easy to prove the proposition.
Proof of Proposition 3.21. On the one hand, since [H, fl] = 0, the
time-evolved operator H (t) is simply equal to H. On the other hand, if we
time-evolve P2/(2m) + V(X)) using Lemma 3.22, we obtain the expression
on the right-hand side of (3.41). m

Proposition 3.23 Suppose the Hamiltonian of a quantum system is as
in Proposition 3.21. Then the operators X (t) and P(t) defined by (3.39)
satisfy the following operator-valued differential equation:

dX 1

o~ mt®

dP )

i =V(X(1)). (3.42)

Proof. See Exercise 7. m

Proposition 3.23 means that the operator-valued functions X (¢) and P(t)
satisfy the operator analogs of the classical equations of motion dz/dt =
p(t)/mand dp/dt = —V'(x(t)). Nevertheless, the expectation values of X (t)
and P(t) do not satisfy the ordinary equations of motion, as we have already
seen by calculating in the Schrodinger picture. If we take expectation values
in the system (3.42), we get the same answer as in Proposition 3.19, namely,

& xXW), = = (PO,
d

7 POy == (VX)) -

These are not the classical equations of motion, unless the expectation value
of the operator V'(X (t)) coincides with V’ applied to the expectation value
of X (t), which is usually not the case.

3.9 Example: A Particle in a Box

Let us consider quantum mechanics in one space dimension for a particle
that is confined to move in a “box,” which we describe as the interval
0 <z < L. Our goal is to find all of the eigenvectors and eigenvalues of
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the Schrodinger operator, that is, to find solutions of the time-independent
Schrédinger equation H 1 = E1. In solving this equation, we may think of
the constraint to the box as follows. Imagine a particle moving in R! in the
presence of a potential V that is 0 for = between 0 and L and takes some
very large constant value C' on the rest of the real line. Classically, this
would mean that the particle has to have very high energy (greater than
() to escape from the box. Quantum mechanically, if we have a solution
of the time-independent Schrédinger equation H 1 = E for this potential
(with F < (), then we expect ¢ to decay rapidly for = outside of the box.
(We will see this behavior explicitly in Chap.5.) In the limit as C' tends to
infinity, we expect solutions of the time-independent Schréodinger equation
to be zero outside the box and to tend to zero as we approach the ends of
the boz.

The upshot of this discussion is that we are looking for smooth functions
¥ on [0, L] that satisfy the differential equation

h? d?y
- 2T _F <x<L 4
S = Bia), 0<a< (3.43)
and the boundary conditions
(0) = (L) = 0. (3.44)

For E > 0, the solution space to (3.43) will be the span of two complex
exponentials, or equivalently a sine and a cosine function:

V2mE V2mE
3 x| +bcos 3 T|.

Y(x) = asin ( (3.45)

If we now impose the boundary condition ¥(0) = 0, we get that b = 0,
leaving only the sine term. If we then impose the condition ¥(L) = 0, we
will obtain a = 0—which would mean that 1 is identically zero—unless

sin ( y2mb L) ~0. (3.46)

h

Since we are interested in solutions to (3.43) where ¢ is not identically
zero, we want (3.46) to hold. Thus, the argument of sine function must be
an integer multiple of 7. This condition imposes a restriction on the value
of F, namely that E should be of the form

2222
j°mh
Ej=——HrH 3.47
J 29m.L2 ’ ( )
for some positive integer j.

It is a simple exercise (Exercise 8) to verify that for F < 0, the only
solution to (3.43) satisfying the boundary conditions (3.44) is the one with
1) identically zero.
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Proposition 3.24 The following functions are solutions to (3.43)
satisfying the boundary conditions (3.44):

5 .
¢j(x)_,/zsm(]%), j=1,2,3,...,

and the corresponding eigenvalues E; are given by (3.47). The functions
¥; form an orthonormal basis for the Hilbert space L*([0, L]).

Proof. We have already verified the equation and eigenvalue for each 1);.
It is a simple computation to verify that the v;’s are orthonormal, and the
elementary theory of Fourier series (Fourier sine series, in this case) shows
that the v;’s form an orthonormal basis for L*([0, L]). m

The Hamiltonian operator for this problem (in which V' = 0 inside the
box) is given by
h? d21/1
2m da?’
This operator is an unbounded operator and is not defined on the whole
Hilbert space L?([0, L]), but only on a dense subspace Dom(H) c L*([o, L]).
The domain of H should be chosen in such a way that His essentially self-
adjoint and, thus, symmetric (Sect.3.2), meaning that

(6. 00) = (Ao,v) (3.48)

for all ¢, in Dom(ﬁ). For (3.48) to hold, ¢ and ¢ must satisfy appro-
priate boundary conditions, which will allow the boundary terms in the
integration by parts to be zero. (See Exercise 9.)

Mathematically, then, it is necessary to impose some boundary condi-
tions in order for H to be an essentially self-adjoint operator. The particular
choice of boundary conditions (3.44) is based on the idea of approximating
the box by a very large “confining” potential outside the box. See Chap.9
for an extensive discussion of domain issues for unbounded operator.

Hy = —

3.10 Quantum Mechanics for a Particle in R"

Up to this point, we have been considering a quantum particle moving
in R!. It is straightforward, however, to generalize to a quantum particle
moving in R™. The Hilbert space for a particle in R™ is L?(R"), rather than
L?(R). Instead of single position operator, we have n such operators, given
by

Xjvx)=z4x), j=1,...,n

Similarly, we have n momentum operators, given by

9]
Piy(x) = —zha—;/;
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As in the R! case, X; does not commute with P; but satisfies [ X, P;| =
ih1. On the other hand, X; commutes with X; and P; commutes with Pj.
Furthermore, X; commutes with P} for j # k. These formulas are referred
to as the canonical commutation relations.

Proposition 3.25 (Canonical Commutation Relations) The position
and momentum operators satisfy

1
E[Xj,Xk] =0
1
i Pl =0
1
%[Xj,Pk] =0l (3.49)

foralll1 <j k<n.

These relations are the quantum counterparts of the Poisson bracket rela-
tions among the position and momentum functions in classical mechanics.
Specifically, the role of the Poisson bracket in Proposition 2.24 is played in
Proposition 3.25 by the quantity (1/(iR))[-, -].

If the classical Hamiltonian for a particle in R™ is of the usual form
(kinetic energy plus potential energy), then we may analogously define the
Hamiltonian operator to be of the form

Zn: —;n (3.50)

where V(X) denotes the result of applying the function V to the commuting
family of operators X = (X1,...,X,). It it natural to identify V(X) with
the operator of multiplication by the function V(x). In that case, we may
write H more explicitly as

H(x) = 5= AMp(x) + V()9 (x),

where A is the Laplacian, given by

We refer to an operator of the form (3.50) as a Schrédinger operator.
We may also introduce angular momentum operators defined by analogy
to the classical angular momentum functions.

Definition 3.26 For each pair (j, k) with 1 < j, k < n, define the angular
momentum operator Jj;, by the formula

Jik = X; P, — Xy Pj.
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As in the classical case, we have jjk = 0 when j = k. When j # k, X
and P, commute, so the order of the factors in the definition of Jj; is not
important. Explicitly, we have

- _ 0 0
ij = —ih <Ija—xk - xka—%> .

The operator in parentheses is the angular derivative (9/00) in the (x;, zx)
plane.

When n = 3, it is customary to use the quantum counterpart of the
classical angular momentum wvector, namely,

jl = X2P3—X3P2; jQ = X3P1—X1P3; jg = X1P2—X2P1. (351)

When n = 3, every jjk with j # k is one of the above three operators or
the negative thereof.

3.11 Systems of Multiple Particles

Suppose now we have a system of IV quantum particles moving in R™. If the
particles are all of different types (e.g., one electron and one proton), then
the Hilbert space for this system is L?(R™"). That is, the wave function
) of the system is a function of variables x' x2,...,x", with each x’
belonging to R™. If we normalize 1) to be a unit vector in L?(R™Y), then
[p(xt,x2,...,x™)|? is to be interpreted as the joint probability distribution
for the positions of the N particles. ‘

We may introduce position operators Xj (the kth component of the
position of the jth particle) and momentum operators P,g in obvious anal-
ogy to the definition for a single particle. The typical Hamiltonian operator
for such a system is then

. N oop2
Hyp(x', . xN) = —;%Ajz/}(xl,...,xjv) +V(xt . xM)Y(x),

where m; is the mass of the jth particle. Here A; means the Laplacian
with respect to the variable x/ € R", with the other variables fixed.

As we will see in Chap. 19, the Hilbert space for a composite system,
made up of various subsystems, is typically taken to be the (Hilbert) tensor
product of the individual Hilbert spaces. In the present context, we may
think of our system of being made up of N subsystems, each being one of the
individual particles. Fortunately, there is a natural isomorphism (Proposi-
tion 19.12) between L?(R™V) and the tensor product of N copies of R",
so that the approach we are taking here is consistent with the general
philosophy.
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If the particles in question are identical (say, all electrons), then there
is an additional complication to the description of the Hilbert space for
the system. In standard quantum theory, we are supposed to believe that
“identical particles are indistinguishable.” What this means is that the wave
function should have the property that if we interchange, say, x! with x2,
then the new wave function should represent the same physical state as
the original wave function. Recalling that two unit vectors in the quantum
Hilbert space represent the same physical state if and only if they differ by
a constant of absolute value 1, this means we should have

1/}(X2,X1,X37 R 7XN) = uw(xl’x27x37 AR 7xN)7

for some constant v with |u| = 1. Applying this rule twice gives that v is
u?1, so evidently u must be either 1 or —1.

Particles in quantum mechanics are grouped into two types, according
to whether the constant u in the previous paragraph is 1 or —1. Particles
with u = 1 are called bosons and particles with u = —1 are called fermions.
Whether a particle is a boson or a fermion is determined by the spin of the
particle, a concept that we have not yet introduced. Nevertheless, we can
say that particles without spin are bosons. For a collection of IV identical
spinless particles moving in R3, the proper Hilbert space is the symmetric
subspace of L%(R3N), that is, the space of functions in L?(R3*Y) that are
invariant under arbitrary permutations of the variables. We will have more
to say about spin and systems of identical particles in Chaps. 17 and 19.

3.12  Physics Notation

In quantum mechanics, physicists almost invariably use the Dirac nota-
tion (or bra-ket notation) introduced by Dirac in 1939 [5]. This notation
is made up of Notations 3.27-3.29 below. In this section, we explore the
Dirac notation along with a few other notational differences between the
mathematics and physics literature.

Before proceeding it is important to point out that when using Dirac
notation, it is essential that the complex conjugate in the inner product
should go on the first factor.

Notation 3.27 A vector ¢ in H is referred to as a ket and is denoted
[) . A continuous linear functional on H is called a bra. For any ¢ € H,
let (¢| denote the bra given by

(0] () = (&, 9) -

That is to say, {¢| is the “inner product with ¢” functional. The bracket
(or bra-ket) of two vectors ¢, € H is the result of applying the bra (p| to
the ket |1v) , namely the inner product of the ¢ and 1), denoted {¢|)) .
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If A is an operator on H and ¢ is a vector in H, then we can form
the linear functional (¢| A, i.e., the linear map ¢ — (p|Ay) . Physicists
generally write an expression of this form as

(o1A]9).

This notation emphasizes that there are two different ways of thinking of
this quantity. We may think of (¢|A|¢) either as the linear functional
(¢| A applied to the vector |¢), or as the linear functional (¢| applied to
the vector A |¢)) .

Notation 3.28 For any ¢ and v in H, the expression |¢p)1| denotes the
linear operator on H given by

(IoX®]) () = |oXelx) = (¥Ix) [9) -
That is, in mathematics notation, |p)Xv| is the operator sending x to (¥, x) ¢.

The operator |¢p)1)| associates to each (ket) vector |x) a new vector in
the only way that makes notational sense: We interpret |¢p)t||x) as the
vector |¢) multiplied by the scalar (¢|x) .

Notation 3.29 Given a family of vectors in H labeled by, say, three indices
n, I, and m, rather than denoting these vectors as |{n1m) , a physicist will
denote them simply as |n,l,m).

This notation is not without its pitfalls. If we have two different sets
of vectors labeled by the same set of indices, a mathematician can simply
label them as ¢y, 1, and v, m,, but the physicist has a problem.

As an example of the Dirac notation, suppose that an operator H has
an orthonormal basis of eigenvectors v,,. A physicist would express the
decomposition of a general vector in terms of this basis as

I=> |n)nl, (3.52)

where 1, is represented simply as |n) and where [n)(n| is (given that |n) is
a unit vector) the orthogonal projection onto the one-dimensional subspace
spanned by the vector |n) .

Notation 3.30 In the physics literature, the complex conjugate of a com-
plex number z is denoted as z*, rather than z, as in the mathematics liter-
ature. What a mathematician calls the adjoint of an operator and denotes
by A*, a physicist calls the Hermitian conjugate of A and denotes by AT.
Physicists refer to self-adjoint operators as Hermitian.

We may express the concept of an adjoint (or Hermitian conjugate) of
an operator using Dirac notation, as follows. If A is a bounded operator on
H, then A' is the unique bounded operator such that

(Y] A= (ATy].
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One peculiarity of the physics literature on quantum mechanics is a
conspicuous failure of most articles to state what the Hilbert space is.
Rather than starting by defining the Hilbert space in which they are work-
ing, physicists generally start by writing down the commutation relations
that hold among various operators on the space. Thus, for example, a physi-
cist might begin with position and momentum operators X and P, satis-
fying [X, P] = ihl, without ever specifying what space these operators are
operating on. The justification for this omission is, presumably, the Stone—
von Neumann theorem, which asserts that (provided the operators satisfy
the expected “exponentiated” relations) there is, up to unitary equiva-
lence, only one Hilbert space with operators satisfying these relations and
on which the operators act irreducibly. (See Chap. 14 for a precise state-
ment of the result.) It is, nevertheless, disconcerting for a mathematician to
encounter an entire paper full of computations involving certain operators,
without any specification of what space these operators are operating on,
let alone how the operators act on the space.

This practice among physicists represents something of a role reversal.
In the setting of linear algebra, for example, a mathematician might say,
“Let V' be a n-dimensional vector space over R.” If a physicist says, “Oh, so
it’s R™,” the mathematician will reply, “No, no, you don’t have to choose a
basis.” By contrast, in quantum mechanics, it is the physicist who does not
want to choose a particular realization of the space. A physicist will simply
write down the commutation relations between, say, X and P. If pressed,
the physicist might say that he is working in an irreducible representation
of those relations. If a mathematician then says, “Oh, so it’s L?(R),” the
physicist will reply, “No, no, there is no preferred realization.”

Notation 3.31 Given an irreducible representation of the canonical com-
mutation relations, and given a vector 1y in the corresponding Hilbert space,
a physicist will speak of the position wave function 1 (x), defined by

P(x) = (z[¢) . (3.53)

Here, (x| is the bra associated with the ket |x) , where |z) is supposed to be
an eigenvector for the position operator with eigenvalue x.

See, again, Chap. 14 for the precise notion of “irreducible representa-
tion of the canonical commutation relations.” One may similarly define the
momentum wave function by taking the inner product of ¥ with the eigen-
vectors of the momentum operator, which are also non-normalizable. See
Sect. 6.6 for details.

A mathematician might find Notation 3.31 objectionable on the grounds
that the operator X does not actually have any eigenvectors. After all,
it is harmless, in view of the Stone—von Neumann theorem, to work in
the “Schrodinger representation,” in which our Hilbert space is L?(R) and
the position operator X is just multiplication by x. Given a number x,
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there is no nonzero element 1 of L?(R) for which X1 = xzg1. After all,
any v satisfying this equation would have to be supported at the point
T = xg, in which case ¥ would equal zero almost everywhere and would be
the zero element of L?(IR). A physicist, on the other hand, would say that
the desired eigenfunction is ¢ (z) = d(xz — x), where § is the Dirac delta-
“function.” The fact that d(z — x¢) is not actually in the Hilbert space
L?(R) does not concern the physicist; it is simply a “non-normalizable
state.” The mathematical theory of such non-normalizable states comes
under the heading “generalized eigenvectors.” See Sect. 6.6 for a discussion
of this issue in the case of the eigenvectors of the momentum operator.

A more subtle issue regarding the “position eigenvectors” is that each
eigenvector is unique only up to multiplication by a constant. If one wants
the momentum operator to act on the position wave function, as defined by
(3.53), in the usual way, one must make a consistent choice of normalization
of the eigenvectors of the position operators. Specifically, one should choose
the constants in such a way that the exponentiated momentum operator
exp(iaP/h) maps |z) to |x + a) .

3.13 Exercises

1. Suppose that ¢(t) and () are differentiable functions with values in
a Hilbert space H, meaning that the limit
d —
do 6l h) ()
dt h—0 h
exists in the norm topology of H for each ¢, and similarly for v (¢).
Show that

S 00.00) = (2,00) + (o0, 2.

2. Suppose A and B are operators on a finite-dimensional Hilbert space
and suppose that AB — BA = ¢l for some constant c¢. Show that
c=0.

Note: This shows that the commutation relations in (3.8) are a purely
infinite-dimensional phenomenon.

3. If A is a bounded operator on a Hilbert space H, then there exists a
unique bounded operator A* on H satisfying (¢, Av) = (A*¢, ) for
all ¢ and ¢ in H. (Appendix A.4.3.) The operator A* is called the
adjoint of A, and A is called self-adjoint if A* = A.

(a) Show that for any bounded operator A and constant ¢ € C, we
have (cA)* = ¢A*, where ¢ is the complex conjugate of c.
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(b) Show that if A and B are self-adjoint, then the operator
1
—[A,B
714, B]

is also self-adjoint.

4. Verify Proposition 3.19 using Proposition 3.14. Note that the operator

8.

V/(X) means simply the operator of multiplication by the function
V'(z).

Suppose that 1 is a unit vector in L?(R) such that the functions
x1)(z) and 229 (z) also belong to L?*(R). Show that

2
2
(x2), > ((x),) "
Hint: Consider the integral

| @-apu@l .

— 00

where a = (X),, .
Consider the Hamiltonian H for a quantum harmonic oscillator, given
by

i h? d? k o

Tomda? " 27

where k is the spring constant of the oscillator. Show that the function

Yo(x) = exp {— \/;?ZC?}

is an eigenvector for H with eigenvalue fiw/2, where w := /k/m is
the classical frequency of the oscillator.

Note: We will explore the eigenvectors and eigenvalues of H in detail

in Chap. 11.

Prove Proposition 3.23.

Hint: Show that [P(t), H] = ([P, H])(t) and [X (t), H] = ([X, H])(t).
(a) Find the general solution to (3.43), where E is a negative real

number. Show that the only such solution that satisfies the
boundary conditions (3.44) is identically zero.

(b) Establish the same result as in Part (a) for E = 0.
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9. (a) Suppose ¢ and 1 are smooth functions on [0, L] satisfying the
boundary conditions (3.44). Using integration by parts, show

that
(0.8 = (Ho,v),

where H = —(h2/2m) d?/dz? and where

L
(¢, ) = /0 o(x)Y(x) da.

(b) Show that the result of Part (a) fails if ¢ and ¢ are arbitrary
smooth functions (not satisfying the boundary conditions).

10. Let jl, jg, and jg be the angular momentum operators for a particle
moving in R®. Using the canonical commutation relations (Proposi-

tion 3.25), show that these operators satisfy the commutation rela-
tions

1. . - A 1. . - a 1 . . R
%[Jl,Jz]—JB, E[J2,J3]—J1, E[JSajl]—Jz

This is the quantum mechanical counterpart to Exercise 19 in the
previous chapter.



4
The Free Schrodinger Equation

In this chapter, we consider various methods of solving the free Schrodinger
equation in one space dimension. Here “free” means that there is no force
acting on the particle, so that we may take the potential V' to be identically
zero. Thus, the free Schrodinger equation is

oy ik 0%

9 " om o (4.1)

subject to an initial condition of the form

P(x,0) = tho().

We will identify some key features of solutions to this equation, such as the
“spread of the wave packet” and the distinction between “phase velocity”
and “group velocity.” In particular, the notion of group velocity will confirm
our expectation that a particle of momentum p should travel with velocity
v =p/m.

Before attempting to solve the free Schrodinger equation, let us make a
simple observation about the time evolution of the expected values of the
position and momentum. If we apply Proposition 3.19 in the case that V'
is identically equal to zero, we have

d 1
=7 Ky = — (Ply
d
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Thus, the expectation value of P is independent of time, which then means
that the expectation value of X is linear in time:

(X)) = Xy + —(Phy,
<P>¢(t) = <P>¢0-

Thus, the free Schrodinger equation is one of the special cases in which
the expected values of the position and momentum exactly follow classical
trajectories (and those classical trajectories are very simple in the case
vV =0).

4.1 Solution by Means of the Fourier Transform

We look for solutions of the free Schrédinger equation on R of the form
(@, t) = e'FrmeB), (4.2)

where k is the frequency in space and w(k) is the frequency in time, which
is an as-yet-undetermined function of k. (Of course, such a solution is not
square-integrable in x for a fixed ¢, but we will find our way back to square-
integrable solutions eventually.) Plugging this into (4.1) easily gives the
formula for w as a function of k:

k2
T om’

w(k) (4.3)
A formula of this sort, expressing the temporal frequency w as a function of
the spatial frequency k in a solution of some partial differential equation,
is called a dispersion relation.

Observe that (4.2) can be written as

oty = i (1 202, ”

Now, replacing a function f(z) by f(z — a) has the effect of shifting f to
the right by a. Thus, the time-evolution has the effect of shifting the initial
function to the right by an amount equal to (w(k)/k)t. This means that
the function ¢ (x,t) is moving to the right with speed w(k)/k. This speed,
for reasons that will be clearer in Sect. 4.3, is called the phase velocity.

The phase velocity, then, is the speed at which a pure exponential solution
of our equation (the free Schrodinger equation) propagates. We compute
the phase velocity as w(k)/k = hk/(2m). Now, we have said that a wave
function of the form e?*® represents a particle with momentum p = hk.
We thus arrive at the following curious conclusion.
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Proposition 4.1 The phase velocity of a particle with momentum p = hk is

‘ w(k)  hk D
h l t = —= — = —,
phase velocity 2 5 5
This velocity is half the velocity of a classical particle of momentum p.

Proposition 4.1 might make us think that our basic relation p = hk is
off by a factor of 2. We will see, however, that the phase velocity, that is,
the velocity of a pure exponential solution, is not the “real” velocity of a
particle with momentum p. The real velocity is the “group velocity,” which
will turn out to be, as expected, p/m.

Leaving aside for now the question of the velocity, let us build up a
general solution to (4.1) from solutions of the form (4.2). We make use of
the Fourier transform, discussed in Appendix A.3. We can then express the
solution to the free Schrodinger equation, for “nice” initial conditions, as a
“superposition” of these pure exponential solutions.

Proposition 4.2 Suppose that ¢o is a “nice” function, for exzample, a
Schwartz function (Definition A.15). Let 1y denote the Fourier transform

of Yo and define (x,t) by
¢@¢)=;%i/mddma“”“W”dh (4.5)
T J—-—0

where w(k) is defined by (4.3). Then ¥ (x,t) solves the free Schrédinger

equation with initial condition .

The assumption that ¥ be a Schwartz function is stronger than neces-
sary. The reader is invited to trace through the argument and find suitable
weaker conditions.

Proof. Since the Fourier transform of a Schwartz function is a Schwartz
function, (k) will decay faster than 1/k* as k tends to +oo. Meanwhile,
by integrating the derivative of the function e”**, we obtain the estimate

eik(m—i—h) _ etkx

< |k|.
<

We can then apply dominated convergence, using |k| ’1/30 (k)’ as our domi-

nating function, to move a derivative with respect to x under the integral
sign in the formula for ¢(x,t). This derivative pulls down a factor of ik
inside the integral. The decay of 1/;0 allows us to repeat this argument to
move a second derivative with respect inside the integral. We can also move
a derivative with respect to t inside the integral, by a similar argument.
Since exp{i(kx — w(k)t)} satisfies the Schrédinger equation for each
fixed k, differentiation under the integral shows that v (z,t) satisfies the
Schrodinger equation as well. The Fourier inversion formula shows that

U(x,0) = do(z). m
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Proposition 4.3 If ¢(x,t) is as in Proposition 4.2, then the Fourier
transform of ¥(x,t), with respect to x with t fixed, is given by

Bk, t) = o (k) exp [—ﬁ’“ﬂ |

(4.6)

m

Proof. We can write (4.5) as

W(a,t) = \/% /_ O:O eike [zﬁo(k)e—iw@)t} dk.

By the uniqueness of the Fourier decomposition (i.e., the injectivity of the
inverse Fourier transform, which follows from the Plancherel formula), the
Fourier transform of ¢(x,t) (with respect to z) must be the function in
square brackets. Putting in the expression (4.3) for w(k) establishes the
desired result. m

Now, the Fourier transform is a unitary map from L?(R) onto L?(R).
Thus, for any 1o in L2(R), by also belongs to L(R). Since the quantity
multiplying (k) in (4.6) has absolute value 1, the right-hand side of (4.6)
is a well-defined square-integrable function of k, for any 1y in L?(R), which
has a well-defined inverse Fourier transform in L?(R).

Definition 4.4 For any vy € L*(R), define, for each t € R, 1(z,t) to be
the unique element of L*(R) that has a Fourier transform (with respect to

x) giwen by (4.6).

Definition 4.4 defines a time-evolution for arbitrary initial conditions
in L?(R). For general 1y € L?(R), however, ¢ (x,t) may not satisfy the
Schrodinger equation in the classical, pointwise sense, simply because ¢ (z, t)
may fail to be differentiable, either in = or in t. Nevertheless, ¢ (z,t), as
defined by Definition 4.4, always satisfies the Schrédinger equation in the
weak (distributional) sense. See Exercise 1.

4.2  Solution as a Convolution

According to Proposition 4.3, we see that the Fourier transform of the
time-t wave function is the product of the Fourier transform of vy and
the function exp[—ithk?/(2m)]. According to Proposition A.21, the inverse
Fourier transform of a product of two sufficiently nice functions is 1/ Vor
times the convolution of the two separate inverse Fourier transforms. Here
the convolution ¢ * ¢ of two functions ¢ and 1 is defined to be

(65 ¥)(a / bz — y)v(y) dy,

whenever the integral is convergent for all x.
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Formally, then, we ought to have

U)(Iat) :1/}0*Kt; (47)

where

1 hk2t
Kt = ﬁ]—- {exp |: Z%] } .

The problem with is idea is that the function exp[—ithk?/(2m)] is not
a “nice” function in the usual sense. Certainly, this function is not the
Fourier transform of some function in L*(R) N L?(R), because if it were,
then the function would have to tend to zero at infinity (Proposition A.14).
Therefore, we cannot directly apply Proposition A.21, even if g is in
LY(R) N L?(R).

Fortunately, the desired inverse Fourier transform can be computed as a
convergent improper integral (Exercise 2), with the following result:

1 [ . k2t m ma?
Ki(z) := — etke k= ' . (4.
(@) =52 /, P { 2m} &=\ eXp{Z 2th } (48)

Here, the square root is the one with positive real part. The function K
is called the fundamental solution of the free Schrédinger equation. (See
Fig.4.1.) This function does indeed satisfy the free Schrodinger equation,
as we can easily verify by direct differentiation.

The preceding discussion should make the following result plausible.

Theorem 4.5 Suppose 1y € L?*(R) N LY (R). Then (x,t), as defined by
(4.5), may be computed for all t # 0 as

bz, 1) \/;/ M —y)Q}wo(y)d

The expression for i(xz,t) is (21) V2K, x 1o, where K, is as in (4.8).

Proof. For any set E C R, let 15 denote the indicator function of F, that
is, the function that is 1 on F and 0 elsewhere. Then K;1_,, ,,; belongs to
LY(R) N L?(R) for any positive integer n. By Proposition A.21, then, we
have

F (Kl j—nm) % t0) = V2rF (Kl _p ) F (o). (4.9)

Because 1 is in L'(R), it is easy to see that Kil{_p n) % 9o converges
pointwise to K3 #1y. On the other hand, using the argument in Exercise 2,
we can see that F(K;1[_, ) is bounded by a constant independent of n
and converges pointwise to the function

1 hk?t
exp [—z—} . (4.10)
m
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Re(K((x))

VAV VARV

Re(K)(x))

FIGURE 4.1. The real part of K(z), for t =1 (top) and t = 0.2 (bottom).
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Equation (4.10) is enough to show that the right-hand side of (4.9)
converges in L?(R) to the function

{ k2t
exp |—12

o ] Yo (k).
By the Plancherel theorem, K;1|_,, %% must also be converging in L?(R),
and the L? limit must coincide with the pointwise limit, which is K * .
Thus, taking limits on both sides of (4.9) shows that the Fourier transform
of K; %1 is what we want it to be. m

In general, to be considered the fundamental solution of a certain equa-
tion, a function should converge to a Dirac §-function (Example A.26), in
the distribution sense, as t tends to zero. Since |K;(z)| is independent of
x for each ¢, it might seem doubtful that K; has this property. On the
other hand, we can see K;(z) oscillates very rapidly except near x = 0.
(See Fig.4.1.) This oscillation causes the integral of K;(x) against some
nice function ¢ (x) to be small, except for the part of the integral near
x = 0. Indeed, because the Fourier transform of K; converges to the con-
stant function 1/ V2r (which is what we get by formally taking the Fourier
transform of the d-function) as ¢ tends to zero, it is not hard to show that
K does, in fact, converge to a d-function. The details of this verification
are left to the reader.

4.3 Propagation of the Wave Packet: First
Approach

Let us consider the Schrédinger equation in R! with an initial condition
1o that is a “wave packet,” meaning a complex exponential multiplied by
some function that localizes 1y in space. Specifically, we take

o(z) = ei””/ﬁAo(m), (4.11)

where Ay is some real, positive function and pg is a nonzero real number.
(The case py = 0 should be treated separately.) We also assume that Ag is
“slowly varying” compared to e®0*/" meaning that Ao is approximately
constant over many periods of the function e”0*/" (We will give a more
precise meaning to the “slowly varying” condition shortly.) Thus, if we look
at Yo(z) on a distance scale of a small number of periods of the function
eor/h then 1 will look like a constant times e0*/" which, as we have
seen, represents a particle with momentum py. We expect, then, that the
wave function g represents a particle with momentum approximately equal
to Po-

Let us now try to solve the free Schrodinger equation in terms of the
amplitude and phase of the wave function. We write

V(1) = A, e
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where A and 6 are real-valued functions. If we plug this expression for 1
into the free Schrodinger equation and then cancel a factor of €?(*t) from
every term, we obtain the equation

%Jr.@ ih 02A  hOAOO ih  [00\® h . 9%0
ot Zat T 9m o2 mOxr dr 2m

Since A and 6 are real-valued, we may separately equate the real and
imaginary parts of (4.12), giving

0A  hOAD) h 0%

Ay Y 41
ot m dx Ox  2m  Ox? (4.13)
and (after dividing the imaginary part of (4.12) by A)
0  h 1PA b (09 (1.14)
ot 2mA9dx2  2m \ox) '

Any solution to this system of partial differential equations will yield a
solution 1 (x,t) = A(z,t)e? @ to the free Schrodinger equation.

Since we are assuming A is “slowly varying” compared to 6, it is reason-
able to think that the first term on the right-hand side of (4.14) will be
small compared to the second term. That is to say, we interpret the slowly
varying condition to mean

1024 00\ 2
ZW<<<%> : (4.15)

where the symbol < means “much smaller than.” We will take initial con-
ditions such that (4.15) holds at ¢ = 0, and then we will assume that (4.15)
continues to hold at least for small positive times. We may then (to first
approximation) drop the first term on the right-hand side of (4.14), giving
the following simplified version of (4.14):

09 ho(00\?

= (=) . 4.16

ot 2m (83:) (4.16)

We now look for a solution to the pair of equations (4.13) and (4.16)
with initial conditions corresponding to (4.11).

Proposition 4.6 A solution to the approzimate equations (4.13) and
(4.16) with initial condition 0(x,0) = pox/h is given by

0(z,1) = % (a: - %t) (4.17)

and

Az, ) = Ay (:v - %t) . (4.18)



4.3 Propagation of the Wave Packet: First Approach 99

This yields an approximate solution to the free Schrodinger equation
given by
Y(x,t) = Ag (:17 - Z%If) exp {z% (:17 - %t” . (4.19)

Note from (4.17) and (4.18) that if the “slowly varying” condition (4.15)
holds at time 0, it will continue to hold for all positive times in our approx-
imate solution.
Proof. Although (4.16) is a nonlinear equation, we can find a solution to
it with the simple initial conditions 0(x,0) = pox/h, namely,

2
o(x,t) = 202 — IO

h 2mh
_ (o
=& (:v th). (4.20)

Since 90/0x = po/h and 8%6/0x% = 0, if we plug (4.20) back into (4.13)

we obtain
0A _Po 0A

ot mox’
The (presumably unique) solution to this linear equation with initial con-
dition A(x,0) = Ag(x) is

Az, 1) = Ao (:17 - %t) : (4.21)

as claimed. m

We hope that the solution (4.19) to the system of equations (4.13)
and (4.16) is a close approximation to the solution to the original pair of
equations (4.13) and (4.14)—assuming, of course, that Ay is slowly varying
compared to 0y(z) = pox/h. It is not especially easy to estimate directly
how rapidly solutions to (4.13) and (4.16) diverge from solutions to (4.13)
and (4.14). We will therefore leave an estimate of the error in our approxi-
mation until the next section, where we will obtain the same approximate
solution by a different method.

Note that a function of the form f(z,t) = ¢(x—wvt) is moving to the right
with constant velocity v. (If v is negative, then, of course, this means the
function is moving to the left.) Observe that both the amplitude A(z, t) and
the phase exp{if(z,t)} are of this form, but with two different velocities.

Conclusion 4.7 In the approzimate solution (4.19) to the free Schrodinger
equation, the amplitude A(x,t) is moving with velocity po/m, whereas the
phase 0(x, t) is moving with velocity po/(2m). These two velocities are called
the group velocity and the phase velocity, respectively:

phase velocity = Do
2m

. Po
group velocity = —.
m
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Note that the formula for the phase velocity agrees with the one given
previously in Sect. 4.1, the velocity of propagation of a pure exponential so-
lution to the free Schrodinger equation. Indeed, nothing prevents us from
taking Ay = 1, in which case the left-hand side of (4.15) is actually identi-
cally zero, so that a solution to (4.13) and (4.16) is actually a solution to
(4.13) and (4.14).

Which of the velocities is the “real” velocity of the particle? The answer
is: the group velocity. After all, the probability distribution for the parti-
cle’s position is determined by the amplitude of the wave function and is
unaffected by the phase. It is the amplitude that determines (as much as it
can be determined) where the particle is. Thus, the true velocity of the par-
ticle should be the velocity at which the amplitude propagates. Figure 4.2
shows the propagation of the real part of a wave packet, with the motion
of a single peak indicated by the shaded region. The phase velocity deter-
mines the speed at which the individual peaks in the real part of ¥ move,
whereas the group velocity determines the speed of the packet as a whole.
Since the peak we are tracking lags well behind the motion of the whole
packet, we see that the phase velocity is smaller than the group velocity.

We should expect that solutions to our approximate equations (4.13)
and (4.16) will diverge slowly over time from solutions to the free
Schrodinger equation (4.13) and (4.14). For sufficiently long times, there
may be a significant difference between approximate and true solutions.
This expectation is confirmed in Sect. 4.5, where we investigate the spread
of the wave packet, a phenomenon that is not seen in our approximation.

4.4 Propagation of the Wave Packet: Second
Approach

We have seen that the general solution of the free Schrédinger equation can
be obtained by means of the Fourier transform as

V(@ t) = \/% [ T do(k)expli (kr — w(k)D)] dk,  (4.22)

where 12
w(k) = 5
Let us assume that ¢y has approximate momentum equal to pg. Thus, we
expect that 1o (k) will be concentrated near ko := po/Ah. If that is the case,
then only the values of k close to kg are important. For k close to kg, we
use the first-order Taylor expansion

(4.23)

w(k) ~ w(ko) + ' (ko) (k — ko), (4.24)

where for now we do not put in the explicit formula for w’(ko).
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£F+7F

FIGURE 4.2. Propagation of Re[¢)], with motion of a single peak shaded.
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Inserting (4.24) into (4.22), we get two factors that are independent of k
and come outside the integral, leaving us with

P(z,t) = \/L_ei“/(ko)kote_i“’(ko)t/ Yo(k) exp [ik(x — ' (ko)t)] dk

27
_ eiw/(ko)kote—iw(ko)t%(x — W' (ko)t). (4.25)

Note that the factors in front of tg(z — w’(ko)t) are simply constants,
that is, independent of z. These constants do not affect the “state” of the
system, in that we have said that two vectors in the quantum Hilbert space
that differ by a constant represent the same physical state. Ignoring these
constants, we are left with the factor of ¢o(x — w'(ko)t), which is simply
shifting to the right at speed w’(kg). Thus, the (approximate) velocity at
which our wave packet is moving is

ko _ po
m m’

velocity ~ w’'(kg) =
Let us consider the special case in which g is of the form
Yo(x) = 0T Ay (),
where Ay is real and positive. Then (4.25) becomes

eiw/(kg)kote—iw(ko)teiko(m—w/(ko)t)AO(:L, _ wl(ko)t).

After canceling the terms involving w’(ko)kot in the exponent, we obtain
Oz, t) e etkor=wko)D) Ao (3 — o (ko)t).

Recalling that py = hkg and putting in the formula for w, we see that this
approximation to ¢ (z,t) is precisely the same as the one we obtained, by
a different method, in Proposition 4.6.

As in Sect. 4.3, we see that the velocity at which a pure exponential
solution of the free Schrédinger equation propagates [namely, w(ko)/ko =
hko/(2m)] is not the same as the velocity at which the overall wave packet
propagates. Rather, as seen in (4.25), the wave packet propagates at a
velocity given by w’(kg) = hko/m. We may summarize this conclusion in
the following proposition.

Proposition 4.8 The speed at which a pure exponential solution of the
free Schridinger equation propagates is
wiko) _ hko _ po.

h locity = ——= = = .
phase velocity ko 5 = 2m

By contrast, the (approzimate) speed at which the wave packet propagates is

. dw hko  po
group velocity = — =— ==
L P, m m
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The disadvantage of the method we used in Sect. 4.3 is that it does not
easily yield estimates on how big an error there is in our approximation.
In the current section, however, we can estimate the error by comparing
the Fourier transforms of the exact solution and the approximate solution.
Our error estimate will involve a quantity « defined as follows:

n_[/ ’wo ‘ (k — ko) dkTM. (4.26)

The quantity r is, roughly, half the width of the interval around ko on
which most of w( ) is concentrated. If, for example, 1/1 is supported in the
interval [ko — €, ko + €], then k < £, assuming that ¢»—and therefore —is
a unit vector. (A more common measure of concentration would replace
(k — ko)* by (k — ko)? and the fourth root of the integral by the square
root. But the “quartic” measure of concentration in (4.26) is the one that
arises in estimating the error of our approximations in this section.)

Proposition 4.9 Let ¢(x,t) be the exact solution to the free Schrodinger

equation with initial condition g, and let ¢(x,t) be the approximate solu-

tion given by the right-hand side of (4.25). Then the following L? estimate

holds:

|t| hr?
2m

where the L? norm is with respect to x with t fived and where w(-) is defined
by (4.23).

Equation (4.27) means that the L? norm of the error will be small, pro-
vided that

llv(z,t) — Qb(fﬂ,t)HLg(R) <

= [t|w(k), (4.27)

; 1

[t] < o)
If % is much smaller than kg, then 1/w(x) will be much larger than 1/w(ko).
That means that the timescale on which the true and approximate solutions
diverge will be long compared to the timescale on which our approximate
solution is oscillating.
Proof. Let 1/3(k,t) and é(k,t) denote the Fourier transforms of ¢ and
with respect to x, with ¢ fixed. From (4.22) we can read off that

Ok, t) = e @ Ftyo (k).

Meanwhile, ¢(k, t) is obtained from t(k, t) by replacing w(k) by the right-
hand side of (4.24). Now, direct calculation shows that

h

—(k — ko).
(ko)

w(k) — (w(ko) + w'(ko)(k — ko)) =
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From this expression and the elementary estimate |¢? — ¢'?| < |0 — ¢|,
we obtain

9, 0) — ik, )| < 0

The estimate (4.27) then follows by the Plancherel theorem and the
definition of k. m

For a more detailed version of the approach used in this section, see
Sect. 5.6 of [30].

(k= ko)? [do(k)] (4.28)

4.5 Spread of the Wave Packet

We use the uncertainty (Definition 3.13) A, X in the position of the particle
as a measure of the “width” of ¢ (z) as a function of z. At the level of
approximation considered in the previous two sections, the uncertainty in
the position of a free particle is independent of time. After all, in the
approximate solution (4.19), the amplitude of the wave function simply
shifts to the right at a speed equal to the group velocity, without changing
shape. A more precise calculation, however, shows that after sufficiently
long times, the wave packet spreads out in space. (Exercise 7 gives an idea
of the time scale on which this spread takes place.)

We can compute the time-evolution of the uncertainty in the particle’s
position without having to solve the full Schrédinger equation, by using
Proposition 3.14 from Chap. 3. We start by observing that for a free par-
ticle, our Hamiltonian is simply P?/(2m), which commutes with P. It fol-
lows that the expected value and uncertainty for the particle’s momentum
(and, indeed, the entire probability distribution of the momentum) are in-
dependent of time. Meanwhile, to compute the time-dependence of (X)
and <X 2> , we use Proposition 3.14 along with the commutation relation
[X, P] = ihI (Proposition 3.8).

Proposition 4.10 For a wave function ¢ (z,t) evolving according to the
free Schrédinger equation on RY, the expectation values for X and X? evolve
as follows:

(X = (Xye T — (Ply,

m

and
t t2
(X2) ) = (X% + —(XP+PX),, +— (P?) o) -

These relations imply the following result:
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For a unit vector 1y in L*(R), the uncertainty Ay, P in the momentum
cannot be zero, because the uncertainty would be zero only if vy is an
eigenvector for the momentum operator. But the eigenvectors for P are
the functions of the form e which are not in L?(R). Thus, the leading
coeflicient in the expression for (A¢(t)X)2 is never zero, and thus Ay )X
tends to infinity as ¢ tends to infinity.

Proof. We compute that

[P?,X] = P?X — PXP+ PXP — XP?
= P[P, X]+[P,X]P
= —2ihP.

Thus (as we have already noted in Sect. 3.7.5),

i P) o P
R

where we have used in the last equality that the expected momentum is

independent of time. Since the derivative of (X), ., is constant, (X},

itself is a linear function of ¢, which gives the first result in the proposition.
Meanwhile, a little algebra shows that

[P?,X? =P[P,X]X + [P, X]PX +XP[P,X]|+X[X,P]P

= —-2ih (PX + XP),
and
[P?,PX + XP| =P[P* X]+ [P?X|P=—4ihP°.
Thus
d 2 i 2 2 1
a<X >¢(t) = 2mﬁ<[P X Dw(t) = E<XP+PX>w(t)
and

d? 9 1 1

prv) <X >¢(t) ~ hmom <[
2 2

) <P2>¢(t) T2 <P2>¢0'

m

P%,XP+PX]),

Since the second derivative of (X?) (¢ 18 independent of ¢, (X?) o) Ttself

(t) ()

is a quadratic polynomial in ¢, the coefficients of which are determined by
the value of (X)) and its first two time-derivatives at ¢ = 0. This leads
to the second result in the proposition. The last result follows by direct

calculation. m
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4.6 Exercises

1. A locally integrable function (x,t) satisfies the free Schrodinger
equation in the weak (or distributional) sense if for each smooth com-
pactly supported function y, we have

dy ik &
[ v ) [8—’; + %8—;2?] dw dt = 0. (4.30)

[One obtains (4.30) by assuming 0/t — (ih/2m)d?/0x? is zero,
integrating against x(z,t), and then formally integrating by parts.]

(a) Show that if ¢(x,t) is smooth as a function of = and ¢ then
satisfies the free Schrédinger equation in the pointwise sense if
and only if 1 satisfies the free Schrodinger equation in the weak
sense.

Hint: Proposition A.23 may be useful.

(b) For any v € L?(R), define 1(z,t) by Definition 4.4. Show that
1 satisfies the free Schrodinger equation in the weak sense.

First show that the function 14 given by

1A I
ha(z,t) = E/Awo(k)ez(km Rt qk

satisfies the free Schrodinger equation in the weak sense, for each A.

2. (a) Show that for any a € C with Re(a) > 0,

00 2
</ 6712/(2a) d.I) :/ 67(12+y2)/(2a) dxz dy
e R2

= 27a,

where the integral over R? can be evaluated using polar coordi-
nates. Conclude that

/ e~ /(2% dy — \/2ra, (4.31)
where the square root is the one with positive real part.
(b) Show that for all A, B > 0 we have

B B
A T A

A T

for any nonzero complex number a. Using this, show that the
integral in (4.31) is convergent for all nonzero a with Rea > 0,
provided the integral is interpreted as an improper integral (i.e.,
the limit as A tends to infinity of an integral from —A to A).
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(¢) Now show that the result of Part (a) is valid also for nonzero
values of @ with Rea = 0.
Hint: Given 8 # 0, show that the (improper) integral from A
to oo of exp[—2?/(2(a 4 if3))] is small for large A, uniformly in
a € [0,1].

(d) Show that

i > ik —ithk® /(2m) g1, _ m pima® /(2th)
2 J_ o 2miht ’

where the integral is interpreted as an improper integral and the
square root is the one with positive real part.

3. Suppose ¢ is a Schwartz function (Definition A.15) and ¢ belongs to
L?(R). Show that the convolution ¢ * 1 is smooth (infinitely differ-
entiable).

4. Consider the heat equation for a function v (z,t), given by

oy _ Y
ot~ “or2

where « is a constant, subject to the initial condition ¢ (z,0) = ¢ (z).

(a) Derive a differential equation for ¢ (k, t), the Fourier transform
of a solution of the heat equation with respect to x, with ¢ fixed,
assuming that ¢ (z,t) is a “nice” function of x for each t. Solve
this equation subject to the initial condition 1 (k, 0) = 1 (k).

(b) Obtain an expression for the solution to the heat equation as
a convolution of ¥y with a “fundamental solution” to the heat
equation.

Note: As we will discuss in Chap. 20, the heat equation can be thought
of as a sort of “imaginary time” version of the free Schrodinger
equation.

5. Suppose we take an initial condition in the free Schrodinger equation
with initial phase given by 0y(x) = poz/h and initial amplitude given
by Ag(x), as in (4.11). Suppose also that the initial amplitude is of

the form
1 /x—x 2
A = —— .
o(z) = exp ) ( T )

Note that Ag is centered around the point xy and that the parameter
L is a measure of the “width” in space of our initial wave packet.
A function of the form vp(z) = ePo?/" Ay(x), with Ay as above, is
called a Gaussian wave packet.
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Compute the quantity

1 1 0%A,
— . 4.32
( %)2 <A0 Ox? ) ( )
ox
Assuming that £ is small compared to Lpg, show that (4.32) is small,
except at points where our initial wave packet is very small.

Note: This shows that our “slowly varying” assumption (4.15) is rea-
sonable for the case of Gaussian wave packets.

The Klein—Gordon equation, a proposed relativistic alternative to the
Schrédinger equation, is the equation

1 0% 0% mic?

2 otz Ox? h2

where m > 0 is the mass of the particle and c is the speed of light.

(a) Obtain the dispersion relation for the Klein—-Gordon equation,
that is, the expression for w(k) that makes the function exp|i(kz—
w(k)t] a solution to the Klein-Gordon equation.

(b) Show that the phase velocity w(k)/k satisfies |w(k)/k| > ¢, that
the group velocity dw(k)/dk satisfies |dw/dk| < ¢, and that

(phase velocity)(group velocity) = 2.

Note: Since the Klein—Gordon equation is second order in time, there
will be two possible values for w(k) for each k, one positive and one
negative. The results of Part (b) hold for both of the two “branches”
of w(k).

Consider the uncertainty Ay )X of a wave function 9(t) evolving
according to the free Schrédinger equation. Show that

d Ay, P
= (AppX)| < - (4.33)
for all ¢ and that
. d Ay, P
Jim - (AypX) = ==
Note: By comparison,
d <P>w0
o <X>1/;(t) = (4.34)

If ¢ (k) is concentrated in a sufficiently small region around a nonzero
number ko = po/h, then Ay, P will be small compared to (P),, . In
that case, by comparing (4.33) to (4.34), we see that the rate at which
the wave packet spreads out is small compared to the rate at which
the wave packet moves.



5!
A Particle in a Square Well

5.1 The Time-Independent Schrodinger Equation

It is difficult to solve the time-dependent Schrodinger equation explicitly,
even in relatively simple cases. (Even for the free Schrédinger equation,
we made do in Chap. 4 with solutions that are either approximate or that
involve an integral that is not explicitly evaluated.) Usually, then, one ana-
lyzes the time-independent Schrodinger equation (the eigenvector equation
for H ) and then attempts to infer something about the time-dependent
problem from the results. There are a number of problems, including the
harmonic oscillator and the hydrogen atom, in which the time-independent
Schrodinger equation can be solved explicitly.

In this section, we will consider a simple but instructive example, which
can be solved by elementary methods. We consider the time-independent
Schrédinger equation in R!, with a potential of the form

V(z) =

—-C, —-A<z<A
(- -

|z > A 7

where A and C' are positive constants. The region —A < z < A is the
“square well” for the potential (Fig.5.1).

Let us think first for a moment about the behavior of a classical particle
in a square well. If we think of V' as the limit of a sequence of potentials
that change linearly from —1 to 0 in a small interval around +1, we may
expect the following behavior for a particle in a square well. If the energy
of the particle is negative, then the particle must be in the well. In that

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 109
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_5,
© Springer Science+Business Media New York 2013
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ral

FIGURE 5.1. A square well potential.

case, it will move with constant speed until it hits the edge of the well,
at which point it will reflect instantaneously off the wall and move with
the same speed in the opposite direction. If the energy of the particle is
positive, it will move always in the same direction, with speed equal to one
constant when it is not in the well and speed equal to a different constant
when it is in the well.

In the quantum case, we will be interested mainly in eigenvectors for the
Schrodinger operator with negative eigenvalues (E < 0). Of course, on the
quantum side of things, energy eigenvectors do not change in time, except
for an overall phase factor. Nevertheless, since the classical particle with
E < 0 spends the same amount of time in each part of the well, we may
expect that the quantum particle will have approximately equal probability
of being found in each part of the well. This expectation will be fulfilled
for “highly excited states,” such as the one in Fig.5.7. For the quantum
particle, however, there is a small but nonzero probability of finding the
particle outside the well, which is impossible classically.

Our goal is to study the time-independent Schrédinger equation, that is,
the eigenvalue equation

_Bdy + V(x)y(x) = Ev(x), (5.2)

2m dz?

where both the eigenvalues E and the associated eigenvectors 1) (or “eigen-
functions,” in physics terminology) are as yet unknown. As a second-order
linear ordinary differential equation, this equation always has (for any value
of F) a two-dimensional solution space. We are, however, looking for solu-
tions that lie in the quantum Hilbert space L?(R). We will see there are
actually only a finitely many E’s, all of them with E < 0, for which (5.2)
has a nonzero solution in L?(R). In this case, then, the Schrédinger op-
erator H has a discrete spectrum below zero and a continuous spectrum
above zero.
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5.2 Domain Questions and the Matching
Conditions

Before starting to solve (5.2), we must give some heed to the unbounded
nature of the Hamiltonian operator. The Schrodinger operator

. W2 d2
H=-2% Lyix
2m dx? +V(X)

on the left-hand side of (5.2) is an unbounded operator, meaning that there
is no constant C' such that |Hv|| < C||¢||, where ||-|| is the L2 norm. On
the other hand, we want to define H in such a way that it is self-adjoint.
But according to Corollary 9.9, a self-adjoint operator that is defined on
the whole Hilbert space must be bounded.

We conclude, then, that H is not going to be defined on the entire Hilbert
space L*(R), but only on a dense subspace thereof. In practical terms,
saying that H is not defined on the whole Hilbert space means simply that
for many functions 1 in L?(R), the second derivative d?v/dz? does not
exist, or exists but fails to be in L2. (In our example, the potential V is
bounded, and so V1) will always be in L? provided that 1 is in L2.)

Since the potential V' for a square well is bounded, the domain of the
Hamiltonian H = P2/(2m) 4+ V(X) is the same as the domain of the
kinetic energy operator P?/(2m) = —(h*/2m)d?/dz?. As we will see in
Sect. 9.7, the domain of the kinetic energy operator may be described as
the space of L? functions v for which d?v/dx?, computed in the weak
or distributional sense (Appendix A.3.3), again belongs to L?*(R). This
condition is equivalent to the statement that there exists some L? function
¢ such that ¢ is the second integral of ¢ (for some choice of the constants
of integration).

Meanwhile, since our potential is piecewise constant, any solution
to (5.2) will be smooth except possibly at the transition points x = +A,
and both 1 and v’ will have left and right limits at A and —A. Indeed, on
each of the intervals (—oo, —A), (—A, A), and (4, o), any solution to (5.2)
will be simply a linear combination of (real or complex) exponentials. For
functions of this sort, it is not hard to see when we are in the domain of H.

Proposition 5.1 Suppose 1 is smooth on each of the intervals (—oo, —A),
(—A, A), and (A,00). Then 3 belongs to the domain of H [with potential
function given by (5.1)] if and only if the (1) 1 and di/dx are continuous
at x =+ A, and (2) d*/dx? belongs to L*(R).

Proof. Suppose first that 1 satisfies the conditions (1) and (2). Then it is
not hard to see (Exercise 1) that the second derivative of ¢ in the distribu-
tion sense is simply the function d?v/dz?, computed in the ordinary point-
wise sense for x # +A. (The second derivative may not exist at z = +A,
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but we simply leave d?v/dx? undefined at these two points, which form a
set of measure zero.) Thus, d?/dz?, computed in the distribution sense,
is an element of L?(R).

On the other hand, if either ¢ of ¢/’ has a discontinuity at z = A or at
x = —A, then (Exercise 1 again) the distributional derivative will contain
either a multiple of a §-function of a multiple of the derivative of §-function
at one of these points. But neither a d-function nor the derivative of §-
function is a square-integrable function. m

Let us think about what the continuity condition on ¢ and dv)/dx means
in practical terms. Since V' is constant on (—oo, —A), we can easily solve
(5.2) on that interval, obtaining a two-dimensional solution space. Once we
choose a solution from this solution space, then the values of ¢ and dv/dx
as x approaches — A from the left will serve as the initial conditions for solv-
ing (5.2) on (—A, A). Thus, the requirement of continuity for ¢ and dv/dx
serve as a “matching condition” between the solution on (—oo, —A) and the
solution on (—A, A). We cannot just separately pick any solution to (5.2)
on (—oo, —A) and any solution on (—A, A); at the boundary, the values of
¥ and di/dx must match. (This same matching condition appears in el-
ementary treatments of ordinary differential equations with discontinuous
coefficients.)

Once we pick a solution on (—oo,—A) we get a unique solution on
(—A, A)—and then the values of ¢ and di/dx as we approach A from
the left will serve as the initial conditions for solving (5.2) on (A, 00). The
conclusion is that once we pick a solution to (5.2) on (—oo, —A) (from the
two-dimensional solution space), we have no additional choices to make;
the differential equation along with the matching conditions give a unique
way to extend the solution from (—oo, —A) to the whole real line.

5.3 Finding Square-Integrable Solutions

If E > 0, then any solution to (5.2) will be a combination of two complex
exponentials in the range z < —A; such a function cannot be square-
integrable unless it is identically zero. If, however, we take ¥ to be iden-
tically zero in the region x < —A, then our continuity condition requires
that ¢ and di/dx approach 0 as x approaches —A from the right. Thus,
the matching conditions at —A force the solution to be identically zero in
[—A, A] as well. Finally, by matching across x = A, we get an identically
zero solution on [A,00). Thus, for E > 0, any solution to (5.2) satisfy-
ing the continuity conditions in Proposition 5.1 must be identically zero.
A similar analysis applies when E = 0, where the solutions to (5.2) on
(—00, A] would be of the form ¢; 4+ cox, which is square-integrable only if
C1 = Cg = 0.
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The conclusion, then, is that to have a chance to get a solution to (5.2)
that is square-integrable and in the domain of H , we must take E' < 0. For
E < 0, the solution to (5.2) on (—oo, —A) will be a linear combination of
the two exponentials exp(ax) and exp(—azx), where

\/2m |E|

a= PR (5.3)
For v to be square-integrable over (—oo, —A), the coefficient of exp(—ax)
must be zero, since this term grows exponentially as z tends to —oo. Thus,
the value of ¢ on (—oo0, —A) must be cexp(azx). Once we choose a value
for ¢, we get a unique solution on (—A, A) by matching 1 and ¢’ across
x = —A. We then get a unique solution on (A,o0) by matching across
x = A. The solution on (A, occ0) will be again be a linear combination
of exp(az) and exp(—ax). For 1 to be in L2 we need the coefficient of
exp(ax) on (A,00) to be zero. We have no choice, however, about what 1)
is on (A, 00); the coefficient of exp(ax) either comes out to be zero or it
does not.

The conclusion, then, is that for any E' < 0, there is a unique (up to a con-
stant) solution to (5.2) that is square-integrable on the interval (—oo, —A).
This solution then gives rise to a unique solution on (—A4, A) and then to a
unique solution on (A, 00), up to a constant. Unless we are lucky, the solu-
tion on (A, 0o) will grow exponentially and thus fail to be in L2 Therefore,
in most cases there will be no nonzero solution to (5.2) that satisfies the
continuity condition and is square-integrable over the whole real line. The
hope is that for certain special values of E, we will be able to find a solu-
tion that decays exponentially both on (—oo, —A) and on (4, c0), in which
case the solution will belong to L?(R).

It can be shown (Exercise 6) that there are no nonzero square-integrable
solutions with E < —C'. Therefore, any square-integrable solutions to (5.2)
that may exist must come from the range —C' < E < 0. To analyze this
range, let us rewrite the time-independent Schrodinger equation by dividing
through by —h?/(2m), yielding the equation

d21/1 e |117| > A
—_— = . (5.4)
2
e (- ol <A
where
2mE
c=—T
2mC
c=— (5.5)

Note that although F is assumed to be negative, we have normalized ¢ to
be positive; the condition —C' < E < 0 corresponds to 0 < ¢ < c.



114 5. A Particle in a Square Well

Because our potential function V' is even, it is easy to see that for any
solution ¢ to (5.4), the even and odd parts of ¢ are also solutions. We can,
therefore, analyze even solutions and odd solutions separately. We begin
with the even case. For # < —A, every solution to (5.4) that is square-
integrable over (—oo, A) is of the form

V(@) = aeV®, z < —A. (5.6)

Since we assume that v is even, we then have

V(@) = ae YV, x> A (5.7)
Meanwhile, for —A < z < A, every even solution is of the form

Y(x) = beos (Ve —ex). (5.8)

Proposition 5.2 Let ¢ be the function defined in (5.6)-(5.8). Then there
exist nonzero constants a and b so that ¥ belongs to the domain of H if
and only if the following matching condition holds:

Ve =+vc—ctan (Vc—eA). (5.9)

Proof. Clearly both 1 and d?¢/dz? belong to L?(R). Thus, in light of
Proposition 5.1, we need only ensure that ¢(x) and ¢’(z) are continuous
at x = +A. Since the exponential functions are never zero, we may always
ensure that v itself is continuous by taking any value we like for b and then
choosing a appropriately Once 1) has been made to be continuous, 1)’ will
be continuous provided that 1’ (x)/1(x) has the same value as we approach
+A from inside the well or from the outside. To obtain the condition (5.9),
we compute ¢’ /1 from (5.6) and then from (5.8), evaluate both quantities
at * = —A, and then equate the two values of ¢’/1. Because we have
made our solution an even function, we get the same matching condition
at x = A asat x = —A.

Now, in deriving (5.9), we implicitly assumed that ¢ is nonzero at =
+A. We do not, however, get any nonzero solutions in which ¢ (+A) = 0.
After all, at points where the cosine function in (5.8) is zero, its derivative
is nonzero. But no choice of the constant in front of the exponentials (5.6)
and (5.7) will produce a function that is zero but has a derivative that is
nonzero. m

Proposition 5.3 For all positive values of ¢ and A, there exists at least
one ¢ € (0,¢) such that (5.9) holds.

Proof. Case 1: \/cA < 7/2. In this case, as e varies between 0 and ¢,
the left-hand side of (5.9) will vary between 0 and some positive number,
whereas the right-hand side of (5.9) will vary between some positive number
and 0. By the intermediate value theorem, there must exist ¢ € (0,¢) for
which (5.9) holds. See Fig.5.2.
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Case 2: \/cA > 7/2. In this case, there is g € [0, ¢] for which y/c —egA =
/2. As € decreases from ¢ to g, the right-hand side of (5.9) will vary from
0 to 4+o00. Thus, for ¢ slightly larger than ¢, the right-hand side of (5.9)
will be larger than the left-hand side. By the intermediate value theorem,
there must exist ¢ € (gg,¢) for which (5.9) holds. See Fig.5.3 for a case
V/cA slightly larger than 7/2 and Fig. 5.4 for a case with \/cA much larger
than 7/2. m

Note that if \/cA is much larger than 7/2, then there will be multiple
solutions of (5.9), as can be seen in Fig. 5.4.

We have found, then, at least one solution ¢ to (5.4) that satisfies the
matching condition and for which both v and v decay exponentially at
infinity. Since this ¢ belongs to the domain of H, we have established the
following result.

FIGURE 5.2. Solving the matching condition, Case 1.

Proposition 5.4 For any positive values of A and C, there exists at least
one value of E in the range —C < E < 0 for which (5.2) has a nonzero
solution in the domain of H, given by the formula

cos (Ve —ex) —A<z<A
P(x) = :
cos (¢ — A) exp[—/E(|z] — A)] lz| > A

where ¢ and e are defined in (5.5) and where £ satisfies (5.9).

In Proposition 5.4, we have not normalized ¥ to be a unit vector in
L?(R), but rather have normalized ¢ to equal 1 at the origin. In Figs.5.5—
5.7, we plot our eigenfunction in several different cases. In Fig. 5.5, we have
a “shallow” well, with y/cA = 1. In that case, we obtain only one even
eigenvector, which is the ground state of the system (i.e., the eigenvector
with the smallest eigenvalue). Next, we consider a “deep” well, with \/cA =
30. For this well, the ground state is shown in Fig. 5.5 and an “excited state”
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FIGURE 5.3. Solving the matching condition, Case 2a.

FIGURE 5.4. Solving the matching conditions, Case 2b.

1
-4 A

FIGURE 5.5. Ground state for a shallow potential well.
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FIGURE 5.6. Ground state for a deep potential well.

FIGURE 5.7. Excited state for a deep potential well.

(i.e., an eigenvector with an eigenvalue that is not the smallest) is shown

in Fig.5.7.

Note that in the shallow well, the ground state extends quite a bit beyond
the interval [— A, A], whereas in the deep well, the ground state goes to zero
very quickly as soon as we move outside the well. On the other hand, the
excited state in Fig. 5.7 extends comparatively far outside the well.

It is straightforward to adapt the preceding analysis to the odd case. The
matching condition (5.9) is replaced by

Ve =—Vec—ecot (Ve—cA) (5.10)
(Exercise 2) and the formula for the eigenvectors is now

sin (\/;:E) —A<z<A
P(x) = ,
+sin (y/e — €A) exp[—v/2(|z| — A)] |z| > A

where we take the + sign for z > A and the — sign for z < —A.
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FIGURE 5.8. Matching condition for odd solutions.

FIGURE 5.9. An odd solution.

If \/cA < 7/2, then the matching condition (5.10) will have no solu-
tions, since the right-hand side of (5.10) will be negative for all € € (0, ¢).
For large values of 1/cA, there will be several solutions to (5.10). A typical
matching scenario and an associated eigenfunction are plotted in Figs. 5.8
and 5.9.

5.4 Tunneling and the Classically Forbidden
Region

Let us now briefly compare the classical situation to the quantum one.
Classically, if a particle has energy E, then since the kinetic energy p?/(2m)
is always non-negative, the particle simply cannot be located at a point x
with V(z) > E. Thus, the region V(z) < E may be called the “classically
allowed” region and the region V() > F the “classically forbidden” region.
In the case of a square well potential (5.1), if —C' < E < 0, then the “well”
itself (i.e., the region with —A < x < A) is the classically allowed region



5.5 Discrete and Continuous Spectrum 119

and the outside of the well (i.e., the region with |z| > A) is the classically
forbidden region.

Quantum mechanically, if H 1 = FE1, then the particle has a definite
value for the energy, namely E. We see, however, that such a particle has
a nonzero probability of being located in the classically forbidden region.
Note that although the wave function is not zero in the classically forbidden
region, it does decay exponentially with the distance from the classically
allowed region. That is to say, the quantum particle can penetrate some
distance into the classically forbidden region. Note, however, that if E is
much less than zero—i.e., ¢ is large—then a state with H 1 = E will decay
very rapidly outside the well (like exp[—+/2(|z| — A)]).

More generally, we can think about the time-dependent Schrodinger
equation for a particle with energy approzimately equal to E. If we require
that the energy be ezactly equal to E, then there is no interesting time-
dependence, since the solution to the time-dependent Schrédinger equation
is simply a constant time . We can, however, think of a particle where
the uncertainty in the energy is nonzero but small. Suppose such a particle
is traveling through a region with V' < E and then approaches a region
with V' > E (a “potential barrier”). Classically, the particle would just
reflect off of this barrier and go back in the other direction. Quantum me-
chanically, though, it is possible for the particle to “tunnel” through the
potential barrier and come out the other side. That is to say, at some later
time, there will be some non-negligible portion of the wave function on the
far side of the barrier.

5.5 Discrete and Continuous Spectrum

Our analysis of the eigenvector equation (5.2) for —C < E < 0 shows that
there are only finitely many values of F in this range for which we get
square-integrable solutions. It is not hard to analyze the case £ < —C
with the result that all nonzero solutions grow exponentially in at least
one direction (Exercise 6). Meanwhile, for F > 0, any solution to (5.2) on
(—o00, —A) has sinusoidal behavior and is not square-integrable unless it
is identically zero, in which case (by our matching condition) the solution
must be zero everywhere.

The upshot is that we obtain only finitely many square-integrable so-
lutions to (5.2), up to multiplying each solution by a constant. Clearly,
then, the “true” eigenvectors for H [i.e., the ones that actually belong to
the Hilbert space L?(R)] cannot form an orthonormal basis for L?(R).
Nevertheless, the spectral theorem (Chap.T7) provides something like a
orthonormal-basis decomposition of elements of L?(R) in terms of the so-
lutions to (5.2). A general element 1 of L?(R) will be a sum of two terms.
The first term is a linear combination of the true (L?) eigenvectors for
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H , which have E < 0. The second term is a continuous superposition
(i.e., an integral) of the non—square-integrable “generalized eigenvectors”
with £ > 0.

In Chap.9, we will introduce the notion of the spectrum of a (possibly
unbounded) self-adjoint operator A. We will see that a number A belongs
to the spectrum of A if for all € > 0 there exists a unit vector 1 in the
domain of A for which |4y — M)|| < e. In the case of the Hamiltonian
operator H with a square well potential, it is not hard to show that every
real number E with E > 0 belongs to the spectrum of H (Exercise 4.).

It can be shown that if a number E < 0 is not an eigenvalue (i.e., if there
are no nonzero L? solutions to ]?h/} = FE%), then F is not an element of the
spectrum of H. This result is hinted at by Exercise 5. Thus, the spectrum
of H consists of a finite number of points in (—C,0) (at least one), together
with the whole half line [0, co).

5.6 HExercises

1. (a) Suppose 1 is a smooth function on each of the intervals
(—o0,—A), (A, A), and (A, 00) and that both ¢ and ¢’ are
continuous at x = A and at © = —A. Show that for any smooth
function y with compact support, we have

| Nawwdi= [ @@ e
where we leave 1" (x) undefined at = + A if the second deriva-
tive does not exist at those points. (In light of Definition A.28,
(5.11) means that the second derivative of ¢, in the distribution
sense, is simply the function ¢"”.)

Hint: Choose some interval [—R, R] with R > A containing the
support of x. Now use integration by parts separately on each
of the intervals [—R, —A], [—A, A], and [4, R], paying careful
attention to the boundary terms.

(b) Suppose now that v is a smooth function on each of the inter-
vals (—oo, —A), (—A, A), and (A4, ), and that both ¢ and ¢’
have left and right limits at x = £ A, but that, say, ¢’ has a
discontinuity at z = —A. Show that (5.11) has to be modified
by adding a nonzero multiple of y(—A) to the right-hand side.

2. Verify the matching condition (5.10) for odd solutions of the time-
independent Schrodinger equation.

3. Let w be a nonzero real number and consider a function of the form

Y(z) = acos(wzx) + bsin(wz),
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for real numbers a and b. If a and b are not both zero, show that for
any A € R, we have

B
. 2 .
Bgrfoo/A P(x)? dx = 4o0.
. Let f be a C*° function on the interval (0, 1) with the property that
f(x)=1for 0 <z <1/3 and f(x) =0 for 2/3 < x < 1. Then define
a family of “cutoff” functions y, on R by the formula

0 || >n+1
1 |z] <n
Xn (@) = fl=x—=n) —(n+l)<z<-n’
f(z—n) n<r<n+l

Given any E > 0, let ¢ be a nonzero solution to (5.2) for which (x)
and 1'(z) are continuous at x = £A. Let b, = 1x,,. Show that v,
belongs to the domain of H and that

lim +Y—m— 1 =
n—o0 [[¥n

Note: As we will see in Chap. 9, this implies that every real number
FE with E > 0 belongs to the spectrum of the operator H.

Hint: In estimating ||t ||, it may be helpful to apply Exercise 3 to
the real and imaginary parts of 1 outside the well.

. Suppose E < 0 and suppose that there exists no nonzero square-
integrable solutions to (5.2) for which ¢ and ¢’ are continuous. Let
be a nonzero solution of (5.2) for which ¢ (z) and +’(z) are continuous
at x = +A and let v, be as in Exercise 4. Show that

|, — B,
[[4bnl

does not tend to zero as n tends to infinity.

(a) Show that for E < —C, there are no nonzero square-integrable
solutions to (5.2) for which ¢ and v’ are continuous.

(b) Obtain the result of Part (a) when E = —C.
Hint: Analyze the even and odd cases separately.
. Let the ground state for a particle in a square well denote the eigen-

vector with the lowest (most negative) eigenvalue, which corresponds
to the largest value for e.
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(a) Show that the ground state is always an even function. That is
to say, show that the largest value of € satisfying (5.9) is always
larger than any solution to (5.10).

(b) Show that the ground state is a nowhere-zero function.
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Perspectives on the Spectral Theorem

6.1 The Difficulties with the Infinite-Dimensional
Case

Suppose A is a self-adjoint n x n matrix, meaning that Ay; = A, for all
1 < j,k < n. Then a standard result in linear algebra asserts that there

exist an orthonormal basis {v;}7_; for C" and real numbers Ai,...,\,
such that Av; = \;v;. (See Theorem 18 in Chap.8 of [24] and Exercise 4
in Chap.7.)

We may state the same result in basis-independent language as follows.
Suppose H is a finite-dimensional Hilbert space and A is a self-adjoint
linear operator on H, meaning that (¢, Ay) = (A, ) for all ¢, € H.
Then there exists an orthonormal basis of H consisting of eigenvectors for A
with real eigenvalues.

Since there is a standard notion of orthonormal bases for general Hilbert
spaces, we might hope that a similar result would hold for self-adjoint
operators on infinite-dimensional Hilbert spaces. Simple examples, however,
show that a self-adjoint operator may not have any eigenvectors. Consider,
for example, H = L?([0, 1]) and an operator A on H defined by

(AY)(x) =z (x). (6.1)

Then A satisfies (¢, AY) = (Agp, ) for all ¢, € L?([0,1]), and yet A
has no eigenvectors. After all, if z¢(x) = A\)(x), then ¢ would have to be
supported on the set where x = A, which is a set of measure zero. Thus,
only the zero element of L?([0,1]) satisfies Ay = M.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 123
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Now, a physicist would say that the operator A in (6.1) does have
eigenvectors, namely the distributions §(z — A). (See Appendix A.3.3.)
These distributions indeed satisfy zd(z — A) = Ao(z — A), but they do
not belong to the Hilbert space L2([0,1]). Such “eigenvectors,” which be-
long to some larger space than H, are known as generalized eigenvectors.
Even though these generalized eigenvectors are not actually in the Hilbert
space, we may hope that there is some sense in which they form something
like a orthonormal basis. See Sect. 6.6 for an example of how such a “basis”
might function.

Let us mention in passing that our simple expectation of a true orthonor-
mal basis of eigenvectors is realized for compact self-adjoint operators,
where an operator A on H is said to be compact if the image under A of
every bounded set in H has compact closure; see Theorem VI.16 in Vol-
ume I of [34]. The operators of interest in quantum mechanics, however,
are not compact. (Of course, even if a self-adjoint operator is not compact,
it might still have an orthonormal basis of eigenvectors, as, e.g., in the case
of the Hamiltonian operator for a harmonic oscillator. See Chap. 11.)

Meanwhile, there is another serious difficulty that arises with self-adjoint
operators in the infinite-dimensional case. Most of the self-adjoint operators
A of quantum mechanics are unbounded operators, meaning that there is
no constant C' such that ||Ay| < C||¢|| for all 4. Suppose, for example,
that A is the position operator X on L?(R), given by (Xv)(z) = 2¢(x). If
1g denotes the indicator function of E (the function that is 1 on E and 0
elsewhere), then it is apparent that

X Ll = 7 L

for every positive integer n, and, thus, X cannot be bounded. Now, using
the closed graph theorem and elementary results from Sect. 9.3, it can be
shown that if A is defined on all of H and satisfies (¢, Ay) = (A, 1)) for
all ¢,1 € H, then A must be bounded. (See Corollary 9.9.) Thus, if A is
unbounded and self-adjoint, it cannot be defined on all of H.

We define, then, an “unbounded operator on H ” to be a linear operator
from a dense subspace of H—known as the domain of A—to H. The no-
tion of self-adjointness for such operators is more complicated than in the
bounded case. The obvious condition, that (¢, Ay) should equal (A, 1)) for
all ¢ and v in the domain of A, is not the “right” condition. Specifically,
that condition is not sufficient to guarantee that the spectral theorem ap-
plies to A. Rather, for any unbounded operator A, we will define the adjoint
A* of A, which will be an unbounded operator with its own domain. An
unbounded operator is then defined to be self-adjoint if the domains of A
and A* are the same and A and A* agree on their common domain. That
is to say, self-adjointness means not only that A and A* agree whenever
they are both defined, but also that the domains of A and A* agree.
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6.2 The Goals of Spectral Theory

Before getting into the details of the spectral theory, let us think for a
moment about what it is we want the spectral theorem to do for us. In the
first place, we would like the spectral theorem to allow us to apply various
functions to an operator. We saw, for example, that the time-dependent
Schrodinger equation can be “solved” by setting 1h(t) = exp{—itH /hi}ty.
Because the Hamiltonian operator H is unbounded, it is not convenient
to use power series to define the exponential. If, however, H has a true
orthonormal basis {e;} of eigenvectors with corresponding eigenvalues \,,,
then we can define exp{—itH /h} to be the unique bounded operator with
the property that
e~ g, — g=itA/Tg,

for all k.

In cases where H does not have a true orthonormal basis of eigenvectors,
we would like the spectral theorem to provide a “functional calculus” for
H, that is, a system for applying functions (including exponentials) to H.
This functional calculus should have properties similar to what we have in
the case of a true orthonormal basis of eigenvectors.

In the second place, we would like the spectral theorem to provide a
probability distribution for the result of measuring a self-adjoint opera-
tor A. Let us recall how measurement probabilities work in the case that
A has a true orthonormal basis {e;} of eigenvectors with eigenvalues A;.
Building on Example 3.12, we may compute the probabilities in such a case
as follows. Given any Borel set F of R, let Vg be the closed span of all the
eigenvectors for A with eigenvalues in E, and let Pr be the orthogonal
projection onto Vg. Then for any unit vector v, we have

proby, (A € E) = (i, Peih) . (6.2)

In particular, if the eigenvalues are distinct and v decomposes as ¢ =
>_j ¢jej, the probability of observing the value \; will be le;]? (as in Ex-
ample 3.12), since Pry,y is just the projection onto e;.

In cases where A does not have a true orthonormal basis of eigenvectors,
we would like the spectral theorem to provide a family of projection oper-
ators Ppg, one for each Borel subset £ C R, which will allow us to define
probabilities as in (6.2). We will call these projection operators spectral
projections and the associated subspaces Vg spectral subspaces. (Thus, Pg
is the orthogonal projection onto Vg.) Intuitively, Vg may be thought of as
the closed span of all the generalized eigenvectors with eigenvalues in E.

In the first version of the spectral theorem, both these goals will be
achieved, with the spectral projections being provided by a projection-
valued measure and the functional calculus being provided by integration
with respect to this measure. Although having (generalized) eigenvectors
for a self-adjoint operator is, from a practical standpoint, of secondary
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importance, we provide a framework for understanding such eigenvectors,
using the concept of a direct integral. The second version of the spectral
theorem decomposes the Hilbert space H as a direct integral, with respect
to a certain measure u, of generalized eigenspaces for a self-adjoint oper-
ator A. The generalized eigenspace for a particular eigenvalue A will not
actually be a subspace of H, unless ({A}) > 0. Thus, the notion of a direct
integral gives a rigorous meaning to the notion of “eigenvectors” that are
not actually in the Hilbert space.

6.3 A Guide to Reading

Although the portion of this book devoted to spectral theory is unavoidably
technical in places, it has been designed so that the reader can take in as
much or as little as desired. The reader who is willing to take things on faith
can simply take in the examples of the position and momentum operators
in Sects.6.4 and 6.6 and accept these as prototypes of how the spectral
theorem works. The reader who wants more details can find the statement
of the spectral theorem for bounded operators, in two different forms, in
Chap. 7, and can find the basics of unbounded self-adjoint operators in
Chap. 9. Finally, the reader who wants a complete treatment of the subject
can find full proofs of the spectral theorem in both forms, first for bounded
operators in Chap. 8, and then for unbounded operators in Chap. 10.

6.4 The Position Operator

As our first example, let us consider the position operator X, given by
(X9)(x) = ap(x), acting on the Hilbert space H = L*(R). As for the
similar operator in Sect. 6.1, X has no true eigenvectors, that is, no eigen-
vectors that are actually in H. If we think that the generalized eigenvectors
for X are the distributions §(x — X), A € R, then we may make an educated
guess that the spectral subspace Vg should consist of those functions that
“supported” on FE, that is, those that are zero almost everywhere on the
complement of E. (A superposition of the “functions” §(x—\), with A € E,
should be a function supported on E.)

The spectral projection Pg is then the orthogonal projection onto Vg,
which may be computed as

PEw = 1E1/17

where 1g is the indicator function of E. In that case, we have, follow-
ing (6.2),

proby (X € E) = (0. Pev) = [ i)l da.
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This formula is just what we would have expected from our discussion in
Chap. 3, where we claimed that the probability distribution for the position
of the particle is ¢ (z)|’.

Meanwhile, let us consider the functional calculus for X. If f(\) = A™,
then f(X) should be just the mth power of X, which is multiplication by
™. It seems reasonable, then, to think that for any function f, we should
define f(X) to be simply multiplication by f(x). In particular, the operator
e'*X should be simply multiplication by e*®, which is a bounded operator
on L?(R).

6.5 Multiplication Operators

Since the position operator acts simply as multiplication by the function
x, it is straightforward to find the spectral subspaces and also to construct
the functional calculus for X. We may consider multiplication operators in
a more general setting. If H = L?(X, u) and h is a real-valued measurable
function on X, then we may define the multiplication operator M} on
L2(X, 1) by

Mpp = ha.

We can then construct spectral subspaces as
Vi = {4 [ is supported on h™'(E)}
and define a functional calculus by
f(A) = multiplication by f o h.

One form of spectral theorem may now be stated simply as follows: A
self-adjoint operator A on a separable Hilbert space is unitarily equivalent
to a multiplication operator. That is to say, there is some o-finite mea-
sure space (X, ) and some measurable function h on X such that A is
unitarily equivalent to multiplication by h. (See Theorem 7.20.) Although
this version of the spectral theorem is compellingly easy to state, there is
slight modification of it, involving direct integrals, that is in some ways
even better. See Sect. 7.3 for more information.

6.6 The Momentum Operator

Let us now see how the spectral theorem works out in the case of the
momentum operator, P = —ih d/dx on L?(R). The “eigenvectors” for
P are the functions e’**, k € R, with the corresponding eigenvalues be-
ing hk. Although the functions e*** are not in L?(R), the Fourier trans-
form shows that any function in L?(R) can be expanded as a superposition
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(i.e., continuous version of a linear combination) of these functions. (See
Appendix A.3.2.) Indeed, the Fourier transform is very much like the de-
composition of a vector in an orthonormal basis, in that the Fourier coeffi-
cients @[}(k) can be expressed in terms of the “inner product” of a function
Y with e?*®:

9) = 2n) 2 [ e (o) do = m) 2 (R 0) g

—0o0
if we ignore the fact that e?** is not actually in L.
Indeed, physicists frequently understand the Fourier transform by assert-
ing that the functions etk / V27 form an “orthonormal basis in the contin-
uous sense” for L?(R). Orthonormality in the continuous sense is supposed
to mean that one replaces the usual Kronecker delta in the definition of an
orthonormal set by the Dirac 0-function

eikm eil:l)
- — §(k — 1), 6.3
< V 2 V 2 >L2(R) ( ) ( )

where § is supposed to satisfy
| st -1) ar = )

for all continuous functions f. (Rigorously, d(k — 1) is a distribution; see
Appendix A.3.3.)

To give some rigorous meaning to (6.3), note that although the inner
product of €”** and e’® is not defined, we may approximate this inner
product by the expression

L e gy L0 Asin[A(k — 1)
1 po LRl Asin[A(k 1)
om ) ¢ € o —i(k—1)|_, 1w Ak—1)

It is possible to show that the above function, viewed as a function of k for
fixed A and [, behaves like 6(k — 1) in the limit as A tends to infinity. That
is to say, for all sufficiently nice functions v, we have

o Asin[A(R 0]
i /ﬂ)oib(k);mdk = (). (6.4)

Here is a heuristic argument for (6.4). By making the change of variable
k' = k — 1, we may reduce the general problem to the case [ = 0. If we then
make the change of variable k = Ak, the desired result is equivalent to

lim SN (f) dk = £(0). (6.5)

1
Astoo J_ o K A
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Now, if we can bring the limit inside the integral, f(x/A) will tend to f(0)
as A tends to infinity. Since the rest of the integrand on the right-hand
side of (6.5) is already independent of A, the result would then follow if we

could show that
oo 1 :
/ SR e =1 (6.6)

Even though the integral in (6.6) is not absolutely convergent, it is a con-
vergent improper integral. The value of the integral can be obtained by the
method of contour integration (or the method of consulting a table of in-
tegrals), and indeed (6.6) holds. Since (6.3) is, in any case, only a heuristic
way of thinking about the Fourier transform, we will not take the time to
develop a rigorous version of the preceding argument.

It is possible to derive, at least formally, many of the standard properties
of the Fourier transform by using (6.3), just as one can obtain properties
of Fourier series by using the orthonormality of the functions e?™"* in
L?([0,1]). More importantly, the Fourier transform is precisely the unitary
transformation that changes the momentum operator into a multiplication
operator. To see this property of the Fourier transform more clearly, we
introduce a simple rescaling of it.

Definition 6.1 For any ¢ € L*(R), define ¥ by

9w == (F).

so that

) *—1 Ooefiz/h x) dr

The function z/NJ(p) is the momentum wave function associated with 1.

By the Plancherel theorem (Theorem A.19) and a change of variable, if )
is a unit vector, then so is 1& and also 15 For any unit vector v, we interpret
[4)(p)|? as the probability density for the momentum of the particle, just as
|w(:v)|2 is the probability distribution of the position of the particle. Using
Proposition A.17, we may readily verify that for nice enough v, we have

Py(p) = pib(p). (6.7)

Equation (6.7) means that the unitary map ¢ — ¢ turns the momentum
operator P into multiplication by p. That is to say, the spectral theorem,
in its “multiplication operator” form, is accomplished in this case by the
Fourier transform (scaled as in Definition 6.1).

In terms of the momentum wave function, we may define spectral pro-
jections and a functional calculus for P, just as in Sect. 6.5. For any Borel



130 6. Perspectives on the Spectral Theorem

set £ C R, we may define a projection Pg to be the orthogonal projection
onto to the space of functions v for which 1/;(p) is zero almost everywhere
outside of E. If f is any bounded measurable function on R, we can define
an operator f(P) by defining f(P)y to be the unique element of L?(R) for
which

—_~—

F(P)p(p) = f(p)d(p).
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The Spectral Theorem for Bounded
Self-Adjoint Operators: Statements

In the present chapter, we will consider the spectral theorem for bounded
self-adjoint operators, leaving a discussion of unbounded operators to
Chaps.9 and 10. The proofs of the main theorems (two different versions
of the spectral theorem) are moderately long and are deferred to Chap.8.
After some elementary definitions and results in Sect. 7.1, we come to the
main results in Sects. 7.2 and 7.3. Throughout the chapter, H will, as usual,
denote a separable Hilbert space over C.

7.1 Elementary Properties of Bounded Operators

As usual, we will let H denote a separable complex Hilbert space. Recall
from Appendix A.3.4 that a linear operator A on H is said to be bounded
if the operator norm of A,

= swp 1AV

(7.1)
vem oy ¢l

is finite. The space of bounded operators on H forms a Banach space under
the operator norm, and we have the inequality

[AB| < |A[[IB] (7.2)
for all bounded operators A and B.

Definition 7.1 The Banach space of bounded operators on H, with respect
to the operator norm (7.1), is denoted B(H).
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Recall (Appendix A.4.3) that for any A € B(H) there is a unique operator
A* € B(H), called the adjoint of A, such that

(9, A¢) = (A"9, )

for all ¢,v € H. An operator A € B(H) is called self-adjoint if A* = A.
We say that A € B(H) is non-negative if

(, Ay) >0 (7.3)
for all ¥ € H.
Proposition 7.2 For all A € B(H), we have
A% = 1l4]
and
147 Al = |14l

In particular, if A is self-adjoint, we have the useful result that HAQH =
2
[|A[|.
Proof. The operator norm of A can also be computed as
[All = sup [lAs]l.
llell=1

Furthermore, for any vector ¢ € H, |[¢[| = supj, =1 [{(x,#)|. (Inequality
one direction is by the Cauchy—Schwarz inequality, and inequality the other
direction is by taking x to be a multiple of ¢.) Thus,

[All= "~ sup [{p, A)|.
lell=llvl=1

From this, we get
[A*| =~ sup  [(¢, A"}
lloll=llvl=1

= sup  [(A¢, )]
lell=ll =1

= sup  [(, Ag)]
lell=lvl=1

= [lA]l-
Meanwhile, |A*A| < ||A*||||A] = ||A]*. On the other hand,
[A*Al = sup  [(¢, A" AY)|
llpll=ll¥1=1
= sup  [(Ap, AY)|
llpll=ll¥1=1

> sup [(Ay, Ap)|
leli=1

=4,
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which establishes the inequality in the other order. m
We now record an elementary but very useful result.

Proposition 7.3 For all A € B(H), we have
[Range(A)]" = ker(A4*),
where for any B € B(H), ker(B) denotes the kernel of B.

Proof. Suppose first that 1 belongs to [Range(A)]l. Then for all ¢ € H,
we have

0= (¢, Ag) = (A", ) . (7.4)

This implies that A*y = 0 and thus that ¢ € ker(A*). Conversely, suppose
¢ € ker(A*). Then for all ¢ € H, (7.4) holds (reading the equation from
right to left). This shows that 1 is orthogonal to every element of the form
A, meaning that ¢ € [Range(4)]". m

Next, we define the spectrum of a bounded operator, which plays the
same role as the set of eigenvalues in the finite-dimensional case.

Definition 7.4 For A € B(H), the resolvent set of A, denoted p(A)
is the set of all A\ € C such that the operator (A — M) has a bounded
inverse. The spectrum of A, denoted by o(A), is the complement in C of
the resolvent set. For X\ in the resolvent set of A, the operator (A — \I)~*
1s called the resolvent of A at \.

Saying that (A — AI) has a bounded inverse means that there exists a
bounded operator B such that

(A—X)B=B(A-\) =1

If A is bounded and A — A is one-to-one and maps H onto H, then it
follows from the closed graph theorem (Theorem A.39) that the inverse
map must be bounded. Thus, the resolvent set of A can alternatively be
described as the set of A € C for which A — AI is one-to-one and onto.

Proposition 7.5 For all A € B(H), the following results hold.

1. The spectrum o(A) of A is a closed, bounded, and nonempty subset
of C.

2. If |\| > ||Al|, then X is in the resolvent set of A.

Lemma 7.6 Suppose X € B(H) satisfies | X|| < 1. Then the operator
I —X is invertible, with the inverse given by the following convergent series
I-X)'=T+X+X*+ X3+ (7.5)
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Proof. As a consequence of (7.2), we have || X™|| < || X||"™. The (geometric)
series on the right-hand side of (7.5) is therefore absolutely convergent and
thus convergent in the Banach space B(H) (Appendix A.3.4). If we multiply
this series on either side by (I — X ), everything will cancel except I, showing
that the sum of the series is the inverse of (/ — X). m

Proof of Proposition 7.5. For any nonzero A € C, consider the operator

A
A=A =-\(I-7).
( A)

If [\| > ||A]|, then ||A/A|] < 1, and I — A/ is invertible by the lemma. Tt
then follows that A — A is invertible, with

1 A A2
A-XM)t=——(I+>+ 5+ ). 7.6
a-an =3 (e 5 e+ ) (75)
Thus, A is in the resolvent set of A. This establishes Point 2 in the propo-
sition and shows that o(A) is bounded.
Suppose now that A\g € C is in the resolvent set of A. Then for another
number A € C, we have

A—=X=A— NI —(X=X)I
= (A= XoD) (I —(X\—=Xo) (A= XoD)™h). (7.7)

Thus, if
1

(A= XoD)~HI"

both factors on the right-hand side of (7.7) will be invertible, so that A— AT
is also invertible. Thus, the resolvent set of A is open and the spectrum is
closed.

To show that o(A) is nonempty, note that A — Al may be computed as
follows:

|)\—)\0| <

(A=A)"" =T =(A=X)(A= D))" A= XoD)

= <Z()\—)\o)m((f4—/\of)l)m> (A=XD)™h (7.8)

m=0

Thus, near any point Ao in the resolvent set of A, the resolvent (A — \I)~!
can be computed by the locally convergent series (7.8) in powers of A — A,
with the coefficients of the series being elements of B(H). For any ¢, € H,
the map

A (o, (A= X)) (7.9)

will be given by a locally convergent power series with coefficients in C,
meaning that the function (7.9) is a holomorphic function on the resolvent
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set of A. Furthermore, from (7.6) we can see that H(A - )\I)’lu tends to
zero as |A| tends to infinity, and so also does the right-hand side of (7.9).

If 0(A) were the empty set, the function (7.9) would be holomorphic
on all of C and tending to zero at infinity. By Liouville’s theorem, the
right-hand side of (7.9) would have to be identically zero for all ¢ and
1, which would mean that (A — M)~! is the zero operator. But since
(A—X)(A—X)~! =1, the operator (A — X\I)~! cannot be zero. m

If Ay = M for some A € C and some nonzero ¢ € H, then (A — A\I) has
a nonzero kernel and so A is in the spectrum of A. Thus, any eigenvalue
for A is contained in the spectrum of A. In the infinite-dimensional case,
however, the converse is not true: A point in the spectrum may not be an
eigenvalue for A. Nevertheless, for a bounded self-adjoint operator A, the
spectrum of A may be described in a way that is not too far removed from
what we have in the finite-dimensional case.

Proposition 7.7 If A € B(H) is self-adjoint, then the following results
hold.

1. The spectrum of A is contained in the real line.

2. A number A € R belongs to the spectrum of A if and only if there
exists a sequence by, of nonzero vectors in H such that

m —— =

n—oo |||

0. (7.10)

Condition 2 in the proposition says that A € R belongs to the spectrum
if and only if A is “almost an eigenvalue,” meaning that there exists 1) # 0
for which A is equal to AY plus an error that is small compared to the
size of 1.

Lemma 7.8 If A € B(H) is self-adjoint, then for all A = a+ib € C, we

have

(A=A, (A= XD)y) 2 b (3, ). (7.11)
Proof. We compute that
(A= (a+1ib)), (A — (a+ b))
= ((A—al)Y,(A—al)Y) +ib(y, (A —al)y)
—ib (A —al)y, ) + 6% (1), ¥) . (7.12)

Since A is self-adjoint, so is A — al, from which we see that the second and
third terms on the right-hand side of (7.12) cancel, leaving us with

(A=A, (A= ADp) = (A = al ), (A — al)y) +b* (1, 9),

from which the desired inequality follows. m
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Proof of Proposition 7.7. For Point 1, we need to show that any complex
number A = a + ib with b # 0 belongs to the resolvent set of A. Since
b # 0, (7.11) shows that A — AT is injective. Meanwhile, by Proposition 7.3,
Range(A — M)+ = ker(A — ). Since A also has nonzero imaginary part,
A — M is injective, and so the range of A — AI is dense in H. To show
that the range is all of H, consider any ¢ € H and choose a sequence
én = (A = X)), in Range(A — \I) with ¢, — ¢. Applying (7.11) with ¢
replaced by 1, — 1, shows that (¢,,) is a Cauchy sequence. Thus, 1, — 1
for some ¢ € H. Since A is bounded,

(A=AD¢p = lim (A=A, = lim ¢, = ¢.

We conclude, then, that A— AT is one-to-one and onto. The inverse operator
(A — AI)~! is bounded, by (7.11) (or by the closed graph theorem).

For Point 2, assume there exists a sequence as in (7.10), and suppose that
A—MI had an inverse. Letting ¢, = (A—\I )1, we have 1, = (A—XI) 1o,
and so (7.10) says that

el
w350 [[(A = A1) 1]

which shows that (4 — AI)~! is actually unbounded. Thus, A — A\I cannot
have a bounded inverse.

Conversely, if, for some A € R, no such sequence exists, then there exists
some ¢ > 0 such that

0,

(A= ADY| = e |¥]] (7.13)

for all » € H. Then A — Al is injective and Proposition 7.3 tells us that
the range of the self-adjoint operator A — A\I is dense in H. Arguing as in
the preceding paragraphs with (7.13) in place of (7.11), we can see that the
range of A — A\ is also closed, hence all of H. This shows that A — AI has
an inverse. m

Example 7.9 Let H = L?([0,1]) and let A be the operator on H defined
by
(AY)(x) = 2 ().

Then this operator is bounded and self-adjoint, and its spectrum is given by
o(A) =[0,1].

As we have already noted in Sect. 6.1, the operator A does not have any
(true) eigenvectors.
Proof. It is apparent that || Ay| < ||9|| and that (¢, Ap) = (Ap, ) for all
¢, € H, so that A is bounded and self-adjoint. Given A € (0,1), consider
the functions ¥y, := 1j\x41/n], Which satisfy H1/Jn||2 = 1/n. On the other
hand, since |z — A| < 1/n on [A\; A+ 1/n], we have

(A = XD ||? < 1/n°.
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Thus, by Proposition 7.7, A belongs to the spectrum of A. Since this holds
for all A € (0,1) and the spectrum of A is closed, o(A4) D [0, 1].

Meanwhile, if A ¢ [0,1], then the function 1/(z — A) is bounded on
[0,1], and so A — AT has a bounded inverse, consisting of multiplication by
1/(z — A). Thus, o(A) =1[0,1]. m

7.2 Spectral Theorem for Bounded Self-Adjoint
Operators, [

7.2.1 Spectral Subspaces

Given a bounded (for now) self-adjoint operator A, we hope to associate
with each Borel set £ C 0(A) a closed subspace Vg of H, where we think
intuitively that Vg is the closed span of the generalized eigenvectors for A
with eigenvalues in E. [We could do this more generally for any F C R,
but we do not expect any contribution from R\c(A).] We would expect the
collection of these subspaces to have the following properties.

—_

. VU(A) = H and Vg = {0}
2. If E and F are disjoint, then Vg 1 Vp.
3. For any F and F, Vgnr = Vg N VE.

4. If Ey, Es, ... are disjoint and ¥ = U; F;, then

Ve =PVe,.
J

5. For any F, Vg is invariant under A.
6. If E C [\ —¢&, 0 +¢] and ¢ € Vg, then

(A= XDyl <ell]-

The condition V,4) = H captures the idea that our generalized eigenvec-
tors should span H, while Property 2 captures the idea that our generalized
eigenvectors should have some sort of orthogonality for distinct eigenval-
ues, even if they are not actually in the Hilbert space. In Property 4, there
may be infinitely many of the E;’s, in which case, the direct sum is in the
Hilbert space sense (Definition A.45). Properties 5 and 6 capture the idea
that Vg is made up of generalized eigenvectors for A with eigenvalues in E.
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7.2.2  Projection-Valued Measures

It is convenient to describe closed subspaces of a Hilbert space H in terms of
the associated orthogonal projection operators. Recall (Proposition A.57)
that, given a closed subspace V' of H, there exists a unique bounded op-
erator P that equals the identity on V and equals zero on the orthogonal
complement V1 of V. This operator is called the orthogonal projection
onto V and satisfies P2 = P and P* = P. The following definition ex-
presses the first four properties of our spectral subspaces—the ones that
do not involve the operator A—in terms of the corresponding orthogonal
projections. Since those properties are similar to those of a measure, we
use the term projection-valued measure.

Definition 7.10 Let X be a set and Q) a o-algebra in X. A map p: Q —
B(H) is called a projection-valued measure if the following properties
are satisfied.

1. For each E € Q, u(E) is an orthogonal projection.
2. w(@)=0and n(X)=1.
3. If 1, E5, Es, ... in Q are disjoint, then for all v € H, we have

nl UE | v=2"uE)w.
j=1 j=1

where the convergence of the sum is in the norm topology on H.
4. For all Eq, Ey € Q, we have pw(E1 N Ea) = p(Eq)p(Ea).

Note that if F; and F, are disjoint, then Properties 2 and 4 tell us
that p(E1)p(E2) = 0, from which it follows (Exercise 10) that the range
of u(E1) and the range of u(FEs) are perpendicular. It is then not hard to
verify that p(FE7)u(E2) is the projection onto the intersection of the ranges
of u(Ey) and p(Fs2) (Exercise 11). Thus, if we define, for each E € €, a
closed subspace Vg := Range(u(E)), then the collection of Vg’s satisfy the
first four properties that we anticipated for spectral subspaces.

In the next subsection, we will associate a projection-valued measure p*
with each bounded self-adjoint operator A. In that case, the projection
p(E) will be thought of as a projection onto the spectral subspace cor-
responding to E. We are about to introduce the notion of operator-valued
integration with respect to a projection-valued measure. In the case of the
projection-valued measure pu? associated with A, this operator-valued in-
tegral will be the functional calculus for A.

Observe that, for any projection-valued measure p and ¥ € H, we can
form an ordinary (positive) real-valued measure p,, by setting

py(E) = (¥, n(E)) (7.14)
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for all E € Q. This observation provides a link between integration with
respect to a projection-valued measure and integration with respect to an
ordinary measure.

Proposition 7.11 (Operator-Valued Integration) Let Q be a o-alge-
bra in a set X and let p: Q@ — B(H) be a projection-valued measure. Then
there exists a unique linear map, denoted f — fQ f du, from the space of
bounded, measurable, complez-valued functions on Q into B(H) with the

property that
du = d 7.15
<1/1,</Xf >¢> /f Hap (7.15)

for all f and all ¢ € H, where p, is given by (7.14). This integral has the
following additional properties.

1. For oll E € ), we have

/X lp dp = p(E).

In particular, the integral of the constant function 1 is I.

2. For dll f, we have
| g an < swp 001 (7.16)
b'e reXx

8. Integration is multiplicative: For all f and g, we have

v (Lra) (o) o

4. For all f, we have

o ()

In particular, if f is real-valued, then fX f du is self-adjoint.

By Property 1 and linearity, integration with respect to p has the ex-
pected behavior on simple functions. It then follows from Property 2 that
the integral of an arbitrary bounded measurable function f can be computed
as follows. Take a sequence s,, of simple functions converging uniformly to
f; the integral of f is then the limit, in the operator norm topology, of the
integral of the s,,’s.

Although the multiplicative property of the integral may seem surprising
at first, observe that for any F1, F5 € €0, Property 3 in Definition 7.10 tells
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(/x e dM) </X Lo d“) = (B p(Ez) = p(Er N Ea)

:/ 1E1 . 1E2 d,u.
X

Thus, multiplicativity of the integral at the level of indicator functions is
built into the definition of a projection-valued measure.

If one wanted to make a real-valued measure for which the corresponding
integral was multiplicative, then since 1g - 1g = 1g, the integral of 1p—
namely, p(E)—would have to satisfy u(E)? = u(E). This would mean
that p(E) is 0 or 1 for all E. For such measures, one would indeed obtain
multiplicativity of the integral, but measures with this property are not
very interesting. For operator-valued measures, we can have interesting
examples where the integral is multiplicative, simply because there are
many more idempotents (elements A with A2 = A) in B(H) than in R.
Proof of Proposition 7.11. Given a projection-valued measure p and a
bounded measurable function f on X, define a map Q¢ : H — C by

us that

Q) = /X £ du,

where g is given by (7.14). If f is an indicator function, then Q(¢) =
(1, p(E)v) is a bounded quadratic form. (See Definition A.60.) It is straight-
forward to show, passing from indicator functions to simple functions and
then to general functions, that for any bounded measurable f, Q¢ is a
bounded quadratic form, with

Q)1 = (sup 701 ol (7.15)

It then follows from Proposition A.63 that there is a unique bounded
operator Ay such that

Qs (Y) = (¥, Asy)

for all ¢y € H. We set [, f du = Ay. From the way A is defined, it
satisfies (7.15). The uniqueness of the linear map f — fo dp follows
from the uniqueness in Proposition A.63.

If f=1g, then Qs(¢) = py(E) = (3, w(E)Y), in which case the unique
associated operator Ay is p(FE). This establishes Property 1. Property 2
follows from (7.18).

For Property 3, we have already observed that multiplicativity of the
integral, at the level of indicator functions, is built into the definition of a
projection-valued measure. Since both sides of (7.17) are bilinear in (¢, 1),
we have (7.17) for simple functions. Using Property 2, we can then ob-
tain (7.17) for all bounded measurable functions by taking limits.
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Finally, if f is real valued, then Q ;(¢) will be real for all v € H. Thus, by
Proposition A.63, the associated operator Ay will be self-adjoint. Property
4 then follows by linearity. m

7.2.83  The Spectral Theorem

We are ready to state one version of the spectral theorem for bounded
self-adjoint operators.

Theorem 7.12 (Spectral Theorem, First Form) If A € B(H) is self-
adjoint, then there exists a unique projection-valued measure p on the
Borel o-algebra in o(A), with values in projections on H, such that

/ A dpt(\) = A. (7.19)
o(A)

Since the spectrum o(A) of A is bounded, the function f(X) := X is
bounded on o(A). The proof of this theorem is given in Chap. 8.

Definition 7.13 (Functional Calculus) If A € B(H) is self-adjoint and
f:o(A) = C is a bounded measurable function, define an operator f(A)
by setting
f(A) = FO dut (),
a(A)

where p? is the projection-valued measure in Theorem 7.12.

We may extend the projection-valued measure p? from o(A) to all of
R by assigning measure 0 to R\ o(A). Then, roughly speaking, f(A) is
the operator that is equal to f(A)I on the range of the projection operator
pA(A A+ dN)).

Since the integral with respect to p* is multiplicative, it follows from
(7.19) that if f(A) = A™ for some positive integer m, then f(A) is the
mth power of A. Further, since the series e®* = >">°_ (aX)™/m! converges
uniformly on the compact set (A), the operator e (computed using the
functional calculus for the function f(\) = e%) may be computed as a
power series.

Definition 7.14 (Spectral Subspaces) For A € B(H), let u* be the
associated projection-valued measure, extended to be a measure on R by
setting p*(R \ o(A)) = 0. Then for each Borel set E C R, define the
spectral subspace Vi of H by

Vi = Range(u (E)).

The definition of a projection-valued measure implies that these spectral
subspaces satisfy the first four properties listed in Sect. 7.2.1. We now show
that (7.19) implies the remaining two properties we anticipated for the
spectral subspaces.
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Proposition 7.15 If A € B(H) is self-adjoint, the spectral subspaces as-
sociated with A have the following properties.

1. Fach spectral subspace Vg is invariant under A.

2. If E C [\ — ¢, o + €] then for all ¥ € Vi, we have

I(A =X D)e <ello].-

8. The spectrum of A|VE is contained in the closure of E.

4. If Ao is in the spectrum of A, then for every neighborhood U of Ao,
we have Vi # {0}, or, equivalently, p(U) # 0.

Proof. For Point 1, observe that for any bounded measurable functions f
and g on o(A), the operators f(A) and g(A) commute, since the product
in either order is equal to the integral of the function fg = ¢f with respect
to u. In particular, A, which is the integral of the function f(\) = X,
commutes with y?(E), which is the integral of the function 1g. Thus,
given a vector u?(E)¢ in the range of u(E), we have

Apt(E)p = ™ (E) A,

which is again in the range of u?(E), establishing the invariance of the
spectral subspace.

For Point 2, suppose that ¢ € Vg, where E C [A\g — &, A\g + £]. Then ¢ is
in the range of u(E), and so

(A= XDt = (A= XD ) (E)0.

But u(E) = 1g(A) and A — X\l = f(A), where f(\) = A — \o. By the
multiplicativity of the integral, then,

(A= XoD)y = (f1p)(A)Y.

But |f(A)1g(A)| < e and so by (7.16), the operator (f1g)(A) has norm at
most €.

For Point 3, if A is not in E, then the function g(\) := 1g(A\)(1/(A—Xo))
is bounded. Thus, g(A) is a bounded operator and

9(A)(A = D) = (A= XoD)g(A) = 15(A).

This shows that the restriction to Vg of g(A) is the inverse of the restriction
to Vg of A. Thus, Ao is not in the spectrum of Aly, .

For Point 4, fix Ao € 0(A) and suppose for some & > 0, we have u((Ao —
g, A0 +¢)) = 0. Consider, then, the bounded function f defined by

1
[ = A lze
fm_{ 0" A=<
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Since f(A) - (A — Ao) equals 1 except on (A\g — &, A0 + €), the equation
F(A) - (A= Xo) = 1 holds p-almost everywhere. Thus, the integral of this
function coincides with the integral of the constant function 1, which is .
Since the integral is multiplicative, we see that

FAY A= XoI) = (A= QD) f(A) =1,

showing that the bounded operator f(A) is the inverse of (A — A\oI). This
contradicts the assumption that Ao € 0(4). m

Proposition 7.16 If A € B(H) is self-adjoint and B € B(H) commutes
with A, the following results hold.

1. For all bounded measurable functions f on o(A), the operator f(A)
commutes with B.

2. Each spectral subspace for A is invariant under B.

The proof of this proposition is deferred until Chap.8. We conclude this
section by fulfilling (at least for bounded self-adjoint operators) one of
the goals of the spectral theorem, namely to give a probability measure
describing the probabilities for measurements of a self-adjoint operator A
in the state 1.

Proposition 7.17 Suppose A € B(H) is self-adjoint and 1» € H is a unit
vector. Then there exists a unique probability measure ,u;2 on R such that

(@Amcm$@>:@%Amw>

for all non-negative integers m.

We will prove a version of Proposition 7.17 for unbounded self-adjoint
operators in Chap.9. In the unbounded case, however, we will not obtain
uniqueness of the probability measure, even if ¢ is in the domain of A™ for
all m. Even in the unbounded case, however, the spectral theorem provides
a canonical choice of the probability measure.

Proof. We define a measure u;z on o(A) as in Sect. 7.2.2 by

pp(B) = (o, i (E)) .

The properties of integration with respect to u then tell us that

m _ m A . m A
<“A1”‘<“<Lmﬁ WL“O¢>‘LMf dt ().

We then extend ul‘z to R by setting it equal to zero on R\o(A), establishing
the existence of the desired probability measure on R. Since

[, AT < ([0 LA™ < Il 1A ™



144 7. The Spectral Theorem for Bounded Self-Adjoint Operators...

the moments grow only exponentially with m. Thus, standard uniqueness
results for the moment problem (e.g., Theorem 8.1 in Chap. 4 of [18]) give
the uniqueness of uﬁ. [ ]

7.3 Spectral Theorem for Bounded Self-Adjoint
Operators, 11

As we have already noted in Sect. 6.5, one version of the spectral theorem
asserts that every self-adjoint operator is unitarily equivalent to a multi-
plication operator. In the case of a bounded self-adjoint operator A, on a
separable Hilbert space H, this result means that A is unitarily equiva-
lent to the operator My, on L?(X,u), where (X, i) is a o-finite measure
space, h is a measurable, real-valued function, and M}, is the operator of
multiplication by h:
(Mpp)(A) = R(A)P ().

Although the “multiplication operator” form of the spectral theorem
(Theorem 7.20) has the advantage of being easy to state, there is an even
better version involving the concept of a direct integral. It is straightforward
to extend the notion of an L? space to an L? space with values in a Hilbert
space H. In a direct integral, we extend the concept one step further, by
allowing the Hilbert space to depend on the point. We begin with a measure
space (X, p) and then have one Hilbert space Hy for each A in X. An
element of the direct integral is a function s on X such that s(A) belongs
to H), for each A € X. Given a real-valued measurable function h on X, it
makes sense to multiply an element s of the direct integral by h.

The direct integral form of the spectral theorem says a bounded self-
adjoint operator A is unitarily equivalent to a multiplication operator on a
direct integral. By extending multiplication operators to the more general
setting of direct integrals (instead of just ordinary L? spaces), we gain sev-
eral benefits. First, the set X and the function h become canonical: The
set X is simply the spectrum of A and the function A is simply h(A) = A.
Second, the direct integral approach carries with it a notion of “generalized
eigenvectors,” since the space Hy can be thought of as the space of gener-
alized eigenvectors with eigenvalue A. (The spaces Hy are not, in general,
contained in the direct integral Hilbert space. Thus, direct integrals give a
rigorous meaning to the idea of “eigenvectors” that are not in the Hilbert
space on which the operator acts.) Third, the direct integral approach gives
a simple way to classify self-adjoint operators up to unitary equivalence:
Two self-adjoint operators are unitarily equivalent if and only if their direct
integral representations are equivalent in a natural sense (Proposition 7.24).

If one really wants the simplicity of the (ordinary) multiplication operator
version of the spectral theorem, it is a simple matter to prove this result
using precisely the same methods as in the proof of the direct integral
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version. (See Theorem 7.20.) Nevertheless, the direct integral version is,
arguably, the most definitive version of the spectral theorem for a single
self-adjoint operator.

We turn now to the definition of a direct integral. Suppose p is a o-finite
measure on a o-algebra ) of sets in X. Suppose also that for each A € X,
we have a separable Hilbert space Hy with inner product (-,-),. We want
to define the direct integral of the Hy’s with respect to p. Elements of the
direct integral will be sections s, meaning that s is a function on X with
values in the union of the Hy’s, having the property that

S(/\) e H,

for each A in X. We would like to define the norm of a section s by the
formula

Isl? = /X (5(N), 5(0) 5 AN,

provided that the integral on the right-hand side is finite. The inner product
of two sections s; and sg (with finite norm) should then be given by the
formula

(51, 82) 1= /X (5100, 52 (A) du(N).

The problem with this description of the norm and inner product on
the direct integral is that we have not said anything about measurability.
As things stand, it does not make sense to ask whether a section s is
measurable, since the space in which s(\) takes its values is different for
each \. We must, therefore, introduce some additional structure that gives
rise to a notion of measurability. (The measurability issue is a technicality
that can be ignored on a first reading.)

One way to address the measurability issue is to choose a simultaneous
orthonormal basis for each of the Hilbert spaces Hy. To deal with the
possibility that different spaces can have different dimensions, we slightly
modify the concept of an orthonormal basis. We say that a family {e;} of
vectors is an orthonormal basis for a Hilbert space H if (ej,e;) = 0 for
j # k, the norm of each e; is either 0 or 1, and the closure of the span
of the e;’s is all of H. This just means that we allow some of the vectors
in our basis to be zero, with the nonzero vectors forming an orthonormal
basis in the usual sense.

We now define a simultaneous orthonormal basis for a family {Hy} of
separable Hilbert spaces to be a collection {e;(-)}32; of sections with the
property that for each A, {e;(A)}32; is an orthonormal basis for Hy. Pro-
vided that the function A — dim H) is a measurable function from X into
[0,00], it is possible to choose a simultaneous orthonormal basis {e;(-)}
such that (e;(A), ex (X)) is measurable for all j and k. Having chosen a si-
multaneous orthonormal basis with this property, we define a section s to
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be measurable if the function
A (e (A), s(A)

is a measurable complex-valued function for each j. Our assumption on the
e;’s means that the e¢;’s themselves are measurable sections.

We refer to a choice of simultaneous orthonormal basis, chosen so that
(ej(N), ex(N)) is measurable, as a measurability structure on the collection
of Hy’s. Given two measurable sections s; and ss, the function

A (51(A) 52 (M) = D {51(A), e (V) (e5(A), s2(A)

=1
is also measurable.

Definition 7.18 Suppose the following structures are given: (1) a o-finite
measure space (X,Q,u), (2) a collection {Hx}rex of separable Hilbert
spaces for which the dimension function is measurable, and (3) a mea-
surability structure on {Hyx}xex. Then the direct integral of the Hy s
with respect to i, denoted

52
/ H)\ d‘U(A),
X

s the space of equivalence classes of almost-everywhere-equal measurable
sections s for which

5] := /X (50,5000 () < oo,

The inner product (s1,s2) of two such sections s1 and sa is given by the
formula

(s1,82) = /X (5100, 52 () dp(N).

To see that the integral defining the inner product of two finite-norm
sections is finite, note that [(s1(A),s2(N)),] < [[st(AN)][ [[s2(V)] . By as-
sumption, [|s;(A)|, is a square-integrable function of A for j = 1,2, and
the product of two square-integrable functions is integrable. Thus, the inte-
grand in the definition of (s, s2) is also integrable. It is not hard to show,
using an argument similar to the proof of completeness of L? spaces, that
a direct integral of Hilbert spaces is a Hilbert space.

Let us think of two important special cases of the direct integral con-
struction. First, if each of the Hy’s is simply C, then the direct integral
(with the obvious measurability structure) is simply L?(X, u1). Second, sup-
pose that X = {A1, \a,...} is countable, Q is the o-algebra of all subsets
of X, and p is the counting measure on X. Then the direct integral is the
Hilbert space direct sum (Definition A.45).
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Given a direct integral, suppose we have some A\g € X for which {\o}
is measurable and such that ¢ := p({Ao}) > 0. Then we can embed Hj,
isometrically into the direct integral by mapping each ¢ € H,, to the

section s given by
1
_1/}5 A= A0
=< Ve
o) { 0, A#£X

Even if p({\o}) = 0, we may still think that Hy, is a sort of “generalized
subspace” of the direct integral.

Theorem 7.19 (Spectral Theorem, Second Form) If A € B(H) is
self-adjoint, then there exists a o-finite measure p on o(A), a direct in-

tegral
52

H, du()),
o(A)

and a unitary map U between H and the direct integral such that
[UAU(s)] (A) = As(N) (7.20)
for all sections s in the direct integral.

The proof of Theorem 7.19 is given in the next chapter, along with the
proof of our first version of the spectral theorem. In the meantime, let us
think about what this version of the spectral theorem is saying. We may
think that the unitary map U is an identification of our original Hilbert
space H with a certain direct integral over the spectrum of A. Under this
identification, the self-adjoint operator A becomes the operator of multi-
plication by A, that is, the map sending the section s(A) to As(A). Roughly
speaking, then, the operator A acts (under our identification) as AI on
each space H). Thus, we may think of H), as being something like an
“eigenspace” for A, for each element A\ of the spectrum of A. Of course,
unless p({A}) > 0, the Hilbert space H) is not actually contained in H.
Nevertheless, we may think of elements of a given Hy as “generalized eigen-
vectors” for the operator A.

The direct integral formulation of the spectral theorem leads readily to a
classification result for bounded self-adjoint operators. See Proposition 7.24
later in this section. Meanwhile, as we noted earlier in this section, the
method of proof for Theorem 7.19 also yields a version of the spectral
theorem involving multiplication operators on ordinary L? spaces.

Theorem 7.20 (Spectral Theorem, Multiplication Operator Form)
Suppose A € B(H) is self-adjoint. Then there exists a o-finite measure
space (X, ), a bounded, measurable, real-valued function h on X, and a
unitary map U : H — L?(X, u) such that

[UAUT ()](A) = k()% (A)
for all v € L*(X, ).
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We return now to a discussion of the direct integral version of the spectral
theorem. This version gives a simple description of the functional calculus.

Proposition 7.21 Suppose A € B(H) is self-adjoint and U is a unitary
map as in Theorem 7.19. Then for any bounded measurable function f on
o(A), we have

[UFAUTTH($)IN) = fF)s(N).

Thus, roughly speaking, f(A) is defined to be f(A)I on each “generalized
eigenspace” H). Proposition 7.21 follows directly from (7.20) if f is a poly-
nomial; the result for continuous f then follows by taking uniform limits.
The result for general f is then easily established by using the limiting
arguments of Chap. 8, especially Exercise 3.

Let us now consider what sort of uniqueness there should be in the second
version of the spectral theorem. There is a “trivial” source of nonuniqueness
coming from the possibility that some of the Hy’s may have dimension 0.
Let Ey denote the set of A for which dim Hy = 0. Even if u(FEy) > 0, the set
FEy makes no contribution to the norm of a section, since every section is
automatically zero on Ey. Thus, we may define a new measure i by setting
A(E) = u(ENES), so that i agrees with 1 on E§ but is zero on Ey. Then
the direct integrals of the H)’s with respect to u and with respect to fi are
“indistinguishable.” Thus, we can always modify a direct integral so as to
assume that dimHy > 0 for almost every A.

Meanwhile, unlike the projection-valued measure p in Theorem 7.12,
the measure i in Theorem 7.19 is not unique, but only unique up to equiva-
lence, where two o-finite measures on a given measurable space are equiva-
lent if they have precisely the same sets of measure zero. For a given measure
1, the Hilbert spaces H) are unique only up to unitary equivalence, mean-
ing that only the dimension of the spaces is uniquely determined. Even
the dimension of Hy is uniquely determined only up to a set of p-measure
zero. As it turns out, the sources of nonuniqueness in this paragraph and
the previous paragraph are all that exist.

Proposition 7.22 (Uniqueness in Theorem 7.19) Suppose A € B(H)
is self-adjoint and consider two different direct integrals as in Theorem 7.19,

one with measure " and Hilbert spaces H(Al) and the other with mea-

sure 2 and Hilbert spaces H(AQ). If dim H(Aj) > 0 for 9 -almost every A
(j =1,2), then pY and p® are mutually absolutely continuous and

dim H" = dim H{
for 9 -almost every X (j =1,2).

See the end of the next chapter for a sketch of the proof of this uniqueness
result.

Theorem 7.19 should be thought of as a refinement of our earlier form
(Theorem 7.12) of the spectral theorem, in the sense that we can easily
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recover Theorem 7.12 from Theorem 7.19. In the setting of Theorem 7.19,
and given a measurable set E C o(A), let Vg denote the space of (equiv-
alence classes) of sections s that are supported on E, that is, for which
s(A) = 0 for p-almost every A\ in E€. This is easily seen to be a closed
subspace. Let Pgp denote the orthogonal projection onto Vg, and define

p(E) = U 'PgU. (7.21)

It is straightforward to check that p* is a projection-valued measure on
o(A), with values in B(H), and that fU(A) A dpt(\) = A.

Note that both versions of the spectral theorem for A involve a measure,
the first, denoted p, being a projection-valued measure, and the second,
denoted p, being an ordinary measure with values in the non-negative real
numbers. The following result shows the relationship between the two mea-
sures.

Proposition 7.23 Suppose A € B(H) is self-adjoint, u? is the projection-
valued measure given by Theorem 7.12 and p is a real-valued measure as
in Theorem 7.19. If dimH)y > 0 for p-almost every A\, then for any Borel
set E C o(A), p(E) =0 if and only if u(E) = 0.

Of course, the 0 in the expression u” (E) = 0 is the zero operator, whereas

the 0 in the expression p(FE) = 0 is the number 0. Nevertheless, we may
think of Proposition 7.23 as saying that p“ and p are equivalent in the
usual measure-theoretic sense, having precisely the same sets of measure
Zero.
Proof. As we have remarked, given a direct integral as in Theorem 7.19,
we can construct a projection-valued measure by means of (7.21), and this
projection-valued measure satisfies fg( A A dp(N\) = A. This projection-
valued measure must coincide with the one in Theorem 7.12, by the unique-
ness in that theorem.

Now, if u(E) = 0, then any section supported on E is zero almost every-
where and thus represents the zero element of the direct integral. In that
case, Vg = 0 and so u(E) = 0 by (7.21). In the other direction, suppose
w(E) > 0. Since u is o-finite, E will contain a measurable subset F' such
that 0 < u(F') < co. Then let s be the section given by

SR

for A € F and s(A\) = 0 for A € F¢, where {e;(-)} is our measurability
structure for the direct integral. Then
1
(s(A), €5y = 57 (€ (A), e5(N)y 1r(A),

which is a measurable function of A for all j, so that s is measurable. Since
we assume that Hy has nonzero dimension for p-almost every A, s will be
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nonzero almost everywhere on F' and thus will have positive norm. The
norm of s is finite because ||s(A)|| < 1 and F has finite measure. Thus,
Ve #0and p(E) #0. m
We say that self-adjoint operators A; and A, on Hilbert spaces H; and
Hy are unitarily equivalent if there exists a unitary map U : Hy — Ho
such that
Ay =UA U

Using Proposition 7.22, we can give a classification of bounded self-adjoint
operators on separable Hilbert spaces up to unitary equivalence. For a given
bounded self-adjoint operator A, we call the function A — dimH) the
multiplicity function for A. Tt is well defined (independent of the choice of
direct integral decomposition) up to a set of measure zero. It turns out that
bounded self-adjoint operators are characterized, up to unitary equivalence,
by the spectrum of A as a set, the equivalence class of the measure p in
Theorem 7.19, and the multiplicity function.

Proposition 7.24 Suppose Ay and As are bounded self-adjoint operators
on separable Hilbert spaces Hy and Hs, respectively. Choose direct integral
representations for Ay and As as in Theorem 7.19, with the associated
measures f11 and fia chosen so that dimHy > 0 for p;-almost every A
(j = 1,2). Then Ay and As are unitarily equivalent if and only if the
following conditions are satisfied.

1. O'(Al) = O'(AQ).
2. The measures p1 and pe are mutually absolutely continuous.

8. The multiplicity functions of A1 and As coincide up to a set of mea-
sure zero.

See Exercise 12 for a proof of this result.

7.4 Exercises

1. Suppose A and B are commuting linear operators on a nonzero finite-
dimensional vector space.

(a) Show that each eigenspace for A is invariant under B.

(b) Show that A and B have at least one simultaneous eigenvector,
that is, a nonzero vector v with Av = Av and Bv = puw, for some
constants A\, u € C.

2. Suppose that A € B(H) is normal, meaning that AA* = A*A. Sup-
pose that for some ¢ € H and A € C we have Ay = A\p. Show that
A*p = M.

Hint: Compute [|(A* — Ny
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Suppose a closed subspace V' of H is invariant under a bounded oper-
ator A, meaning that Ay € V for all ¢ € V. Show that the orthogonal
complement V* of V is invariant under A*.

(a) Suppose that H is a finite-dimensional Hilbert space over C and
A is a normal linear operator on H in the sense of Exercise 2.
Show that there exists an orthonormal basis for V' consisting of
simultaneous eigenvectors for A and A*.

Hint: Use Exercises 1 and 3.

(b) Suppose A is a linear operator on a finite-dimensional Hilbert
space H over C and suppose there exists an orthonormal basis
for V' consisting of eigenvectors of A. Show that A commutes
with A*.

. Suppose A € B(H) has an inverse A~! in B(H). Show that (A~1)*A*

= A*(A~YH* = I. Conclude that A* is invertible and (A*)~t=(A~1)*.
Suppose U is a unitary operator on H (Definition A.55). Show that
the spectrum of U is contained in the unit circle.

Hint: By writing U — Al as (—=A\)(I —U/\) or as U(I — AU~ 1), show
that any A with |A] # 1 is in the resolvent set of \.

Suppose that A € B(H) is self-adjoint and non-negative, that is, that
A satisfies (7.3). Show that the spectrum of A is contained in the
interval [0, 00).

Note: Conversely, if A € B(H) is self-adjoint and o(4) C [0, 00), then
A is non-negative. See Exercise 2 in Chap. 8.

Suppose A € B(H) is invertible. Show that there exists £ > 0 such
that for all B € B(H) with ||B — A|| < e, B is also invertible.

Hint: Use a power series argument as in the proof of Proposition 7.5.
Assume A € B(H) is self-adjoint.

(a) Suppose A\g € C is a point in the resolvent set of A. Show that

1
A= XD = ——r
14=2007 = G oty
where d()\o, O'(A)) = ianEU(A) |)\ - )\0|
Hint: Think of (A — A\gI)~! as a function of A in the sense of
the functional calculus for A.

(b) Given A9 € C, suppose that there exists some nonzero ¢p € H
such that

Ay = Xot|| <ell¥]l.
Show that there exists A € o(A) such that A — \g| < e.
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10.

11.

12.
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Suppose Vi and V5 are two closed subspaces of H, with associated
orthogonal projections P; and P,. Show that V; and V5 are orthogonal
if and only if P, P, = 0.

Suppose p is a projection-valued measure on (X, €2). Show that for
any F1,FEy € Q, u(E1)u(F2) is the projection onto the closed sub-
space Range(u(F1)) N Range(u(E2)).

Hint: Write By as Ey = (F1 N Ey) U (E1\E2) and use Exercise 10.

Prove Proposition 7.24.

Hint: Use Proposition 7.22 and the Radon—Nikodym theorem
(Theorem A.6).
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The Spectral Theorem for Bounded
Self-Adjoint Operators: Proofs

In this chapter we give proofs of all versions of the spectral theorem stated
in the previous chapter.

8.1 Proof of the Spectral Theorem, First Version

A proof of the spectral theorem, in its projection-valued measure form, can
be obtained in two main stages. The first stage of the proof is to define a
continuous functional calculus, meaning we associate with each continuous
function f on o(A) an operator f(A). The map f — f(A) should have the
property that if f is the function f(\) = A, then f(A) = A™. The contin-
uous functional calculus is then constructed by approximating continuous
functions on o(A) by polynomials. The Stone-Weierstrass theorem tells us
that polynomials are dense in the continuous functions on o(A); it remains
only to show that if a sequence p,, of polynomials converges uniformly to
some continuous function f on o(A), then the operators p,,(A) converge to
some operator, which we will then call f(A).

The second stage of the proof is to show that the continuous functional
calculus can be represented as integration against a projection-valued mea-
sure. This result is just an operator-valued version of the Riesz represen-
tation theorem from measure theory (Theorem 8.5). Indeed, we will see
that this operator-valued version of the Riesz representation theorem can
be reduced to the usual form of the theorem.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 153
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_8,
© Springer Science+Business Media New York 2013
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8.1.1 Stage 1: The Continuous Functional Calculus
We begin by defining, for any A € B(H), the spectral radius R(A) by

R(A) = sup |A|.
Aeo(A)

(By Propositions 7.5 and 7.7, 0(A) is a nonempty, bounded subset of R.)
According to Point 2 of Proposition 7.5, we have

R(A) <|A]

for any A € B(H). In general, ||A|| can be much bigger than R(A). For ex-
ample, if A is a nilpotent matrix, then R(A) = 0 but ||A|| can be arbitrarily
large.

Lemma 8.1 If A € B(H) is self-adjoint, the norm and the spectral radius
of A are equal:
[All = R(A).

In preparation for the proof, we determine the radius of convergence of
the power series for the resolvent given in the proof of Proposition 7.5.
According to Proposition 7.2, we have

14~ Al = | A|I*
for any A € B(H). If A is self-adjoint, we obtain
2
4] = Al
Iterating this relation gives

4% || = 1ar” (8.1)

for all n.
Consider, for a bounded self-adjoint operator A, the following formal
expression for the resolvent of A:

(A= XI)"! = —i (1 - §>_1

=-> /\m—: (8.2)
m=0

If |A| > ||A||, then the proof of Proposition 7.5 shows that the series (8.2)
converges in the operator norm topology and that the sum of the series is
indeed the inverse of (A — AI). If, on the other hand, [A| < | A]|, it follows
from (8.1) that the norms of the terms in (8.2) do not tend to zero, and



8.1 Proof of the Spectral Theorem, First Version 155

so the series cannot converge in the operator norm topology. We may say,
then, that the series (8.2) has radius of convergence equal to || 4]

Proof of Lemma 8.1. We know that R(A) < ||A||. To show that R(A) =
|Al|, we wish to argue that (A — AI)~! is a holomorphic operator-valued
function of A on the set |A\| > R(A), and therefore the Laurent series
of (A — M)~ must converge for |A\| > R(A). But the Laurent series of
(A — XI)~1 is just the series in (8.2), and we have shown that the series
diverges when |A| < ||A]|. This would be a contradiction if R(A) were less
than [|A].

To flesh out the argument, recall the formula (7.8) in the proof of Propo-
sition 7.5 for the resolvent of A.

That formula expresses the map A — (A — AI)~! as a convergent power
series in powers of A — g, near any point A\g in the resolvent set of A. It
follows that for any bounded linear functional ¢ € B(H)*, the complex-
valued function

A= (A= AD)7h

is holomorphic on the resolvent set of A. This function has a unique Laurent
series, which is given by applying & term by term to (8.2). The series will
converge on the largest annulus contained in the resolvent set of A, namely
the set of A with |A| > R(A).

Convergence of (8.2) means that |£(A™/A™T1)| is bounded as function
of m, for each £ and each X with |A\| > R(A). Thus, by (a corollary of) the
uniform boundedness principle (Appendix A.3.4), the set {A™/ m+1}o0
is bounded in the Banach space B(H), for all A with |A\| > R(A). In par-
ticular, for each A with |A\| > R(A), there is a constant C such that

[y 1%V

AP

If || A|| were greater than R(A), this inequality would be false for A satisfying
R(A) < A <Al =

The next key step in Stage 1 of the proof is to understand how the
spectrum of a self-adjoint operator transforms under application of a poly-
nomial.

Lemma 8.2 (Spectral Mapping Theorem) For all A € B(H) and all
polynomials p, we have

That is to say, the spectrum of p(A) consists precisely of the numbers of
the form p(\), with A in the spectrum of A.
Proof. The result is trivial if p is constant. When degp > 1, let p given by

p(z) =anz" + afnflzni1 +---+ag



156 8. The Spectral Theorem for Bounded Self-Adjoint Operators: Proofs

be an arbitrary polynomial. We first show that p(c(4)) C o(p(A4)).
Suppose, then, that A € o(A). Observe that

p(A) — p(NI = an(A" = XN"I) + an_1 (A" = X"7') + -+ aol —aol.
Now,
AP = NI = (A= MDA AAR2 4 024578 4 A,

Thus, we can pull out a factor of (A — AI) from each nonzero term in
p(A) = p(N)I, giving

p(A) = p(MI = (A = Al)q(4)

where ¢ is a polynomial (depending on \). Since, by assumption, A — X[ is
not invertible, and since (A—AI) commutes with ¢(A), (A—AI)q(A) cannot
be invertible (Exercise 1). This shows that p(A) belongs to the spectrum of
p(A).

We now show that o(p(A)) C p(o(A)). Suppose, then, that v € o(p(A)).
Since C is algebraically closed, we can factor the polynomial p(z) —~, as a
function of z, as

p(z) —v=clz=b1)(z —ba) (2 —by). (8.3)

Thus,
P(A) =31 = c(A = biI)(A = byl) - (A byI).

Since p(A) —«I is assumed to be noninvertible, there must be some j such
that (A — b;I) is noninvertible, that is, for which b; € o(A). Then (8.3)
tells us that p(b;) — v = 0, meaning that v = p(b;). Thus, 7 is of the form
p(A) for some A (=b;) in o(A). =

The last step in Stage 1 of our proof is to apply the Stone—Weierstrass
theorem to show that polynomials are dense in C(c(A);R) (the space of
continuous, real-valued functions on o(A)) with respect to the supremum
norm.

Proposition 8.3 Suppose A € B(H) is self-adjoint. Then there exists a
unique bounded linear map from C(c(A);R) into B(H), denoted by f
f(A), such that when f(X) = \™, we have f(A) = A™. The map f — f(A),
f€C(o(A);R), is called the (real-valued) functional calculus for A.

Proof. Note that if A is self-adjoint, then p(A) is self-adjoint provided
that p is a real-valued polynomial (i.e., one where all the coefficients are
real numbers). Thus, combining the spectral mapping theorem with the
equality of the norm and spectral radius, we have the following: If A is a
self-adjoint operator and p is a real-valued polynomial, then

[p(A)[| = sup [p(N)]. (8.4)
Aeo(A)
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Thus, the map p — p(A) is an isometric linear map from the space of
polynomials on o(A) (with the supremum norm) into the space of bounded
operators on H.

According to the Stone—Weierstrass theorem polynomials are dense in
C(c(A);R). Thus, by the BLT theorem (Theorem A.36), we can extend the
map p — p(A) uniquely to a bounded linear map of C(o(A); R) into B(H).
[ ]

Proposition 8.4 If A € B(H) is self-adjoint, the (real-valued) continuous
functional calculus for A, mapping C(a(A);R) into B(H), has the following
properties.

1. Multiplicativity: For dll f,g, we have

(f9)(A) = f(A)g(A),
where fg denotes the pointwise product of f and g.
2. Self-adjointness: For all f, the operator f(A) is self-adjoint.

3. Non-negativity: For all f, if f is non-negative, then f(A) is a non-
negative operator.

4. Norm and spectrum properties: For all f, we have

[f(A)][ = sup [f(N)] (8.5)
Aeo(A)
and
o(f(A) ={f(\)[A€a(A)}. (8.6)

Proof. Point 1 holds for polynomials and thus, by taking limits, for all
f € C(6(A);R). Furthermore, if p is a real-valued polynomial and A is
self-adjoint, then p(A) is self-adjoint. From this, we get Point 2 by taking
limits. If f € C(o(A);R) is non-negative, then f = g2, where g = /f is
real-valued. Thus, g(A) is self-adjoint and for all ¢» € H, Point 1 tells us
that

(0, f(A)) = (¥, 9(A)*¥) = (9(A)w, g(A)y) >0, (8.7)

which establishes Point 3. We have already established (8.5) in (8.4) for
polynomials; the result for general f € C(c(A);R) follows by taking limits.

To establish (8.6), suppose first that Ao € C is not in the range of f.
Then the function g(X\) := 1/(f(X) — Xo) is continuous on o(A) and the
operator g(A) will be the inverse of f(A) — A\gI, showing that Ag is not in
the spectrum of f(A).

In the other direction, suppose that Ay = f(u) for some p € o(A); we
want to show that f(u) € o(f(A)). Suppose now that f(A) — f(u)l were
invertible and choose a sequence p, of polynomials converging uniformly
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to f on o(A). By Exercise 8 in Chap. 7, any operator sufficiently close to
f(A) — f(p)I in the operator norm topology would also be invertible. In
particular, p,(A) — p,(n)I would have to be invertible for all sufficiently
large n, contradicting the spectral mapping theorem. m

8.1.2 Stage 2: An Operator-Valued Riesz Representation
Theorem

We turn now to Stage 2 of the proof of the spectral theorem. We will make
use of the Riesz representation theorem from measure theory (not the result
about continuous linear functionals on a Hilbert space). The following form
of this result is sufficient for our purposes.

Theorem 8.5 (Riesz Representation Theorem) Let X be a compact
metric space and let C(X;R) denote the space of continuous, real-valued
functions on X. Suppose A : C(X;R) — R is a linear functional with the
property that A(f) is non-negative whenever all the values of f are non-
negative. Then there exists a unique (real-valued, positive) measure p on
the Borel o-algebra in X for which

A(f)=/Xf du

for all f € C(X;R).

See pp. 353-354 of Volume I of [34] for a short proof in the case in which
X is a compact subset of R, which is all we really require. For the full result
stated above, see Theorems 7.2 and 7.8 in [12]. Observe that p is a finite
measure, with x(X) = A(1), where 1 is the constant function.

Given a bounded self-adjoint operator A € B(H), we have constructed,
in the previous subsection, a continuous functional calculus for A. This
calculus is a map, denoted f — f(A), from C(c(A);R) into B(H). If f €
C(0(A);R) is non-negative, then (Point 3 of Proposition 8.4) f(A) is a non-
negative operator. Thus, given ¢ € H, if we define a linear functional Ay
on C(o(A);R) by the formula

Ay(f) = (&, F(A)Y),

Ay will satisfy the hypotheses of the Riesz representation theorem. Thus,
for each ¢ € H, we obtain a unique measure i, such that

W) = [ 50y duoy) 83)

for all f € C(0(A);R). Note that

po(o(A)) = Ap(1) = [|¢]|*. (8.9)
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Definition 8.6 If f is a bounded measurable (complex-valued) function on
o(A), define a map Q5 : H — C by the formula

Qf(w):=j/QOJYA)duw(A%

where g, is the measure in (8.8).

If f happens to be real valued and continuous, then Qf(v) is equal
(¢, f(A)Y), in which case @y is a bounded quadratic form. (See Defini-
tion A.60 and Example A.62.) It turns out that Q)5 is a bounded quadratic
form for any bounded measurable f, in which case Proposition A.63 allows
us to associate with @y a bounded operator, which we denote by f(A).
Once the relevant properties of f(A) are established, we will construct the
desired projection-valued measure by setting u”(E) = 1g(A).

Proposition 8.7 For any bounded measurable function f on o(A), the
map Q¢ in Definition 8.6 is a bounded quadratic form.

Proof. Let F denote the space of all bounded, Borel-measurable func-
tions f for which @ is a quadratic form. Then F is a vector space and
contains C(o(A);R). Furthermore, F is closed under uniformly bounded
pointwise limits, because Q () is continuous with respect to such limits,
by dominated convergence. Standard measure-theoretic techniques (Exer-
cise 3) then show that F is the space of all bounded Borel-measurable
functions on X.
Meanwhile, it follows from (8.9) that

Q) < sup [FN] [[4II*,
Aeo(A)

showing that Q) is always a bounded quadratic form. m

Definition 8.8 For a bounded measurable function f on o(A), let f(A) be
the operator associated to the quadratic form Q¢ by Proposition A.63. This
means that f(A) is the unique operator such that

<wﬂMW—QAW—/Mﬁmw

for all € H.

Observe that if f is real valued, then Q /(%) is real for all ) € H, which
means (Proposition A.63) that the associated operator f(A) is self-adjoint.
We will shortly associate with A a projection-valued measure p*, and we
will show that f(A), as given by Definition 8.8, agrees with f(A) as given
by fa(A) F(A) du?(N). [See (8.10) and compare Definition 7.13.]
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Proposition 8.9 For any two bounded measurable functions f and g, we

have
(f9)(A) = f(A)g(A).

Proof. Let F; denote the space of bounded measurable functions f such
that (fg)(A) = f(A)g(A) for all g € C(c(A);R). Then F; is a vector space
and contains C(0(A);R). We have already noted that dominated conver-
gence guarantees that the map f — Q(¢), ¥ € H, is continuous un-
der uniformly bounded pointwise convergence. By the polarization identity
(Proposition A.59), the same is true for the map f +— Ls(¢, ), where Ly is
the sesquilinear form associated to @) s. Now, by the polarization identity, f
will be in F; provided that

(W, (f9)(A)g) = (¥, F(A)g(A)y)

or, equivalently,
Qro(¥) = Ly(, 9(A)¢)

for all v € H and all g € C(c(A4);R). From this, we can see that F is
closed under uniformly bounded pointwise limits. Thus, by Exercise 3, F;
consists of all bounded, Borel-measurable functions.

We now let F» denote the space of all bounded, Borel-measurable func-
tions f such that (fg)(A) = f(A)g(A) for all bounded Borel-measurable
functions g. Our result for F; shows that F» contains C(o(A);R). Thus,
the same argument as for F; shows that F5 consists of all bounded, Borel-
measurable functions. m

Theorem 8.10 Suppose A € B(H) is self-adjoint. For any measurable set
E C a(A), define an operator u?(E) by

p(E) = 1p(4),

where 1g(A) is given by Definition 8.8. Then p® is a projection-valued
measure on o(A) and satisfies

/ A dpt(\) = A.
o(A)

Theorem 8.10 establishes the existence of the projection-valued measure
in our first version of the spectral theorem (Theorem 7.12).
Proof. Since 1g is real-valued and satisfies 1g - 1 = 1, Proposition 8.4
tells us that 1g(A) is self-adjoint and satisfies 15(A4)? = 1g(A). Thus,
p(E) is an orthogonal projection (Proposition A.57), for any measurable
set £ C X.If E; and Fy are measurable sets, then 1p,np, = 1g, - 15,
and so

p(By N Ey) = p (B (Ey).

If Ey, Es, ... are disjoint measurable sets, then u?(E;)u(Ey)=p*(2)=0,
for j # k, and so the ranges of the projections u”(E;) and p(E}) are
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orthogonal. It then follows by an elementary argument that, for all v € H,
we have

> (B = Py,
j=1

where the sum converges in the norm topology of H and where P is the
orthogonal projection onto the smallest closed subspace containing the

range of p(E;) for every j. On the other hand, if E := U2, Ej, then

the sequence fy := Zjvzl 1g, is uniformly bounded (by 1) and converges

pointwise to 1x. Thus, using again dominated convergence in (8.8),

lim <¢, Z 1g, (A)w> = (¢, 1p(A)Y) .

N —oc0

It follows that 1p(A) coincides with P, which establishes the desired
countable additivity for .
Finally, if f = 1g for some Borel set E, then

|10 dnto) = s (8.10)
o(A)

where f(A) is given by Definition 8.8. [The integral is equal to 4 (E), which
is, by definition, equal to 1g(A).] The equality (8.10) then holds for simple
functions by linearity and for all bounded, Borel-measurable functions by
taking limits. In particular, if f(\) = A, then the integral of f against u*
agrees with f(A) as defined in Definition 8.8, which agrees with f(A) as
defined in the continuous functional calculus, which in turn agrees with
f(A) as defined for polynomials—namely, f(A) = A. This means that

/ Ndpt(\) = A
a(A)

as desired. m

We have now completed the existence of the projection-valued measure
p® in Theorem 7.12. The uniqueness of y4 is left as an exercise (Exercise 4).
We close this section by proving Proposition 7.16, which states that if a
bounded operator B commutes with a bounded self-adjoint operator A,
then B commutes with f(A), for all bounded, Borel-measurable functions
fono(A).
Proof of Proposition 7.16. If B commutes with A, then B commutes
with p(A), for any polynomial p. Thus, by taking limits as in the construc-
tion of the continuous functional calculus, B will commute with f(A) for
any continuous real-valued function f on o(A). We now let F denote the
space of all bounded, Borel-measurable functions f on o(A) for which f(A)
commutes with B, so that C(c(A);R).
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To show that a bounded measurable f belongs to F, it suffices to show
that for all ¢, v € H we have (¢, f(A)Bv) = (¢, Bf(A)v), or, equivalently,
(6, (A)BY) = (B*9, f(A)y). That is, we want

Ly(¢, BY) = Ly(B"¢,9).

But we have seen that for fixed vectors 11, 2 € H, the map f — Ly (¢, ¢2)
is continuous under uniformly bounded pointwise limits. Thus, F is closed
under such limits, which implies (Exercise 3) that F contains all bounded,
Borel-measurable functions. m

8.2 Proof of the Spectral Theorem, Second Version

We now turn to the proof of Theorem 7.19. As in the proof of Theorem 7.12,
we will make use of continuous functional calculus for a bounded self-adjoint
operator A and the Riesz representation theorem. We begin by establishing
the special case in which A has a cyclic vector, that is, a vector ¢ with
the property that the vectors A¥1), k = 0,1,2,..., span a dense subspace
of H. In that case, the direct integral will be simply an L? space (i.e., the
Hilbert spaces H are equal to C for all A). Thus, in this special case, the di-
rect integral and multiplication operator versions of the spectral theorem
coincide.

Lemma 8.11 Suppose A € B(H) is self-adjoint and v is a cyclic vector
for A. Let py be the unique measure on o(A), given by Theorem 8.5, for
which

oI = [ F) dusy) 8.11)
o(A)
for all f € C(c(A);R). Then there exists a unitary map
U H 5 12(o(A) 1)

such that
[UAUT 6] (A) = Ab(N)
for all ¢ € L*(c(A), ).

Proof. We start by defining U on the complex vector space of vectors of
the form p(A)vy, where p is a complex-valued polynomial, as follows:

Ulp(A)Y] = p.

To show that U is well defined, write p as p = p1 + ip2, where p; and ps
are real-valued polynomials. Since pi(A) and pa(A) are self-adjoint and
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commuting, we obtain
(p(A)p, p(A)Y) = (¥, [p1(A)? + p2(A)*] %)
_ / L PO ROV ), (s12)

by canceling cross terms and applying (8.11). Thus, if p(A)y = 0 in H,
then p(A) = 0 for py-almost every A in o(A), so that p represents the zero
element of L?(c(A), uy)-

Equation (8.12) shows also that the map U is isometric on its initial
domain. This initial domain is dense in H since it contains the vectors
AP and 1 is cyclic. Thus, the BLT theorem (Theorem A.36) tells us that
U extends uniquely to an isometric map of H into L?(c(A), puy). Since
polynomials are dense in L?(c(A), uy) (by the Stone-Weierstrass theorem
and Theorem A.10), U actually is unitary.

Now, since U takes A¥y to the function A +— A¥ in L2(0(A), py), we
have that UAU 1 (AF) = AF+1. Thus,

[UAU'p](A) = Ap(X)

for all polynomials p. Since polynomials are dense in L?(c(A), j1y), we have
[UAU1¢](A) = Ap(N) for all ¢ € L*(0(A), py), as claimed. m

Lemma 8.12 Suppose A € B(H) is self-adjoint and p? is the associated
projection-valued measure on o(A), as in Theorem 8.10. Then there exists

a non-negative real-valued measure i on o(A) such that for all Borel sets
E C 0(A), we have p(E) = 0 if and only if u(E) = 0.

Proof. Let {e;} be an orthonormal basis for H and let j., be the associated
real-valued measures, given by pe, (E) = (e;, i (E)e;). Then pe, (0(A)) =
(ej,Iej) =1 for all j. Thus, the formula

1
p= Z T2k
J

defines a finite measure on o(A). Given some Borel set E C o(A4), if
pA(E) = 0, then pe,(E) = 0 for all j and so u(E) = 0. Conversely, if
w(E) =0, then

0= (ej, u (B)ej) = (1 (B)ej, ' (E)e;)
for all j, since u”(E) is self-adjoint and p?(E)? = p(E). Thus, p(E)e; =
0 for all j, which means that y*(E) =0. m

Lemma 8.13 If A € B(H) is self-adjoint, then H can be decomposed as
an orthogonal direct sum of closed nonzero subspaces W, where each Wj is
invariant under A and where the restriction of A to W; has a cyclic vector
;. The number of W;’s is either finite or countably infinite.
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Proof. Recall our standing assumption that H is separable, and let {¢;}
be a countable dense subset of H. Let W be the closed subspace of H
spanned by ¢1, A¢1, A%¢q, .... Then Wi is invariant under A and v := ¢,
is a cyclic vector for A|W1. If W7 = H then we are done. If not, let j be
the smallest number such that ¢; is not contained in W;j. Let 1> be the
orthogonal projection of ¢; onto the orthogonal complement of W7, and let
W3 be the closed span of 1o, Ay, A%hg, . ... Then Wy is invariant under A
and 1 is a cyclic vector for A|W2. Furthermore, since A is self-adjoint and
leaves Wy invariant, it also leaves Wi- invariant, which means that A¥s
is orthogonal to W7 for all k, so that W5 is orthogonal to Wj.

If, now, Wy ® Wy = H, we are done. If not, we let k be the smallest
number such that ¢y is not in W7 & Wy and we let 13 be the projection
of ¢y, onto the orthogonal complement of W7 & W5, and so on. Continuing
on in this way, we obtain an orthogonal collection of closed subspaces that
are invariant under A, each of which has a cyclic vector. Either the process
terminates with finitely many of these subspaces spanning H, or we get an
infinite family. In the latter case, each ¢; belongs to the span of the W;’s
and hence the (Hilbert space) direct sum of the W;’s is all of H. m

We are now ready for the proof of our second form of the spectral theo-
rem.

Proof of Theorem 7.19. Let {IW;,v,} be as in Lemma 8.13, and let A,
denote the restriction of A to W;, which is a bounded self-adjoint operator
on the Hilbert space W;. For each A;, we can obtain a unitary map U; as in
Lemma 8.11, and we wish to piece these maps together for different values
of j to obtain a direct integral decomposition for all of H. To facilitate
piecing the maps together, we will modify the U;’s so that they all map to
L? spaces over a subset of o(A) with respect to the same measure pu.

If we apply Lemma 8.11 to A;, we get a unitary map

Uj : W; = L*(0(A;), iy,

such that U; AU j_l is the operator of multiplication by A. Here, p; is the
measure on o(A;) given by juy, (E) = (¢, n% (E)1;). Now, according to
Exercise 5, the spectrum of A; is contained in the spectrum of A. Fur-
thermore, if E is a measurable subset of o(A;) C o(A), then 1 may be
thought of as a measurable function either on o(A4;) or on o(A). Exercise 5
tells us that 15(A;), as defined by the functional calculus for A;, coincides
with the restriction to W; of 1g(A). Thus, if 1g(A) = 0 then 1g(A4;) =0
as well. Equivalently, if 4 (E) = 0 then p?(E) = 0, where i is the
projection-valued measure associated to the self-adjoint operator A;.

Let us now choose a measure p as in Lemma 8.12. Any set of measure
zero for 11 is a set of measure zero for u# and thus also for u4 and then
for puy,. Thus, if we extend juy; to a measure on o(A) by making it zero on
o(A)\ 0(A;), we have that s, is absolutely continuous with respect to p.
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By the Radon-Nikodym theorem (Theorem A.6), each juy, has a density
p; with respect to u, and this density is nonzero p;-almost everywhere.
Now, the map

fen2f

is easily seen to be a unitary map of L?(0(A;), py,) to L*(0(A;), ). Thus,
we can define a unitary map

Uj: Wy = L*(0(4A;), 1)

by setting R
(Tj)(N) = pj(N)V2(U9)(N).-

Since multiplication by (p;)!/? commutes with multiplication by A, we have
(T54,0,) () = M),

Now, L%(c(A;), i) can be thought of as a direct integral over o(A) with
respect to , where we take H] = C for X € 0(4;) and we take H = {0}

if A € o(A;)°. We now define another direct integral over o(A4) in which
the Hilbert spaces Hy, A € 0(A), are defined by

H, = (PHJ.
J
Here the measurable structure on the direct integral is defined by setting

,0,...), )\EEJ‘
0,...), AeES

where the 1 is in the jth slot. Since each H) is a direct sum of the H‘i’s,
the direct integral of the H’s is the Hilbert space direct sum of the direct
integral of the HY’s, which is just L?(o(4;), p).

Meanwhile, H is the direct sum of the W;’s, and we have unitary maps
U, of W; to L?(0(A;), p) such that UjAUj_l is just multiplication by A on
L?(E;, j1). Thus, we can assemble the U;’s into a single unitary map U of H
to the integral of the Hy’s, and we will have U AU ! equal to multiplication
by A, as desired. m

In the interest of brevity, we will not give a complete proof of Proposi-
tion 7.22 (uniqueness in Theorem 7.19), but only indicate the main ideas.
To establish the equivalence of ") and p(®), we observe that both mea-
sures have the same sets of measure zero as the projection-valued measure
p (Proposition 7.23). Meanwhile, if we have two different direct integrals,
each unitarily equivalent to H as in (7.20), then there will be a unitary
map V between the two direct integrals that commutes with the opera-
tor s(A) — As(A). Using an argument similar to that in Exercise 7, we
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can show that there must be bounded maps V) : Hg\l) — HE\2) such that
(Vs)(A) = Vas(A) for almost every A. Then we argue that the only way
V' can be unitary is if V) is unitary for almost every A. This implies that
dim Hg\l) = dim H(f) for almost every A.

Finally, we briefly indicate the proof of the multiplication operator form
of the spectral theorem.
Proof of Theorem 7.20. Let W; be as in Lemma 8.13 and let A; be the
restriction of A to W;. By the proof of Theorem 7.19, each A; is unitarily
equivalent to multiplication by A on the Hilbert space L?(a(4;), u;), for
some finite measure p; on o(A;). Let X be the disjoint union of the sets
o(4;), let 1 be the sum of the measures pj;, and let i be the function
whose restriction to each o(4;) is the function A — A. Then L?(X,p) is
the orthogonal direct sum of the Hilbert spaces L?(c(4;), i), which means
that L?(X, 1) may be identified unitarily with H = @W; in an obvious way.
Under this identification, the operator A corresponds to multiplication by h.
[ ]

8.3 Hxercises

1. (a) Suppose A, B € B(H) commute and A is not invertible. Show
that AB is not invertible.

Hint: First show that if AB were invertible, then A would have
both a left inverse and a right inverse. Then show that the left
inverse and right inverse would need to be equal.

(b) Show that the result of Part (a) is false if we omit the assumption
that A and B commute.

2. (a) Suppose A € B(H) is self-adjoint and o(A) C [0, 00). Show that
A has a self-adjoint square root in B(H) and therefore that A is
a non-negative operator (i.e., (¢, A) > 0 for all ¢ € H).

(b) Give an example of a bounded operator A on a Hilbert space
such that o(A) C [0,00) but A is not non-negative.

3. Let X be a compact metric space and let C(X;R) denote the space
of continuous real-valued functions on X. Suppose that F is a set of
bounded, measurable, complex-valued functions on X with the fol-
lowing properties: (1) F is a complex vector space, (2) F contains
C(X;R), and (3) F is closed under pointwise limits of uniformly
bounded sequences. (A sequence f, is uniformly bounded if there
exists a constant C' such that |f,,(z)] < C for all n and x).

(a) Let Ly denote the collection of those measurable sets E for which
1g is a uniformly bounded limit of a sequence of continuous
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functions. Show that Ly is an algebra and contains all open sets
in X.

(b) Let £; denote the collection of all measurable sets in F for
which 15 belongs to F. Using the monotone class lemma (The-
orem A.8), show that £q consists of all Borel sets in X.

(¢) Show that F consists of all bounded, Borel-measurable functions
on X.

4. Suppose A € B(H) is self-adjoint p* and v4 are two projection-
valued measures on o(A) such that

/U(A)/\duA(A):/ X dvA(\) = A

a(A)

Show that integration with respect to u* agrees with integration with

respect to v, first on polynomials, then on continuous functions, and

finally on bounded measurable functions. Conclude that p* = v4.

Hint: Use Exercise 17.

5. Suppose A € B(H) is self-adjoint operator and V is a closed subspace
of H that is invariant under A.

(a) Using Proposition 7.7, show that the spectrum of the restriction
to V of A is contained in the spectrum of A.

(b) Suppose now that f is a bounded measurable function on o(A),
which means that f is also a function on o (Al,,) C o(A). Show
that V' is invariant under f(A) and that

f(A)|V =/ (A|v) )

where the operator on the right-hand side is defined by the
measurable functional calculus for the bounded self-adjoint op-
erator Al

6. Suppose A € B(H) is self-adjoint and 4 is an eigenvector for A, that
is, a nonzero vector with Ay = Ay for some A € R. Show that for
any bounded measurable function f on o(A) we have

f(A)Y = fF(AN)Y.
Hint: Use Exercise 5.

7. Suppose K C R is a compact set and p is a finite measure on K. Let
A be the bounded operator on L?(K, i) given by

(AP)(A) = Ap(A).

Now suppose that B is a bounded operator on L?(K,u) that com-
mutes with A.



168 8. The Spectral Theorem for Bounded Self-Adjoint Operators: Proofs

(a) Let ¢ = B1, where 1 denotes the constant function, so that
¢ € L*(K,u). Show that for all continuous functions 1 on K,
we have By = ¢1).

(b) Using Exercise 3, show that for all bounded, Borel-measurable
functions ¥ on K, we have By = ¢1).

(¢) Show that ¢ is essentially bounded (i.e., bounded outside a set of
p-measure zero). Conclude that Bty = ¢ for all o € L?(K, p).

8. If A € B(H) is self-adjoint, define U(t) € B(H) by U(t) = exp{itA}
for each t € R, where the exponential is defined by the functional
calculus for A.

(a) Show that U(¢) is unitary for all ¢ and that U(s)U(t) = U(s +
t). (A family of operators with this property is called a one-
parameter unitary group.)

(b) Show that the map ¢ — U(t) is continuous in the operator norm
topology.

(¢) Give an example of a one-parameter unitary group on a Hilbert
space that is not continuous in the operator norm topology.

See Sect. 10.2 for more on one-parameter unitary groups.
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Unbounded Self-Adjoint Operators

9.1 Introduction

Recall that most of the operators of quantum mechanics, including those
representing position, momentum, and energy, are not defined on the en-
tirety of the relevant Hilbert space, but only on a dense subspace thereof.
In the case of the position operator, for example, given 1 € L?(R), the
function X (x) = z1p(x) could easily fail to be in L?(R). Nevertheless, the
space of ¢’s in L?(R) for which x1(x) is again in L?(R) is a dense subspace
of L2(R). A closely related property of these operators is that they are not
bounded, meaning that there is no constant C' such that

[ A4l < Cly]|

for all ¥ for which A is defined. Because our operators are unbounded, we
cannot use the BLT (bounded linear transformation) theorem to extend
them to the whole Hilbert space.

In this chapter and the following one, we are going to study unbounded
operators defined on dense subspaces of a Hilbert space H. We will in-
troduce the “correct” notion of self-adjointness for unbounded operators,
namely the one for which the spectral theorem holds. As it turns out, the
obvious candidate for a definition of self-adjointness, namely that (¢, Ay) =
(A@, 1) for all ¢ and ¢ in the domain of A, is not the correct one. Rather,
for any unbounded operator A, we will define another unbounded operator
A*, the adjoint of A, with its own naturally defined domain. Then A is
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170 9. Unbounded Self-Adjoint Operators

said to be self-adjoint if A* and A are the same operators with the same
domain.

In the present chapter, we give the definition of an unbounded self-adjoint
operator, along with conditions for self-adjointness and several examples
and counterexamples. We defer a discussion of the spectral theorem itself
until Chap. 10. The statement of the spectral theorem (either in terms of
projection-valued measures or in terms of direct integrals) is essentially the
same as in the bounded case, with only a few modifications to deal with
the domain of the operator.

Although this chapter is rather technical, a reader who is willing to ac-
cept some things on faith may wish simply to read the definitions of self-
adjoint and essentially self-adjoint operators in Sect. 9.2, and then skip to
the statements of Theorem 9.21 and Corollary 9.22 in Sect.9.5. As in pre-
vious chapters, H will denote a separable Hilbert space over C.

9.2 Adjoint and Closure of an Unbounded
Operator

Recall that we briefly introduced unbounded operators in Sect. 3.2. Accord-
ing to Definition 3.1, an unbounded operator A on H is a linear map of some
dense subspace Dom(A) C H (the domain of A) into H. As in Sect. 3.2,
“unbounded” means “not necessarily bounded,” meaning that we permit
the case in which Dom(A) = H and A is bounded.

Now, if A is bounded, then for any ¢, the linear functional

(9, 4)
is bounded. Thus, by the Riesz theorem (Theorem A.52), there is a unique
X such that
(0, 4:) = () -
We then define the adjoint A* of A by setting A*¢ equal to x. (See
Sect. A.4.)

If A is unbounded, then (¢, A-) is not necessarily bounded, but may be
bounded for certain vectors ¢. If (¢, A-) does happen to be bounded, for
some ¢ € H, then the BLT theorem (Theorem A.36) says that this linear
functional has a unique bounded extension from Dom(A) to all H. The
Riesz theorem then tells us that there is a unique x such that this linear
functional is “inner product with x.” This line of reasoning leads to the
following definition, which was already introduced briefly in Sect. 3.2.

Definition 9.1 Suppose A is an operator defined on a dense subspace
Dom(A) C H. Let Dom(A*) to be the space of all ¢ € H for which the

linear functional

¥ (), AY), ¢ € Dom(A),
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is bounded. For ¢ € Dom(A*), define A*¢ to be the unique vector such that
(¢, Ap) = (A" ¢, 4) for all ¥ € Dom(A).

Saying that (¢, A-) is bounded means, explicitly, that there exists a con-
stant C such that |[(¢, Ay)| < C ||| for all p € Dom(A). As in the bounded
case, the operator A* is linear on its domain, and is called the adjoint of A.

Another way to think about the definition of A* is as follows. Given
a vector ¢, if there exists a vector x such that (¢, Ay) = (x,¢) for all
1 € Dom(A), then ¢ belongs to Dom(A*) and A*¢ = x. By the Riesz
theorem, such a x will exist if and only if (¢, A-) is bounded, which means
this way of thinking about A* is equivalent to Definition 9.1.

Given a densely defined operator A, the adjoint A* of A could fail to
be densely defined. This situation, however, is a pathology that does not
usually occur for operators of interest in applications.

Definition 9.2 An unbounded operator A on H is symmetric if

(¢, Av) = (Ag, ) (9.1)
for all ¢, € Dom(A).

As we will see shortly, if A is symmetric, then A* is an extension of A,
in the sense of the following definition.

Definition 9.3 An unbounded operator A is an extension of an unbounded
operator B if Dom(A) D Dom(B) and A = B on Dom(B).

If A is an extension of B, then very likely A is given by the same “for-
mula” as B. If H = L%(R), for example, both operators might be given
by the formula —ifi d/dx on their respective domains. Nevertheless, if
Dom(A) # Dom(B), then A is still a different operator from B.

Proposition 9.4 An unbounded operator A is symmetric if and only if A*
is an extension of A.

Proof. If A is symmetric, then for all ¢ € Dom(A), (9.1) and the Cauchy—
Schwarz inequality show that

(¢, Av)| < [ Aol |21l

showing that ¢ € Dom(A*). In that case, (9.1) shows that the unique vector
A*¢ for which (¢, AY) = (A*¢, 1) is nothing but A¢, which means that A*
agrees with A on Dom(A).

In the other direction, if A* is an extension of A, then for each ¢ €
Dom(A), we have

(¢, Ap) = (A%¢,¥) = (A9, 1)),

for all ¢ € Dom(A), which shows that A is symmetric. ®
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We come now to the key definition of this section, that of self-adjointness.
This notion constitutes the hypothesis of the spectral theorem for un-
bounded operators.

Definition 9.5 An unbounded operator A on H is self-adjoint if
Dom(A*) = Dom(A)
and A*¢ = A¢ for all € Dom(A).

We may reformulate the definition of self-adjointness by saying that A
is self-adjoint if A* is equal to A, provided that equality of unbounded
operators is understood to include equality of domains. Every self-adjoint
operator is symmetric (by Proposition 9.4), but there exist many operators
that are symmetric without being self-adjoint. In light of Proposition 9.4,
a symmetric operator is self-adjoint if and only if Dom(A*) = Dom(A). In
trying to show that a symmetric operator is self-adjoint, the difficulty lies
in showing that Dom(A*) is no bigger than Dom(A).

Definition 9.6 An unbounded operator A on H is said to be closed if the
graph of A is a closed subset of H x H. An unbounded operator A on H is
said to be closable if the closure in H x H of the graph of A is the graph of
a function. If A is closable, then the closure A of A is the operator with
graph equal to the closure of the graph of A.

To be more explicit, an operator A is closed if and only if the following
condition holds: Suppose a sequence ¥, belongs to Dom(A) and suppose
that there exist vectors ¢ and ¢ in H with v,, — ¢ and Av,, — ¢. Then
1 belongs to Dom(A) and Ay = ¢. Regarding closability, an operator A is
not closable if there exist two elements in the closure of the graph of A of
the form (¢, ) and (¢, x), with ¢ # x. Another way of putting it is to say
that an operator A is closable if there exists some closed extension of it, in
which case the closure of A is the smallest closed extension of A.

The notion of the closure of a (closable) operator is useful because it
sweeps away some of the arbitrariness in the choice of a domain of an
operator. If we consider, for example, the operator A = —ih d/dx as an
unbounded operator on L?(R), there are many different reasonable choices
for Dom(A), including (1) the space of C*° functions of compact support,
(2) the Schwartz space (Definition A.15), and (3) the space of continuously
differentiable functions v for which both 1 and v’ belong to L?(R). As it
turns out, each of these three choices for Dom(A) leads to the same operator
A°l. Note that we are not claiming that every choice for Dom(A) leads to
the same closure; nevertheless, it is often the case that many reasonable
choices do lead to the same closure.

Definition 9.7 An unbounded operator A on H is said to be essentially
self-adjoint if A is symmetric and closable and A is self-adjoint.
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Actually, as we shall see in the next section, a symmetric operator is
always closable. Many symmetric operators fail to be even essentially self-
adjoint. We will see examples of such operators in Sects. 9.6 and 9.10. Sec-
tion 9.5 gives some reasonably simple criteria for determining when a sym-
metric operator is essentially self-adjoint.

9.3 Elementary Properties of Adjoints and Closed
Operators

In this section, we spell out some of the most basic and useful properties
of adjoints and closures of unbounded operators. In Sect. 9.5, we will draw
on these results to prove some more substantial results. In what follows,
if we say that two operators “coincide,” it means that they have the same
domain and that they are equal on that common domain.

Proposition 9.8 1. If A is an unbounded operator on H, then the
graph of the operator A* (which may or may not be densely defined)
is closed in H x H.

2. A symmetric operator is always closable.

Proof. Suppose 9, is a sequence in the domain of A* that converges to
some v € H. Suppose also that A*i),, converges to some ¢ € H. Then
(tn, A-) = (A*ty, -) and for any x € Dom(A), we have

(¥, Ax) = lim (4, Ax) = Tim (A%, x) = (b, x) -

This shows that ¢ belongs to the domain of A* and that A*y = ¢, estab-
lishing that the graph of A* is closed.

If A is symmetric, A* is an extension of A. Since, as we have just proved,
A* is closed, A has a closed extension and is therefore closable. m

Corollary 9.9 If A is a symmetric operator with Dom(A) = H, then A is
bounded.

Proof. Since A is symmetric, it is closable by Proposition 9.8. But since
the domain of A is already all of H, the closure of A must coincide with
A itself. (The closure of A always agrees with A on Dom(A), which in this
case is all of H.) Thus, A is a closed operator defined on all of H, and the
closed graph theorem (Theorem A.39) implies that A is bounded. m

Proposition 9.10 If A is a closable operator on H, then the adjoint of
A coincides with the adjoint of A.

Proof. Suppose that for some ¢ € H there exists a ¢ such that <1/), AClx> =
(¢,x) for all x € Dom(A). Since A is an extension of A, it follows
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that (1, Ax) = (¢, x) for all x € Dom(A). This shows that Dom(A*) D
Dom((A)*) and that A* agrees with (A°)* on Dom((A)*).

In the other direction, suppose for some 1» € H there exists a ¢ such
that (¢, Ax) = (¢, x) for all x € Dom(A). Suppose now ¢ € Dom(A) with
Acl¢ = 1. Then there exists a sequence Y, in Dom(A) with y, — ¢ and
Axn, — 1, and we have

<1/)7 AXn> = <¢7 Xn>

for all n. Letting n tend to infinity, we obtain (¢, n) = (¢, &), or <w, Ad§> =
(¢, ). This shows that ¢ € Dom((A)*) and A°4) = ¢. Thus, Dom(A*) C
Dom((A)*). m

Proposition 9.11 If A is essentially self-adjoint, then A is the unique
self-adjoint extension of A.

Proof. Suppose B is a self-adjoint extension of A. Since B = B*, B is closed
and is, therefore, an extension of A, It then follows from the definition of
the adjoint that Dom(B*) C Dom(A®). Thus, we have

Dom(B*) ¢ Dom(A) ¢ Dom(B).

Since B is self-adjoint, all three of the above sets must be equal, so actually
B=A% m

Proposition 9.12 If A is an unbounded operator on H, then
(Range(A))* = ker(A*).

Proof. First assume that ¢ € (Range(A))+. Then for all ¢ € Dom(A) we
have

(1, Ag) = 0.

That is to say, the linear functional (1, A-) is bounded—in fact, zero—
on Dom(A). Thus, from the definition of the adjoint, we conclude that
¥ € Dom(A*) and A*y) = 0.

Meanwhile, suppose that 1 is in Dom(A*) and that A*y = 0. The only
way this can happen is if the linear functional (4, A-) is zero on Dom(A),
which means that 1 is orthogonal to the image of A. m

Proposition 9.13 Suppose A is an unbounded operator on H and that B
is a bounded operator defined on all of H. Let A+ B denote the operator
with Dom(A + B) = Dom(A) and given by (A + B)y = Ay + By for all
¥ € Dom(A). Then (A4 B)* has the same domain as A* and (A+ B)*y) =
A*p + B*y for all 1 € Dom(A*).

In particular, the sum of an unbounded self-adjoint operator and a
bounded self-adjoint operator (defined on all of H) is self-adjoint on the
domain of the unbounded operator.
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Proof. See Exercise 3. m
The sum of two unbounded self-adjoint operators is not, in general, self-
adjoint. See Sect. 9.9 for more information about this issue.

Proposition 9.14 Let A be a closed operator and X an element of C.
Suppose that there exists € > 0 such that

(A = A = e ||y (9-2)
for all A in Dom(A). Then the range of A — X is a closed subspace of H.

Here, we take the domain of the operator A — AI to coincide with the
domain of A, as in Proposition 9.13.
Proof. Assume that ¢, is a sequence in the range of A — Al converging
to some ¢. Then ¢, = (A — X)), for some sequence v, in Dom(A). Ap-

plying (9.2) with 1) = ¢, — 1, shows that ||V, — Y| < (1/) ||¢n — dumll-
This means that v, is Cauchy and thus convergent to some vector 1. Since

Yy — ¢ and (A — M), = ¢, — ¢, we have that

Thus, by the definition of a closed operator, 1 € Dom(A) and Ay = \ip+¢.
This means that (A — A\I)1 = ¢ and so the range of A — Al is closed. m

We conclude this section with a simple example for which we can compute
the adjoint and closure explicitly.

Example 9.15 Let (e;) be an orthonormal basis for H and let (\;) be
an arbitrary sequence of real numbers. Define an operator A on H with
Dom(A) equal to the space of finite linear combinations of the e;’s, with A
itself defined by

Aej = Aje;.

Then A is symmetric and closable and Dom(A*) = Dom(A®) =V, where
V=S14=> aje;| Y (1+A)]|a;* <oop. (9.3)
J J
For any ¢ =3, ajej in'V, we have

A*l/) = ACI1/) = Z aj/\jej. (94)
J

Thus, (A)* = A* = A, showing that A is essentially self-adjoint.

Proof. Note that for any sequence (a;) of coefficients satisfying the condi-
tion on the right-hand side of (9.3), we have ), |aj|2 < oo and, thus, the
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sum Ej aje; converges in H. Suppose first that ¢ = Ej aje; belongs V.
Then for any 1) = >, bje; (finite sum) in the domain of A we have

(¢, Ap) = Zaj)\ b

and so by the Cauchy—Schwarz inequality,
1/2

o, AV < | D N2 a[* | [l
J

Thus, (¢, A-) is a bounded linear functional, showing that ¢ € Dom(A*).
Furthermore, it is apparent that (¢, AY) = (x,®) for all ¢y € Dom(A),
where x = 3, a;jAje;.

Meanwhile, suppose ¢ = Ej aje; belongs to the domain of A*, and
consider Yy = E;VZI Ajaje; in Dom(A). Then

1/2

N N
(& Apn) =D N lag* = | D AFlas* | llewll.
j=1 j=1

Since ¢ € Dom(A*), the functional (¢, A-) is bounded, and so ZJ LA 2q,|?
must be bounded, independent of N, and so >, A3 la;|> < oo. Since ¢

belongs to H, we have also that ), la;|* < oo, showing that ¢ is in V.
Turning now to the closure of A, it is apparent that A is symmetric and
thus closable, by Proposition 9.8. Suppose ¢ = Ej aje; belongs to V and

consider Yy = Ejvzl ajej. Clearly, ¥ converges to ¢. Furthermore, since
1 € V, we see that Ay converges to the vector Zj ajAje;. This shows

that 1 € Dom(A) and that A%y = Zj a;Aje;. Thus, each element of V'

belongs to Dom(A¢) and A% is given on V by (9.4).

Now, the space V forms a Hilbert space with respect to the norm given
by

1l = D (14 AF) ay ),
J

where ¢ = 3 ;5 @j€; [To establish completeness of V' with respect to this
norm, note that V can be identified isometrically with L?(N) with respect
to the measure u for which p({j}) = 1+ A?.] Suppose, now, that we have a
sequence (™) in Dom(A) for which both (¢,,,) and (At),,) are convergent.
Then (¢™) forms a Cauchy sequence in V' which converges to some element
Y of V. Since ||[¢ly < |9y, for all v € Dom(A), we see that o)™ also
converges in H to 1 € V. This shows that each element of Dom(A)
belongs to V. m
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9.4 The Spectrum of an Unbounded Operator

Recall that if A is a bounded operator, then a number A € C belongs to
the resolvent set of A if the operator A — AI has a bounded inverse, and A
belongs to the spectrum of A if A — Al does not have a bounded inverse.
For an unbounded operator A, we will say that a number A € C is in the
resolvent set of A if A — Al has a bounded inverse. That is, even though
A is unbounded, for A to be in the resolvent set of A, there must be a
bounded inverse to A — AI; otherwise, A is in the spectrum of A. We make
this characterization more precise in the following definition.

Definition 9.16 Suppose A is an unbounded operator on H. A number
A € C belongs to the resolvent set of A if there exists a bounded operator
B with the following properties: (1) For all 1p € H, By belongs to Dom(A)
and (A=XI)Bvy = 1, and (2) for allp € Dom(A) we have B(A—=XI)y = ).

If no such bounded operator B exists, then X belongs to the spectrum of A.

Note that we are implicitly taking Dom(A — AI) to equal Dom(A), as in
Proposition 9.13. As in the bounded case, even if A is self-adjoint, points
A in the spectrum of A are not necessarily eigenvalues; that is, there does
not necessarily exist a nonzero ¥ € Dom(A) with Ay = Ay. On the other
hand, if Ay = M for some 1 € Dom(A), then A — A is not injective and
thus A certainly does belong to the spectrum of A.

Theorem 9.17 If A is an unbounded self-adjoint operator on H, the spec-
trum of A is contained in the real line.

If A is symmetric but not self-adjoint, then the spectrum of A must
contain points not in the real line. Indeed, Theorem 9.21 will show that at
least one of (A — iI) and (A 4 ¢I) must fail to be surjective, and thus at
least one of the numbers 7 and —i is in the spectrum of A. Nevertheless, a
symmetric operator cannot have nonreal eigenvalues, as we showed already
in Proposition 3.4.

Proof. Consider a complex number A\ = a + ib with b # 0. Since A is
symmetric, the proof of Lemma 7.8 applies, giving

(A= ADp, (A= XD)y) > b* (4, ) (9-5)

for all ¢ € Dom(A). This shows that (A — AI) is injective.
Meanwhile, applying Propositions 9.12 and 9.13 with B = —\I we see
that

(Range(A — X))t = ker((A — XI)*) = ker(A* — \I) = ker(A — \I).

Since A again has nonzero imaginary part, A — A is also injective, showing
that Range(A — AI) is dense in H. Since A = A* is closed, (9.5) allows us
to apply Proposition 9.14 to show that Range(A — AI) is closed, hence all
of H.
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We have shown, then, that (A — AI') maps Dom(A) injectively onto H. It
follows from (9.5) (or the closed graph theorem) that the inverse operator
is bounded, so that A is in the resolvent set of A. m

Our next result shows that the spectrum of an unbounded self-adjoint
operator has properties similar to that of a bounded self-adjoint operator.

Proposition 9.18 If A is an unbounded self-adjoint operator on H, then
the following hold.

1. A number A € R belongs to the spectrum of A if and only if there
exists a sequence v, of nonzero vectors in Dom(A) such that

[(A = ADnll _

lim =0. (9.6)

n—oo  ||¢hn

2. The spectrum o(A) of A is a closed subset of R.

Although the spectrum of a bounded self-adjoint operator is a bounded

subset of R, the spectrum of an unbounded self-adjoint operator will be
unbounded. Indeed, it can be shown (using the spectral theorem) that if
a self-adjoint operator has bounded spectrum, then the operator must be
bounded.
Proof. For Point 1, if a sequence as in (9.6) existed, then as in the proof
of Proposition 7.7, A — A\l could not have a bounded inverse, so A must be
in the spectrum of A. Conversely, suppose no such sequence exists. Then
there is some € > 0 such that

(A= ADY[ = e |¥]] 9.7)

for all v € Dom(A). This means that A — Al is injective and that, by
Proposition 9.14, the range of A — A\I is closed. But

(A=A =A* — X = A— Al

and A — A/ is injective, so by Proposition 9.12, the range of A — A is all
of H. This means A — A has an inverse, which is bounded by (9.7). Thus
A is not in the spectrum of A.

Point 2 is left as an exercise (Exercise 4). m

Definition 9.19 Let A be an unbounded operator on H. Then A is non-
negative if (v, AY) > 0 for all v € Dom(A) and A is bounded below by
ceRif (¥, A) > c||y|| for all » € Dom(A).

Proposition 9.20 Let A be an unbounded self-adjoint operator on H. If
A is non-negative, then the spectrum of A is contained in [0,00). More
generally, if A is bounded below by c, then the spectrum of A is contained
in [, 00).
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We will eventually see, using the spectral theorem for unbounded self-
adjoint operators, that the converse to Proposition 9.20 also holds: If the
spectrum of a self-adjoint operator A is contained in [0, c0), then A is non-
negative, and if the spectrum of A is contained in [¢, 00), then A is bounded
below by c. These results follow easily, for example, from the form of the
spectral theorem in Theorem 10.9.

Proof. Suppose A is bounded below by ¢ and A is a point in the spectrum
of A. If v, be a sequence as in Point 1 of Proposition 9.18, with the ,,’s
normalized to be unit vectors, then

lim[(, (A~ M)s)| < lim [[(A Ao = 0.

n—r00

On the other hand, A = AT 4+ (A — AI), and so

Thus, (¢, At,) converges to A (= A (1, %n)) as n tends to infinity. Since
A is bounded below by ¢, we must have A > ¢. This establishes the result
for operators bounded below by c. Specializing to ¢ = 0 gives the result for
non-negative operators. m

9.5 Conditions for Self-Adjointness and Essential
Self-Adjointness

In this section, we give criteria for determining whether a symmetric oper-
ator is self-adjoint or essentially self-adjoint. See also Sect. 10.2 for the con-
nection between self-adjoint operators and one-parameter unitary groups.

Theorem 9.21 If A is a symmetric operator on H, then A is essentially
self-adjoint if and only if Range(A — iI) and Range(A + iI) are dense
subspaces of H.

Using Proposition 9.12, we can reformulate this result as follows.

Corollary 9.22 If A is a symmetric operator on H, then A is essentially
self-adjoint if and only if the operators A* + il and A* — il are injective
on Dom(A*).

As Exercise 11 shows, it is possible to have one of the operators A* + il
and A* — il be injective and the other fail to be injective.
Proof of Theorem 9.21. Assume first that A is essentially self-adjoint,
so that A is self-adjoint. Then A* = (A°)* = A° and so

[Range(A — il)]" = ker(A* +il) = ker(A® +iI) = {0},

by Theorem 9.17, and similarly for the range of A + il.
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Conversely, assume A is symmetric and that A — i/ and A + il both
have dense range. Since (A°)* = A* is a closed extension of A, it is also
an extension of A°, showing that A is symmetric. We may then apply
Lemma 7.8—the proof of which requires only symmetry—to the operator
A with A =4, giving

(4t —inyy||* > [l (9.8)

and showing that A° — I is injective. Since the range of A — il is dense,
the range of A°! — I is certainly also dense. But since A is closed, (9.8)
and Proposition 9.14 tell us that the range of A — I is closed, hence all
of H. Similar reasoning shows that the range of A 4 I is also all of H.

Now, by Proposition 9.13, (A —iI)* = (A°')* +il, which is an extension
of A +iI. Suppose (A)* + il is a proper extension of A 4 il, that is,
that the domain of (A°)* +iI is strictly bigger than the domain of A +il.
Then since A + il already maps onto H, (A))* + I cannot be injective.
Thus, the operator

(A 44l = A* +4l = (A —il)*

must have a nontrivial kernel. Then by Proposition 9.12, Range(A — iI) is
not dense, contradicting our assumptions.

We conclude, therefore, that (A°)* + 4l is not a proper extension of
A 441 ie., that (A°)* + il = A°! 4+ 4] (with equality of domains). This,
by Proposition 9.13, means that (A°)* = A* (with equality of domains),
which is what we are trying to prove. m

Proposition 9.23 If A is a symmetric operator on H, then A is self-
adjoint if and only if

Range(A —il) = Range(A + iI) = H.

Proof. Suppose first that A is self-adjoint. Then by Theorem 9.21, the
ranges of A — il and A + il are dense in H. On the other hand,

1A =Dyl = [l (9.9)

by (the proof of) Lemma 7.8, with A = i. Since, also, A = A* is closed,
Proposition 9.14 tells us that the range of A —i[ is closed, hence all of H.
A similar argument shows that the range of A + i/ is all of H.

Conversely, suppose that the ranges of A — il and A + ¢ are all of H.
Then A is essentially self-adjoint by Theorem 9.21, so that A* is self-adjoint.
Since A — iI already maps onto H, if A* were a nontrivial extension of A,
then A*—iI could not be injective. But (9.9), with A replaced by A*, shows
that A* — i1 is injective. Thus, A = A* and so A is self-adjoint. m

In the case that A is positive-semidefinite (i.e., (¢, AY) > 0 for all ¢ €
Dom(A)), there is another self-adjointness condition, the proof of which is
very similar to that of Theorem 9.22.
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Theorem 9.24 Suppose that A is a symmetric operator on H and that
(¥, Ap) > 0 for all » € Dom(A). Then A is essentially self-adjoint if and
only if A+ I has dense range. Equivalently, A is essentially self-adjoint if
and only if A* + I is injective.

Proof. Assume first that A is essentially self-adjoint. Then (A + I)* =
A* + T = A + 1. Tt is easily seen that A is also positive definite, and so

(¥, (A + D)) = (¥, ¥) + (¥, A%P) > (¥, ¥) (9.10)

Thus, A +1 = (A+1)* is injective. Thus, the range of A + I is dense, by
Proposition 9.12.

Now assume that A+ I has dense range. By (9.10), A 4 I is injective and
by (9.10) and Proposition 9.14, the range of A°' +1 is closed, hence all of H.
Assume Dom(A*) is strictly larger than Dom(A¢!). Then because A +1 is
already surjective, A* + I (which has a domain equal to the domain of A*)
cannot be injective. Thus, A* + T = (A4 I)* has a nontrivial kernel, which
means that the range of A + I is not dense. This is a contradiction, and
so the domain of A* must actually be equal to the domain of A®. Since A
and so also A° are symmetric, this means that A is self-adjoint. m

Example 9.25 Suppose that A is a symmetric operator on H that has
an orthonormal basis of eigenvectors. That is to say, suppose there is an
orthonormal basis {e;} for H such that for each j, we have e; € Dom(A)
and Aej = Aje; for some real number \;. Then A is essentially self-adjoint.

This result is a strengthening of Example 9.15, in that we do not assume
that the domain of A is equal to the space of finite linear combinations of
the e;’s.

Proof. For any j, (A —il)e; = (\; —i)e;. Since \; is real, we have a
nonzero multiple of e; belonging to Range(A — iI), for each j. This shows
that Range(A — iI) is dense, and similarly for Range(A + ¢I). m

Example 9.26 Suppose H is a Hilbert space direct sum of a sequence of
separable Hilbert spaces H:

H = éﬂj.
Jj=1

Suppose also that A; is a bounded self-adjoint operator on Hj, for each j.
Define a subspace V of H by

o0

v = v = Wita ) |3 (512 + 14012) < o0

Jj=1

Suppose now that A is a symmetric operator on H whose domain contains
the finite direct sum of the H;’s and such that A|Hj = Aj. Then A is
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essentially self-adjoint, Dom(A) = Dom(A*) =V, and
Ap = A% = (A, Agihy, . .) (9.11)

for all v = (Y1,19,...) in V.

See Definition A.45 for the definition of the Hilbert direct sum and the

finite direct sum of a sequence of Hilbert spaces. Example 9.25 is the special
case of Example 9.26 in which each H; has dimension 1. This result will
be useful to us in Chap. 10.
Proof. Since A; is self-adjoint, the ranges of A; — il and A; + il are
dense in H;. Thus, the closure of the range of A — il contains each H;
and is therefore dense in H, and similarly for A 4+ /. This shows that A is
essentially self-adjoint.

It remains to show that the domain of A* = A is V. Let W denote the
finite direct sum of the H;’s. By the argument in the previous paragraph,
Alyy is essentially self-adjoint. Then A* is a symmetric extension of ( Ay, )",
which must coincide with (A|y,)*. Thus, it suffices to consider the case
Dom(A) = W.

If we assume that Dom(A) = W, we can compute the adjoint of A by the
argument in Example 9.15. If ¢ € V, then the Cauchy—Schwarz inequality
shows that the linear functional (¢, A-) is bounded and that A*¢ is as
(9.11). On the other hand, if (¢, A-) is bounded, where ¢ = (¢1, @2, ...),
take

Q/JN: (¢17¢27"-7¢N,O,0,...).

Then, as in the proof of Example 9.15, the only way we can have |{¢, Avn)| <
C||vn] is if ¢ belongs to V. m

9.6 A Counterexample

In this section, we will examine an elementary example of an operator that
is symmetric but not essentially self-adjoint. Our example will be essen-
tially the momentum operator on a finite interval, with “wrong” boundary
conditions. (A more sophisticated example is given in Sect.9.10.) We take
our Hilbert space to be L2([0, 1]).

Proposition 9.27 Let Dom(A) C L2([0,1]) be the space of continuously
differentiable functions f on [0,1] satisfying

P(0) =4(1) = 0.

For ¢ € Dom(A), define
Ay = —in2e.
dx

Then A is symmetric but not essentially self-adjoint.
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We can understand the failure of essential self-adjointness of A in prac-
tical terms as a failure of the spectral theorem. The eigenvector equation
Ay = M for A € R is a first-order ordinary differential equation, whose
general solution is 1 (x) = ce’*, where c is a constant. The only way such a
function can satisfy the boundary conditions ¥(0) = ¢(1) = 0isif ¢ =0, in
which case v is the zero vector. Thus, A has no eigenvectors. Furthermore,
taking the closure of A does not help, because, as the proof will show, the
boundary conditions survive taking the closure.

Proof of symmetry. Using integration by parts we see that for all ¢ and
¥ in Dom(A) we have

/ )52 do = FW(1) ~ FON0) - / d%() (9.12)

Since we assume ¢ and v are in Dom(A), the boundary terms are zero and

we get
di do
(ba _> = - <—7¢> .
< dx /[ 2(po,1)) dz" "/ p2(0,1))

Because there is a conjugate in one side of the inner product but not the
other, it follows that

<¢7 _zhﬂ> < h—¢=1/1> )
dx /[ 12(p0,1)) dz" "/ r2(0,1))

as claimed. m
We now consider A and A* = (A°!)*. We will see that there are elements
of the domain of the adjoint that are not in the domain of the closure.

Lemma 9.28 If ¢ is a continuously differentiable function on [0,1], then
¢ € Dom(A*) and A*¢ = —ih d¢/dx.

Proof. If ¢ is continuously differentiable, then for any ¢ in Dom(A4), we
may integrate by parts as in (9.12). Since ¢ is zero at both ends of the
interval, the boundary terms vanish and we obtain

(6, AY) = ih / —%( ) da

- /01 (-mj‘f)w( ) da (9.13)

Since d¢/dx is continuous and hence in L?([0,1]), we see that (9.13) is a
continuous linear functional, as a function of ¥ with fixed ¢. Thus, % is in
the domain of A*, and A*¢ = —i d¢/dz. m

Proof of Proposition 9.27. Suppose ¢ is in the domain of A®. Then
there exist v, in Dom(A) such that 1, converges to ¢» and A, converges
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to some y € L?([0,1]). Since the derivatives of the 1),,’s are converging in
L?, the 1),,’s themselves must be converging uniformly, as can be shown by
writing each 1, as the integral of its derivative. (See Exercise 10.) It follows
that every element of Dom(A) is continuous and vanishes at both ends of
the interval. On the other hand, Dom(A*) contains all smooth functions,
including many that do not vanish at the ends of the interval. Thus, A%
and (A°)* = A* do not have the same domains. m

It follows from Lemma 9.28 that every complex number A belongs to the
spectrum of A°. See Exercise 9.

The reason that A fails to be essentially self-adjoint is that we impose too
many boundary conditions on functions in the domain of A, which results
in there being too few boundary conditions (in this case, no boundary
conditions at all) on functions in the domain of A*. In this example, A* is
given by the same formula as A (—id/dx in both cases), but the domain of
A* is bigger than the domain of A°.

Suppose we define another operator B, still given by the formula —i d/dz,
but with the domain of B to be the space of continuously differentiable
functions ¢ with ¢(0) = ¥ (1). If we integrate by parts as in (9.12), the
boundary terms will cancel, showing that B is symmetric. Meanwhile, the
functions v, (z) 1= > n € Z, form an orthonormal basis for L?([0, 1])
consisting of eigenvectors for B, with real eigenvalues A\, = 27n. Thus, by
Example 9.25, B is essentially self-adjoint.

9.7 An Example

We now give an example of an operator that is essentially self-adjoint. Let
C2°(R) denote the space of smooth, compactly supported functions on R.

Proposition 9.29 Let P be the densely defined operator with Dom(P) =
CX(R) C L*(R) and given by Py = —ih dip/dx. Then P is essentially
self-adjoint.

Proof. Our strategy is to apply Corollary 9.22. Since P is symmetric, we
expect that P* will be given by the formula —ih d/dz, on some suitable
domain inside L?(R). Thus, if ¢ € ker(P* + iI), this should mean that
—ih dy/dx = —itp, or dip/dx = (1/h)y(x), which ought to imply that
Y(x) = ce®/, for some constant c. Since ce®/™ belongs to L?(R) only if
¢ =0, we hope to conclude that ¢ = 0.

To say that ¢ € L?(R) belongs to the kernel of P* + il means that 1)
belongs to Dom(P*) and that P*i¢) = —i1. This holds if and only if

R
—ih A %1/)(3:) dx = z/Rx(x)d)(a:) dx
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for all x € C>®(R). For any ¢ € C®(R), if we take y(z) = &(x)e~*/" and
combine the integrals into one, we get

0= —i/ [f"leg”/ﬁg — e (2) + e/ ()| Y(x) da
R dx
= —m/R %e—w/%(:c) dz. (9.14)

Now, (9.14) says that the derivative of e =%/ (z) in the weak or distribu-
tional sense is zero. (See Proposition A.29 in Appendix A.3.3.) Thus, by the
remarks immediately following Proposition A.5, we must have e =%/ (x) =
¢ for some ¢, meaning that ¥ (z) = ce®/". Since we also assume that ¢ be-
longs to Dom(P*) C L?(R), we must have ¢ = 0, so that v is the zero
element of L?(R).

We have shown, then, that only 0 belongs to the kernel of P* +il. A
similar argument with i replaced by —i and e®/" by e~*/" shows that only
0 belongs to the kernel of P* —¢I. Thus, by Corollary 9.22, P is essentially
self-adjoint. m

9.8 The Basic Operators of Quantum Mechanics

In this section, we consider several of the unbounded self-adjoint operators
that arise in quantum mechanics. We find natural domains of self- ad-
jointness for the position, momentum, kinetic energy, and potential energy
operators. Since Schrodinger operators are more complicated to analyze,
we postpone a discussion of them until the next section. We begin with the
potential energy operator.

Proposition 9.30 Suppose V' : R™ — R is a measurable function. Let
V(X) be the unbounded operator with domain

Dom(V (X)) = {¢ € L*(R") |V (x)y(x) € L*(R") }
and given by
[V(X)](x) = V(%) (x).

Then Dom(V (X)) is dense in L*(R™) and V(X) is self-adjoint on this
domain.

Proof. Define a subset E,, of R” by
E,={xeR"||[Vx)| <m},

so that Uy, E,,, = R™. Then for any ¢ € L?(R"), the function ¥15, belongs
to Dom(V(X)). On the other hand, using dominated convergence, we have
Ylg,, — 1 as m — oo, establishing that Dom(V (X)) is dense.
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Since V is real-valued, it is easy to see that V(X) is symmetric on
Dom(V(X)). Thus, V(X)* is an extension of V(X).
Meanwhile, suppose ¢ € Dom(V(X)*), meaning that

Y /X o(z)V(x)(x) de, 1 € Dom(V (X)) (9.15)

is a bounded linear functional. This linear functional has a unique bounded
extension to L? and, thus, Thus, there exists a unique y € L?(R™) such
that

/ WDV (@)é(x) do = / X@)é(x) de, (9.16)
X X

or

[ [Fve) -] ete) 0

for all ¢ € Dom(V(X)).

Taking ¢ = (VV — x)1g,,, we see that )V — x is zero almost everywhere
on FE,,, for all m, hence zero almost everywhere on R”. Thus, ¢V is equal
to x as an element of L?(R™). This shows that 1y € Dom(V(X)). Thus,
actually, Dom(V(X)*) = Dom(V(X)). Since we have already shown that
V(X)* is an extension of V(X), we conclude that V(X) is self-adjoint on
Dom(V(X)). m

If we specialize the preceding proposition to the case V(x) = z;, we
obtain the following result about the position operator.

Corollary 9.31 The position operator X; is self-adjoint on the domain
Dom(X;) = {¢ € L*(R") |2;1(x) € L*(R™) } .

We now turn to consideration of the momentum operator. Since the
Fourier transform converts 9/9x; into multiplication by ik; (Proposition
A.17) we can use the preceding results on multiplication operators to obtain
a natural domain on which the momentum operator is self-adjoint.

Proposition 9.32 For each j = 1,2,...,n, define a domain Dom(FP;) C
L?(R™) as follows:

Dom(P;) = {weL2(R")

kyi(k) € 2R },
where z/AJ is the Fourier transform of 1. Define P; on this domain by

Py = F ! (hkjid (k).

Then P; is self-adjoint on Dom(FP;).

The domain Dom(P;) of P; can also be described as the set of all 1 €
L?(R™) such that 8w/8x], computed in the distribution sense, belongs to
L2(R™). For any v € Dom(P;), we have Pj1yp = —ihdv/0x;, where O /0x;

is computed in the dzstrzbutwn sense.
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Saying that the distributional derivative of ¢ belongs to L?(R™) means
(Proposition A.29) that there exists a (unique) ¢ in L?(R™) such that

9x
for all x € C2°(R™). If ¢ is continuously differentiable, then the distribu-
tional derivative of ¢ coincides with the ordinary derivative of ¢. Thus, if
¢ € L*(R") is continuously differentiable, then 1 belongs to Dom(P;) if
and only if 9¢y/dx;, computed in the pointwise sense, belongs to L?(R™),
in which case Pjip = —ihdv/0x;. On the other hand, if ) € Dom(F;), it is
not necessarily the case that ¢ is continuously differentiable.

In the case n = 1, the domain of P; certainly contains C2°(R), since each
element ¢ of C>°(R) is a Schwartz function (Definition A.15), so that ¢
is also a Schwartz function, in which case kib(k) belongs to L2(R). Now,
as shown in Sect. 9.7, the operator —ifid/dx is essentially self-adjoint on
C2°(R), which means that this operator has a unique self-adjoint extension.
This self-adjoint extension must, therefore, agree with the operator P; in
the n = 1 case of Proposition 9.32.

Lemma 9.33 Suppose ¢ € L?*(R™) has the property that dv/dz;, com-
puted in the distribution sense, is equal to an L? function ¢. Then ¢E(k) =
ikji(K), showing that k;(k) belongs to L2(R™).

Conversely, suppose 1 € L?(R™) has the property that ka/}(k) belongs to
L2(R™). Then 9 /dz;, computed in the distribution sense, is equal to the
L? function F~(ik; F(¢)).

Proof. Suppose 0 /dz;, computed in the distribution sense, is equal to the
L? function ¢ (see Definition A.28). Then by the unitarity of the Fourier
transform (Theorem A.19) and its behavior with respect to differentiation
(Proposition A.17), we have

<x,¢>——<%,¢>

= —(ik; F(x), F(¥)) ,
for all x € C2°(R). Thus,

(F(), F (@) = = (ik; F(x), F(¥)),  x € CZ(R).

Writing this equality out as an integral, we have
[ X056 k= [ TR0 dk

— [ Wik di (9.17)

for all x € C°(R™).
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We now claim that because (9.17) holds for all x € C°(R™), we must
have ¢(k) = ik, (k) for almost every k. Using the Stone-Weierstrass the-
orem and Theorem A.10, it is not hard to show that the space of smooth
functions with support in [a,b] is dense in L?([a,b]), for all a < b € R.
Since both QAS and ka/}(k) are locally square-integrable, we see that these
two functions are equal almost everywhere on [a, b], for all a < b € R, and
hence equal almost everywhere on R.

Since ¢ is globally square-integrable, so is kﬂ/;(k). Furthermore, by the
injectivity of the L? Fourier transform, we have

9y —1¢;
on, 07T (ik; F (¥))
as claimed.
The argument for the second part of the lemma is similar and left as an
exercise (Exercise 12). m
Proof of Proposition 9.32. By Proposition 9.30, the operator of mul-
tiplication by k; is an unbounded self-adjoint operator on L?(R™), with
domain equal to the set of ¢ for which k;¢(k) belongs to L?(R™). It then
follows from the unitarity of the Fourier transform that P; = hF "My, F is
self-adjoint on F~!(Dom(Mjy,)), where My, denotes multiplication by k;.
The second characterization of Dom(FP;) follows from Lemma 9.33. m

Proposition 9.34 Define a domain Dom(A) as follows:

Dom(A) = {w € L2(R")

kI (k) € L2(R™) }.
Define A on this domain by the expression
A= —F (k" (k). (9.18)

where z/AJ is the Fourier transform of v and F~! is the inverse Fourier.
Then A is self-adjoint on Dom(A).

The domain Dom(A) may also be described as the set of all ¢ € L*(R™)
such that Av, computed in the distribution sense, belongs to L*(R™). If
¥ € Dom(A), then Ay as defined by (9.18) agrees with Ay computed in
the distribution sense.

The proof of Proposition 9.34 is extremely similar to that of Proposi-
tion 9.32 and is omitted. Of course, the kinetic energy operator —hA%A/(2m)
is also self-adjoint on the same domain as A. It is easy to see from (9.18)
and the unitarity of the Fourier transform that —A2A/(2m) is non-negative,

that is, that
h2
(0t 80) 20
2m

for all ) € Dom(A).
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Using the same reasoning as in Sects. 9.6 and 9.7, it is not hard to show
that the operators P; and A are essentially self-adjoint on C2°(R™). See
Exercise 16.

Care must be exercised in applying Proposition 9.34. Although the func-
tion

is harmonic on R?\{0}, the Laplacian over R? of ¢ in the distribution
sense is not zero (Exercise 13). (It can be shown, by carefully analyzing the
calculation in the proof of Proposition 9.35, that At is a nonzero multiple
of a §-function.) This example shows that if a function ¢ has a singularity,
calculating the Laplacian of 1 away from the singularity may not give the
correct distributional Laplacian of 1. For example, the function ¢ in L?(R?)
given by

6_‘x|2

ox) = S

(9.19)

]
is not in Dom(A), even though both ¢ and A¢ are (by direct computa-
tion) square-integrable over R3\{0}. Indeed, when n < 3, every element of

Dom(A) is continuous (Exercise 14).

Proposition 9.35 Suppose 1(x) = g(x)f(|x|), where g is a smooth func-
tion on R™ and f is a smooth function on (0,00). Suppose also that f
satisfies

lim r" " f(r) =0

r—0+

lim ™' f'(r) = 0.

Jim )
If both v and Av are square-integrable over R™\{0}, then 1 belongs to
Dom(A).

Note that the second condition in the proposition fails if n = 3 and
f(r) =1/r. We will make use of this result in Chap. 18.
Proof. To apply Proposition 9.34, we need to compute (1), Ax), for each
x € C°(R™). We choose a large cube C, centered at the origin and such
that the support of x is contained in the interior of C. Then we consider
the integral of ¢(9%x/023) over C\C., where C. is a cube centered at the
origin and having side-length €. We evaluate the z;-integral first and we
integrate by parts twice. For “good” values of the remaining variables, z;
ranges over all of C, in which case there are no boundary terms to worry
about. For “bad” values of the remaining variables, we get two kinds of
boundary terms, one involving ¥ (9x/dz;) and one involving (9 /0z;)x,
in both cases integrated over two opposite faces of C..

Now,
op _ 99 4z



190 9. Unbounded Self-Adjoint Operators

Since the area of the faces of the cube is ¢!, the assumption on f will
cause the boundary terms to disappear in the limit as € tends to zero.
Furthermore, both ¢ and A are in L?(R™) and thus in L'(C), where in
the case of A, we simply leave the value at the origin (which is a set of
measure zero) undefined. Thus, integrals of Ay and (Av)yx over C\C-
will converge to integrals over C. Since the boundary terms vanish in the
limit, we are left with

(¥, Ax) = (A, x) -
Thus, the distributional Laplacian of v is simply integration against the

“pointwise” Laplacian, ignoring the origin. Proposition 9.34 then tells us
that ¢y € Dom(A). =

9.9 Sums of Self-Adjoint Operators

In the previous section, we have succeeded in defining the Laplacian A,
and hence also the kinetic energy operator —h?A/(2m), as a self-adjoint
operator on a natural dense domain in L?(R™). We have also defined the
potential energy operator V(X) as a self-adjoint operator on a different
dense domain, for any measurable function V' : R® — R. To obtain the
Schrédinger operator —A2A/(2m)+V(X), we “merely” have to make sense
of the sum of two unbounded self-adjoint operators. This task, however,
turns out to be more difficult than might be expected. In particular, if
V is a highly singular function, then —h2A/(2m) + V(X) may fail to be
self-adjoint or essentially self-adjoint on any natural domain.

Definition 9.36 If A and B are unbounded operators on H, then A+ B
18 the operator with domain

Dom(A + B) := Dom(A) N Dom(B)
and given by (A + B)y = Ay + By.

The sum of two unbounded self-adjoint operators A and B may fail to be
self-adjoint or even essentially self-adjoint. [If, however, B is bounded with
Dom(B) = H, then Proposition 9.13 shows that A + B is self-adjoint on
Dom(A) NDom(B) = Dom(A).] For one thing, if A and B are unbounded,
then Dom(A) N Dom(B) may fail to be dense in H. But even if Dom(A) N
Dom(B) is dense in H, it can easily happen that A 4+ B is not essentially
self-adjoint on this domain. (See, for example, Sect. 9.10.) Many things that
are simple for bounded self-adjoint operators becomes complicated when
dealing with unbounded self-adjoint operators!

In this section, we examine criteria on a function V under which the

Schrodinger operator
N h?
H=—-——A+V
2m
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is self-adjoint or essentially self-adjoint on some natural domain inside
L?(R").

Theorem 9.37 (Kato—Rellich Theorem) Suppose that A and B are
unbounded self-adjoint operators on H. Suppose that Dom(A) C Dom(B)
and that there exist positive constants a and b with a < 1 such that

1Byl < al[Ap] + bl (9.20)

for ally € Dom(A). Then A+ B is self-adjoint on Dom(A) and essentially
self-adjoint on any subspace of Dom(A) on which A is essentially self-

adjoint. Furthermore, if A is non-negative, then the spectrum of A+ B is
bounded below by —b/(1 — a).

Note that since we assume Dom(B) D Dom(A), the natural domain for
A+ B is Dom(A) N Dom(B) = Dom(A). An operator B satisfying (9.20)
is said to be relatively bounded with respect to A, with relative bound a.
Proof. We use the trivial variant of Theorem 9.21 given in Exercise 8.
Choose a positive real number p large enough that a + b/p < 1, which is
possible because we assume a < 1. Then for any ¢» € Dom(A), we have

(A+B+ipl)p = (B(A+ipl) ™' + 1) (A+ipl)y. (9.21)
For any ¥ € H, we compute that
|B(A+ipd) ™ | < al|A(A+ipl) || + b [|(A+inl) ||
b
< (a + —) [lo] - (9.22)
I
Here we have made use of the estimates
JAA +ipD) Y| <1, [[(A+inD) | < %

both of which are elementary (Exercise 17).

If C denotes the operator B(A + iul)~t, (9.22) tells us that ||C|| <
(a+b/p) < 1. Thus, by Lemma 7.6, C'+ I is invertible. Furthermore, since
A is self-adjoint, A + iul maps Dom(A) onto H. Thus, (9.21) tells us that
A + B+ iul also maps Dom(A) onto H. The same argument shows that
A+ B —iul maps Dom(A) onto H and we conclude, by Exercise 8, that
A + B is self-adjoint on Dom(A).

Suppose, in addition, that A is non-negative. Let us replace ip by A > 0,
in (9.21). Calculating as in (9.22), using the estimates in Exercise 18, we
obtain that

b
[B(A+AD) 'y < <a + X) Il

for all v € H. If A > b/(1 — a), then a + b/\ < 1, and by the above
argument, Range(A + B + AI) = H. Furthermore, since A+ B + A is self-
adjoint, Proposition 9.12 tells us that ker(A + B + AI) = {0}. This shows
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that A + B 4+ Al is invertible and —A\ is in the resolvent set of A + B. We
conclude, then, that the spectrum of A+ B is contained in [-b/(1—a), +00).

The last part of the theorem, concerning essential self-adjointness, is left
as an exercise (Exercise 19). m

Theorem 9.38 Suppose n is at most 3 and V : R™ — R is a measur-
able function that can be decomposed as a sum of two real-valued, mea-
surable functions Vi and Va, with Vi belonging to L*(R™) and Va being
bounded. Then the Schridinger operator —h*A/(2m)+V(X) is self-adjoint
on Dom(A). Furthermore, —h?*A/(2m) + V(X) is bounded below.

Implicit in the statement of the theorem is that Dom(V (X)), as given
in Proposition 9.30, contains Dom(A). A result similar to Theorem 9.38 in
R™, n > 4, but the condition that V; belongs to L?(R™) is replaced by the
condition that V; belongs to LP(R™) for some p > n/2. See Theorem X.20
in Volume IT of [34].

Proof. We apply the Kato—Rellich theorem with A = —h?A/2m and B =
V(X). Assume ¢ € Dom(A) and fix some ¢ > 0. By Exercise 14, there
exists a constant c. such that

[P < e |AP] + e [[9]l
for all x € R™. Thus, if V' is as in the theorem and ¢ € Dom(A),

[Vl < sup [¢(x)] [IVa]] + sup [V2(x)] [|¢]]
< e[Vall [|Ag]] + (ce Vil + sup [Va(x)]) [[¢]] -

This shows that Dom(V (X)) D Dom(A). Since € is arbitrary, we can
arrange for the constant in front of ||A¢| to be less than one and the
Kato—Rellich theorem applies. m

Theorem 9.39 Suppose n is at most 8 and V : R® — R is a measur-
able function that can be decomposed as a sum of three real-valued, mea-
surable functions Vi, Va, and Vi, with Vi belonging to L*(R™), Va being
bounded, and Vs being non-negative and locally square-integrable. Then
the Schrédinger operator —h?A/(2m) + V(X) is essentially self-adjoint on
C(R™).

The proof of this result would take us too far afield and is omitted. See
Theorem X.29 in Volume II of [34]. Note that we assume only that V3 is
non-negative and locally square-integrable; V3 can tend to 400 arbitrarily

fast at infinity. Again, the same result applies in R", n > 4, if the condition
on V is replaced by the assumption that V4 € LP(R™) for some p > n/2.

Proposition 9.40 Fixz a and b in R"™ and let a- X + b - P denote the
operator given by

(a-X+b P))(x) = (a-x)ih(x) — thb ‘9‘/;
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Then a-X + b - P is essentially self-adjoint on C°(R™).

Proof. We use the same strategy as in Sect.9.7, namely we explicitly
solve the equation A*1) = +iv and find that there are no nonzero, square-
integrable solutions.

The case b = 0 is not hard to analyze and is left as an exercise (Ex-
ercise 20). Assume, then, that b # 0. By making a rotational change of
variables, we can assume that b = ae; and a = Se; + yes, so that

L oY
(AY)(x) = (Bx1 + yo2)h(x) — zhaa—xl. (9.23)
(If n = 1, the ya2 term is not present.) As in the proof of Proposition 9.29,
the adjoint A* of A will be given by the same formula as A, with Dom(A*)
consisting of those elements 1 of L*(R™) for which the right-hand side of
(9.23), computed in the distributional sense, belongs to L?(R™).

We now apply the criterion for essential self-adjointness in Corollary 9.22.
We need to show that the equations A*y) = it and A*Y = —iy) have no
nonzero solutions in Dom(A*). After rewriting the equation A*¢ =it as

oY i 1
P _%(6551 + yx2)h(x) — Ew(x), (9.24)
we can easily find the general distributional solution as
ip iy 1
P(x) = c(xa,...,Ty)exp {—ﬁx% — ﬁxlxg — %xl} . (9.25)

[It is easily verified that if we let ¢ equal ¢ divided by the exponential on the
right-hand side of (9.25), then ¢ satisfies 9¢/0z1 = 0 in the distributional
sense. Exercise 21 then tells us that ¢ must be a function of zs, ..., z,.]
Since the exponential factor is never square integrable as a function of x;
with x5 fixed, the only way that ¢ can be square integrable is if ¢ is zero
for almost every value of (xa,...,x,), in which case 1 is the zero element
of L2(R™). A similar argument shows that the equation A%y = —it) has no
nonzero solutions. m

9.10 Another Counterexample

In this section, we will show that the Schrodinger operator H = P?/(2m) —
X* is not essentially self-adjoint on C2°(R), even though H is certainly
symmetric. By contrast, P?/(2m) + X* is essentially self-adjoint, by The-
orem 9.39. The operator P?/(2m) — X% is a more serious counterexample
than the one in Sect.12.2, in that it does not involve any obviously in-
correct choice of boundary conditions. On the other hand, it should not
be surprising that something goes “wrong” in a quantum system with a
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potential equal to —z*. After all, a classical system with this potential has
trajectories that go to infinity in finite time (see Exercise 4 in Chap. 2).
To show that H is not essentially self-adjoint, we will show that the
adjoint H* is not symmetric. Suppose v is a C'°° function such that both
1 and the function
h2

_ %wﬂ(x) — zhip(z) (9.26)

belong to L?(R). Using integration by parts, as in the proof of Lemma 9.28,
we can see that ¢ is in the domain of H* and H*1 is the function in (9.26).
We will construct an approximate eigenvector ¥ € Dom(fl *) for H* with
an imaginary eigenvalue ia, which will show that H* is not symmetric and
thus H is not essentially self-adjoint.

Theorem 9.41 Define an operator H with Dom(H) = C°(R) by the for-
mula
R e,

T 2md?

Then H is not essentially self-adjoint.

In preparation for the proof, let us define a function p(x) on R such that

2
péiv) )
m

that is,
p(z) = V2my/z* +ia. (9.27)

Here we take the square root that is in the first quadrant. The function
p(z) represents “the momentum of a classical particle with energy ia.”

Lemma 9.42 If 1, is given by
1 i [T
ha(x) = ——=exp 7 p(y) dy ¢, (9.28)
p(x) 0
then 1, belongs to L?(R) and the function

7

4
— — o 2
2m dz? T (9-29)

also belongs to L*(R). Furthermore, we have

K2 2 4 . K2
—%@ —r — 1 dja( ) —%wa(;v)ma(;v),
where
(2) 5 20 x?
me(x) = =
4 (z* +ia)? (x* + i)
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It will be apparent from the proof that the two terms in (9.29) are not
separately in L?(R). The motivation for the definition of 1, comes from
the WKB approximation (Chap. 15) with a complex value for the energy.
Proof. Let us consider the integral of p,

/Ozp(y)dy—\/%/oz\/zmdy-

Using the power series for (1 4 x)® we see that for large y,

T 2 - I_ .2 (xe" 1
Vyttia=y*/1+ia/yt =y (1+2—y4+0 (E))
From this estimate, it is easy to see that the imaginary part of fom p(y) dy
remains bounded as x tends to +oco. It follows that the exponential in the
definition of 1 is bounded, from which it is easy to see that v is square
integrable.
Now, using the formula for the second derivative of a product, we obtain

e p@? P a1 (@) Y ip(@)
W3 a [ = h o] 2h< > p

2 p(a )2
o, d? 1 i [*
—h w%] exp{ﬁ/o p(y) dy}. (9.30)

The factor of 1/1/p(z) in the definition of 1, was chosen precisely so that
the second and third terms in square brackets will cancel. If we replace
p?(r) in the numerator of the first term by 2m(z* + i), we obtain

h2 h2 d2 . x
— o ~Ya(@) = 2'Ya —ioge = —o— <@p(w)1/2> exp {%/O p(y) dy} :

2m
It is then an elementary calculation to show that

d? _ _ 5 o L
wp(x) /2 p(x) 1/2 {Z(x‘l +ia)"%2% = 3(2* +ia) 13:2] ,

from which the lemma follows. m

Proof of Theorem 9.41. If H were essentially self-adjoint, H* (which
would coincide with H <) would be self-adjoint and, in particular, symmetric.
If this were the case, we would have, by the proof of Lemma 7.8,

<(H* —ial)y, (H* — iaI)1/)> > a2 (1, ) (9.31)

for all ¢ € Dom(H*) and a € R. But if 1, is the function in Lemma 9.42,
the discussion preceding Theorem 9.41 shows that 1, belongs to Dom(H*).
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Furthermore, it is easily verified that there is a constant C' such that
|ma(z)] < C for all @« > 1 and « € R. Thus, for all sufficiently large
«, we have

f 2 B, 2 2 2
H(H —iad)a|| < 75 C% ¢l < o ¢l

contradicting (9.31). m K
See Exercise 22 for a more explicit approach to showing that H* is not
symmetric.

9.11 Exercises

1. Show that an unbounded operator A fails to be closable if and only
if the closure of the graph of A contains an element of the form (0, 1)
with ¢ £ 0.

2. Define an unbounded operator A on L?([0, 1]) with domain Dom(A) =
C([0,1]) by
Af = f0)1,

where 1 is the constant function. Show that A is not closable.
3. Prove Proposition 9.13.

4. Suppose that A is an unbounded self-adjoint operator on H and that
numbers A, in 0(A) converge to some A € R. Using Point 1 of Propo-
sition 9.18, show that A € o(A).

5. Suppose A is a closed operator on H. Show that the kernel of A is a
closed subspace of H.

6. Suppose A is a closed operator on H. Define a norm ||-||; on Dom(A)
by
191y = 19l + [ Av -

Show that Dom(A) is a Banach space with respect to [|-||;.
7. Let A be an unbounded operator on H.

(a) Show that if A is symmetric, then A is also symmetric.

(b) Show that if B is an extension of A, then A* is an extension of
B*.

(¢) Suppose A is self-adjoint and B is an extension of A. Show that
if B is symmetric, then Dom(A) = Dom(B). (That is to say, a
self-adjoint operator has no proper symmetric extensions.)
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Fix a positive real number .
(a) Show that a symmetric operator A is self-adjoint if and only if
Range(A + iul) and Range(A — iul) are equal to H.
(b) Show that a symmetric operator A is essentially self-adjoint if
and only if Range(A +iul) and Range(A —iul) are dense in H.

Let A be the operator considered in Sect.9.6. Using Lemma 9.28,
show that for each A € C, there exists ) € Dom(A*) with A*¢) = \ip.
Conclude that each A € C belongs to the spectrum of A,

Hint: Recall that (A)* = A*.
Let A be the operator considered in Sect. 9.6 and suppose % is in the
domain of A°. Then there exists a sequence 1, in Dom(A) such that

¥, converges to 1 in L2([0,1]) and such that A, converges to some
¥ in Z2([0, 1))

(a) Show that

din, .
Yp () = <1[0,m]7 E> =i (10,2, Atn)
for all z € [0,1].

(b) Show that v,, converges uniformly to the function
(¢) Conclude that v is continuous and satisfies 1(0) = ¢(1) = 0.

Take H = L2((0,00)) and let A be the operator —i d/dx, with
Dom(A) consisting of those smooth functions that are supported on
a compact subset of (0,00). (Such a function is, in particular, zero on
(0,¢€) for some € > 0.) Show that A is symmetric and that A* + I is
injective but that A* — ¢I is not injective.

Hint: Imitate the arguments in the proof of Propositions 9.27 and 9.29.
Prove the second part of Lemma 9.33.

Let x be a smooth, radial function on R? such that for |x| < 1 we
have x(x) = 1, for |x| > 2 we have y(x) = 0, and for 1 < |x| < 2, we
have 0x/0r < 0. Show that

1
/ —Ax(x) dx < 0,
re ||

which shows that the Laplacian of 1/ |x|, in the distribution sense, is
not zero.
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14.

15.

16.

17.
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Hint: Let E = C1\C3, where Cf is a cube centered at the origin with
side length 3 and where Cs is a cube centered at the origin with side
length 1/2. Then E contains the support of Ay. Using integration by
parts on E, show that

/R3 éAx(x) dx = _/Ra v <é) V() dx

Let Dom(A) C L?(R™) denote the domain of the Laplacian, as given
in Proposition 9.34, and assume n < 3.

(a) Show that each ¢ € Dom(A) is continuous and that there exists
constants ¢; and ¢ such that

| < el + 2 |11 @)

for all ) € Dom(A).

Hint: Show that 1[) is in L' by expressing 1/; as the product of
two L? functions.

(b) Show that for any € > 0, there exists a constant ¢, such that

()] < e Y]] + e 1Ay
for all ) € Dom(A).

Recall the definitions of Dom(P;) and Dom(A) in Sect.9.8. Let
Dom(P}) be the set of all ¢ belonging to Dom(P;) such that Pji)
again belongs to Dom(P;). Show that

ﬁDom(Pf) = Dom(A).

Let @; denote the restriction to C2°(R™) of the momentum operator
P;. Show that Dom(Q}) = Dom(P;). Conclude that Q; is essentially
self-adjoint.

Let A be an unbounded self-adjoint operator on H and let u be a
nonzero real number.

(a) Show that |[(A + iul) || < 1/|u|. Note that (A+ipl) =" exists,
by Theorem 9.17.

(b) Show that for all ) € H,
lol* = || AGA + i)~ || + 2 (A + ipD) " |

Conclude that ||A(A +iul)~t| < 1.
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18. Let A be an unbounded self-adjoint operator on H. Suppose A is
non-negative (Definition 9.19) and let A be a positive real number.

(a) Show that ||(A+ AI)7!|| < 1/A.
(b) Show that for all ¢ € H,

) > |A(A+ M)~ 1/;|| + N ||[(A+AD)™ ¢||

Conclude that ||A(A + )7 < 1.
19. Prove the last part of Theorem 9.37, concerning domains of essential

self-adjointness.

Hint: If A is self-adjoint on Dom(A4) and V' C Dom(A) is a dense
subspace of H, then A is essentially self-adjoint on V if and only if
the closure of Al is equal to A.

20. Let A be the operator b-X on the domain C2°(R™), for some b € R™.

(a) Using the definition of the adjoint of an unbounded operator,
show that Dom(A*) consists of all those 1 in L?(R™) for which
the function (b - x)1(x) again belongs to L?(R™).

(b) Using Proposition 9.30, show that A is essentially self-adjoint.

21. (a) Show that a function ¢ € C2°(R™) can be expressed as ¢ =
Ox/0x1 for some x € C°(R™) if and only if ¢ satisfies

/ ¢(x1, 2, ..., x,) dry =0

for all (za,...,2,).
(b) Fix a function v € C°(R) such that [*_ ~(z) dz = 1. Show
that any ¢ € C°(R™) can be expressed as
0
B(x) = f(w2, . aay(en) + g

for some x € C2°(R"), where f is the element of C2°(R"™1)
given by

f(l'g,...,l‘n):[ o(x1,x2,...,2,) dr1.

(¢) Suppose T is a distribution on R™ with the property that

oT
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Define a distribution ¢ on R"~! by the formula

c(f) =T(f(z2s- . an)y(21)).
Show that for all ¢ € C°(R™) we have

T(¢) = c(9),
where ¢ € C°(R"1) is given by

¢($27---7$n) = /]RQS('IDIQV"MIN.) dxl-

22. Let H denote the Schrédinger operator in Theorem 9.41 and let ),
be the function defined in Lemma 9.42.

(a) Show that
(st ()
[ A NYEnY A
_ " [%(ww;(w)} %@)%(w)y_A]

—A

(b) Now show by direct calculation that <¢, ﬂ*¢> % <fl*w, w>.
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The Spectral Theorem for Unbounded
Self-Adjoint Operators

This chapter gives statements and proofs of the spectral theorem for
unbounded self-adjoint operators, in the same forms as in the bounded
case, in terms of projection-valued measures, in terms of direct integrals,
and in terms of multiplication operators. The proof reduces the spectral
theorem for an unbounded self-adjoint operator A to spectral theorem for
the bounded operator U := (A +il)(A —il)~! (Sect.10.4). This bounded
operator is, however, not self-adjoint but rather unitary. Thus, before com-
ing to the proof of the spectral theorem for unbounded self-adjoint op-
erators, we prove (Sect.10.3) the spectral theorem for bounded normal
operators, those that commute with their adjoints. (A unitary operator U
certainly commutes with its adjoint U* = U~!.) The proof for a bounded
normal operator B is the same as for bounded self-adjoint operators, ex-
cept for the step in which we approximate continuous functions on o(B)
by polynomials. Since o(B) is not necessarily contained in R, we need to
use the complex version of the Stone-Weierstrass theorem, which requires
us to consider polynomials in A and A. We must then prove a strengthened
version of the spectral mapping theorem before proceeding along the lines
of the proof for bounded self-adjoint operators.

In Sect. 10.2, we discuss Stone’s theorem, which gives a one-to-one corre-
spondence between strongly continuous one-parameter unitary groups and
self-adjoint operators. One direction of Stone’s theorem follows from the
spectral theorem, that is, from the functional calculus that results from the
spectral theorem.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 201
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_10,
© Springer Science+Business Media New York 2013
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10.1 Statements of the Spectral Theorem

The statement of the spectral theorem—in any of the forms that we have
considered—is almost the same for unbounded self-adjoint operators as for
bounded ones. The only difference is that the statement of the theorem in
the unbounded case has to contain some description of the domain of the
operator.

Recall that if u is a projection-valued measure on (X, ) with values in
B(H) and 1 is an element of H, then we can construct a non-negative,
real-valued measure py from p by setting uy(E) = (i, u(E)Y), for each
measurable set E. To motivate the following definition, consider integration
of a bounded measurable function f against a projection-valued measure .
Since the integral is multiplicative and complex-conjugation of a function
corresponds to adjoint of the operator, we have

<(/deu>w,(/xfdu>w>;w,(Q/Xffdu)w>

Suppose, now, that f is an unbounded measurable function on X and we
wish to define [ + [ dp, which will presumably be an unbounded operator.
It seems reasonable to define the domain of f to be the set of ¥ for which
the right-hand side of (10.1) is finite.

Proposition 10.1 Suppose p is a projection-valued measure on (X, Q)
with values in B(H) and f : X — C is a measurable function (not nec-
essarily bounded). Define a subspace Wy of H by

Wy = {mﬂ\ 0P g < o0 | (102)

Then there exists a unique unbounded operator on H with domain Wy —
which is denoted by fX f dp—with the property that

<w, ( 1 du) w>= [ £ dues v

for all v in Wy. This operator satisfies (10.1) for all ¢ € Wy.

Note that since jiy is a finite measure for all 9, if f is bounded then the
domain of fX f dp is all of H. Thus, in the bounded case, the definition of
/ « / du in Proposition 10.1 agrees with our earlier definition (in Chap. 7)
of the integral. This means, in particular, that if f is a bounded function,
S « J dp is a bounded operator. Proposition 10.1 follows immediately from
the following result.
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Proposition 10.2 Let f be a measurable function on X and let W; be as
in (10.2). Then the following results hold.

1. The space Wy is a dense subspace of H and the map Q5 : Wy — C
given by

QW) = /X O dpy (V)

is a quadratic form on Wr.

2. If Ly is the associated sesquilinear form on Wy, we have

1Lp(6,)] < 1Nl e (10.3)
for all ¢, € Wy.

3. For each i € Wy, there is a unique x € H such that Ly (¢,¢) = (¢, x)
for all € Wy. Furthermore, the map v — x is linear and for all
v € Wy, we have

IxI? = /X P duy (10.4)

Proof. It is easy to see that W is closed under scalar multiplication. To
show that it is closed under addition, note that since u(F) is self-adjoint
and satisfies u(E)? = u(E), we have

Ho+o(E) = |u(E) (¢ + )|
< (InE)] + InE)l)*

< 2|u(B)|* + 2 [|u(E)y|*
= 2p6(E) + 21y (E),

where in the third line we have use the elementary inequality (z + y)? <
222 + 2y°.

To show that Wy is dense in H, let £, = {z € X| |f(z)| <n}. If ¢ €
Range(u(Ey)), then py (ES) = 0, and, thus,

J18 = [ 1817 s < s () < . (10.5)
X En

showing that i belongs to W¢. Since also U, E, = X, the union of the
ranges of the u(E),)’s is dense and contained in W/.
If f is bounded, @y may be computed as

Qf<w>=<¢,(/xfdu)¢>, beH,
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where fX f dp is as in Chap. 7. Thus, Q¢ is a quadratic form for which the
associated sesquilinear form is

Ly(6,0) = <¢, (/Xf du) w>, b6 € H.

This form satisfies

L (6,9)] < 4] H (/ f du) wH
X
= o L2 (x ) » (10.6)

for all ¢,v € H, where in the second line we have used (10.1).

If f is unbounded and ¢ belongs to Wy, let f, = flg,. Then Q(¢b) =
lim, 00 @7, (), by monotone convergence, in which case, it is easy to
see that @ is still a quadratic form and that (10.6) still holds for all
¢ € H. From (10.6), we see that for each ¢y € Wy, the conjugate-linear
functional ¢ +— Ly(¢,v) is bounded. Thus, by (the complex-conjugate
of) the Riesz theorem, there is a unique vector x such that L(¢,¢) =
(¢, x). Furthermore, (10.6) tells us that [[x|| < [|fllz2(x ) Conversely,
since Ly(¢,v) = (¢, x), (10.6) is an equality when ¢ = yx, showing that
Xl = [1fllr2(x,,,)- Finally, the map ¢+ x is linear because Ly(¢, 1)) is
linear in . m

Proposition 10.3 If f is a real-valued, measurable function on X, then
Jx [ du is self-adjoint on Wr.

Proof. Let Ay = [, f dp. Define subsets F;, of X by
Fo={zeX|n-1<|f(x)|<n},

so that X is the disjoint union of the F},’s, and let W™ = Range(u(F},)). As
in the proof of Proposition 10.2, any » € W™ is in Wy, and the quadratic
form Q; is bounded on W" [compare (10.5)]. Furthermore, if ¢ € (W™)+
and ¢ € W, it is straightforward to check that pg4y = pg + g and so

Qr(¢+v¢) = Qp(d) + Qs (¥). (10.7)

From (10.7), we obtain, by the polarization identity,

(0, Ap) = L(9,9) = 0.

This shows that Ay belongs to (W")++ =W,

We conclude that Ay maps W" boundedly to itself. Indeed, the restric-
tion to W™ of A coincides with the restriction to W" of the bounded
operator obtained by integrating f1p, with respect to p (compare the
quadratic forms). Furthermore, since @y is real-valued, the restriction of
Ay to W is self-adjoint (Proposition A.63).



10.1 Statements of the Spectral Theorem 205

Now, H is the orthogonal direct sum of the W™’s, meaning that H may be
identified with the set of infinite sequences (¢1, ¥, ¥s,...) with ¢, € W"

and such that -
2
> lwonll* < o
n=1

If A,, denotes the restriction of Ay to W™, then under this decomposition
of H, we have

sz{weH

S Al < oo}

> (Iall® + 1 4nvall®) < oo} . (108

To verify (10.8), we note that

2 . - 2 . E 2
St =3 [P = Al 109

The first equality is by monotone convergence and the second holds because
Hop = o, o0 W™, In particular, the first quantity in (10.9) is finite if and
only if the last quantity if finite.

By a similar argument, for ¢ € Wy, we have

/f e :; s Anthn)

from which it follows that

{1/1 1/1171/127-'

Z Oy Anthn)

for all ¢,v € W¢. From this we see that A1) is the vector represented by
the sequence (4191, A2te, .. .). It then follows from Example 9.26 that A
is self-adjoint. m

Theorem 10.4 (Spectral Theorem, First Form) Suppose A is a
self-adjoint operator on H. Then there is a unique projection-valued measure
p on o(A) with values in B(H) such that

/ A dpt(\) = A. (10.10)
(4)

Since the spectrum of A is typically an unbounded set, the function
f(A) = X is an unbounded function on o(A). Note also that the equality
in (10.10) includes, as always, equality of domains. That is, the domain of
the integral on the left-hand side, namely the space Wy in Proposition 10.1,
coincides with Dom(A). The proof of this theorem is given in Sect. 10.4.
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Definition 10.5 (Functional Calculus) For any measurable function f
on o(A), define a (possibly unbounded) operator, denoted f(A), by

As usual, we can extend the projection-valued measure y* from o(A) to
R by setting u* equal to zero on the complement of o(A).

Definition 10.6 (Spectral Subspaces) If A is a self-adjoint operator
on H, then for any Borel set E C R, define the spectral subspace Vg
of H by

Vi = Range(u(E)).

Definition 10.7 (Measurement Probabilities) If A is a self-adjoint
operator on H, then for any unit vector ¢ € H, define a probability measure
,u;2 on R by the formula

pip(E) = (¢, ' (E)y) .

If the operator A represents some observable in quantum mechanics,
then we interpret u;?) to be the probability distribution for the result of
measuring A in the state 1.

Proposition 10.8 Let A be a self-adjoint operator on H. Then the spectral
subspaces Vg associated to A have the following properties.

1. If E is a bounded subset of R, then Vg C Dom(A), Vg is invariant
under A, and the restriction of A to Vg is bounded.

2. If E is contained in (Mg — €, \o + €), then for all ¥ € Vg, we have
(A =X D) < e[¥]l-

Proof. Point 1 holds because the function f(A) = A is bounded on E. (See
the proof of Proposition 10.3.) Point 2 then holds because, as in the proof
of Proposition 10.3, the restriction of A to Vg coincides with the restriction
to Vg of the operator f(A), where f(A\) = Alg(\). m

Theorem 10.9 (Spectral Theorem, Second Form) Suppose A is a
self-adjoint operator on H. Then there is a o-finite measure p on o(A),

a direct integral
®

H)\ d,LL(/\),
a(4)

and a unitary map U from H to the direct integral such that:

®
U(Dom(4)) = { e/ T ) / o SR a0y < oo}
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and such that
(UAU(5)) (A) = As()

for all s € U(Dom(A)).

Theorem 10.10 (Spectral Theorem,Multiplication Operator Form)
Suppose A is a self-adjoint operator on H. Then there is a o-finite measure

space (X, ), a measurable, real-valued function h on X, and a unitary map
U:H — L?(X, u) such that

U(Dom(A)) = { € L*(X. 1) [lnp € L2(X, 1) }
and such that
(AU () (x) = h(z)i(x)
for all ¢ € U(Dom(A)).

These theorems are also proved in Sect. 10.4.

10.2 Stone’s Theorem and One-Parameter Unitary
Groups

In this section we explore the notion of one-parameter unitary groups and
their connection to self-adjoint operators. We assume here the spectral
theorem, the proof of which (in Sect.10.4) does not use any results from
this section.

Definition 10.11 A one-parameter unitary group on H is a family
U(t), t € R, of unitary operators with the property that U(0) = I and that
U(s+t) =U(s)U(t) for all s,t € R. A one-parameter unitary group is said
to be strongly continuous if

lim [0 (6> — U(s)us]| = 0 (10.11)

for ally € H and all t € R.

Almost all one-parameter unitary groups arising in applications are
strongly continuous.

Example 10.12 Let H = L?(R") and let Ua(t) be the translation operator
given by

(Ua(t)¥) (x) = (x + ta). (10.12)

Then U(+) is a strongly continuous one-parameter unitary group.



208 10. The Spectral Theorem for Unbounded Self-Adjoint Operators

Proof. It is easy to see that U,(-) is a one-parameter unitary group. To see
that Ua(-) is strongly continuous, consider first the case in which ¢ is
continuous and compactly supported. Since a continuous function on a
compact metric space is automatically uniformly continuous, it follows that
(x+ta) tends uniformly to 1) (x) as t tends to zero. Since also the support
of 9 is compact and thus of finite measure, it follows that 1(x + ta) tends
to 1(x) in L?(R") as t tends to zero.

Now, the space C.(R™) of continuous functions of compact support is
dense in L?(R") (Theorem A.10). Thus, given ¢ > 0 and ¢ € L?(R"), we
can find ¢ € Cc(R") such that [[¢) — @]/ 12y < /3. Then choose ¢ so that
|Ua(a)p — ¢|| < /3 whenever |a| < §. Then given ¢t € R, if |t — s] < §, we
have

HUa(t)"/J - Ua(SWH
< [Ua()¥ = Ua)@l + Ua(t)¢ — Ua(s)o|l + [|Ua(s)¢ — Ua(s)¥||
= [Ua()(¥ = @) + [[Ua(s) (Va(t — s)¢ — d)|| + [[Ua(s)(¢ — )|l . (10.13)

Since Uy (t) and Uy(s) are unitary, we can see that each of the terms on the
last line of (10.13) is less than /3. m

Note that for a # 0 the unitary group Ua(:) in Example 10.12 is not
continuous in the operator norm topology. After all, given any ¢ # 0, we
can take a nonzero element 1) of L?(R™) that is supported in a very small
ball around the origin. Then U,(e)t) is orthogonal to ¢ and has the same
norm as v, so that

1Ua(e) = Ua(0)¢l = Uale)d — vl = V21¥.
Thus, ||Ua(e) — Ua(0)|| > v/2 for all € # 0.

Definition 10.13 If U(-) is a strongly continuous one-parameter unitary
group, the infinitesimal generator of U(-) is the operator A given by
1U)y —

At = lim RS (10.14)
t—0 ¢ t
with Dom(A) consisting of the set of 1 € H for which the limit in (10.14)
ezists in the norm topology on H.

The following result shows that we can construct a strongly continuous
one-parameter unitary group from any self-adjoint operator A by setting
U(t) = e, Furthermore, the original operator A is precisely the infinites-
imal generator of U (t).

Proposition 10.14 Suppose A is a self-adjoint operator on H and let U(-)
be defined by .

U(t) = e'4,
where the operator e is defined by the functional calculus for A. Then
the following hold.
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1. U(") is a strongly continuous one-parameter unitary group.
2. For all 1 € Dom(A), we have

A = lim 2 YD ¥

t—0 1 t ’

where the limit is in the norm topology on H.
3. For all v € H, if the limit

lim EW

t—0 1 t
exists in the norm topology on H, then ¢ € Dom(A) and the limit is
equal to Av.

Proof. Since o(A) C R, the function f(\) := e'* is bounded on ¢(A) and
satisfies f(A)f(A) =1 for all A € o(A). Thus, the operator f(A) is bounded
and satisfies

FA (A" = F(A)f(A) =1,

which shows that f(A) = €4 is unitary. The multiplicativity of the func-
tional calculus then tells us that U(-) is a one-parameter unitary group. To
see that U(t) is strongly continuous, note that

1T = Us)wl* = (w, (U #)* = U(s))U () = U(s))e)

oo

:/ yem—emf dpiy (V). (10.15)

— 00

The integral on the right-hand side of (10.15) tends to zero as s approaches
t, by dominated convergence.

For Point 2, from recall from Theorem 10.4 that A = ffooo A dpA(N), and
take ¢ € Dom(A). Then, by (10.4), we have

2 00
.
If we write the function e™* — 1 as the integral of its derivative with respect

to A, starting at A = 0, we can see that |(e" —1)/t| < A. Meanwhile,
since ¢ is in the domain of the operator A = ffooo A dp?()\), we have

2

1 Pt 1
2 C dut(y).  (10.16)

7 t

- A

1@y -9y

7 t — Ay

s du;?,()\) < 00. Thus, we may apply dominated convergence, with

(o]

4\? as our dominating function, to show that the right-hand side of (10.16)
tends to zero as ¢ tends to zero.
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For Point 3, let B be the infinitesimal generator of U(+). If ¢ and v belong
to Dom(B), then

(6, BY) = lim <¢%w>
— i 1U(t)¢—¢

- (35 )

= (Bo, 1) .

Thus, B is symmetric. On the other hand, Point 2 shows that B is an
extension of A, so by Exercise 7 in Chap.9, B = A (with equality of
domain). m

Theorem 10.15 (Stone’s Theorem) Suppose U(-) is a strongly contin-
uous one-parameter unitary group on H. Then the mﬁmt(_ﬁsimal generator
A of U(+) is densely defined and self-adjoint, and U(t) = "4 for all t € R.

If U(-) is a strongly continuous one-parameter unitary group, then U(+)
is continuous in the operator norm topology if and only if the infinitesimal
generator of U(+) is a bounded operator (Exercise 1). As Example 10.12
suggests, most one-parameter unitary groups that arise in applications are
not continuous in the operator norm topology.

Before giving the proof of Stone’s theorem, let us work out the generator
of the group in Example 10.12.

Example 10.16 If U,(-), a € R", is the strongly continuous one-
parameter unitary group in Example 10.12, then each ¢ € C°(R™) is in
the domain of the infinitesimal generator A of Ua(+) and for all such ¢, we
have

A = —izaj%. (10.17)
J

Furthermore, A is essentially self-adjoint on C°(R™).

Proof. The formula for the infinitesimal generator is easy to establish for
¥ in C°(R™). The essential self-adjointness of A is a special case of Propo-
sition 13.5 (the proof of which is similar to the proof of Proposition 9.29).
[ ]

We now establish two intermediate results before coming to the proof of
Stone’s theorem.

Lemma 10.17 Let U(-) be a strongly continuous one-parameter unitary
group and let A be its infinitesimal generator. If 1» € Dom(A), then for all
t € R, the vector U(t)y belongs to Dom(A) and

i U0 = U
h—0 h

= iU(t) Ay = i AU (t)¢. (10.18)
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Note that Lemma 10.17 tells us that the curve ¢(t) := U(t)i in H
satisfies the differential equation

W _

- = iay(t)

in the natural Hilbert space sense, provided that ¢y belongs to Dom(A).
This result, together with Proposition 10.14, tells us that if vg € Dom(ﬁ),
then the curve 9 (t) := e~ *H/M)y indeed solves the Schrodinger equation
in the Hilbert space sense.

Proof. We compute that

Ut+h)y —U(t)y
h

(10.19)

Since 9 € Dom(A), the limit as h tends to zero of (10.19) exists and is
equal to iU(t)Ay. On the other hand,

Ut+h)yp-U®)y _ UM)U®)Y) - (U{)Y)
h h '

Thus, the limit as h tends to zero of (10.19) is, by the definition of A, equal
to iA(U(t)v). This shows that U(t)1) is in the domain of A and establishes
the second equality in (10.18). m

Lemma 10.18 For any strongly continuous one-parameter unitary group
U(+), the infinitesimal generator A is densely defined.

Proof. Given any continuous function f of compact support, define an
operator By by setting

By — /_Oo FEU ) dr.

Here, the operator-valued integral is the unique bounded operator such
that

(¢, Byyp) = / (1) (o, U(T)) dr. (10.20)
[It is easy to see that right-hand side of (10.20) defines a bounded sesquilin-

ear form, for each fixed f € C°(R).]
Using the group property of U(-), we see that

U080~ B = [ T UG+ 06— FOUE dr

- [ U6 -0- 10w an

— 00
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where in the second line, we have made a change of variable in the first
term in the integral. From this, we easily obtain that

li LB — Bryp ()Bfw By /" P dr.

t—0

This shows that Byt is in the domain of A for all ¢ € H and f € C°(R).

Now choose a sequence f, € C°(R) such that f,, is non-negative and
supported in the interval [—1/n,1/n] and such that [~ f.(r) dr = 1.
Then for any ¢» € H, we have

Brp— o= /_ FulOUn (7Y - 9] dr
so that

1B -vl< [ @@ -l dr
< osup  U(T)Y = 9l

—1/n<7<1/n

Since U(-) is strongly continuous, we see that Bj,1¢ converges to ¢ as
n — o0o. Thus, every element of H can be approximated by vectors in the
domain of A. m

Proof of Theorem 10.15. Suppose U(-) is a strongly continuous one-
parameter unitary group and A is its infinitesimal generator. By Lemma
10.18, A is densely defined. As shown in the proof of Proposition 10.14, A
(denoted by B in that proof) is symmetric.

Next, we show that A is essentially self-adjoint. Suppose now that
belongs to the kernel of A* — iI, i.e., A*) = i1). Given ¢ € Dom(A),
set y(t) = (U(t)p, 1), so that |y(t)] < ||#] ||| On the other hand, we
expect that U(t) = e, so that U(t)* should be e~*4"*. Thus, y(t) should
(formally) be equal to (¢, e'1)). If this is correct, then since y(¢) is a bounded
function of ¢, we must have (¢,4) = 0. Thus, ) would be orthogonal to
every element of a dense subspace of H, showing that » = 0. We could
then similarly argue that ker(A* 4+ iI) = {0}, which would show that A is
essentially self-adjoint.

To make the argument rigorous, we apply Lemma 10.17, giving

L W(06.9) = GAU(1),4) = (U (19, A")

= (iU@)g,iv) = (U)o, ) -
Thus, the function y(t) := (U(t)¢p, ) satisfies the ordinary differential
equation dy/dt = y. The unique solution to this equation is y(t) = y(0)e!

Since y is bounded, we must have 0 = y(0) = (¢,9) for all ¢ € Dom(A4),
which implies that ¢» = 0. Thus, ker(A* — iI) = {0}, and by a similar
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argument ker(A* +¢I) = {0}. This shows (Corollary 9.22) that A is essen-
tially self-adjoint.

We can now construct a strongly continuous unitary group V(-) by set-
ting V(t) = e4”t. To show that V(-) = U(-), take ¢ € Dom(A) C
Dom(A%) and set w(t) = U(t)y — V(t)y. By Proposition 10.14, the in-
finitesimal generator of V(-) is A°’. Thus, applying Lemma 10.17 to both
U(-) and V(-), we have

d
Ew(t) =1AU(t)y — i AV ()
= iAw(t),
where the limit defining dw/d¢ is taken in the norm topology on H. Thus,

d

o lw(t)]|® = (iAw(t), w(t)) + (w(t),iAw(t))
= —i (Aw(t), w(t)) + i (w(t), Aw(t))

207

because A is symmetric. Since also w(0) = 0, we conclude that w(t) = 0
for all ¢. Thus, U(-) and V(-) agree on a dense subspace and hence on all
of H.

We now know that U(t) = e*4”*. It then follows from Points 2 and
3 of Proposition 10.14 that the infinitesimal generator of U(-) (namely
A) is precisely A°. That is, A = A and U(t) = €', Furthermore, we
have already shown that A is essentially self-adjoint and we now know
that A = A%, so A is actually self-adjoint. Finally, if B is any self-adjoint
operator for which U(t) = ¢!, then by Proposition 10.14, B must be the
infinitesimal generator of U(-), i.e., B=A. ®

10.3 The Spectral Theorem for Bounded Normal
Operators

We are going to prove the spectral theorem for an unbounded self-adjoint
operator by reducing it to the spectral theorem for a bounded operator.
The reduction, however, will not be to a bounded self-adjoint operator, but
rather to a unitary operator. Although we proved the spectral theorem only
for bounded self-adjoint operators, the theorem applies more generally to
bounded normal operators. (See Exercise 4 in Chap. 7 for the matrix case.)

Definition 10.19 A bounded operator A on H is normal if A commutes
with its adjoint: AA* = A*A.

Every bounded self-adjoint operator is obviously normal. Other examples
of normal operators are skew-self-adjoint operators (A* = —A) and unitary
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operators (UU* = U*U = I). The spectrum of a bounded normal operator
need not be contained in R, but can be an arbitrary closed, bounded,
nonempty subset of C. On the other hand, if U is unitary, then the spectrum
of U is contained in the unit circle (Exercise 6 in Chap. 7).

In this section, we consider the spectral theorem for a bounded normal
operator A. The statements of the two versions of the theorem are precisely
the same as in the self-adjoint case, except that o(A) is no longer necessarily
contained in the real line. Almost all of the proofs of these results are the
same as in the self-adjoint case; we will, therefore, consider only those steps
where some modification in the argument is required.

Theorem 10.20 Suppose A € B(H) is normal. Then there exists a unique
projection-valued measure u* on the Borel o-algebra in o(A), with values
in B(H), such that

/ A dpt(\) = A.
a(A)

Furthermore, for any measurable set E C a(A), Range(u(F)) is invariant
under A and A*.

Once we have the projection-valued measure ', we can define a func-
tional calculus for A, as in the self-adjoint case, by setting

f(4) = / ROEAN

for any bounded measurable function f on o(A).
We can also define spectral subspaces, as in the self-adjoint case, by setting

Vi := Range(u”(E))

for each Borel set E C o(A). These spectral subspaces have precisely the
same properties (with the same proofs) as in Proposition 7.15, with the
following two exceptions. First, the assertion that Vg is invariant under A
should be replaced by the assertion that Vg is invariant under A and A*.
Second, in Point 2 of the proposition, the condition E C [Ao — &, Ao + €]
should be replaced by E C D(Ag,e), where D(z,7) denotes the disk of
radius r in C centered at z.

Meanwhile, the spectral theorem in its direct integral and multiplica-
tion operator versions also holds for a bounded normal operator A. The
statements are identical to the self-adjoint case, except that we no longer
assume o(A4) C R and we no longer assume that the function h in the
multiplication operator version is real valued.

Let us recall the two stages in the proof of the spectral theorem (first
version) for bounded self-adjoint operators. The first stage is the construc-
tion of the continuous functional calculus. The steps in this construction are
(1) the equality of the norm and spectral radius for self-adjoint operators,
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(2) the spectral mapping theorem, and (3) the Stone-Weierstrass theorem.
The second stage is a sort of operator-valued Riesz representation theo-
rem, which we prove by reducing it to the ordinary Riesz representation
theorem using quadratic forms. In generalizing from bounded self-adjoint
to bounded normal operators, the second stage of the proof is precisely the
same as in the self-adjoint case. In the first stage, however, there are some
additional ideas needed in each step of the argument.

There is a relatively simple argument that reduces the equality of norm
and spectral radius for normal operators to the self-adjoint case. Mean-
while, since the spectral mapping theorem, as stated in Chap.8, already
holds for arbitrary bounded operators, it appears that no change is needed
in this step. We must think, however, about the proper notion of “polyno-
mial.” For a general normal operator A, the spectrum of A is not contained
in R, and, thus, powers of A are complex-valued functions on o(A4). We
must, therefore, use the complex-valued version of the Stone—Weierstrass
theorem (Appendix A.3.1), which requires that our algebra of functions be
closed under complex-conjugation. This means that we need to consider
polynomials in A and A, that is, linear combinations of functions of the
form A™\™.

What we need, then, is a form of the spectral mapping theorem that
applies to this sort of polynomial. On the operator side, the natural coun-
terpart to the complex conjugate of a function is the adjoint of an opera-
tor. Thus, applying the function A™ A" to a normal operator A should give
A™(A*)™. The desired “spectral mapping theorem” is then the following:
If p is a polynomial in two variables, and A is a bounded normal operator,
then

o(p(4, A%)) = {p(A\, A)| X € o(A)} . (10.21)

This statement is true (Theorem 10.23), but its proof is not nearly as
simple as the proof of the ordinary spectral mapping theorem. One way
to prove (10.21) is to use the theory of commutative C*-algebras, as in
[33]. (See Theorem 11.19 in [33] along with the assertion on p. 321 that
the spectrum of an element is independent of the algebra containing that
element.) Another approach is the direct argument found in Bernau [3],
which uses no fancy machinery but which is long and not easily motivated.
A third approach is to use the spectral theorem for bounded self-adjoint
operators to help us prove (10.21); this is the approach we will follow.

We begin with the equality of norm and spectral radius and then turn
to (10.21).

Proposition 10.21 If A € B(H) is normal, then
4] = R(A).
Lemma 10.22 If A and B are commuting elements of B(H), then
R(AB) < R(A)R(B).
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Proof. If A is any bounded operator, the proof of Lemma 8.1 shows that
for any real number T with T' > R(A), we have

Am
L A

m—oo M

If A and B are two commuting bounded operators and S and T are two
real numbers, with S > R(A) and T > R(B), then

[AB)™ | _ [A™B™[| _ [[A™][{[B™]]

Thus,
@B

= 0. (10.22)

Meanwhile, if we apply the expression for the resolvent in the proof of
Lemma 8.1 to AB, we obtain

(AB—))~ Z ’imi , (10.23)

since A and B commute. For any \; with |A\1| > R(A)R(B), take A2 with
[AM1] > [X2] > R(A)R(B). The terms in (10.23) with A = Ay tend to zero
by (10.22), which means that (10.23) converges with A = A;. Thus, A; is
in the resolvent set of AB. m

Proof of Proposition 10.21. For any bounded operator, |A| > R(A)
(Proposition 7.5). To get the inequality in the other direction, recall (Propo-
sition 7.2) that [|A||> = ||A* A|. Note also that A*A is self-adjoint, since its
adjoint is A*A** = A*A. Thus, if A and A* commute, we have

1A = [ A" Al = R(A"A) < R(A")R(A)
< [|AT[ R(A) = [[All B(A).

Here we have used Lemmas 8.1 and 10.22 and the general inequality be-
tween norm and spectral radius. Dividing by ||A|| gives ||A]| < R(A), unless
[IA]] = 0, in which case the desired inequality is trivially satisfied. m

Theorem 10.23 If A € B(H) is normal, then for any polynomial p in two
vartables, we have

o(p(4,A")) = {p(/\,j\)| A€ U(A)} .

If, for example, p(\, A) = A2A3, then p(A, A*) = A2(A*)3. Note that since
A and A* are assumed to commute, the map sending the polynomial p(\, )
to p(A4, A*) is an algebra homomorphism. That is to say, (pg)(A4, A*) =
p(A, A*)q(A, A*). This would not be the case if A did not commute with A*.
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We begin by proving Theorem 10.23 in the case that A is a normal
matriz. Although the matrix case is quite simple, it provides an outline for
our assault on the general result.

Proof of Theorem 10.23 in the Matrix Case. For matrices, the spec-
trum is nothing but the set of eigenvalues. If A commutes with A*, then
for any A € C,

(A" = XD, (A" = X)) = (1, (A = A)(A* = X))
= (¢, (A" = M)(A = X))
= (A= XDy, (A — X)) (10.24)

Thus, if 9 is an eigenvalue for A with eigenvalue A, 1 is automatically
an eigenvalue for A* with eigenvalue . It then easily follows that v is an
eigenvector for p(A, A*) with eigenvalue p(\, \).

In the other direction, suppose 4 is an eigenvalue for p(4, A*) and let W
denote the p-eigenspace for p(A, A*). Since A and A* commute with each
other, they also commute with p(A, A*). Thus, A and A* preserve W, as
is easily verified, and the operator Al will have some eigenvector v with
eigenvalue \. Since Ay = M\, then, as in (10.24), A*¢p = A and so

p(A, A*W = p(/\v 5‘)1/)

Since also p(A, A*)y = uwp, by assumption, we have p = p(\, \), where \
is an eigenvalue for A. m

We now attempt to run the same argument for a bounded normal op-
erator on H, replacing “eigenvector” with “almost eigenvector,” where ¢
is an e-almost eigenvector for ¢ if ||(A — AI)v| is less than e [|¢)||. The
main difficulty with this approach is that for a given eigenvalue \, the set
of e-almost eigenvectors is not a vector space. To surmount this difficulty,
we will use the spectral theorem for the self-adjoint operator B* B, where
B = p(A, A*) — ul, with u € o(p(4, A*)). We will construct a spectral
subspace W for B*B such that W is invariant under A and A* and such
that each element of W is an e-almost eigenvector for p(A, A*) with eigen-
value p. (Note, however, that we are not claiming that W contains all the
e-almost eigenvectors for p(A, A*).)

Definition 10.24 If A € B(H), then an e-almost eigenvector for A
with eigenvalue A € C is a nonzero vector ¢ € H such that

[(A=ADY| < el

We now establish three lemmas about almost eigenvectors, the last of
which makes use of the spectral theorem for bounded self-adjoint operators.
With these lemmas in hand, we will have a clear path to imitate the proof
of the matrix case of Theorem 10.23.
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Lemma 10.25 Suppose A € B(H) is normal.

1. If 4 is an e-almost eigenvector for A with eigenvalue A, then ¢ is an
e-almost eigenvector for A* with eigenvalue .

2. A number \ € C belongs to o(A) if and only if for all € > 0, there
erists an e-almost eigenvector with eigenvalue \.

Proof. Point 1 follows immediately from (10.24), which holds for bounded
normal operators, not just matrices. For Point 2, suppose that an e-almost
eigenvector with eigenvalue A exists for all € > 0. Then A — Al cannot have
a bounded inverse, and so A € o(A). In the other direction, if there is some
€ > 0 for which no e-almost eigenvector exists, then

(A= ADY[| = e |¥]] (10.25)

for all v € H, showing that A — Al is injective. By (10.24), the same
inequality hods with A— AT replaced by A* —\I. Thus, A* — X is injective,
so by Proposition 7.3, the range of A — AI is dense in H. Using (10.25) as
in the proof of Proposition 7.7, it is easily seen that the range of A — AI is
also closed, hence all of H. Thus, (A — AI) is invertible and the inverse is
bounded, by (10.25). m

Lemma 10.26 Suppose A € B(H) is normal. Then for each polynomial
p in two wvariables and each number X € C, there is a constant C' such
that if ¢ is an e-almost eigenvector for A with eigenvalue N\, then i is a
(Ce)-almost eigenvector for p(A, A*) with eigenvalue p(\, \).

Proof. We decompose p(A, A*) — p(A\,A\)I into a linear combination of
terms of the form A*(A*)! — A*A! and we estimate such terms by induction
onk+1. If k=1 and [ = 0, there is nothing to prove, and if £k = 0 and
I =1, we use (10.24). Assume now that we have established the desired
result for £+ 1 = N and consider a case with k+1 =N+ 1. If £ > 0, we
write

(AR(A) = XX p = AR A (A= Al
+ A (AR AN = NN 9. (10.26)

Since 1) is an e-almost eigenvector and A and A* are bounded, the norm of
the first term on the right-hand side of (10.26) is at most c;e. By induction,
the norm of the second term on the right-hand side of (10.26) is at most
[A] coe. Thus, the norm of the left-hand side of (10.26) is at most (¢; +
[A] c2)e. A similar analysis holds if k = 0, in which case ! > 0. m

Lemma 10.27 Let A € B(H) be normal, let p be a polynomial in two
variables, and let u be an element of the spectrum of p(A, A*). Then for
all € > 0, there ezists a nonzero closed subspace W¢ of H such that W€ is
invariant under A and A* and such that every nonzero element of W< is
an e-almost eigenvector for p(A, A*) with eigenvalue p.
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Proof. Fix some p in the spectrum of p(A, A*) and let B = p(A, A*) — ul.
Then B is normal and 0 belongs to the spectrum of B. Using Point 2 of
Lemma 10.25 and Lemma 10.26, we see that 0 belongs to the spectrum of
the self-adjoint operator B* B. We apply the spectral theorem to B*B and
we let W€ be the spectral subspace for B* B corresponding to the interval
(—e2%,¢?). By Proposition 7.15, W¢ is nonzero and invariant under B* B,
and the restriction of B* B to W€ has norm at most 2. Thus, for all ¢y € W¢
we have

(B, Byp) = (3, B*By) < ||¢|| | B*By|| < €24

Since B = p(A, A*) — pl, this shows that every nonzero element of W¢
is an e-almost eigenvector for p(4, A*) with eigenvalue p. Furthermore, A
and A* commute with B*B and thus they preserve each spectral subspace
of B*B (Proposition 7.16) including We. m

Proof of Theorem 10.23. Suppose first that A belongs to the spectrum of
A. By Point 2 of Lemma 10.25, A has e-almost eigenvalues with eigenvalue
A for every € > 0. Lemma 10.26 then shows that p(A4, A*) has (Ce)-almost
eigenvectors with eigenvalue p(\, \) for every ¢ > 0, which shows that
p(A, ) is in the spectrum of p(A, A*).

In the other direction, suppose that p is in the spectrum of p(A, A*).
For any ¢ > 0, we consider the nonzero subspace W€ in Lemma 10.27,
which is invariant under A and A*. The restriction of A to W¢ is again a
normal operator (Exercise 8), and Ay, has nonempty spectrum (Propo-
sition 7.5). If we fix some A\ € o(Aly;.), Lemma 10.25 tells us that there
exists an e-almost eigenvector ¥ for A in W¢. By Lemma 10.26, ¢ is a (Ce)-
almost eigenvector for p(A, A*) with eigenvalue p(\, \). Meanwhile, since
1 € W¢, the same vector 1 is also an e-almost eigenvector for p(A, A*)
with eigenvalue u. It then is easy to see (Exercise 10) that

|t —p(\A)| < Ce +e. (10.27)

Since (10.27) holds for all £ > 0, we can find a sequence \,, of points in
o(A) such that p(A,, \,) — p. Since o(A) is compact, we can pass to a
subsequence of the A,,’s that is convergent to some A € o(A), and this A
will satisfy p(A\,\) = p. =

Combining Theorem 10.23 with the equality of the norm and spectral
radius for normal operators (Proposition 10.21), we have the following re-

sult. If A € B(H) is normal and p is a polynomial in two variables, then

Ip(A, A7) = sup [p(A,\)].
Aeo(A)
The map p — p(A, A*) has the property that p(A, A*) = (p(A, A*))*,
where the polynomial p is the complex-conjugate of p. In particular, if p
takes only real values on o(A), then p(A, A*) is self-adjoint.
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By the complex-valued version of the Stone—Weierstrass theorem (A.12),
polynomials in A and A are dense in C(c(A);C), the space of continuous
complex-valued functions on o(A). Thus, the BLT theorem (Theorem A.36)
tells that we can extend the map p — p(A, A*) to an isometric map of
C(o(A);C) into B(H). This extension, which we call the continuous func-
tional calculus for A, has all the same properties as in the self-adjoint case.

Now that the continuous functional calculus for normal operators has
been established, the proof of the spectral theorem—in any of its various
versions—proceeds exactly as in the self-adjoint case. There is no need,
then, to repeat the arguments given in Chap. 8.

10.4  Proof of the Spectral Theorem for Unbounded
Self-Adjoint Operators

To prove the spectral theorem for an unbounded self-adjoint operator A,
we will construct from A a certain unitary (and thus normal) operator
U. We then apply the spectral theorem for bounded normal operators to
U and translate this result into the desired result for A. To motivate the
construction of U, consider the function

Clz):= 211 s eRr (10.28)

i)
Tr—1

It is a simple matter to check that C' maps R injectively onto S*\{1}, with

inverse given by

D(u) = ¢Z+ 1 we SN\ {1}, (10.29)
Furthermore, we have lim,_, + oo C'(z) = 1. The function C(z) in (10.28) is
the simplest bounded, injective function one can define on R.

We wish to apply the map C to a self-adjoint operator A. If A is bounded
and self-adjoint, it is straightforward to check that the operator (A+iI)(A—
i)' is unitary (Exercise 5). Even in the unbounded case, it is possible to
make sense of the operator U := C(A), and we can recover A from U, by
(essentially) applying D. The operator U is unitary and is known as the
Cayley transform of A.

Recall that if A is self-adjoint, then i is in the resolvent set of A and the
operator (A —il)~! maps H into Dom(A).

Theorem 10.28 (Cayley Transform) If A is a self-adjoint operator on
H, let U be the operator defined by

Up = (A+il)(A—il) 1.

Then the following results hold.
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1. The operator U is a unitary operator on H.
2. The operator U — I 1is injective.

3. The range of the operator U — I is equal to Dom(A) and for all ¢ €
Range(U — I) we have

Ay =i(U+ 1)U - 1) 1. (10.30)

According to Point 2, U — I is injective, while according to Point 3, the
range of U — I is Dom(A). Thus, in (10.30), the expression (U —I)~! refers
to the inverse of the one-to-one and onto map U — I : H — Dom(A4). We
are not claiming that 1 is in the resolvent set of U. That is to say, (U —1)~*
is not a bounded operator, unless Dom(A) = H, which occurs only if 4 is
bounded.

Proof. The resolvent operator (4 — il)~* must be injective, because

(A—il)(A—il)" ' =1
for all ¢ € H. Furthermore, (A — il)~! maps H onto Dom(A), because
¢ =(A—il) " (A—il)Y

for all ¢ € Dom(A). Since —i is also in the resolvent set of A, similar
reasoning shows that A + i/ maps Dom(A) injectively onto H. Thus, U is
the composition of one operator that maps H injectively onto Dom(A) and
another operator that maps Dom(A) injectively onto H, so that U maps
H injectively onto H.

Now, for any ¢ € Dom(A) we have

(A+il)¢, (A+il)p) = (A, Ag) + (4, ¢)
because of a familiar cancellation of cross terms. Thus, applying this with
¢ = (A —il)~ % shows that for any ¢ € H, we have

((A+iD)(A—il) ", (A+il)(A—il)" ')

= <(A — i) (A — i)"Y, (A — D) (A —il)~ 1/)>

= (¥, ¢).

Thus, U is one-to-one and onto and preserves norms and is therefore
unitary.
For Point 2, observe that for any ¢ € H, we have
(A+il)(A—il) "= ((A—il) + 2iI)(A—il) "'y
=)+ 2i(A —iI)" . (10.31)
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Thus, since (A —il)~! is injective, we cannot have Ut = 1) unless 1) = 0.
Finally, for Point 3, (10.31) says that

U—1=2i(A—il)™, (10.32)

which means (by the reasoning at the start of the proof) that the range of
U — I is Dom(A). For ¢ € Dom(A), we then have

(U + DU - 1)1 = %(U +I)(A =il

=i.[(A+z'I)+(A—u)]w

1
= _.AQ/%
2

which establishes Point 3. m

We may apply the spectral theorem for bounded normal operators to
associate a projection-valued measure pV to U. We will then transfer this
measure from S'\{0} to R by means of the map D in (10.29) to obtain the
desired projection-valued measure p* for A.

Proposition 10.29 Let A be a self-adjoint operator on H, let U be the uni-
tary operator in Theorem 10.28, and let D : S*\{0} — R be as in (10.29).
Then

A= D(U), (10.33)

where D(U) is defined by the functional calculus for U.

More precisely, D(U) = fU(U) D(X\) duY (), where pY is the projection-
valued measure associated to U by the spectral theorem for bounded normal
operators. Note that by Point 2 of Theorem 10.28, 1 is not an eigenvalue for
U and thus Y ({1}) = 0. Thus, D is an almost-everywhere-defined function
on o(U), even if 1 € o(A). As always, the equality in (10.33) includes
equality of domains, where the domain of fU(U) D duY is the space Wp in
Proposition 10.1.

Proposition 10.29 should certainly be plausible in light of the previously
established formula (10.30) for A in terms of U.
Proof. Suppose E is a Borel subset of S'\{0} such that the closure of E
does not contain 1, and let Vi = Range(uY (E)) be the associated spectral
subspace. Then the spectrum of Ul is contained in E, which means that
the functions u + D(u) and u + 1/(u — 1) are bounded on o(U]y, ). Now,
by comparing the quadratic forms, we can see that D(U)|,, = D(U]|y, ).
Then by the multiplicativity of the functional calculus for U on bounded
functions, we have

DUy =i(U+ 1)U~ 1)~

for all ¥ € Vg. Thus, by Point 3 of Theorem 10.28, D(U) agrees with A
on VE
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Meanwhile, if we decompose S'\{0} as the disjoint union of sets E,
for which E,, does not contain 1, then H is the Hilbert space direct sum
of the subspaces Vg, . Now, A and (by Proposition 10.3) D(U) are both
self-adjoint. Furthermore, these operators agree on the finite direct sum
of the Vg, ’s and they are essentially self-adjoint on this finite sum, by
Example 9.26. Thus, A and D(U) must be equal (with equality of domain).

[ ]
Theorem 10.30 Define a projection-valued measure i on R by
p(E) = pY (C(E)). (10.34)
Then
A= / A dpt(N), (10.35)
R

where pY is the projection-valued measure coming from the spectral theorem
for the bounded normal operator U and C' is the map defined in (10.28).

Proof. If for any ¢ € H, we define ug(E) = (¢, uY4) and similarly define
uﬁ, then we have

Wi (B) = ull(C(E)).

By the abstract change of variables theorem from measure theory, we have

/R/@ dpjy(N) = /s1\{0} D(u)? dul (u), (10.36)

since D is the inverse map to C. Thus, the two operators in (10.35) have
the same domain. Furthermore, if we replace A\? by A and D(u)? by D(u)
in (10.36), we see that the operators in (10.35) are also equal. m

Proof of Theorem 10.4. The existence of the desired projection-valued
measure p* is the content of Theorem 10.30. To establish uniqueness, sup-
pose v is a projection-valued measure on o(A) such that [ A dv(\) = A.
Consider then the operator C(A) as defined by integration of the function
c(\) against v4. Arguing as in the proof of Proposition 10.29, we can see
that C'(A), computed in this fashion, coincides with the operator U = C'(A)
defined as the product of (A +il) and (A — i)~ L.

Now define a projection-valued measure Y on S! by setting vV (E) =
vA(C7Y(E)). Then as in the proof of Theorem 10.30, we have [q, u dv¥
(u) = U. The uniqueness part of the spectral theorem for U (Theorem 10.20)
then tells us that ¥ = uY, from which it follows that v = 4. =

Proof of Theorem 10.9. By the direct-integral form of the spectral the-
orem for U = C(A), there is a family of Hilbert spaces Hy, A € o(U) C S,
and a positive, real-valued measure p on o(U) such that H is unitarily
equivalent to fa(U) H) du, in such a way that the operator U corresponds to
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the map s(\) — As(A). Since 1 is not an eigenvalue for U, either H; = {0}
or u({1}) = 0. Either way, H; is “negligible” in the direct integral. We can
then define a family of Hilbert spaces Ky := H¢(y), for A € 0(A) C R, and
a measure v on o(A) given by v(E) = p(C(E)). We may then form the
direct integral fg( A) K dv. This direct integral is unitarily equivalent in
vy Hx dp. We wish to show, then, that fU(A) K, dv
is unitarily equivalent to H in such a way that the operator A corresponds
to the (unbounded) operator mapping s(A) to As(A). Since the argument
is similar to that in the proof of Theorem 10.4, we omit the details.

As in the proof of Theorem 10.4, the uniqueness in Theorem 10.9 can
be reduced to the uniqueness for the direct-integral form of the spectral
theorem for U. m

The proof of the multiplication operator form of the spectral theorem
for unbounded operators is similar to the preceding proofs and is omitted.

an obvious way to fd(

10.5 Exercises

1. (a) If A is a bounded self-adjoint operator, show that U(t) := e*A*
is continuous in the operator norm topology.

(b) Using the spectral theorem, show that if A is a self-adjoint op-
erator and o(A) is a bounded subset of R, then A is bounded.

(c) Suppose A is a self-adjoint operator that is not bounded. Show
that U(t) := e is not continuous in the operator norm
topology.

Hint: Consider ¢ in a spectral subspace of the form V(\,_c x,+e)s
where A is a point in o(A) with || large.

2. Let P; be the unbounded self-adjoint operator defined in Sect.9.8.
Show that the one-parameter unitary group e generated by P; is
given by

(e Pr)(x) = 9 (x + the;)

for all ¢ € L*(R"), where e; is the jth element of the standard basis

for R™.
Hint: First determine the Fourier transform of %
sition 9.32.

1, using Propo-

3. If A is an unbounded self-adjoint operator on H, let us say that a
family 1 (t) of elements of H satisfies the equation

dip

— = iAu(b) (10.37)



10.5 Exercises 225

in the strong sense if each 1 (t) belongs to Dom(A) and

o[+ h) = v
h—0 h

—iA1/;(t)H =0

for every t € R. If we define v(t) by 1(t) = ey, for some 1y € H,
show that 1 (¢) satisfies (10.37) in the strong sense if and only if
belongs to Dom(A).

. Suppose A is an unbounded self-adjoint operator and suppose that
there exists a number v € R and a nonzero vector 1) € Dom(A) such
that

[A¢ — || < el

for some € > 0. Show that there exists a number ¥ in the spectrum
of A such that |y — 7| <e.

Hint: If no such 4 existed, the function f(\) := 1/|A — 7| would
satisfy |f(A)] < 1/e for all A € o(A). Consider, then, the operator
f(A), which is nothing but (A —~1I)~!.

. If A is a bounded self-adjoint operator, show that the operator C'(A)
given by

C(A) = (A+il)(A—il)™*
is unitary and that 1 is in the resolvent set of C'(A). Show also that
A can be recovered from C(A) by the formula

A =i(C(A) + I)(C(A) — )~

. Show that Lemma 10.22 is false if we do not assume that A and B
commute.

. Let A be a normal matrix and p a polynomial in two variables. Show
by example that an eigenvector for p(A, A*) is not necessarily an
eigenvector for A.

Note: Nevertheless, the proof of the matrix case of Theorem 10.23
shows that if p is an eigenvalue for p(A, A*), then there exists some
eigenvector for p(A, A*) with eigenvalue p that is also an eigenvector
for A.

. Suppose A € B(H) and W is a closed subspace of H that is invariant
under A and A*.

(a) Show that (Aly,)* = A%y
(b) Show that if A is normal, the restriction of A to W is normal.
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9. (a) Suppose that H is finite dimensional, A is a normal operator on
H, and W is a subspace of H that is invariant under A. Show
that W is invariant under A*.

(b) Show by example that the result of Part (a) is false if H is infinite
dimensional.

10. Given A € B(H), suppose that the same vector ¢ is an e-almost
eigenvector for A with eigenvalue A and a d-almost eigenvector for A
with eigenvalue p. Show that |\ — u| < e+ 4.
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The Harmonic Oscillator

11.1 The Role of the Harmonic Oscillator

The harmonic oscillator is an important model for various reasons. In
solid-state physics, for example, a crystal is modeled as a large number
of coupled harmonic oscillators. Using the notion of “normal modes,” this
model is then transformed into independent one-dimensional harmonic
oscillators with different frequencies. In the quantum mechanical setting,
the excitations of the different normal modes are called phonons.

A free quantum field theory is similarly modeled as a family of cou-
pled harmonic oscillators, except that in the field theory setting we have
infinitely many of the oscillators. Even interacting quantum field theo-
ries are often described using the harmonic oscillator raising and lowering
operators, which are referred to as creation and annihilation operators in
the context of field theory.

Our approach to analyzing the harmonic oscillator also introduces the
algebraic approach to quantum mechanics, in which algebra (commuta-
tion relations between various operators) substantially replaces analysis
(differential equations) as the way to solve quantum systems. Most of the
effort in analyzing the harmonic oscillator occurs in the algebraic sec-
tion (Sect.11.2), with the remaining analytic issues being taken care of
in Sects. 11.3 and 11.4.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 227
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_11,
© Springer Science+Business Media New York 2013
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11.2 The Algebraic Approach

In this section we will derive as much information as possible about the
Hamiltonian operator for a quantum harmonic oscillator using only the
commutation relation between the position and momentum operators,

(X, P] = ihl. (11.1)

Here, as usual, [+, ] denotes the commutator, given by [A, B] = AB — BA.
We consider, then, a harmonic oscillator with Hamiltonian given by

. PT ok,

H = o + 2X , (11.2)
where k is a positive constant. Our goal is to see what we can say about
the eigenvectors and eigenvalues of H using only the fact that X and P are
self-adjoint operators satisfying (11.1), without making use of the actual
formulas for these operators.

To be honest, we are actually assuming certain domain conditions regard-
ing the operators X and P, in addition to the commutation relation (11.1),
namely that the vectors ¢, in Theorem 11.2 are actually in the domain of
X and P (and thus, also, in the domain of the raising and lowering opera-
tors). In this section, we follow the usual physics practice of assuming that
all the vectors we work with are in the domain of all the relevant opera-
tors. This assumption will turn out to be correct in the case we are actually
considering, in which X and P are the usual position and momentum op-
erators on L?(R). (See Sect. 11.4.) It is a more complicated matter to work
out the domain conditions that must be imposed on two self-adjoint oper-
ators satisfying (11.1) in order for the argument of the present section to
be valid. We will come back to this issue in Chap. 14.

Following, again, the convention in the physics literature, we now elimi-
nate the spring constant k in favor of the frequency w = /k/m of the cor-
responding classical harmonic oscillator. [Solutions to Hamilton’s equations
with classical Hamiltonian H (z, p) equal to p?/(2m) + kxz? /2 are sinusoidal
with frequency \/k/m.] Replacing k by mw?, we may rewrite (11.2) as

-1 (P + (mwX)?). (11.3)

2m

We now introduce the lowering operator a, given by

mwX + 1P
4= —— 11.4
vV 2hmw ( )

and its adjoint a*, the raising operator,” given by

at =

mwX — 1P

11.5
2hmw ( )
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The reason for the terminology “raising” and “lowering” is that these
operators raise and lower the eigenvalue for the Hamiltonian, as we will
see shortly. In the context of quantum field theory, operators very much
like a and a* are called creation operators and annihilation operators, re-
spectively, because they map from the n-particle space to either the (n+1)-
particle space or the (n—1)-particle space, thus “creating” or “annihilating”
a particle.

In the world of noncommuting operators, (A — B)(A+ B) does not equal
A? — B?; rather,

(A-B)(A+B)=A*>-B>+[A,B].

Thus, if we compute a*a using (11.1) we get

* 1 2 2 .
a"a = g (mwX)? + P? + imw [X, P])

_ L1 2y _ 1
_hw2m(P + (mwX)?) 2[.

From this we obtain )
H = hw (a*a+§l) .

The %I on the right-hand side of this expression should be thought of as a
“quantum correction,” in that there would be no such term in the analogous
formula for the classical Hamiltonian.

It suffices to work out the spectral properties (eigenvectors and
eigenvalues) of a*a. To get back to H, we keep the same eigenvectors and
simply add 1/2 to the eigenvalues and then multiply by Aw. We compute
that

[a,a*] = ST ([mwX, —iP] + [iP, mwX])
1
i (hmwI + hmwlI)
~ I (11.6)

From this, it is easy to compute that
[a,a"a] = a (11.7)

[a*, a*a] = —a™. (11.8)

Now, a*a is self-adjoint (or, at the least, symmetric) because (a*a)* =

* koK

a*a™ = a*a. This operator is also non-negative, because

(1, a*ap) = (ap, ap) >0

for all ¢». We now come to a key computation, which demonstrates the
utility of the operators a and a*.
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Proposition 11.1 Suppose that 1 is an eigenvector for a*a with
eigenvalue X. Then

a*a(a) = (A —1)ay
a*a(a*) = (A + 1)a™ .

Thus, either aw is zero or avy is an eigenvector for a*a with eigenvalue
A — 1. Similarly, either a*1) is zero or a*v is an eigenvector for a*a with
eigenvalue A + 1. That is to say, the operators ¢* and a raise and lower the
eigenvalues of a*a, respectively.
Proof. Using the commutation relation (11.7), we find that

a*a(ay) = (a(a*a) —a)p = (A — 1)arp.

A similar calculation applies to a*t), using (11.8). m
If ¢ is an eigenvector for a*a with eigenvalue A, then

A, ) = (¥, a"ay) = (arh, ar)) = 0,

which means that A > 0. Let us assume that a*a has at least one eigenvec-
tor v, with eigenvalue A\, which we expect since a*a is self-adjoint. Since
a lowers the eigenvalue of a*a, if we apply a repeatedly to ¥, we must
eventually get zero. After all, if a"1 were always nonzero, these vectors
would be, for large n, eigenvectors for a*a with negative eigenvalue, which
we have seen is impossible.

It follows that there exists some N > 0 such that a™¥4) # 0 but a™ t1=0.
If we define vy by

wo = ana

then avy = 0, which means that a*ayy = 0. Thus, 1)y is an eigenvector for
a*a with eigenvalue 0. (It follows that the original eigenvalue A must have
been equal to the non-negative integer N.)

The conclusion is this: Provided that a*a has at least one eigenvector v,
we can find a nonzero vector ¥y such that

athy = a*arpy = 0.

Since a*a cannot have negative eigenvalues, we may call 1y a “ground state”
for a*a, that is, an eigenvector with lowest possible eigenvalue. We may then
apply the raising operator a* repeatedly to vy to obtain eigenvectors for
a*a with positive eigenvalues.

Theorem 11.2 If ) is a unit vector with the property that ay = 0, then
the vectors

Yn = (a")"ho, 1 >0,
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satisfy the following relations for all n,m > 0:

a*wn = ¢n+1
@*m/)n = niy
<U)n7 1Z)7n> = n'an,m
ani1 = (n+ 1)Pn.

Let us think for a moment about what this is saying. We have an orthog-

onal “chain” of eigenvectors for a*a with eigenvalues 0,1,2,...., with the
norm of ¢, equal to v/n!. The raising operator a* shifts us up the chain,
while the lowering operator a shifts us down the chain (up to a constant).
In particular, the “ground state” g is annihilated by a. Thus, we have a
complete understanding of how a and a* act on this chain of eigenvectors
for a*a.
Proof. The first result is the definition of ¢,; and the second follows
from Proposition 11.1 and the fact that a*ayy = 0. For the third result,
if n # m, we use the general result that eigenvectors for a self-adjoint
operator (in our case, a*a) with distinct eigenvalues are orthogonal. (This
result actually applies to operators that are only symmetric.)

If n = m, we work by induction. For n = 0, (¥9,%¢) = 1 is assumed. If
we assume (1, ¥,) = n!, we compute that

<¢n+1vwn+l> a*d}naa 1/}n>

(

= (Y, aa”y)

= (¢n, (@"a+ 1))
= (n+1) (¢n, ¥n)
=(n+1)L.

Finally, we compute that

aPpt1 = aa h, = (a*a + 1)y = (n+ 1)y,

which establishes the last claimed result. m

It is now reasonable to ask whether the vectors {¢,,},_, form an
orthonormal basis for the quantum Hilbert space. Suppose this is not the
case. If we then let V' denote the closed span of the 1,,’s, V will be invariant
under both a and a*. Thus, by elementary linear algebra, the orthogonal
complement V1 of V will also be invariant under the adjoint operators a*
and a, and therefore also under a*a. Therefore, we can begin our analysis
anew in V+, with the result that we will obtain a new ground state ¢y € V =+
(satisfying ago = 0) that is orthogonal to the original ground state 1. If,
then, the closed span of the ,,’s is not the whole Hilbert space, there will
exist at least two independent solutions of the equation ai) = 0. To put this
claim the other way around, if it turns out that there is only one solution



232 11. The Harmonic Oscillator

(up to a constant) of a1 = 0, then we expect that the vectors obtained by
applying a* repeatedly to the solution will form an orthogonal basis for our
Hilbert space. (Because we are glossing over various technical issues having
to do with the domains of various operators, this conclusion should not be
regarded as completely rigorous.)

11.3 The Analytic Approach

In the preceding section, we analyzed the eigenvectors of the operator a*a
as much as possible using only the commutation relation [a, a*] = I, which
follows from the underlying commutation relation [X, P] = ihil. To progress
further, we must recall the actual formula for the operators a and a*.
To simplify our analysis, let us introduce the following natural scale of
distance for our problem:
h

D=4/ —.
mw

We then introduce a normalized position variable, measured in units of D,
T

T = — 11.
Pi=o, (11.9)

d | h d
dz N mwdz

A calculation gives the following simple expressions for the raising and
lowering operators:

so that

(e 2)
a*t = % <5;— d%) . (11.10)

Note that the constants m, w, and & have conveniently disappeared from
the formulas.

Given the expression in (11.10), we can easily solve the (first-order, lin-
ear) equation atyy = 0 as

Wo(3) = Ce /2, (11.11)

If we take C to be positive, then our normalization condition determines
its value to be \/7/D, by Proposition A.22. (The normalization condition
is that the integral of |¢o|* with respect to dz—not di—should be 1.) We
obtain, then,

Tmw mw o

Yo(z) =/ —% eXP{—%fﬂ } (11.12)
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It remains only to apply a* repeatedly to ¢y to get the “excited states”
Un.

Theorem 11.3 The ground state vy of the harmonic oscillator is given
by (11.12). The excited states v, are given by

Un = Hy tho (11.13)

where Hy, is a polynomial of degree n given inductively by the formulas
Hy(z) =1
- 1 ~ . dH,(z
Here, & is the normalized position variable given by (11.9).

The polynomials H,, are essentially (modulo various normalization con-
ventions) the Hermite polynomials.
Proof. When n = 0, (11.13) reduces to 19 = 1g. Assuming that (11.13)
holds for some n, we compute 1,11 as

Yni1 = 0"y = % <5cHn(aé>ce—i2/2 -2 [Hn@)ce—fz/ﬂ)

- % <255Hn(:i:) -

dH,,
dz

) Ce 12—l (7)o (3),

as claimed. m

Figure 11.1 shows the ground state of the harmonic oscillator, along with
the excited states with n = 5 and n = 30. Each eigenfunction is plotted as
a function of the normalized position variable . In each case, the shaded
region indicates the extent of the classically allowed region, that is, the
range in which a classical particle with energy F, can move. Note that
each wave function decays rapidly outside the classically allowed region.
In the last image, we can see that frequency of oscillation of the wave
function is greatest in the middle of the classically allowed region, while the
amplitude of the wave function is greatest near the ends of the classically
allowed region. Intuitively, these properties of the wave function reflect that
a classical particle with energy F,, has largest momentum in the middle of
the classically allowed region (where the potential is smallest) and that the
classical particle spends more time at the ends of the classically allowed
region, since it is moving slowest there. Further development of this sort of
reasoning may be found in Chap. 15.

11.4 Domain Conditions and Completeness

Although the analysis in Sect.11.2 is typical of what is found in physics
texts, it is not completely rigorous from a mathematician’s point of view.
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FIGURE 11.1. Harmonic oscillator eigenvectors with n = 0, n = 5, and n = 30.
In each case, the classically allowed region is shaded.

The main problem is that the lowing operator a, the raising operator a*,
and the product operator a*a are all unbounded operators. The difficulty
in working with unbounded operators is that one constantly has to check
that a vector is in the domain of the relevant operator before applying that
operator. For example, suppose we have a vector ¢ in the domain of a and
satisfying aiy = 0. We wish to apply the raising operator a* to ¢y and we
then want to argue that

a*a(a* o) = a*y.

This is easy enough to verify (as we did in the previous section) provided
that all vectors are in the domain of the relevant operators. But how do
we know that 1) is in the domain of a*? And even if it is, how do we know
that a*ig is in the domain of a*a?
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These concerns are not just theoretical. Consider a general pair of
operators A and B satisfying [A, B] = ihl. If we try to analyze an op-
erator of the form aA? + B2, for a, 8 > 0, by the methods of Sect.11.2,
things can easily go awry, as the counterexample in Sect. 12.2 demonstrates.
Fortunately, in the case of the ordinary position and momentum operators,
the putative eigenfunctions v, for a*a in Theorem 11.3 are very nice func-
tions, in the form of a polynomial times a Gaussian. Thus, there is no
difficulty in verifying that these functions are in the domain of any finite
product of creation and annihilation operators. It follows that if ¢ and a*
are given in terms of the usual position and momentum operators and g
given by (11.12), the relations in Theorem 11.2 indeed hold.

In particular, we can see that the v,,’s form an orthogonal set of functions
in L2(R). Showing that they form an orthogonal basis is also not terribly
difficult.

Theorem 11.4 The functions

Yn(x) = Hn(T)30o(T)

g, (9L [T [
_H"( ﬁw) n eXp{ Zﬁx}

form an orthogonal basis for the Hilbert space L*(R).

The following result is the key to the proof.

Lemma 11.5 For all o € C, the partial sums of the series

o0

nsn
e
n!

n=0

converge in L?(R) to the function eFe=T/2,

Proof. We need to show that

2 2

N nsn > nmn
ai ,—7%/2 a xre g2l QT g2/ -
e“e 7;:0 e = nng-H e dz  (11.14)

tends to zero as N tends to infinity. The integrand on the right-hand side
of (11.14) tends to zero pointwise. If we can find a suitable dominating
function, we can use dominated convergence to conclude that the integral
also tends to zero. We see that

2 2
S n~n 00 ~n
anzt a2l || o—2/2
Z n! - Z n!
n=N+1 n=0

= =2
262\a||x\e z
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Since this last function certainly has finite integral, dominated convergence
applies and we are done. m

Proof of Theorem 11.4. It is easily seen that the raising and lower-
ing operators map the Schwartz space S(R) (Definition A.15) into itself.
Furthermore, it is easy to verify (Exercise 1) that

do dip
(i) = (o).
for all ¢, 1 € S(R). From this, we can easily verify that for all ¢, € S(R),
(¢, a)) = (a” @, )
and so also
(¢,a"arp) = (a”ag, V).

It is evident that both the ground state 1y and all the excited states ¢,
occurring in Theorem 11.4 belong to S(R). Thus, the proof of Theorem 11.2
is indeed valid. We conclude, then, that the 1;,,’s form an orthogonal set of
vectors in L2(R) and that they are eigenvectors for H with the indicated
eigenvalues.

It remains to show that the ¢,,’s form an orthogonal basis for L?(R). Let
V' denote the space of finite linear combinations of the ,,’s. Since H,, is a
polynomial of degree n, it is easily seen that V' consists precisely functions
of the form

W) = p(@)e 2,
where p is a polynomial. ,
Lemma 11.5 then shows that e”**e~%"/2 belongs to the 92-closure of V
for all k£ € R. Thus, if ¢ is orthogonal to every element of V', we have

/ e~ 2 (3) di = 0 (11.15)
R

for all k. Now, since =% /2 belongs to L>®(R) N L%(R) and v belongs to
L?(R), their product belongs to L?(R) N L(R). Thus, (11.15) tells us that
the L2 Fourier transform of e ~%/24¢)(%) is identically zero. Thus, e =% /24 (&)
must be the zero element of L?(R), by the Plancherel theorem, and so
¥(%) = 0 almost everywhere. This shows that V- = {0}, meaning that V'
is dense in L?(R). m

11.5 Exercises

1. Show that for any Schwartz functions ¢ and 1, we have

(¢, av)) = (a",¥),
as expected.

Hint: Use integration by parts on the interval [—A, A] and show that
the boundary terms tend to zero as A tends to infinity.
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2. Show that the polynomials H,, satisfy the following relations:

and

Hooa(y) = niﬁﬂuy)

Hoia(y) = % (2uHa(w) — nV2H, 1 (0))

Hint: Start with the relation av, = ny,_1.

3. Establish the following Rodrigues formula for the polynomials H,,:

Ho(y) = (—1)”2"/2—(%) jyz

e~ Y

In this exercise, we prove the following claim: The polynomial H,, has

n distinct real zeros and the zeros of H,, “interlace” with the zeros of
H,,_1, meaning that there is exactly one zero of H,_1 between each
pair of consecutive zeros of H,,.

(a)
(b)

(d)

Verify the claim for H; and Hy.

Assume, inductively, that H,, and H,,_; have distinct real zeros
and that the zeros interlace. Show that H,_; alternates in sign
at consecutive zeros of H,. Then show that H,,; and H, 1 have
opposite signs at each zero of H,, so that H, 1 also alternates
in sign at consecutive zeros of H,,. Conclude that H, i must
have at least one zero between each pair of consecutive zeros
of H,.

Hint: Use Exercise 2.

Show that H,41 and H,_; have the same sign near +oo but
opposite signs at the largest and smallest zeros of H,,. Conclude
that H, 11 has at least one zero below the smallest zero of H,
and at least one zero above the largest zero of H,.

Conclude that H, 1 has n+ 1 real zeros that interlace with the
zeros of H,,.

5. Let ¢, = ¥,/ ||¢n] be the normalized nth excited state.

(a)

Let X = X/D, where D = (h/mw)'/2. Show that

Hint: Express X in terms of a and a*, using (11.10), and then
use Theorem 11.2.
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(b) Show that

A x o (h(n+ 1/2))1/2_

w’!l mw

(¢) If T and V denote the kinetic energy and potential energy terms,
respectively, in (11.3), show that

(1), = Vg, = %hw (n+ %) :
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The Uncertainty Principle

In this chapter, we will continue our investigation of the consequences of
the commutation relations among the position and momentum operators.
We will mostly consider a particle in R!, where we have

(X, P] = ihl. (12.1)

We have already seen that much of the analysis of the Hamiltonian H
for the quantum harmonic oscillator (given by c¢; P? + ¢2X?) can be car-
ried out using only the commutation relation (12.1). There are two other
main results that can be derived from these commutation relations: the
Heisenberg uncertainty principle and the Stone—von Neumann theorem.
The uncertainty principle states that the product of the uncertainty in X
and the uncertainty in P cannot be smaller than #/2. The Stone-von Neu-
mann theorem, meanwhile, states that any two self-adjoint operators A
and B satisfying [A, B] = iAil “look like” several copies of the standard
position and momentum operators acting on L?(R). Both results are true
only under certain technical domain conditions, which we will need to ex-
amine carefully. We discuss the uncertainty principle in this chapter and
the Stone-—von Neumann theorem in the next chapter.
The uncertainty principle states that for all ¢ in L?(R) satisfying certain
domain conditions, we have
(Ay X)(AyP) =

I
=
where, for any observable A, we let Ay A denote the “uncertainty” in mea-
surements of A in the state ¢ (Definition 3.13). This means that one cannot
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make both the uncertainty in position and the uncertainty in momentum
arbitrarily small in the same state .

Although we can easily make Ay X as small as we want simply be taking
1 to be supported in a small interval, if we do that, Ay P will be large.
Similarly, we can make A, P as small as we like, by taking the momentum
wave function 1/3(p) (Sect.6.6) to be supported in a small interval, but
then AyX will get large. In the idealized limit in which the position wave
function is concentrated at a single point, t(z) would be a multiple of
§(z — a) for some a, in which case, the momentum wave function (p)
would be a multiple of e~"*/" In that case, |z/~1(p)|2 is constant, meaning
that the momentum wave function is completely spread out over the whole
real line.

This uncertainty principle may be interpreted as saying that it is impos-
sible to simultaneously measure the position and momentum of a quantum
particle. After all, we have said (Axiom 4) that if we perform a measure-
ment of an observable A with a discrete spectrum, then immediately after
the measurement the state ¥ of the system should be an eigenvector for A.
If A has a continuous spectrum, this principle is replaced by the require-
ment that after the measurement, the uncertainty in A should very small.
If we could measure both the position and the momentum of the parti-
cle simultaneously with arbitrary precision, then after the measurement,
both AX and AP would have to be very small, violating the uncertainty
principle.

Now, on the scale of everyday life, Planck’s constant is very small. If,
for example, we measure mass in units of grams, distance in units of cen-
timeters, and time in units of seconds, then & has the numerical value of
1.054 x 10727, Thus, on “macroscopic” scales of energy and momentum, it
is possible for the uncertainties in position and momentum both to be very
small. But on the atomic scale, the uncertainty principle puts a substan-
tial limitation on how localized the position and momentum of a particle
can be.

In Sect. 12.1, we prove a version of the uncertainty principle for any two
operators A and B satisfying [A, B] = ihl, under a seemingly innocuous
assumption on the domains of the operators involved. In Sect. 12.2, how-
ever, we see that the domain assumptions are not so innocuous after all.
In that section, we encounter two operators satisfying [A, B] = ihI on a
dense subspace of the Hilbert space, along with a vector ¢ such that the
uncertainty in A is finite and the uncertainty in B is zero. The existence
of such a vector is surely contrary to the spirit of the uncertainty princi-
ple, even though it does not violate the version of the uncertainty principle
proved in Sect. 12.1. (The vector 9 in Sect. 12.2 does not satisfy the domain
assumptions of Theorem 12.4.) Finally, in Sect. 12.3, we show that for the
usual position and momentum operators on L?(R), no such counterexam-
ples occur: If Ay X and Ay P are both defined, then (AyX)(AyP) > h/2.
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12.1 Uncertainty Principle, First Version

In this section, it is essential that we make sure that all vectors are in
the domains of the various operators we want to apply to these vectors.
With this concern in mind, we make the following definition. (Compare
Definition 9.36.)

Definition 12.1 If A and B are unbounded operators on H, define AB to
be the operator with domain

Dom(AB) = {¢ € Dom(B) |By € Dom(A) }
and given by (AB)Y = A(Bv).

Even if Dom(A) and Dom(B) are dense in H, it could happen that
Dom(AB) is not dense in H.

Recall (Definition 3.13) that the uncertainty of a symmetric operator A
in a state 1 is defined to be

(ApA)? = <(A— <A>w1)2> . (12.2)
P
As written, this definition requires that ¢ belong to the domain of (A —
(A)y 1 )2, which is the same as the domain of A%. However, since we assume
that A is symmetric, then (4),, = (¥, A¢Y) is real, so that A — (A), I is
again symmetric. Thus, (12.2) can be rewritten as

(BpA)? = (A= (A), DY, (A= (4), 1)¥).

Having written the uncertainty in this way, it is natural to extend the
definition of uncertainty to vectors that belong only to Dom(A), as follows.

Definition 12.2 If A is a symmetric operator on H, then for all unit
vectors v in Dom(A), the uncertainty Ay A of A in the state ¢ is given
by

(BpA)? = (A= (A), Ty, (A= (A), D). (12.3)

By expanding out the right-hand side of (12.3), we see that the uncer-
tainty may also be computed as

(AyA)? = (A, AY) — (¥, A))*.

[Compare (3.24).] Of course, if 1 happens to be in the domain of A2, then
Definition 12.2 agrees with (12.2).

Proposition 12.3 If A is a symmetric operator on H, then for all unit
vectors i € Dom(A), we have Ay A =0 if and only if ¢ is an eigenvector
for A.
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Proof. If AyA = 0, then from (12.3), we see that (A — (4), )Y = 0,
meaning that ¢ is an eigenvector for A with eigenvalue (4),, . Conversely, if
Ay = M for some A\, then (v, AY) = A (1, ¢) = . Thus, (A—(A)w Iy =0,
which, by (12.3), means that Ay,A=0. m

As discussed in the introduction to this chapter, we expect that imme-
diately after a measurement of an observable A, the state of the system
will have very small uncertainty for A. Indeed, if A has discrete spectrum,
we expect that the state of the system will be an eigenvector for A. Even
in the case of a continuous spectrum, we expect that the uncertainty in
A can be made as small as one wishes, by making more and more precise
measurements. Suppose now that one wishes to observe simultaneously two
(or more) different observables, represented by operators A and B. In the
case of a discrete spectrum, the system after the measurement should be
simultaneously an eigenvector for A and an eigenvector for B. In the case
where A and B commute, this idea is reasonable. There is a version of
the spectral theorem for commuting self-adjoint operators; in the case of
discrete spectrum, it says that two commuting self-adjoint operators have
an orthonormal basis of simultaneous eigenvectors with real eigenvalues.
(In the case of unbounded operators, there are, as usual, technical domain
conditions in defining what it means for two self-adjoint operators to com-
mute.)

In the case where A and B do not commute, they do not need to have any
simultaneous eigenvectors. Certainly, A and B cannot have an orthonormal
basis of simultaneous eigenvectors, or they would in fact commute. The lack
of simultaneous eigenvectors suggests, then, that it is simply not possible
to make a simultaneous measurement of two self-adjoint operators unless
they commute. In standard physics terminology, the quantities A and B
are said to be “incommensurable,” meaning not capable of being measured
at the same time. (See Exercise 2 for a classification of the simultaneous
eigenvectors of a representative pair of noncommuting operators.)

In the case of a continuous spectrum, the notion of an eigenvector is
replaced by the notion of a state with very small uncertainty for the relevant
operator. In light of our discussion of simultaneous eigenvectors, we may
expect that for noncommuting operators, it may be difficult to find states
where the uncertainties of both operators are small. This expectation is
realized in the following version of the uncertainty principle.

Theorem 12.4 Suppose A and B are symmetric operators and ¥ is a unit
vector belonging to Dom(AB) N Dom(BA). Then

(A¢A>2(A¢B)2 > i ’<[A’B]>¢‘2 (12.4)

Note that if v € Dom(AB) then in particular, ¥y € Dom(B), and if
1 € Dom(BA) then ¢ € Dom(A). Thus, the assumptions on ¢ are sufficient
to guarantee that Ay A and Ay B make sense as in Definition 12.2.
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Proof. Define operators A" and B’ by A’ := A — (¢, AY) I and B’ :=
B — (¢, By)yI. (We use the same domains for A’ and B’ as for A and
B, and it is easily verified that A’ and B’ are still symmetric on those
domains.) Then by the Cauchy—Schwarz inequality, we obtain

(A'p, A'p) (B, B'Y) > [(A'd, B'y)[” (12.5)
> [Im (A'y, B'v)[* (12.6)
= LA BY) — (B, A (27)

The assumptions on 1) guarantee that By € Dom(A) and hence also that
B’y € Dom(A’), and similarly with A’ and B’ reversed. Since A’ and B’
are symmetric, we may rewrite (12.7) as

(A, A'p) (B'yp, B'Y) > ~ (1, A'B'p) — (4, B' A'p)|?
2

= 2 [, [A, B'l)[".

e

S

Now, since the identity operator commutes with everything, the commu-
tator of A’ and B’ is the same as the commutator of A and B. Furthermore,
(A", A'4) is nothing but (A, A)? and similarly for B. Thus, we obtain

(ApA)*(AyB)® > < | (0, [A, BJY)[*,

N

which is what we wanted to prove. m
We now specialize Theorem 12.4 to the case in which the commutator is
thI and take the square root of both sides.

Corollary 12.5 Suppose A and B are symmetric operators satisfying
[A, B] = ikl

on Dom(AB) N Dom(BA). Then if ¢ € Dom(AB) N Dom(BA) is a unit

vector, we have

h
2
In particular, for all unit vectors 1 € L?(R) in Dom(X P) NDom(PX), we
have

(AyA)AyB) > 7. (12.8)

(ApX)(AyP) >

N | v

. (12.9)

Note that the factor of i appearing on the right-hand side of (12.8) is re-
ally just |(¢, [4, BJw)|. Since, however, 1 is a unit vector and [A, B] = ihil,
1 drops out of the right-hand side of our inequality. We see then that both
sides of (12.9) make sense whenever Ay X and A, P make sense, namely,
whenever ¢ belongs to Dom(X) and to Dom(P). (Recall Definition 12.2.)
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On the other hand, the proof that we have given for (12.9) requires % to
be in both Dom(X P) and Dom(PX). Nevertheless, it is natural to ask
whether (12.9) holds for all ¢ in Dom(X) N Dom(P). We may similarly
ask whether (12.8) holds for all ¢ in Dom(A) N Dom(B). As we will see in
Sects. 12.2 and 12.3, the answer to the first question is yes and the answer
to the second question is no.

Meanwhile, it is of interest to investigate “minimum uncertainty states,”
that is, states ¢ for which the inequality (12.4) is an equality.

Proposition 12.6 If A and B are symmetric and v is a unilt vector in
Dom(AB) N Dom(BA), equality holds in (12.4) if and only if one of the
following holds: (1) v is an eigenvector for A, (2) ¢ is an eigenvector for
B, or (3) ¥ is an eigenvector for an operator of the form

A—ivB
for some nonzero real number ~y.

In the case A = X and B = P, we will consider examples where equality
holds in Sect. 12.4.
Proof. To get equality in (12.4), we must have equality in both (12.5)
and (12.6). Equality in (12.5) occurs if and only if A'sp) =0 or B’y =0 or
A’vp = ¢B’1) for some nonzero constant c. If A’1) is zero, 1) is an eigenvector
for A with eigenvalue (A),, . In that case, equality holds in (12.6) as well.
Conversely, if ¢ is an eigenvector for A with some eigenvalue A, then (A) w =
A and A’tp = 0. Similarly, B’ty) = 0 if and only if 1) is an eigenvector for B.

Meanwhile, suppose A’1) and B’t) are nonzero and A’y = ¢B’, so that
equality holds in (12.5). Then equality holds (12.6) if and only if ¢ = i~y for
some nonzero v € R. Thus, when A’y and B’y are nonzero, we get equality
in (12.4) if and only if

Ay = iy B (12.10)

for some nonzero real number . Recalling the definition of A’ and B’,
(12.10) says that

(A= (¢, AY) I)ip = iy(B — (¢, Byp) 1)y (12.11)

or
(A —iyB) = Ao, (12.12)

where A = (¢, AY) — iy (¢, BY) .
Thus, if (12.11) holds, ¢ is an eigenvector of A — iyB. Conversely, if 1
is an eigenvector for A — iyB with some eigenvalue A = ¢+ id in C, then

(c+id) [Y” = (¥, (A= iyB)) = (4, Ap) —in (4, BY) . (12.13)

Since A and B are assumed to be symmetric and 1 is a unit vector, we
may equate real and imaginary parts in (12.13) to obtain
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From this we can see that (12.11) and (12.10) hold, and thus equality holds
in (12.4). m

12.2 A Counterexample

In this section, we consider the Hilbert space L?[—1,1]. As our “position”
operator, we use the usual formula,

A(x) = 2 (a).

Note that A is a bounded operator, because we restrict = to the bounded
interval [—1, 1]. As such, A is defined (and self-adjoint) on the whole Hilbert
space L2(R). As our “momentum” operator, we again use the usual formula,

d
B = —ih—.
! dx

As the domain of B we will take the space of continuously differentiable
functions ¥ on [—1, 1] satisfying the periodic boundary condition,

B(—1) = (1), (12.14)

To verify that B is symmetric, note that for any C* functions ¢ and 1,
we have

| @G de=amw() - 3T - [ ) do

If both ¢ and 1) satisfy the periodic boundary condition (12.14), the bound-
ary terms cancel out to zero. This shows that the operator d/dx is skew-
symmetric on Dom(B), from which it follows that —ihid/dx is symmetric
on Dom(B). Actually, since the functions

1 .

n(2) i= —=e™"* nez, 12.15
Yn(z) 7 (12.15)
constitute an orthonormal basis of eigenvectors for B with real eigenvalues,
B is essentially self-adjoint, by Example 9.25.

Now, for all ¢ € Dom(AB) N Dom(BA) we have, by direct calculation,

ABY — BAY = ilnp, (12.16)

just as for the usual position and momentum operators. Furthermore,
Dom(AB) N Dom(BA) is dense in H, since it contains all continuously
differentiable functions ¢ such that 1(0) = ¥(1) = 0. Consider, now, the
function ¥, (z) in (12.15), for some integer n. Clearly, ¢, is in the domain
of B, since B, is just a multiple of ,,. Since v, is an eigenvector for B,
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the uncertainty of B in the state 1, is zero! Meanwhile, since A is bounded,
the uncertainty of A is well defined and finite. Thus, Ay, A and Ay, B are
both unambiguously defined and

(Ay, A)(Ay, B) = 0. (12.17)

How can (12.17) hold? Is it not, in light of (12.16), a violation of (12.8)
in Corollary 12.57 The answer is no, for the reason that v,, does not satisfy
the domain assumptions in that corollary. Specifically, A, is not in the
domain of B, since A1, is does not satisfy the periodic boundary condition
in the definition of Dom(B). Thus, 1, does not belong to Dom(BA).

Although it does not contradict Corollary 12.5, (12.17) certainly violates
the spirit of the uncertainty principle. In the next section, we will show
that no such strange counterexamples occur for the usual position and
momentum operators.

12.3  Uncertainty Principle, Second Version

In this section, we will see that if A and B are taken to be the usual
position and momentum operators X and P, the uncertainty principle holds
whenever Ay X and Ay P are defined. We continue to use Definition 12.2
for the definition of the uncertainty in any operator, in which case, for
AypX and Ay P to be defined, we require only that ¢ belong to Dom(X)
and Dom(P).

We are now ready to formulate the strong version of the uncertainty
principle.

Theorem 12.7 Suppose 1) is a unit vector in L?(R) belonging to Dom(X )N
Dom(P). Then

(AuX)(AP) > 3.

(12.18)
where Ay X and Ay P are given by Definition 12.2.

Proof. According to Stone’s theorem and Example 10.16, the operator P
is h times the infinitesimal generator of the group U(+) of translations. That
is to say, for all ¢¥» € Dom(P), we have

(Py)(z) = —ih lim w,

a—0 a
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where the limit is in the L? norm sense. Thus,
v P = tiny (0, i (LD
a—0 a

= lim <é (xp(x), —ith(z + a)) + %i (X, 7,/1>>

a—0

=ty (3 bty - ity - o)) + 2 00,

a—0

where in the last step we have made the change of variable y = x + a.
If we rename the variable of integration back to x, we get

(X9, Py)
= lim <<th <w) ,1/1(3:)> + ih (ih(z — a),w(:r)>>

a—0
=ty (i (HEZD =) ) )+ i ot — ), ) )
= (P, X¢) +ih (4, 9) . (12.19)

In the second equality, we have used that X is symmetric and that (check)
if 9 € Dom(X), then ¢)(z — a) € Dom(X) for each fixed a. In the last
equality, we get a minus sign from having ¢ (z — a) — ¢ (z) rather than
¥(x + a) — (z), and we use that translation is strongly continuous.

It should be noted that (12.19) is precisely what we would get by formally
moving X to the right-hand side of the inner product, using the commuta-
tion relation X P — PX = ¢hl, and then moving P to the left-hand side of
the inner product. But to make that calculation rigorous, we would need to
assume that ¢ is in the domain of X P and the domain of PX. In (12.19),
on the other hand, we have obtained the desired conclusion assuming only
that ¢ is in the domain of X and in the domain of P.

Having obtained (12.19), we can easily verify that for any real constants
« and 3, we have

(X = al), (P — BI)) = (P — BI), (X — al)p) +ih (4,4) . (12.20)

Solving (12.20) for (1), 1)) gives
() = = (X — )y, (P~ BI)g) — {(P - BI), (X — al)y))
= S (X —al)y, (P = B1))
< 2IX —anul (P - 610l (12.21)

by the Cauchy—-Schwarz inequality. If ¢ is a unit vector and we take o =

2 2
(X),, and B = (P),, then (X — al)y[|” = (AyX)? and ||(P — BI)y||” =
(AyP)%. Thus, we get
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1< %(AwX)(AwP%

which is equivalent to what we want to prove. m

We know from Sect. 12.2 that the strong form of the uncertainty principle
does not hold if X and P are replaced by two arbitrary operators satisfying
AB—BA =ihI on Dom(AB)NDom(BA), even if Dom(AB)NDom(BA) is
dense in H. Nevertheless, if we look carefully at the proof of Theorem 12.7,
we can see what assumptions we would need on A and B to make the proof
go through in a more general setting.

Theorem 12.8 Suppose A and B are self-adjoint operators on H. Suppose
that for all a € R and vy € Dom(A), we have that e**B1) belongs to Dom(A)
and that

Ae @B o) = B Ayp — hae'*Bp. (12.22)

Then for all unit vectors 1 in Dom(A) N Dom(B), we have

(A d)BuB) 2 3,

where Ay A and AyB are defined by Definition 12.2.

The relation
e"BA = Ae'P 1 haeB, aeR, (12.23)

which holds on Dom(A4), is a “semi-exponentiated” form of the canonical
commutation relations. As shown in Exercise 6, there is a formal argument
(ignoring domain issues) that the commutation relations [A, B] = ihl ought
to imply the relations (12.22). Nevertheless, as Exercise 7 shows, this formal
argument does not always give the correct conclusion. In Sect. 14.2, we
will encounter a “fully exponentiated” form of the canonical commutation
relations, in which both A and B are exponentiated.

Proof. See Exercise 5. m

Corollary 12.9 For any j = 1,...n and any unit vector 1 € L*(R"™) with
¥ € Dom(X;) NDom(P;), we have

(A X)) (AuP) > 7.

Proof. In the case that A = X; and B = P;, we have (e’*B/"y))(x) =
¥(x + aej), by Exercise 2 in Chap. 10. Thus, in this case, (12.22) says that
(2 + a)(x + aej) =z (x + ae;) + atp(x + ae;),

which is true. m
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12.4 Minimum Uncertainty States

In this section, we look at the states that give equality in the uncertainty
principle. Such states are known as minimum uncertainty states or coher-
ent states. As in the general setting of Proposition 12.6, the condition for
a equality is an eigenvector condition. That is to say, even though in The-
orem 12.7, we allow ®’s that are not Dom(X P) N Dom(PX), we do not
get any new minimum uncertainty states by this weakening of our domain
assumptions.

Proposition 12.10 A unit vector 1 € Dom(X) N Dom(P) satisfies

(ApX)(AyP) =

| S

if and only if ¥ satisfies
(X +idP)y = X (12.24)
for some nonzero real number § and some complex number .

For convenience, we have made the substitution § = —v in (12.24) rela-
tive to Proposition 12.6.

Re[y ()]

L X
1

FIGURE 12.1. Minimum uncertainty state with (X) = 1, (P) = 0, and
AX =1/2.

Proof. All the relations in the proof of Theorem 12.7 are equalities, except
for the inequality in the last line of (12.21). Equality will hold in that line
if and only if one of (X — al)y and (P — BI)y is zero or (P — BI)Y is a
pure-imaginary multiple of (X — a[l). Now, if 1 is a unit vector in L?(R),
then neither ¥ nor the Fourier transform of ¢ can be supported at a single
point; thus, neither (X — al)y nor (P — 1)y can be zero. We are left,
then, with the condition that

(X — al)p = iy(P — BI)ip, (12.25)
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Rely ()]

AL

AT x

FIGURE 12.2. Minimum uncertainty state with (X) = 1, (P) = 10, and
AX =1/2.

where v is a nonzero real number, o = (4),, and 8 = (B),. As in the
proof of Proposition 12.6, (12.25) is equivalent to the assertion that 1 is
an eigenvector for the operator X — iy P. Letting 6 = —~ gives the desired
result. m

Proposition 12.11 If the parameter § in (12.24) is negative, there are
no nonzero solutions to (12.24). If the parameter 6 is positive, there exists
a unique (up to multiplication by a constant) solution s to (12.24) for
every complex number X. The function s has the following additional
properties

(X) =ReA
(P)z%lm)\
AX
AP~

Ezxplicitly, we have

Yo, (x) = c1exp {—M}

_czeXp{_%}eXp{@}

where all expectation values are taken in the state s x.

Note that among states with (AX)(AP) = h/2, we can arrange for
AX/AP to be any positive real number, and once we have chosen AX/AP,
we can then arrange for (X) and (P) to be any two real numbers. On the
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Rely (x)]
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1 1

FIGURE 12.3. Minimum uncertainty state with (X) =1, (P) = 20, and AX = 1.

other hand, once AX/AP and (X) and (P) have been specified, there is a
unique quantum state with (AX)(AP) = i/2. In Figs. 12.1-12.3, we have
plotted the real part of 5\ for several different values of the parameters,
in a system of units for which i = 1.

Proof. The equation (X + i0P)1) = A amounts to

dy
doe
where 1 is assumed to be in the domain of P, so that the distributional
derivative of 1 is an L? function. If 1) were smooth, then the unique solu-
tion to (12.26) would be the function ;5 given in the proposition, which
is square-integrable if and only if 6 > 0. Even (12.26) is only assumed
to hold in the distribution sense, the argument in the proof of Proposi-
tion 9.29 (with e=*/")(z) replaced by exp[(z — \)?/(26Rh)]¢(z)) shows that
there are no additional solutions. The formulas for (X), (P), and AX/AP
can be computed either by tracing through the arguments in the proof of
Theorem 12.7 or by direct calculation with the formula for s ». ®

x + Oh M(x), (12.26)

12.5 Exercises
1. Let a be a positive real number. Show that the following “additive”
version of the uncertainty principle holds for all unit vectors ¢ €
Dom(X) N Dom(P) :
1
OéAwX + —Awp >/ 2h.
@

2. In this exercise, we classify the simultaneous eigenvectors of the non-
commuting operators Jy and Js. Let Ji, Jo, and J3 denote the angular
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momentum operators on L2(R?) as defined in Sect. 3.10. Suppose )
is in the domain of any product jj Ji, of two angular momentum op-
erators. (For example, ¢ could be a Schwartz function.) Suppose also
that ¢ is an eigenvector for J; and for .J, with eigenvalues o and f3,
respectively.

(a) Using the commutation relations in Exercise 10 in Chap. 3, show
that 1 is an eigenvector for J3 with eigenvalue 0.

(b) Show that the eigenvalues a and 3 for J; and .J, must be zero.

(c) What type of function ¢ € L?(R3) satisfies jjw =0 for j =
1,2,3?

Given any unit vector ¢ € Dom(X) N Dom(P), consider another
vector ¢ given by

$z) = e Mp(a — a).

Show that ¢ is a unit vector belonging to Dom(X) N Dom(P) and
that

(X >¢ =(X >¢ ta

ApX =ApX
and

(P >¢ = (P >¢ +b

AyP = AyP.
We have seen that a unit vector ¢ € Dom(X)NDom(P) is a minimum
uncertainty state [i.e., (AypX)(AyP) = h/2] if and only if there exists
some § > 0 such that ¢ is an eigenvector of the operator X + idP.
In that case, ¥ is also an eigenvector for any operator of the form

¢(X 4 i0P), with ¢ being a nonzero constant. Consider, then, some
fixed § > 0 and define an operator a by the formula

L(X +isP)
a4 ="——.
21/5

Then a is just the annihilation operator, as defined in Chap. 11, for a
harmonic oscillator with mw = 1/§. Thus, a and its adjoint a* satisfy
the relation [a,a*] = I, and we have the “chain” of eigenvectors
¥, € L?(R) satisfying the properties listed in Theorem 11.2.

(a) For any A € C, find constants ¢, so that the vector

o = Z Cn¥n
n=0

is an eigenvector for a with eigenvalue A. Show that the resulting
series converges in H.
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(b) Let ¢» denote the eigenvector obtained in Part (a), normalized
so that ¢ = 1. Show that

\a*
(b)\:ea(bfh

where the exponential is defined by

o0

x A"
o= —pta’)"do.
n=0

with convergence in L?(R).

5. Prove Theorem 12.8, following the outline of the proof of Theo-
rem 12.7. Recall from Sect.10.2 that B/h is the infinitesimal gen-
erator of the one-parameter unitary group U(a) := etaB/h,

6. If X and Y are bounded operators, we may define adx (Y) = [X,Y],
where [X,Y] = XY — Y X. Thus, say, (adx)3(Y) = [X, [X, [X, Y]]].
It is not hard to show that for any bounded operators Y and X, we
have

eXYe X = etdx(Y)

X XY XX [ Y]

=Y+ [X,Y]+ o1 al

(See Proposition 2.25 and Exercise 2.19 of [21].)

Suppose A and B are unbounded self-adjoint operators satisfying
[A, B] = ihI on Dom(AB) N Dom(BA). Show that if we could ap-
ply (12.27) with X = iaB/h and Y = A (even though X and Y are
unbounded), then A and B would satisfy (12.22).

7. Let A be the operator in Sect.12.2, and let B be the unique self-
adjoint extension of the operator B in that section. Show that the
operators X =iaB/h and Y = A do not satisfy (12.27).

Note: This result shows the hazards involved formally applying results
for bounded operators to unbounded operators.

Hint: Show that the unitary operators U(a) := exp(iaB/h) consist
of “translation with wrap around,” first on the eigenvectors of B and
then on the whole Hilbert space.
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Quantization Schemes for Euclidean
Space

13.1 Ordering Ambiguities

One of the axioms of quantum mechanics states, “To each real-valued
function f on the classical phase space there is associated a self-adjoint
operator f on the quantum Hilbert space.” The attentive reader will note
that we have not, up to this point, given a general procedure for con-
structing f from f. If we call f the quantization of f, then we have only
discussed the quantizations of a few very special classical observables, such
as position, momentum, and energy.

Let us now think about what would go into quantizing a (more-or-less)
general observable. Let us consider for simplicity a particle moving in R!
and let us assume that quantizations of x and p are the usual position
and momentum operators X and P. What should the quantization of, say,
xp be? Classically, zp and pz are the same, but quantum mechanically,
X P does not equal PX. Furthermore, neither X P nor PX is self-adjoint,
because (XP)* = P*X* = PX, and PX # XP. In this case, then, a
reasonable candidate for the quantization would be

1
Ip = §(XP+PX).

The significance of this simple example is that the failure of commuta-
tivity among quantum operators creates an ambiguity in the quantization
process. It does not make sense to simply “replace x by X and p by P
everywhere in the formula,” since the ordering of position and momen-
tum makes no difference on the classical side, but it does on the quantum

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 255
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_13,
© Springer Science+Business Media New York 2013
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side. Up to this point, we have not really had to confront this ambiguity,
because of the special form of the observables we have quantized. The
Hamiltonian, for example, is typically of the form H(z,p) = p?/(2m) +
V(z). Since each term contains only z or only p, it is natural to quantize
H to H = P%/(2m)+V(X), where V(X) may be defined by the functional
calculus or simply as multiplication by V(z). In defining the angular mo-
mentum operators, we do encounter products of position and momentum,
but never of the same component of position and momentum. For a parti-
cle in R?, for example, we have, J = z1p2 — zop1. On the quantum side,
X1 commutes with P, and Xo with P», and thus there is no ambiguity:
X1P2 — X2P1 is the same as P2X1 — P1X2.

When we turn to the quantization of a general observable, however,
we must confront the ordering ambiguity directly. Groenewold’s theorem
(Sect. 13.4) suggests that there is no single “perfect” quantization scheme.
Nevertheless, there is one that is generally acknowledged as having the best
properties, the Weyl quantization, and we spend most of our time with
that particular scheme. Other quantization schemes do also play a role in
physics, however; Wick-ordered quantization, notably, plays an important
role in quantum field theory. (In quantum field theory, the replacement of
certain Weyl-quantized operators with their Wick-quantized counterparts
is interpreted as a type of renormalization.)

13.2  Some Common Quantization Schemes

In this section, we consider several of the most commonly used quantization
schemes. For simplicity, we limit our attention to systems with one degree
of freedom and to classical observables that are polynomials in x and p.
(We consider the Weyl quantization in greater generality in Sect.13.3.)
Furthermore, we resolve in this section not to worry about domain questions
and simply to use C°(R) as the domain for all of our operators. Thus,
in this section, equality of operators means equality as maps of C°(R) to
itself. It should be noted that the operators of the sort we will be considering
may very well fail to be essentially self-adjoint, even if they are symmetric.
Section 9.10 shows, for example, that the operator P? — cX*, for ¢ >
0, is not essentially self-adjoint on CS°(R). We follow the terminology of
harmonic analysis by referring to a classical symbol f as the symbol of its
quantization f . Once we have discussed each quantization scheme briefly,
we will formalize the definitions of all the schemes in Definition 13.1.

The simplest approach to quantization is to choose, once and for all,
which to put first, the position or the momentum operators. We may, for
example, choose to put the momentum operators to the right, acting first,
and the position operators to the left, acting second. In this approach, a
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polynomial in z and p will quantize to a differential operator in “standard
form,” with all the derivatives acting first, followed by multiplication oper-
ators. In harmonic analysis, there is a method for extending this quantiza-
tion scheme to more-or-less arbitrary symbols, f. For a general (nonpoly-
nomial) symbol f, the resulting operator f is known as a pseudodifferential
operator.

A serious drawback of the pseudodifferential quantization is that even
when the symbol f is real-valued, the operator f it produces is typically
not self-adjoint (or even symmetric). If, for example, f(x,p) = ap, then the
associated operator is X P, the adjoint of which is PX, which is not equal
to X P. The simplest way to fix this problem is to symmetrize the operator
by taking half the sum of the operator and its adjoint.

The Weyl quantization, meanwhile, takes more seriously the possibility
of different orderings of X and P, by considering all possible orderings.
Thus, in quantizing, say, 22p?, the Weyl quantization will give

1
6(X?P2 + XPXP+ XP*X + PX?P 4+ PXPX + P?X?).

For a general monomial, the Weyl quantization similarly averages all the
possible orderings of the position and momentum operators.

For Wick-ordered and anti-Wick-ordered quantization, we no longer
regard the position and momentum operators as the “basic” operators,
but rather the creation and annihilation operators. Specifically, given any
positive real number «, we introduce complex coordinates on the classical
phase space by

Z=x—1iap
Z =+ iap. (13.1)

(Although it would seem more natural to define z to be x + iap, this
choice would lead to problems later, especially with the Segal-Bargmann
transform.) We then consider the corresponding quantum operators, which
we call the raising and lowering operators:

a* =X —1iaP
a=X +iaP. (13.2)

In comparing these operators to the ones defined in the context of the
harmonic oscillator, we should think of « as corresponding to 1/(mw).
Even with this identification, however, the operators in (13.2) differ by a
constant from the raising and lowering operators of Chap.11. [The over-
all normalization of the raising and lowering operators is not important
in this context, provided that we are consistent in the normalization be-
tween (13.1) and (13.2).] In particular, the commutator of a and a* is not
I but rather 2ahl.
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In Wick-ordered quantization, we begin by expressing the classical
observable f in terms of z and Z rather than in terms of x and p. When we
quantize, we put all the lowering operators (coming from the factors of z
in f) to the right, acting first, and the raising operators (coming from the
factors of z in f) to the left, acting second. This approach to quantization is
useful in quantum field theory, where letting the lowering operators act first
can cause certain otherwise ill-defined expressions to become well defined.
In anti-Wick-ordered quantization, we do the reverse, putting the raising
operators to the right, acting first. Although anti-Wick-ordered quantiza-
tion seems singular in the context of quantum field theory, in systems with
finitely many degrees of freedom, it is actually better behaved than Wick-
ordered quantization.

Definition 13.1 Define several different quantization schemes for symbols
that are polynomials in x and p as follows. Each scheme is uniquely
determined—as a map from polynomials on R? into operators on C2°(R)—
by the indicated formulas.
1. Pseudodifferential operator quantization:
Q(z7p*) = X7 P*.
2. Symmetrized pseudodifferential operator quantization:

Qaiph) = %(XjP’“ + PEXT).

3. Weyl quantization:

» 1
Iph) = ——— X,X,...,X,P,P,...,P
Q(I p ) (j+k)! Z U( Y 3 ) ) ) ) ) )7
G’ESj+k
where for any operators Ay, As, ..., A, and any o € Sy, we define
O'(Al, AQ, v ,An) = Aa(l)Aa(2) e 'Aa(n)- (133)

4. Wick-ordered quantization with parameter o:

Q((z + iap)! (z —iap)*) = (X —iaP)*(X +iaP)!, a>0.
5. Anti- Wick-ordered quantization with parameter «:

Q((z +iap)! (x — iap)*) = (X +iaP) (X —iaP)*, o > 0.

In applications, the most useful quantization schemes are the Wick-
ordered, anti-Wick-ordered, and Weyl schemes. All of the quantization
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schemes in Definition 13.1 except the pseudodifferential operator quantiza-
tion have the property of mapping real-valued polynomials to symmetric
operators on C°(R). (See Exercise 3 in the case of the Wick- and anti-
Wick-ordered quantizations.)

In comparing the different quantization schemes, it is important to rec-
ognize that two different expressions may describe the same operator. We
may calculate, for example, that

%(XPQ + P?X) = %(PXP +[X,P]P + PXP — P[X, P])
= PXP,

since [X, P] is a multiple of the identity and thus commutes with P. As a
result, we can eliminate the PX P term in the Weyl quantization of xp?,
with the result that

1 1
Qwey1(2p?) = g(XP2 + PXP+ P*X) = 5(XP2 + P%X), (13.4)

which coincides, in this very special case, with the symmetrized pseudod-
ifferential quantization of zp?.

Example 13.2 If f(x,p) = 2%, then the Weyl, Wick-ordered and anti-
Wick-ordered quantizations of [ are as follows:

QWeyl($2) = X2

1
QWick(I2) = X2 — §Oéﬁl
1
Qanti—wick(z?) = X2 + 504%[.

Proof. The value for Qweyi(z?) is apparent. To compute the Wick- and
anti-Wick-ordered quantizations, we first write = as (z + Z)/2, so that

Thus, we have, for example,

Qwick(7®) = = (X —iaP)* + 2(X — iaP)(X + iaP) + (X + iaP)?).

W~ =

When we expand this expression out, the P? terms cancel, and the X P
and PX terms from (X — iaP)? will cancel with the X P and PX terms
from (X + iaP)?. Thus, we will be left with X? terms and the X P and
PX terms from the cross-term above:

Qmwwﬁzi@m?+%MXJm.
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Using the commutation relation between X and P gives the desired result.
The calculation of Qantiwick(2?) is identical except that the order of the
factors in the cross-term is reversed, which gives the opposite sign for the
[X, P] term. m

Proposition 13.3 The Weyl quantization—uviewed as a linear map of the
space of polynomials on R? into operators on C°(R)—is uniquely charac-
terized by the following identity:

Qweyi((az + bp)?) = (aX + bP) (13.5)
for all non-negative integers j and all a,b € C.

Proof. The Weyl quantization is easily seen to satisfy the identity

QwCyl((alir +01p) -+ (ajz + b;p))

=5 Z (a1 X + b0 P,...,a;X +b;P), (13.6)

o€S;
for all sequences ai,...,a; and by,...,b; of complex numbers, where the
expression o (-, -, ..., -) is defined by (13.3). Specializing to the case where all

the a;’s are equal to a and all the b;’s are equal to b gives (13.5). Conversely,
suppose that @) is any linear map of polynomials into operators on CS°(R)
satisfying Q((ax + bp)?) = (aX + bP)? for all a, b, and j. For each j, let
V; denote the space of homogeneous polynomials f of degree j such that
Q(f) = Qweyi(f). Then V; contains all polynomials of the form (az + bp)?,
and thus, by Exercise 1, V; consists of all homogeneous polynomials of
degree 7, so that QQ = Qwey1. ®

Proposition 13.4 The Weyl quantization satisfies

Quesi(a9) = Q@) Quia(9) ~ 3wt (1) (137
= Qwey1(9)Qwey1(z) + Qweyl <g_zg?) (13.8)
and
Qwey1(Pg) = Qwey(P) Qwey1(9) + %QWeyl (%) (13.9)
= Que0) Qi) ~ 5 Qe (52 (13.10)

for all polynomials g in x and p.

It should be noted that the formulas for the Weyl quantization in Propo-
sition 13.4 may not give the same “expression” for Qwey(f) as does
Definition 13.1, but it does give the same operator. [Compare (13.4).]
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Proof. Suppose A = (a1 X + b, P) and B = (a2 X + baP). Then [A, B] is a
multiple of I, from which we can easily verify that
AB’ = B¥ABI™F 4+ k[A, B|BI !,
for 0 < k < j. If we sum this relation over k£ and divide by j + 1, we obtain

1 jG+1)

P [A,B|BI. (13.11)

4 1 d ,
AB' = —— % " B*ABITF ¢
j+1 =

Now, A is the Weyl quantization of (a1 X +b1p) and B/ is the Weyl quanti-
zation of (agw +bap)’, and both terms on the right-hand side of (13.11) are
easily recognized as Weyl quantizations. Thus, after rearranging the terms
and evaluating the commutator, (13.11) becomes,

Qweyi((a12 + bip)(asx + bop)?)
= C?V\/cyl(ﬁla7 + blp)Qchl((CQx + b2p)j)
- m%(ale — a2b1) Qe (a1 + bip) ™). (13.12)

Meanwhile, if we run the same argument starting with B A we obtain a
similar result:

Qweyl((a12 + b1p) (azz + bap)?)
= Qwey1((a27 + b2p)?)Qweyi(a12 + bip)
+ ih%(albg — azb1)Qweyi((a12 + bip) ). (13.13)
If we specialize to the case (a1,b1) = (1,0) and (az,b2) = (a,b), we get
Qweyl(x(az + bp)’) = Qweyi () Qweyi ((az + bp)”)
— ih%wacyl((ax +bp)' 1, (13.14)

where the last term on the right-hand side of (13.14) is —ii/2 times the
Weyl quantization of d(ax+bp)? /Op. Thus, (13.14) is precisely (13.7) in the
case g(z,p) = (ax +bp)’. We can then see from Exercise 1 that (13.7) hold
for all polynomials g. The proofs of (13.8), (13.9), and (13.10) are similar.
u

13.3 The Weyl Quantization for R?"

In this section, we study the Weyl quantization on a much larger class of
symbols (i.e., classical observables) than the polynomial symbols considered
in the previous section. We also generalize from symbols defined on R? to
symbols defined on R?",
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13.5.1 Heuristics

It is a straightforward matter to extent the Weyl quantization on
polynomials from R2? to R?". This extended quantization will satisfy

Qweyi((@-p+b-p))=(a-X+b-P)’ (13.15)

for all a,b € R™ and all non-negative integers j, as in Proposition 13.3 in
the n = 1 case. Suppose we wish to extend QQwey1 to certain nonpolynomial
symbols, starting with complex exponentials. If we multiply (13.15) by
()7 /4! and sum on j, we would expect to have

QWeyl (ei(a"‘*b'p)) = ¢i(aX+bP) (13.16)

Now, if f is any sufficiently nice function on R?", we can expand f as an
integral involving functions of the form exp(i(a-x + b - p)), by using the
Fourier transform:

fx,p)=2m)" [ fla,b)e!@*+PP) da gb,
R2n

where f is the Fourier transform of f. In light of (13.16), it is then natural
to define

Qweni(f) = 2m)™™ [ f(a,b)e’@X+PP) ga gp, (13.17)
R2n

Before proceeding, let us pause for a moment to compute the operator
exp(i(a-X+b-P)). If A and B are bounded operators that commute with
their commutator (i.e., such that [4, [A, B]] = [B,[A4, B]] = 0), then

eATB = ¢mlABl/2,48 (13.18)
(See Theorem 14.1, which is proved in Sect. 3.1 of [21]. Equation (13.18) is
a special case of the Baker—-Campbell-Hausdorff Formula.) If we formally

apply (13.18) with A = ia-X and B = ib - P (even though these are
unbounded operators), we obtain

ei(a~x+b-P) — eiﬁ(a~b)/2€ia-xeib-P' (1319)
Meanwhile, by Example 10.16 in Sect. 10.2, we know that
(e®Py)(x) = ¢(x + hib).

Thus, we may reasonably hope that
(ei(a'Xer'P)w) (x) = ethlab)/2 iaxy, (x + hb). (13.20)

In general, we get incorrect results if we formally apply results for bounded
operators to operators that are unbounded. In this case, however, the result
of the formal calculation is correct. The simplest way to prove this is to
replace a and b by ta and tb on the right-hand side of (13.19) and to check
that the result is a strongly continuous one-parameter unitary group.
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Proposition 13.5 For all a and b in R™, the operators Ua p(t) on L*(R™)
given by
ab(t x) = € zh(a'b)/Qeita'xz/J x -+ thb 13.21
Ua,b(t)y !

form a strongly continuous one-parameter unitary group. The infinitesimal
generator of this group coincides with a - X + b - P on CX(R"™) and is
essentially self-adjoint on this domain. Thus, if a- X + b - P denotes the
unique self-adjoint extension of the infinitesimal generator on C°(R™), it
follows from Stone’s theorem that

L . . it2 . L . L .
e115(3 X+b-P) _ et h(a b)/2€zta Xeztb P

for all t € R. In particular, (13.19) and (13.20) hold.

Proof. It is apparent that U, p is unitary for each a and b, and it is a
simple direct computation to show that it is indeed a unitary group. Strong
continuity is proved in the usual way using a dense subspace, as in the proof
of Example 10.12. When ¢ is in C°(R™), it is easy to differentiate the right-
hand side of (13.21) with respect to ¢ at t = 0 to obtain the formula for the
infinitesimal generator. Finally, the essential self-adjointness of a- X +b-P
on C°(R™) is precisely the content of Proposition 9.40. m

With the computation of the operator ¢?@X+PP) in hand, we return to
our analysis of the proposed formula (13.17) for the general Weyl quan-
tization. If the Fourier transform of f is in L'(R?*"), we can regard the
right-hand side of (13.17) as an absolutely convergent “Bochner” integral
with values in the Banach space B(H). For our purposes, however, it is
more convenient to think of operators on L?(R™) as integral operators and
to write down a formula for the integral kernel of Qweyi(f) in terms of f
itself. (But see Exercise 7.)

At a formal level, the operator mapping 9 to e@P)/2¢iaxy, (x + hb)
may be thought of as an “integral” operator, with integral kernel given by

eih(a»b)/?@ia-xan (X + hb — y)7 (1322)

where 0, is an n-dimensional delta-function (the n-dimensional analog of
the distribution in Example A.26). Thus, it should be possible to obtain the
integral kernel of Qwey1(f) by integrating the preceding expression against

f(a,b). To evaluate the resulting integral, we make the change of variable
c = hb, in which case we obtain

(27771)7"/ / e@f2piaxs (x 4 ¢ —vy)f(a,c/h) de da
= (2rh)™" / @ y=x)/2ax f(3 (y —x)/h) da

= h"(2m) /2 [(QW)_"/2/ @ xHY)/2f(a (y —x)/h) da| . (13.23)

n
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We may recognize the integral in square brackets in the last line of (13.23)
as undoing the Fourier transform of f in the x-variable, leaving us with the
partial Fourier transform of f in the p variable, evaluated at the points (x+
v)/2, (y —x)/h. (The partial Fourier transform means the ordinary Fourier
transform with respect to one of the variables, with the other variable
fixed.) Thus, we expect that Qweyi(f) should be the integral operator with
integral kernel x; given by

pey) = @ah) ™ [ (Gt y)/2p)e IR M ap. (1820

13.3.2 The L? Theory

With the preceding calculations as motivation, we now define Qweyi(f) to
be the integral operator with kernel ¢, beginning with the case in which
f belongs to L?(R?"). The resulting operators will turn out to be Hilbert—
Schmidt operators on L?(R™).

If H is a Hilbert space and A € B(H) is a non-negative self-adjoint
operator on H, then it can be shown that A has a well-defined (but possibly
infinite) trace. What this means is that the value of

trace(A) := Z (ej, Aej)
J
is the same for each orthonormal basis {e;} of H. Note that since A is a
non-negative operator, (e;, Ae;) is a non-negative real number, so that the
sum is always defined, but may have the value +ooc.

Now, if A is any bounded operator, then A*A is self-adjoint and non-
negative. We say that A is Hilbert-Schmidt if

trace(A*A) < oo

Given two Hilbert—Schmidt operators A and B, it can be shown that A*B
is a trace-class operator, meaning that the sum

trace(A* B Z (ej, A" Be;)

Jj=1

is absolutely convergent and the value of the sum is independent of the
choice of orthonormal basis. We define the Hilbert-Schmidt inner product
of A and B and the associated Hilbert—Schmidt norm of A by

(A, B)yg = trace(A" B)
| Allgs = Vtrace(A*A).

It can be shown that the space of Hilbert—Schmidt operators on H forms a
Hilbert space with respect to the Hilbert—Schmidt inner product.
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(See Sect. 19.2 for more details.) We denote the space of Hilbert—Schmidt
operators on H by HS(H).

We will make use of the following standard (and elementary) result
characterizing Hilbert—Schmidt operators on L?(R") in terms of integral
operators. (See, for example, Theorem VI.23 in Volume I of [34].)

Proposition 13.6 If k is in L*>(R"™ x R™) then for every 1 € L*(R"™), the
integral

AW = [ wxy)uly) dy (13.29)

is absolutely convergent for almost every x € R™, and A, (v) also belongs
to L?(R™). Furthermore, the operator A, is a Hilbert-Schmidt operator on
L?(R™) and

[ Anllus = 5l Lo@n ey -

Conversely, for any Hilbert-Schmidt operator A on L*(R™), there exists
a unique k € L2(R™ x R™) such that A = A,.

We are now ready, using discussion in Sect. 13.3.1 as motivation, to define
the Weyl quantization of L? symbols.

Definition 13.7 For all f € L?(R?"), define Kf: R2" — C by
ke(x,y) = @2rh) ™" [ f((x+y)/2,p)e ¥ P/" dp, (13.26)
Rn

and define the Weyl quantization of f, as an operator on L?(R™), by

Qchl(f) = Anfv
where A, is defined by (13.25).

The integral in (13.26) is not necessarily absolutely convergent, and
should be understood as computing a partial Fourier transform. Thus, we
should, strictly speaking, replace the right-hand side of (13.26) with

lim (27h)~" /| . f((x+1y)/2,p)e i y=2)P/h g (13.27)
P>

R—o0

where the limit is in the norm topology of L?(R?*"). [The partial Fourier
transform maps the Schwartz space S(R?*") to itself. By Fubini’s theorem
and the Plancherel formula for R”, the partial Fourier transform is an L2-
isometry and extends to a unitary map of L?(R?") to itself. This unitary
map can be computed by the usual formula on functions in L' N L? and
can be computed by the limiting formula similar to (13.27) in general.]

In words, we may describe the procedure for computing x; at a point
(x',x?) in R*" as follows. First, compute the partial Fourier transform Fp
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of f(x,p) in the p-variable, resulting in the function (Fpf)(x,£). Then
evaluate Fpf at the point x = (x! + x%)/2, £ = (x* — x')/h. Finally,
multiply the result by A~"(27)~"/2 to get

rp(xt,x?) = B @2r) 2 (Fof)((xE +x2)/2, (x2 —xb)/h).  (13.28)

Theorem 13.8 The map Qweyl s a constant multiple of a unitary map
of L*(R?") onto HS(L?(R™)). The inverse map Q\_Nlcyl : HS(L2(R™)) —
L2(R?") is given by

Qb (e p) = " [ o ib/2x + ib/2)e™™™ db,
where k is the integral kernel of A as in Proposition 13.6.

Furthermore, for all f € L*(R?"), we have Qweni(f) = Qwey1(f)*; in
particular, Qweyi(f) is self-adjoint if f is real valued.

Properly speaking, the integral in the theorem should be understood
as an L? limit, as in (13.27). The fact that Qwey is unitary (up to a con-
stant) tells us that for an appropriate constant ¢, the operators cet(@X+bP)
form an “orthonormal basis in the continuous sense” for the Hilbert space
HS(L?(R™)). (Compare Sect. 6.6.)

It is possible, using the same formulas, to extend the notion of Weyl
quantization to symbols belonging the space of tempered distributions,
that is, the space of continuous linear functionals on S(R?"*). We will not,
however, develop this construction here. See [11] for more information.
Proof. Proposition 13.6 gives a unitary identification of HS(L?(R"™)) with
L2(R™ x R™). Thus, it suffices to show that the map f + ¢ is a multiple
of a unitary map. This result holds because the partial Fourier transform
is a unitary map of L?(R?") to itself and composition with an invertible
linear map is a constant multiple of a unitary map. The inverse of the map
f — Ky is obtained by inverting the linear map and undoing the partial
Fourier transform. Finally, it is apparent from (13.26) that

Kf(xvy) = Kf(yvx)'

This, along with Exercise 6, shows that Qweyi(f) = QWeyl(f ). m

18.3.8 The Composition Formula

If f and g are L? functions on R*", then Qwey1(f) and Qwey1(g) are Hilbert—
Schmidt operators, in which case their product is again Hilbert—Schmidt.
(Indeed, the product of a Hilbert—Schmidt operator and a bounded operator
is always Hilbert-Schmidt.) Thus, since Qwey1 is a bijection of L?(R*") with
HS(L?(R™)), there is a unique L? function, which we denote by f x g, such
that

Qweyl () @Wey1(9) = Qweyi(f * 9)- (13.29)
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(Of course, the operator *, like the Weyl quantization itself, depends on A,
but we suppress this dependence in the notation.)

Proposition 13.9 The Moyal product fxg may be characterized in terms
of the Fourier transform as

@)(a’ b) — (2#)771\/‘/efih(a'blfb-a’)/g
X f(a — a/, b — b/)g(a/, b/) da’ db/,
where both integrals are over R™.

Note that if we set h = 0 in the above formula, f/*\g reduces to (2m)~"

times the convolution of f and g, which is nothing but the Fourier transform
of fg. It is thus not difficult to show (Exercise 10) that

li *g=fg.
Jim fxg=fg

That is to say, the Moyal product f % g is a “deformation” of the ordinary
pointwise product of functions on R2". More generally, the Moyal product
can be expanded in an asymptotic expansion in powers of 7, as explained
in Sect. 2.3 of [11]. This expansion terminates in the case that f and g are
both polynomials.
Proof. It is, of course, possible to obtain this formula using kernel func-
tions. It is, however, easier to work with the (13.17), which can be shown
(Exercise 7) to give the same result as Definition 13.7 when f is a Schwartz
function. We assume standard properties of the Bochner integral for func-
tions with values in a Banach space [in our case, B(H)], which are similar
to those of the Lebesgue integral. (See, for example, Sect. V.5 of [46].)

We have, then,

Qe (F)Quie(9) = (27) ™ / / Flab)el@X+P) ga gy
x (2m)~" / / g(a’,b)e'@ X P) ol b’ (13.30)

Now, it is an easy calculation to verify, using Proposition 13.5, that
ei(a-Xerl:’)ei(a'~Xer’-P) — 67ih(a~b'7b~a’)/28i((a+a’)~X+(b+b’)~P) (1331)
which is what one obtains by formally applying the special case of the

Baker—Campbell-Hausdorff formula in (13.18). Thus, we may combine the
integrals in (13.30) to obtain

Qchl(f)Qchl(g) _ (27_‘,)7211/\/:/‘/efih(a-b/,b~a’)/2€i((a+a/).X+(b+b').P)
x f(a,b)g(a’,b’) da db da’ db’.
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By introducing new variables c =a+a’ and d = b+ b’ in the a and b
integrals and reversing the order of integration, we obtain, after simplifying
the exponent,

QWeyl QWeyl

27T // 27T // —zh(cb' da)/2

x f(c—a',d—b')g(a',b’) da’ db’] e ©XFTdP) ge ad.

From this and (13.17), we see that Qweyi(f)Qweyi(g) is the Weyl quanti-
zation of the function whose Fourier transform is the quantity in square
brackets above, which is what we wanted to show. m

Proposition 13.10 The Moyal product f*g extends to a continuous map
of L?(R?*") x L2(R?") into L*(R?*") and the composition formula (13.29)
holds for all f and g in L?(R?*").

Proof. A standard inequality asserts that for any two Hilbert—Schmidt
operators A and B, we have

[ABllus < [[Allgs [ Bllgs -

It follows that the product map (4, B) — AB is a continuous map of
HS(L?(R™)) x HS(L?*(R™)) to HS(L?(R™)). Meanwhile, the Weyl quantiza-
tion is a constant multiple of a unitary map from L?(R?*") to HS(L?(R")).
For Schwartz functions f and g, the Moyal product is nothing but

f *g= Q\;}lcyl(QWeyl(f)QWeyl(g))- (1332)

The right-hand side of (13.32) provides the desired continuous extension of
f * g. Clearly, the composition formula (13.29) holds for this extension. m

18.8./  Commutation Relations

In quantum mechanics, the commutator of two operators (divided by ih)
plays a role similar to that of the Poisson bracket in classical mechanics.
Thus, we may naturally ask: To what extent does the Weyl quantization
(or any other quantization scheme) map Poisson brackets to commutators?
The short answer is: Not always. Indeed, as we will see in Sect.13.4, no
“reasonable” quantization scheme can give an exact correspondence be-
tween {f,g} on the classical side and [A, B]/(ih) on the quantum side.
Nevertheless, such an exact correspondence does hold for various special
classes of symbols. If we consider, for example, the class of symbols that
depend only on x and not on p, then on the classical side, all such functions
Poisson commute. The Weyl quantization maps such functions f(x) to the
operator of multiplication by f(x), and thus the quantizations of any two
such functions commute. A more interesting (in particular, noncommuta-
tive) example is as follows.
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Proposition 13.11 Suppose f is a polynomial in x and p of degree at
most 2 and g is an arbitrary polynomial in x and p. Then

iﬁ [Qwey1(f), Qwey1(9)] = Qweyi({f, 9}), (13.33)

where {f, g} is the Poisson bracket of f and g.

Here, we define the Weyl quantization by the obvious n-variable exten-

sion of Definition 13.1, and we regard all operators as operating simply
on C°(R™). See Exercise 8 for another class of symbols on which (13.33)
holds. Although the requirement that g be a polynomial can be relaxed,
we will not attempt to obtain the optimal version of the result.
Proof. For notational simplicity, we abbreviate Qwey(f) to Q(f) for the
duration of the proof. If f has degree zero, then both sides of the desired
equality are zero. Turning to case in which f has degree 1, we use the n-
variable extension of Proposition 13.4, the proof of which is essentially the
same as the 1-variable result. The result is as follows:

Q(zj9) = Qz;)Q(9) — _Q (gypj)

= Q(9)Q(x)) + - Q (gzi)

By subtracting these two formulas and rearranging, we get

1
0.0 = (5) = Qe o,
A very similar argument establishes the desired result when f = p; and
thus for all homogeneous polynomials of degree 1.
Suppose now that f; and fo are homogeneous polynomials of degree
1 in x and p. Then it follows easily from Proposition 13.4 that for any
polynomial h, we have

Q(fh) = %(Q(fj)Q(h) +QMM)Q(S;)), J=1,2 (13.34)
In particular, we have
Q(f1f2) = %(Q(fﬂ@(fz) + Q(f2)Q(f1))- (13.35)

Using (13.35) and the product rule for commutators (Proposition 3.15), we
have

LQUAR), Q)

= %([Q(fl),Q(g)]Q(fz) +Q([RQ(f2), Q(9)]
+1Q(f2), Q(9)IQ(f1) + Q(f2)[Q(f1), Q(9)])-
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Using the degree-1 case of the result we are trying to prove, along with
(13.34), we get

[Q(f1f2) Q(g)]

Q{ f1,9})Q(f2) + Q(f1)Q({ f2, 9})

2@

+Q{ f2,9})Q(f1) + Q(f2)Q({f1,9}))
= Q(f{f1,9}) + Q(f1{f2, 9})

=Q{f1f29}), (13.36)

where in the last equality we have used the product rule for the Poisson
bracket. We have now established the desired result when f is a homoge-
neous polynomial of degree 0, 1, or 2. m

At first glance, it appears that one could extend the result to the case
where f has degree 3, by considering three homogenous polynomials f1, fo,
and f3 of degree 1 and symmetrizing as in (13.35). The argument breaks
down, however, because the Q(f;)’s do not commute. The Q(f;)’s will not
always occur in the correct order to allow us to pull the f;’s back inside the
Weyl quantization, the way we did in (13.36) in the degree-2 case. Indeed,
an elementary but tedious calculations shows that

1 .
E[Qweyl(x2p), Qweyl(zp?)] = 3X2P? — 6ihX P — h*I,

whereas 3
Qwey({2°p, 7p*}) = 3X?*P? — 6ihX P — 57121,

so that the two expressions differ by h21/2.

We conclude this section with a brief glimpse of an important “equivari-
ance” property of the Weyl quantization. Note that the Poisson bracket of
two real valued homogeneous polynomials of degree 2 is again real valued
and homogeneous of degree 2. The space of real homogeneous polynomials
of degree 2 thus forms a Lie algebra (Sect. 16.3) with respect to the Poisson
bracket. This Lie algebra is naturally isomorphic to the Lie algebra sp(n; R)
of Lie group Sp(n; R), the real symplectic group. This group is the group of
invertible linear transformations that preserve a skew-symmetric form on
R2". See Chap. 16 for information about Lie groups and their Lie algebras.

If we apply Proposition 13.11 in the case in which both f and g are
homogeneous of degree 2, we see that the map 7(f) := Qweyi(f) is a repre-
sentation of sp(n;R) in the space of skew-symmetric operators on L?(R™).
It can be shown that associated to this representation of sp(n;R) there is
a projective unitary representation IT of the group Sp(n;R), known as the
metaplectic representation. (See, again, Chap. 16 for definitions.) Proposi-
tion 13.11 is the infinitesimal version of the following equivariance property
of the Weyl quantization: For all A € Sp(n;R) and all f € L?(R?"), we
have

Qweyl (f 0 A™1) = TI(A)Qweyi (f)II(A) .
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See Theorem 2.15 and Chap.4 of [11] [where our II(A) corresponds to
u((A*)~1) in Folland’s notation] for this result and much more about the
metaplectic representation.

13.4 The “No Go” Theorem of Groenewold

In Sect. 13.3.4, we noted that the Weyl quantization on polynomials satisfies

FQuesi(F), Quiesi(9)] = Qe (£, ). (13.37)
provided that f is a polynomial of degree 2, but not in general. One might
think that the failure of (13.37) represents a shortcoming in the definition
of the Weyl quantization, which could be remedied by an alternative defini-
tion. In this section, however, we will see that no quantization scheme that
maps x; and p; to the usual position and momentum operators X; and P;
can satisfy (13.37) for general polynomials in x and p. This sort of nonex-
istence result, of a construct satisfying seemingly natural and desirable
conditions, is referred to in the physics literature as a “no go” theorem.

In light of this result, one might think that perhaps the position and
momentum operators should be defined differently, possibly with an ac-
companying change in the choice of the quantum Hilbert space. Indeed,
there is a map @ that satisfies (13.37) for all f and g, namely the pre-
quantization map described in Sect. 23.3. The prequantization map accom-
plishes this feat by drastically enlarging the quantum Hilbert space, from
L?(R") to L?(R?"). The Hilbert space L?(R?") is considered to be “too
big” from a physical standpoint, which explains why the map @ is only
“prequantization” rather than “quantization.” (The prequantization map
has a number of other undesirable features that are described in Sect. 23.3.)
If one imposes a natural “smallness” assumption on the quantum Hilbert
space (irreducibility under the action of the position and momentum op-
erators), then the Stone-von Neumann theorem will tell us that (modulo
certain technical domain assumptions) any choice of position and momen-
tum operators satisfying the canonical commutation relations is unitarily
equivalent to the usual ones.

The upshot of the discussion in the two preceding paragraphs is that
there is no physically reasonable quantization scheme that satisfies (13.37)
for all (polynomial) functions f and g.

We turn, now, to Groenewold’s “no go” theorem. We need to make
domain assumptions, so that it makes sense to compute the commuta-
tors of the quantized operators. The simplest approach is to assume that
the quantization Q(f) of any polynomial f will be in the algebra gener-
ated by the X’s and P’s, and thus that Q(f) will be a differential operator
with polynomial coefficients. There is a variant of this result, known as van
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Hove’s theorem, that proves a similar “no go” result under a more gen-
eral assumption about the form of the quantized operators. See [15] for a
rigorous proof of van Hove’s theorem.

Definition 13.12 For any k > 0, let Py, denote the space of homogeneous
polynomials of degree k and let P<j, denote the space of all polynomials of
degree at most k.

Theorem 13.13 (Groenewold’s Theorem) Let D(R™) denote the space
of differential operators on R™ with polynomial coefficients. There does not
exist a linear map Q : P<4 — D(R™) with the following properties.

1.Q)=1.
2. Q(z;) = X; and Q(p;) = P;.

3. For all f and g in P<s, we have

QUf.9) = Q). Qo)L (13.35)

Note that in Property 3 of the theorem, we assume that f and g belong
to P<s rather than P<4. This assumption guarantees that {f, g} belongs
to P<4, so that the left-hand side of (13.38) is defined.

Our strategy in proving Groenewold’s theorem is the following. We know
(Proposition 13.11) that the Weyl quantization satisfies (13.38) if f has
degree at most 2 and ¢ has degree at most 3. Using this result, we can
show that any map @ satisfying the properties in Theorem 13.13 must
coincide with the Weyl quantization on P<3. We then identify a polynomial
f € P4 that can be expressed as a Poisson bracket in two different ways,
f=A{g,h} ={g,h'}, with g, h, ¢’, and A’ in P5. Upon calculating that
[Qwey1(9), Qwey1(h)] does not coincide with [Qweyi(g’), Qweyi(R)], we will
have a contradiction.

The proof will consist of several lemmas, followed by the coup de grace.

Lemma 13.14 Consider an element A of D(R™) expressed as
9 \k
A= —
S (5)

where k ranges over multi-indices, where the fx’s are polynomials, and
where only finitely many of the fx’s are nonzero. Then A is the zero oper-
ator on C°(R™) only if each of the fy’s is zero.

Proof. For each multi-index k, let |k| = k1 + --- + k. Suppose not all
the fx’s are zero, let N be the smallest non-negative integer for which fix
is nonzero for some k with |k| = N, and let ko be some multi-index with
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|ko| = N and fx, # 0. Let us apply A to a function g that is equal, in a
neighborhood of the origin, to x*°. Then all the terms in Ag other than
the fk, term will be zero in a neighborhood of the origin, whereas the f,
term will be a nonzero constant in a neighborhood of the origin. Thus, A
is not the zero operator. m

Lemma 13.15 If A belongs to D(R™) and A commutes with X; and P;
forall j=1,...,n, then A= cl for some c € C.

Proof. We may easily prove by induction that

() tintn =k (7)ot 40 (1) o)

for any polynomial g. Thus, for any multi-index k, we have

lf(X) (%)k,&-] — /(%) (%)k . (13.39)

Suppose A is a nonzero element of D(R™) that commutes with each X;.
If deg(A) = M, consider a nonzero term in A of degree M:

o\
fieo (%) <&> . kol = M, fi, #0.

If M > 0, we can pick some j such that the jth entry of kg is nonzero.
By (13.39) and our assumption on A, we have

a k()*e]‘
0=1[4,X,] = (ko)j fr,(x) (6_> + other terms,
X
where the other terms involve multi-indices of the form k—e;, with k # k.
Thus, by Lemma 13.14, [A, X;] is not the zero operator.

We see, then, that any A € D(R") that commutes with each X; must be
of degree zero; that is, A must simply be multiplication by some polynomial
f(x). If, in addition, A commutes with each P;, then

. Of
0=[f(x),P] = Zh(?_a:j(x)'
Thus, actually, f must be constant and A is a multiple of the identity
operator. m

Lemma 13.16 For any f € Po, there exist g1,...,9; and hy,...,h; in Pa
such that

f={g, i} +- +{gj,h;}.

Furthermore, for any f' € Ps, there exist elements gi,...,g.0of Ps and
hy, ..., h) of Py such that
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Proof. See Exercise 12. m

Lemma 13.17 If QQ satisfies the conditions in Theorem 13.13, then Q
coincides with Qwey1 on P<s.

Proof. Our argument leans heavily on Proposition 13.11. Note that, by
assumption, ) coincides with Qwey1 on P<i. For f € P, let us write

Q(f) as
Q(f) = Qweni(f) + Ay.

For any g € P<1, we have, by (13.38) and Proposition 13.11,

QLS 9)) = - [Q(), Qo))

— Qw1 Q)] + 5547, Quin(9)

= Qwe({£.91) + 2[4, Qwen(9)]

= QU.0) + A7, Quei(o)], (13.40)

since {f, g} € P<1. Thus, [Af, Qweyi(g)] = 0 for every g € P, and so, by
Lemma 13.15, we must have Ay = c¢I for some constant c;.

Now, if & is in Ps, we have, by the just-established result and Proposi-
tion 13.11,

QUMY = 7 1Q(). Q)]

= %[QWCﬂ(f) +crl, Qweyi(h) + cinl]

= %[Qchl(f% QWCYI(h’)]

= Qweyi({f, h})- (13.41)

That is to say, @ and Qwey1 agree on elements of Py of the form {f, h}, for
fyh € Pa. Thus, by Lemma 13.16, @ and Qwey1 agree on all of Po, and so
on all of P<,.

We now use the P<, case of the lemma to establish the P53 case. Given f €
Ps, we write Q(f) = Qwey1(f) + By. Given g € P<1, we have {f, g} € P<s.
Thus, we may argue as in (13.40), applying the just-established P<; case of
the lemma to {f, g} in the last step. The conclusion is that [Bf, Q(g)] =0
for all f € P<s and thus, by Lemma 13.15, that By = d¢I for some constant
d¢. Meanwhile, if h € P,, we argue as in (13.41), but with ¢s replaced by
dy and with ¢, now known to be zero. The conclusion is that () agrees with
Qwey1 for all elements of P3 of the form {f,h} with f € Ps and h € Po,
and thus, by Lemma 13.16, for all elements of P3;. m
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Proof of Theorem 13.13. Assume, toward a contradiction, that a map @
as in the theorem exists. Let f be the polynomial given by

f(x,p) = z7pl.

We observe that f can be written in two different ways as a Poisson bracket:

1 1
aipt = §{I:1)’7P:f} = g{xfpl,iﬂlpf}-
Thus, by Lemma 13.17, we must have
1

§[QWCYI($§)7 Qwey(p})] = ihQ(x7p7)

= %[Qchl(I%pl)v Qweyi(71p7)].

On the other hand, if we apply both commutators to the constant func-
tion 1 (or to a function equal to 1 in a neighborhood of the origin), we
obtain

1 1
5 [Qwest(ad), Quen I = 5 (XEPF — PIX)L
= —%(—m)% 1.

Meanwhile, if we compute the quantizations as in (13.4) and then drop all
terms involving P;1, we obtain (after a small computation)

1 1
g[QwCyl(xfpﬂ, Qweyl(z1p7)]1 = E(X%Pf’xl + PIXP2X))1

1
- E(lefxf + PIX P X?)1

1
= —EPlePlel

1
= ——(—ih)®*4-1.
13 (—ih)

Since 6/9 does not equal 4/12, we have a contradiction. m

13.5 Exercises

1. Let P; denote the space of complex-valued homogeneous polynomials
on R? of degree j. Then P; is a complex vector space of dimension
j+1, which we may identify with C/™! using the obvious basis for P;.
Let V; denote the complex subspace of P; spanned by polynomials
of the form (az + bp)’, with a,b € C. Show that V; = P;.

Hint: Since every subspace of C/*1 is (topologically) closed, if v(t) is
a smooth curve in V}, the derivative +/(t) will also lie in Vj.
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Show that symmetrized pseudodifferential operator quantization of
z?p? is equal to Qweyi(z%p?) — K% /2.

Show that Wick-ordered and anti-Wick-ordered quantizations map
real-valued polynomials to symmetric operators on CS°(R).

Hint: Compare the values of each quantization scheme on z*z! and

on (zkzt).

Consider a classical harmonic oscillator with Hamiltonian

1 1 2
H(xz,p) = P mw?e? = émw2 (:v2 + (i) ) ,

mw

where w is the frequency of the oscillator. Consider the Wick- and
anti-Wick-ordered quantizations with parameter o = 1/(mw). Show
that

1

Qwick(H) = Qwey1(H) — §ﬁw
Qanti—wick(H) = Qwey1(H) + %hw

Let U, b(t) be as in Proposition 13.5. Show by direct calculation that
these operators form a one-parameter unitary group.

Given k € L*(R" xR"), let A,; denote the associated integral operator
on L%(R™), as in Proposition 13.6. Show that the adjoint A* of A is
also an integral operator, with integral kernel " given by

K (x,y) = Ky, x).

. Suppose that f € L2(R2") and that f € L'(R?"). Then the right-

hand side of (13.17) may be understood as an absolutely convergent
“Bochner” integral with values in the Banach space B(L?(R™)). Show
that Qweyi(f) as defined by (13.17) coincides with Qweyi(f) as de-
fined in Definition 13.7.

Hint: The Bochner integral commutes with applying a bounded lin-
ear functional. Use this result with the linear functional Ay ,(A) =
(¢, Ap) on B(L*(R™)). Then use the expression in (13.23) for sy,
which follows from Definition 13.7 by applying a partial Fourier trans-
form.

(a) Show that for any polynomial f in one variable, we have

).

Qui(f(@)p) = FX)P =3
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(b) Show that for any two polynomials f and g, the Poisson bracket
{f(z)p, g(x)p} is of the form h(x)p for some polynomial h.

(¢) Show that for any two polynomials f and g, we have

- Qe (F(2)9), Quient(9()8)] = Quiet ({7 (), 92}

(a) Given ¢ and v in L*(R™), let |¢)v)| be the operator defined in
Notation 3.28. Show that |¢)(t)| can be expressed as an integral
operator as in Proposition 13.6 and determine the associated
integral kernel x.

(b) For o > 0, let 1), € L*(R™) be given by the expression
Yo(x) = (ro) ™1 /(22)

Using Proposition A.22, show that v, is a unit vector in L?(R™)
and that the Weyl symbol of the corresponding one-dimensional
projection operator |1, )1y | is given by

Qubyi (6o )tho]) = 2me /7 molpl*/n,

Note: If we give o the value ii/(mw), the Gaussian function v, may
be thought of as the ground state for an n-dimensional harmonic os-
cillator. (Compare the functions in Theorem 11.3.) The computation
in this exercise plays an important role in the proof of the Stone-von
Neumann theorem in Chap. 14.8.

If f and g are Schwartz functions on R2", show that f/;<\g converges
in the L' norm to (27) =" f* g, where * denotes convolution. Conclude
that f x g converges uniformly to fg as & tends to zero.

Suppose that f(p,q) is a homogeneous polynomial of degree 2. Show
that for each ¢, the Hamiltonian flow ®, associated with f is a linear
map of R?" to itself.

Prove Lemma 13.16.

Hint: Let g1 € P2 be given by
n
g1(%,p) = > x;p;.
j=1

Show that for any monomial of the form xIp¥, we have {g;,xIp¥} =
(|k| — |j|)xIp¥. Thus, most of the standard basis elements f for Py
and all of the standard basis elements f for P3 can be obtained as
nonzero multiples of {g1, f}.
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The Stone-—von Neumann Theorem

The Stone—von Neumann theorem is a uniqueness theorem for operators
satisfying the canonical commutation relations. Suppose A and B are two
self-adjoint operators on H satisfying [A, B] = ihl. Suppose also that A
and B act irreducibly on H, meaning that the only closed subspaces of
H invariant under A and B are {0} and H. Then provided that certain
technical assumptions hold (the exponentiated commutation relations), we
will conclude that A and B are unitarily equivalent to the usual position
and momentum operators X and P. That is, there is a unitary operator
U :H — L*R) such that UAU™! = X and UBU~! = P. If H is not
irreducible, then it decomposes as a direct sum of invariant subspaces V;
for A and B, and the restrictions of A and B to each V; are unitarily
equivalent to the usual X and P.

We begin this chapter with a heuristic argument for the Stone-von Neu-
mann theorem, an argument that glosses over certain (essential but tech-
nical) domain issues. Then we introduce the exponentiated commutation
relations, which should be thought of as a sort of mild strengthening of
the ordinary canonical commutation relations. Finally, we give a precise
statement of the theorem and provide a proof.

14.1 A Heuristic Argument

Suppose that A and B are any two (possibly unbounded) self-adjoint op-
erators on a separable Hilbert space H satisfying [A, B] = ihl. What we

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 279
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_14,
© Springer Science+Business Media New York 2013
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would like to conclude is that H looks like a Hilbert space direct sum of
closed subspaces V; that are invariant under A and B, and such that each
V, is unitarily equivalent to L?(R) in a way that turns the operators A and
B into the standard position and momentum operators X and P. That is
to say, we hope to find unitary maps U; : V; — L?*(R) such that

VAU =X
U,BU ' =P.

This conclusion is, however, not quite correct, for reasons having to do
with the domains of the relevant operators. Nevertheless, let us consider
a heuristic argument for this conclusion. We start by forming a lowering
operator a and a raising operator a* by analogy to the definitions of a and
a* in Chap. 11:

mwA+iB . MmwA—iB

= = ———.
vV 2hmw vV 2hmw

Then we look at the kernel W of the lowering operator «, which will be a
closed subspace of H, provided that « is a closed operator. The elements
of W may be thought of as “ground states” for the operator a*a. Choose
an orthonormal basis {¢}} for W and define vectors

O 1= (") 0%
It is not hard to show that for [ # I’, ¢L, is orthogonal to gbﬁ;l, for all m and
m/. Let V; denote the closed span of the vectors z/Jﬁn, m=20,1,2,....

Using the calculation in Sect. 11.2, we can see that the way a and o™ act
on each chain (the vectors ! with [ fixed and m varying) is precisely the
same as the way the standard lowering and raising operators a and a* act
on the chain of eigenvectors for a*a. Thus, for each [, we can construct a
unitary map U; from V; to L?(R) by mapping the vectors ¢!, in V; to the
vectors 1, in L?(R) described in Theorems 11.3 and 11.4. (In particular,
the vector ¢y € L%(R) is the ground state for the harmonic oscillator, which
is a Gaussian.) Since the formula for how a and o* act is the same as the
formula for how a and a* act, U; will “intertwine” « with a and o* with
a and a*, meaning that Uja = aU;, and similarly for a* and a*. It follows
that U; also intertwines A with X and B with P.

It remains only to argue (heuristically) that the spaces V; fill up the whole
Hilbert space H. Clearly, the span V of the V}’s is invariant under both
a and o*. Thus, the orthogonal complement V+ of V is invariant under
the adjoints o* and a. If V* is not zero, then arguing as in Chap. 11,
there should be a ground state in V', that is a nonzero vector annihilated
by «. This vector would be orthogonal to all the (;56’57 contradicting the
assumption that the ¢}’s form an orthonormal basis for the kernel of a.

The preceding heuristic argument cannot be completely rigorous, how-
ever, since the counterexample in Sect.12.2 gives a pair of operators A
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and B that satisfy the canonical commutation relations but are clearly not
unitarily equivalent to the usual position and momentum operators. After
all, the “position” operator A in that section is a bounded operator, which
cannot be unitarily equivalent to the usual position operator.

What goes wrong is, as usual, a matter of domain considerations. Setting
m, h, and w equal to 1, we can look for a vector ¢ that is annihilated by

the operator
1 1 d
a=—(A+iB)=—(az+—).
f( ) x/i( dx>

By the same argument as in Chap. 11, ¢9 must be a constant mult1ple of the
function e~*"/2. The function @1 := a*¢g is then a multiple of ze™* */2_ The
problem is that ¢; is not in the domain of o*. After all, ¢1 does not satisfy
the periodic boundary condition 9 (—1) = (1) that defines the domain
of B. Thus, we cannot continue to apply a* to obtain an orthogonal chain
of vectors and the entire argument breaks down.

What we need, then, is some additional condition that will distinguish
between the “good” cases of the canonical commutation relations and the
“bad” cases. One possibility for this additional condition is the exponen-
tiated form of the canonical commutation relations, which are discussed
in the following section. Our rigorous proof (Sect.14.3) of the Stone-von
Neumann theorem will follow the same outline as the heuristic argument
in this section, except that the unbounded operators a and o* will be re-
placed by certain bounded operators, constructed by an analog of the Weyl
quantization.

14.2 The Exponentiated Commutation Relations

If A is a bounded operator on a Hilbert space H, we may define the expo-
nential of A, denoted either e or exp(A), by the power series

O A™m
=2

where A% = I. A standard power series argument shows that if A, B €
B(H) commute, then

eMB =B (A, Bl =0. (14.1)
(See Exercise 6 in Chap. 16.) Even when A and B do not commute, there

is a formula, called the Baker—Campbell-Hausdor[f formula, that expresses
eeB for sufficiently small A and B, in the form

B _ 1
eAe _exp{A—i-B—i- [A, B] + 12[A7[A7B]]+...},
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where the terms indicated by --- are iterated commutators involving A
and B. (See Chap.3 of [21] for more information.) A very special case of
this formula is obtained in the case where A and B commute with their
commutator, so that all higher commutators are zero.

Theorem 14.1 Suppose A, B € B(H) commute with their commutator,
that is,
[4,[A, B]] = [B, [A, B]] = 0.

Then

eAeB — 6A+B+% [A,B]

This relation may also be written as

1
oA+B _ ,~3[AB] A B

Note that in this special case of the Baker—-Campbell-Hausdorff formula,
no smallness assumption is imposed on A and B.
Proof. We will prove that

GtAB — et(A+B)+§[A,B]7 (14.2)

which reduces to the desired result at ¢ = 1. Since [A, B] commutes with
everything in sight, we can use (14.1) to split the exponential on the right-
hand side of (14.2) into two and then move the factor involving [4, B] to
the other side. Thus, (14.2) is equivalent to the relation

et AptB o —t?[AB]/2 _ t(A+B) (14.3)

Let a(t) denote the left-hand side of (14.3). We will show that «/(t) satisfies

a simple differential equation, which may be solved explicitly to obtain
aft) = etA+B),

Using term-by-term differentiation, it is easy to verify that

ietc _ OetC _ etCC
dt

for any C' € B(H), and that

4B _ A2y 4 B)).

dt

We may then differentiate «(t) using the product rule, which is proved the
same way as in the scalar case, giving
Cfi_‘: _ etAAetBeftz[A,B]/2 + etAetBBe*tz[A’B]/Q

+ etAetBeftz[A,B]/2(_t[A7B])'
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To simplify our expression for da/dt, we need an intermediate result. By
the product rule

ieftBAetB =e 'BlA, Ble!? = [A, B 14.4
= [4, Ble'® = [A, B], (14.4)

because B—and, thus, e —commutes with [A, B]. Noting that e =5 Ae!B =
A when t = 0, we may integrate (14.4) to get

e B AP = A4 t[A, B (14.5)

(The difference of the two sides of (14.5) has derivative zero, so by Part (a)
of Exercise 2, the two sides are equal up to a constant, which is seen to be
zero by evaluating at ¢t = 0.)

Using (14.5), we obtain

etAAetB _ etAetB(e—tBAetB) _ etAetB(A + t[A,B]).

Moreover, since everything commutes with [A, B], we may commute any-
thing we want past et [4:B1/2, Thus,

do
dt

a(t)(A +t[A, B] + B — t[A, B])
= a(t)(A+ B).

Now, according to Exercise 2, the unique solution to the differential equa-
tion da/dt = a(t)(A+ B) is a(t) = a(0)e"4+5) Since a(0) = I, we obtain
the desired result (14.3). m
Suppose, now, that A and B are unbounded self-adjoint operators satis-
fying
[A, B] =ikl (14.6)
where the exponentials e**4 and e®? are defined by means of the spectral
theorem. If we formally apply Theorem 14.1 to isA and itB (even these

operators are unbounded), we obtain

ez(sAthB) _ ezsth/QezsAeztB — eflsth/QeltBezsA

so that
eisAeitB _ e—istheitBeisA' (147)
It is essential to emphasize that the conclusion (14.7) is only formal, since
it assumes that results for bounded operators carry over to unbounded
operators, which is false in general. Nevertheless, we may hope that in
“good” cases, self-adjoint operators satisfying (14.6) will also satisfy (14.7).
Extending the preceding discussion to the case of several degrees of free-
dom in an obvious way, we are led to the following definition.
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Definition 14.2 If A;,..., A, and By, ..., B, are possibly unbounded self-
adjoint operators on H, the A’s and B’s satisfy the exponentiated com-
mutation relations if the following relations hold for all 1 < j, k <n and
s,t € R:

eiSAj e’itAk — eitAke’iSAj

eiSBj e’itBk — e’itBk e’iSBj

eiSAj eitBk — e—isthlsjkeitBk eiSAj .
The operators e**47 and e*B* are defined by the spectral theorem for un-
bounded self-adjoint operators, and they are unitary operators, defined on
all of H. Thus, when we say that the exponentiated commutation relations
hold, we mean that they hold on the entire Hilbert space H.

Notation 14.3 Suppose operators Ai,..., A, and By,..., B, satisfy the
exponentiated commutation relations. Then for all a and b in R™, let
eH@A+bB) denote the unitary operator given by

ei(a-Aer~B)

eiﬁ(a-b)/QeialAl . eianAneiblBl . eiann' (148)

Equation (14.8) is nothing but what we obtain by formally applying
Theorem 14.1 to the operators ia- A and ib - B and then further splitting
the exponentials by formally applying (14.1). The notation may be further
justified by checking (Exercise 4) that the operators

Uap(t) == cit’h(ab)/2 itar Ay | gitan An ith1 By | ithn By (14.9)

form a strongly continuous one-parameter unitary group. If we then de-
fine a- A + b - B as the infinitesimal generator (Sect.10.2) of U, p, the
relation (14.8) will indeed hold. Using the definition of (@ A+P'B) and the
exponentiated commutation relations, a simple calculation shows that

ei(a»A—i—b-B)ei(a'-A-i-b/»B) _ e—ih(a-b'—b-a/)/2ei((a+a')-A+(b+b')-B)' (1410)

In particular, e~“@A+PB) js the inverse of @ A+bB) a5 the notation
suggests.

The following examples show that in the good case (the usual position
and momentum operators on L?(R")), the exponentiated commutation re-
lations do hold, where as in the bad case (the counterexample in Sect. 12.2),
they do not.

Example 14.4 Let A; be the usual position operator X; acting on L*(R™)
and let B; be the usual momentum operator P;. Then the A’s and B’s
satisfy the exponentiated commutation relations.

Proof. Since X; is just multiplication by z;, it is easily verified that e?sXs
is just multiplication by e*%i. Meanwhile, the exponentiated momentum
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operators satisfy (Example 10.16)

(") (x) = v(x + the;).

It is then evident that e**%i commutes with e®*** and that ¢**"7 commutes
with e?F*. We may also compute that

(e¥PreisXiq))(x) = e (xHther)iy(x + they,)

_ eistht?jk (eisz eith dj) (X),
which is what we wanted to prove. m

Example 14.5 Let A be the operator in Sect. 12.2 and let B be the (unique
self-adjoint extension of) the operator in that section. Then A and B do
not satisfy the exponentiated commutation relations.

Proof. The operator A is multiplication by x, and so the operator e**4
is just multiplication by e**. Meanwhile, the operator B is —ih d/dx,
with periodic boundary conditions. We will now demonstrate that e?
consists of “translation with wraparound.” Specifically, for any a € R and
Y € L*([—1,1]), let us define S, € L?([—1,1]) by

(Sa)(z) = Y(x 4+ a — 2my ),
where m; is the unique integer such that
—-1<z+a—-2m;, <1

It is easy to check that S, is a unitary map of L?([0, 1]) for each a € R.
We then claim that _
B = Spp. (14.11)

To verify the correctness of (14.11), observe that B has an orthonormal
basis of eigenvectors, namely the functions v, (1) := ™% n € Z, with the
corresponding eigenvalues being mnh. Thus, if we compute e®*? by means
of the spectral theorem, we have

eithJ _ eﬂ'inthw
n — n-
On the other hand,

(Sathn) () (™) = min(zta=2maa)

—2minm, Tina  TinT
=e “ee e

_ eﬂ'inadjn ($)7

showing that e*® and Sp; agree on each of the functions v, n € Z, and
thus on all of L?([—1,1]).
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Having computed both e**4 and ¢”B, we may now easily see that these
operators do not satisfy the exponentiated commutation relations. We have,
for example, that

eisAeitBl . eism
- )

whereas
eztBezsAl _ ezs(m+th—2mz,a)'

is(x+th—2mg q)

The function e is not equal to e**'e’* but rather to

eistheisxefm'smz,a ,

where e~2#™=.a is not always equal to 1. m

14.3 The Theorem

We give two versions of the Stone—von Neumann theorem, one for general
operators satisfying the exponentiated commutation relations and one for
the special case where the operators act irreducibly.

Definition 14.6 Operators Ay,..., A, and By, ..., B, satisfying the ex-
ponentiated commutation relations are said to act irreducibly on H if the

only closed subspaces of H that are invariant under every e and every
eBi are {0} and H.

Proposition 14.7 The usual position and momentum operators act irre-
ducibly on L*(R™).

We delay the proof of this result until near the end of this section.

Theorem 14.8 (Stone—von Neumann Theorem) Suppose Ay, ..., A,
and By, ..., By, are self-adjoint operators on H satisfying the exponentiated
commutation relations. Then H can be decomposed as an orthogonal direct
sum of closed subspaces {Vi} with the following properties. First, each Vj is
invariant under €4 and B for all j and t. Second, there exist unitary
operators Uy : Vi — L*(R™) such that

UleitAj Ulfl _ eith

and
UleztBj Ul—l _ ethj

for all j and t.
If, in addition, the A’s and B’s act irreducibly on H, then there exists a
single unitary map U : H — L?(R™) such that

UeitAj U71 — e’itX]‘
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and
itBjyr—1 __ _itP;
Ue™iU™" = e,

for allt. The map U is unique up to multiplication by a constant of absolute
value 1.

The preceding results can be expressed in terms of the Heisenberg group;
see Exercise 6.

Our strategy (as in von Neumann’s 1931 paper [41]) in proving Theo-
rem 14.8 is to follow the outline of the heuristic argument in Sect. 14.1, but
replacing the unbounded raising and lowering operators by the bounded
operators ¢'(@A+b-B) in Notation 14.3. If we define ¢y € L*(R™) by

bo(x) = (mo) /e X7/ (20) (14.12)

for some o > 0, then ¢q is a unit vector, which we may think of as the
ground state of an n-dimensional harmonic oscillator with frequency w =
h/(mo). We can easily compute the Weyl symbol of the projection |¢o) o]
onto ¢q as follows:

fo(x,P) = Quiyi(|60)o]) = 2me I /7 e=olpl*/M", (14.13)

(See Exercise 9 in Chap. 13).

We may define a generalized Weyl quantization ) for H by using the op-
erators e'(@A+PB) in place of the operators ¢/@X+PP) in (13.17). We will
show that the operator P := Q(fo) is an orthogonal projection, and we will
take W := Range(P) as our space of ground states in H. A crucial result
will be that the projection P is nonzero and, indeed, that the restriction
of P to any nonzero subspace invariant under the e*(@4+PB)s is nonzero.

If {4'} is an orthonormal basis for W, consider the vectors

wla.b — ei(a-A+b~B)wl.

We will show that these vectors are orthogonal for different values of [,
and that for fixed [, the inner product of two such vectors is the same
as in the L?(R") case. Thus, if V; denotes the closed span of the ! s
with [ fixed and a and b varying, we can construct a unitary map from
Vi to L?>(R™) that intertwines the operators e!(@A+PB) with the operators
e @X+bP) ‘The sum of the V;’s must be all of H, for if not, the orthogonal
complement Y of the span would be invariant under the ¢ A+PB)g Thys,
the restriction of P to Y would be nonzero, implying that there are elements
of W := Range(P) orthogonal to every 9!, contradicting the assumption
that the 1"’s span W.

The rest of this section will flesh out the argument sketched in the pre-
ceding paragraphs.
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Definition 14.9 Suppose self-adjoint operators Ay, ..., A, and By,..., B,
satisfy the exponentiated commutation relations on H. For any f € S(R?"),

define Q(f) € B(H) by the formula

QU =@m)™ | flab)e@A+B) da db,
R27

where f is the Fourier transform of f and where e'@ATPB) 4s g5 ip
Notation 14.3. The integral is a Bochner integral with values in the Ba-
nach space B(H).

We will assume the following standard properties of the Bochner integral
(Sect. V.5 of [46]). First, any continuous function f : R?" — B(H) for which
JIIf(@)]| dx < oo has a well-defined Bochner integral. Second, the Bochner
integral commutes with applying bounded linear transformations. Third, a
version of Fubini’s theorem holds.

Proposition 14.10 For any operators satisfying the exponentiated com-
mutation relations, the associated map @Q in Definition 14.9 has the follow-
ing properties.

1. If f € S(R®™) is real valued, Q(f) is self-adjoint.
2. For all a and b in R™ and f € S(R™), we have
¢ @AEBIQ(f) = Q(f)
Q(f)ei(a.A-i-b»B) — Q(fll),
where ' and f" are the functions with Fourier transforms given by
f/(a/,b/) _ cif(a’b-ab’)/2 f(a/ —ab - b)
?ﬁ(a/7 b/) _ e—ih(a'.b—a»b/)/2f(al —a, b — b)
3. For all f and g in S(R®*™), we have

Q(NR(g) = Q(f *9),
where % is the Moyal product described in Proposition 13.9.
4. For all f € SR™), if Q(f) =0 then f =0.

Using both parts of Point 2 of the theorem, we can see that for all
a,b € R", we have

efi(a-AerB)Q(f)ei(aAer'B) — Q(g),

where oy o
g(a’,b’) = M@ b=abl) fy7 By, (14.14)
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Proof. For Point 1, we can re-express Q(f) as
17 . . .
en " [ 5 [fab)e A s fa by @ AB] o a,
R2n

since the change of variable a’ = —a, b’ = —b brings the second term
equal to the first term. If f is real valued, then f(—a, —b) is the conjugate
of f (a,b), so that the expression in square brackets in the integral is self-
adjoint for each (a,b).

For the first part of Point 2, we use (14.10) to obtain

ei(a~A+b-B)Q(f)

_ (%)ﬂz/ ¢=il(ab/=ba)/2 f (o1 1 il(atal) At (b+b))B) g gpy
R2n

Making the change of variables a” = a’+a and b” = b’ +b and simplifying
gives the desired result. The proof of the second part of Point 2 is similar.
The proof of Point 3 is precisely the same as the proof of Proposition 13.9,
which relies only on the exponentiated commutation relations.
For Point 4, suppose that Q(f) = 0 for some f € S(R?*"). Then for all
¢, € H and all a,b € R", we have

0 — <ei(a-A+b»B)¢7 Q(f)ei(a-A+b»B)1/}>
_ <¢7 efi(a-A+b~B)Q(f)ei(a~A+b-B)1/}>

= (¢, Q9)¥)
where ¢ is as in (14.14). Thus,

0= / B flal ) (6, @ ARG dal b (14.15)

for all ¢,v and a,b. But (14.15) is just computing the inverse Fourier
transform of the function f(a’, b") (¢, ei(al'A+bl'B)1/)>, evaluated at the point
(—a, b). By the Fourier inversion formula, then, this function must be zero
for almost every pair (a’,b’). Now, the function (¢,e @ A+P"Bly) jg g
continuous function of (a,b) and by taking ¢ = e*(@0-A+boBly; it can be
made to be nonzero at any given point (ag,bp) in R?", and thus also in
a neighborhood of that point. Thus, actually, f is identically zero and so
alsois f. m

Lemma 14.11 Let fy be the function on R2" given by
folx, p) = 2nex /7 ¢=lpl
where o is a fized positive number. Then for all a,b € R", we have

Q(fo)e"@ATPBIQ(f) = e olal? /4= bI*/ o) £y, (14.16)
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In particular,

Q(f0)* = Q(fo)-
Proof. By Proposition 14.10, (14.16) is equivalent to the assertion that

fo *fé _ e*d\a|2/4e*ﬁ2|b|2/(4d)fo. (14.17)

Now, it is certainly possible to establish (14.17) by direct computation from
the definitions of f) and x; all the integrals involved will be Gaussian inte-
grals, which can be evaluated by means of Proposition A.22. This approach,
however, is both painful and unilluminating. A more sensible approach is
to observe that is suffices to verify (14.16) for the ordinary Weyl quantiza-
tion on L2(R™). After all, (14.16) is equivalent to (14.17), which in turn is
equivalent to the identity

Qchl(fO)ei(a.Xer.P)Qchl(fO)
= e_UIa‘z/‘le_hzIb‘2/(4U)QWey1(f0), (14.18)

by applying Proposition 14.10 in the case Q) = Qweyl-
Now, by Exercise 9 in Chap. 13, Qweyi(fo) is the one-dimensional pro-
jection |¢o)¢o|, where ¢o(x) = (wa)_"/4e_‘x‘2/(2‘7). Thus,

Qwey1(f0)e" @ AT B)Quweni(fo) = o) o] e/ @FHPF) |60) o
= c|doXeol s (14.19)

where ‘
¢ = (o] e’ @XTPP) |g) .

To compute ¢, we use (13.20), which gives
c= (ﬂ_a)—n/Qeih(a»b)/Q/ e—|x\2/(2a)eia»xe—|x+hb\2/(20) dx. (1420)

The integral in (14.20) can be computed by expanding |x + hb|2 , collecting
terms in the exponent, and applying Proposition A.22. The result, after a
bit of algebra, is

2 2
¢ = e~olal*/4o=hIb[*/(40)

which gives (14.18). m

We now prove the claimed irreducibility of the usual position and mo-
mentum operators.
Proof of Proposition 14.7. Given operators Ay,..., A, and By,..., B,
satisfying the exponentiated commutation relations, consider the operator
Q(fo), where fo is as in (14.13). According to Lemma 14.11, Q(fo)? =
Q(fo). Since also fj is real valued, Q(fp) is self-adjoint and thus an orthog-
onal projection. Suppose that the range of the orthogonal projection Q(fo)
is one-dimensional. We then claim that the A’s and B’s act irreducibly. If
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not, there would exist a nontrivial closed subspace V' that is invariant un-
der each of the operators e*(@A+P'B)_ Then the nonzero subspace V- would
also be invariant under each of the operators (¢/(@A+PB))* — o—i(a-A+b-B)
Thus, the exponentiated commutation relations are satisfied in both V" and
VL, with the A’s and B’s being the infinitesimal generators of the restric-
tions of e’ and e to each subspace.

It follows that the restriction of Q(fo) to each of these subspaces may be
thought of as the generalized Weyl quantizations for V and V+ of the func-
tion fo. Applying Point 4 of Proposition 14.10 to V and to V-, we conclude
that the restrictions of Q(fy) to V and to V+ are nonzero. Thus, both V
and V- will contain nonzero elements of Range(Q(fo)), contradicting our
assumption that Range(Q(fo)) is one dimensional.

In case of L*(R"), we have Qwey1(fo) = |po}do|, where ¢q is given
by (14.12), which clearly has a one-dimensional range. Thus, the usual
position and momentum operators act irreducibly on L?(R"). m

We are finally ready for the proof of the Stone—von Neumann theorem.
Proof of Theorem 14.8. Let W = Range(Q(fo)), where fo is given
by (14.13) for some fixed ¢ > 0. For ¢,v» € W, we can use (14.10),
Lemma 14.11, and the fact that Q(fo) is the identity on W to obtain

<ei(a~A+b'B)¢, ei(a’-A+b’~B)w>

_ <Q(f0)¢7e—i(a-A-i—b»B)ei(a/'A+b"B)Q(f0)¢>

= b a2 (4 (o)l (I ALEDI B fo)y)

_ et baty2g=ola a1 bl (6 ) (1421)
Now let {¢!} be an orthonormal basis for W and define vectors Q/inyb,

a,b € R" by
YL, = !@ATEB)yl

a7

By (14.21), wé)b is orthogonal to wg,)b, whenever [ # I’. Furthermore,
( é,ba¢é/,b/> _ eih(a»b/—b»a')/2e—a|a'—a|2/4e—h2|b'—b|2/(4a), (14.22)

where the right-hand side of (14.22) is “universal,” that is, independent of
[ and independent of the particular Hilbert space in which we are working.
Let V; be the closed span of the vectors ‘/’é,b with [ fixed and a, b varying.

We may define a map U, : V; — L?(R") by requiring that

N N
l
Ui Zajwaj,bj = Zaj(baj;bj’
j=1 j=1

for every sequence aj,...,ay and by, ..., by of vectors, where

¢a.b — ei(a~X+b-P)¢0'
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This map is isometric by (14.22) on linear combinations of the 1/’;_,1,73 and

thus extends uniquely to an isometric map of V; into L?(R™). [In particular,
U, is well defined: If some linear combination of ¢!, ,’s is zero, then this
linear combination has norm zero and so its image under U; also has norm
zero and is thus zero in L?(R").]

Now, V] is invariant under the operators ¢*®A+PB) hy (14.10), and, simi-
larly, the image of V; under Uj is invariant under the operators e*(@X+PP),
By the irreducibility of L?(R™) (Proposition 14.7), we conclude that V;
maps onto L?(R™) and is, therefore, unitary. Furthermore, using (14.10) and
the analogous expression (13.31) for the position and momentum operators,
it is easy to check that each Uj intertwines e!(@A+PB) with e A+bB) for
all a,b € R™. In particular, taking either a = te; and b = 0 or a = 0 and
b = te; we see that U; intertwines e**47 with e**Xs. Similarly, U, intertwines
e'Bi with 8,

We now argue that the Hilbert space direct sum of the orthogonal sub-
spaces V; is all of H. If not, then as in the proof of Proposition 14.7, the
orthogonal complement Y of this sum would be invariant under the oper-
ators (@ A+PB) and thus also under the operator Q(fo). Furthermore, as
in the proof of Proposition 14.7, the restriction of Q(fy) to Y would be
nonzero. Thus, there would exist elements of W = Range(Q(fy)) orthogo-
nal to each 1!, contradicting the assumption that the 1!’s span W.

It remains only to address the irreducible case. If the A’s and B’s act
irreducibly, then there can be only one subspace, V73 = H, which means
that W must be one dimensional. Any unitary map U : H — L?*(R") that
intertwines each operator ¢! A+PB) with ¢(aX+b'P) gt also intertwine
each operator of the form Q(f) with Qwey(f). It follows that U must map
the one-dimensional subspace W unitarily onto the one-dimensional range
of Qweyi(fo) = o) {(¢o| . Thus, the restriction of U to W is unique up to a
constant of absolute value 1. But the reasoning leading to the existence of
U shows that U is determined by its action on W, so the entire map U is
unique up to a constant. m

14.4 The Segal-Bargmann Space

A simple example of the Stone—von Neumann theorem is provided by the
Hilbert space H := L?(R"), together with the operators A; := P;, and
Bj := —X,. In that case (Exercise 3), the unitary map U in the Stone—von
Neumann theorem will simply be a scaled version of the Fourier transform,
as in Definition 6.1. To obtain a more interesting example, we construct a
Hilbert space consisting of holomorphic functions on C".
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14.4.1 The Raising and Lowering Operators

A smooth function on F' : C* — C is said to be holomorphic if it is
holomorphic as a function of z; with the other z;’s fixed. Equivalently, F
is holomorphic if 0F/0z; = 0, where

o 1(o 0
0Z; 2 O0x; 0y; '

9 _1(9 90
8Zj o 2 8$j 8yj

preserves the space of holomorphic functions on C".

Considered the operators z; (i.e., multiplication by z;) and h 9/0z;,
acting on the space of holomorphic functions on C™. Fock [9] observed that
these operators satisfy the following commutation relations:

The operator

0 0

0

These are essentially the same commutation relations as the raising and
lowering operators considered in Sect. 11.2. Specifically, (14.23) are the re-
lations that would be satisfied by the natural higher-dimensional analogs
of the operators a and a* in that section if we omitted the factor of v/ in
the denominator in (11.4) and (11.5).

Now, if we wish to interpret the operators z; and i 0/0z; as raising and
lowering operators, then we should look for an inner product on the space
of holomorphic functions that would make these two operators adjoints
of each other. After all, the analysis in Chap. 11 strongly depends on the
assumption that a and a* are adjoints of each other. In the early 1960s,
Segal [36] and Bargmann [2] identified such an inner product. Once we have
described this Segal-Bargmann inner product, we will construct self-adjoint
“position” and “momentum” operators as appropriate linear combinations
of z; and h 0/0z;. We will then verify the exponentiated commutation
relations and irreducibility, allowing us to apply the Stone—von Neumann
theorem.

We look for an L? inner product with respect to a measure having a
positive density with respect to the Lebesgue measure on C™.

Lemma 14.12 Suppose that p is a smooth, strictly positive density on C™
and that F' and G are sufficiently nice (but not necessarily holomorphic)
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functions on C™. Then

/n mg—zu(z) dz
- _/«:n %G(Z)“(Z) dz — /n 8gZqu(Z) G(z) dz, (14.24)

where dz denotes the 2n-dimensional Lebesgue measure on C™ =2 R?",
Equation (14.24) tells us that
< 0 >* 0 Ologu

0z; e

a (92]‘ 62j ’

where the adjoint is computed with respect to the inner product for the
Hilbert space L2?(C™, p). If we restrict the adjoint operator (9/dz;)* to
the space of holomorphic functions, then the 0/0%z; term is zero, by the
definition of a holomorphic function.

Proof. Let us approximate the integral over C" on the left-hand side
of (14.24) by an integral over a large cube. By performing either the z;-
integral or the y;-integral first, we can integrate by parts to push the deriva-
tives with respect to x; or y; off of G and onto the product of F and p
(with a minus sign). The boundary term in the integration by parts will
involve the function F(z)G(z)u(z) integrated over two opposite faces of
the cube. If this function tends to zero sufficiently rapidly at infinity, the
boundary terms will vanish in the limit. In that case, we obtain

—0G
cn F(Z)a_zjllz(z) dz
= —/n (%m) G(z)u(z) dz — 5 WG(Z)S—; iz,

provided that all three of the above integrals are absolutely convergent.
Since 0F /0z; = 0F/0Z%; and

o Bloguu_ 0log

8_27_ 8Zj 82j M7

we obtain (14.24). =

We now look for a density pp for which dlogp/0Z; = —z;/h. In that
case, the adjoint operator (0/0z;)* preserves the holomorphic subspace of
L?(C™, py) and is given on this subspace by multiplication by z;/h.

Lemma 14.13 Specialize Lemma 14.12 to the case in which F' and G are
holomorphic polynomials and yu is the density pun given by
1

i (z) = Wﬂz‘%' (14.25)
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Then we have

/ ) Wg—zuh(z) dz = % / 2 F(2)G(2)pn(z) da. (14.26)

Proof. In the case that F and G are holomorphic polynomials, 0F/dz; = 0,
so the first term on the right-hand side of (14.24) is zero. Furthermore, FGu
decreases rapidly at infinity and so the boundary terms vanish in this case.
Finally, we may compute 9log u/0z; as —z;/h, giving (14.26). m

Definition 14.14 The Segal-Bargmann space, denoted HL?(C", ju) is
the space of holomorphic functions F' on C™ for which

= ([ 1P sy a2) <o

where py, s as in (14.25). Define raising and lowering operators a} and
aj on HL?*(C", up) by

*

aj;

Zj
0
= he—
aJ 8Zj
with the domain of a; and aj consisting of the space of holomorphic poly-
nomials.

In light of Lemma 14.13, the operators a; and a satisfy

(F, ajG>HL2((C",Hh) = <a;F, G>HL2(C",MH)
for all holomorphic polynomials F' and G, thus justifying the notation aj
for the raising operator. The space HL?*(C", up) is also sometimes called
the Fock space. It should be noted, however, that in quantum field the-
ory, the term Fock space also refers to a different (but related) space—the
completion of the tensor algebra over a fixed Hilbert space.

Proposition 14.15 The Segal-Bargmann space is complete with respect
to the norm ||-||,, and forms a Hilbert space with respect to the associated
inner product,

(F,G)), = . F(2)G(z)un(z) dz.

Furthermore, the space of holomorphic polynomials forms a dense subspace
of the Segal-Bargmann space.

Note that elements of HL?(C", up) are actual functions on C", not equiv-
alence classes of functions. Nevertheless, we can regard HL?(C", uy) as a
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subspace of L2(C", uuy), since each equivalence class of almost-everywhere
equal functions contains at most one holomorphic representative.
Proof. Given any zo € C" and R > 0, let P,, r denote the polydisk given
by

P, ={ze€C"|z; — (z0);| <R, j=1,...,n}.

Using a power-series argument, it is easy to show that the value of a holo-
morphic function F' at zg is equal to the average of F' over F,, r. We can
then multiply and divide by ps to obtain

1 1
Fao) = s . e ) da

The Cauchy—Schwarz inequality then tells us that

|F'(20)]

1

1
= Ry (z:;lsz—uh(z)> 1P 2l o oy 1 N2y - (14:27)

This inequality tells us that pointwise evaluation [the map F +— F(zg)] is
a bounded linear functional on the Segal-Bargmann space.

Suppose now that Fj, is a sequence of holomorphic functions such that
F, converges in L?(C", up) to some F. Using (14.27), we can easily show
that F,, converges to F' uniformly on compact sets, which implies that F' is
also holomorphic. This shows that the holomorphic subspace of L?(C", )
is closed and hence is a Hilbert space.

To show the denseness of polynomials, consider some F € HL?*(C", up)
and let

F(z) =) anz" (14.28)

be the Taylor expansion of F, where n ranges over all multi-indices. This
series converges to F' uniformly on compact subsets of C". We claim that
the terms in (14.28) are orthogonal. To see this, use Fubini’s theorem to
perform the integration of z™ against z™ one variable at a time. Using
polar coordinates in each copy of C, we can see that we will get zero if the
power of z; in z" is not the same as the power of z; in z™.

Since it is orthogonal, the series in (14.28) will converge in L?*(C", up)
provided that the sum of the squares of the norms of the terms is finite. If
Py.r is a sequence of polydisks of increasing radius centered at the origin,
the argument in the preceding paragraph shows that the terms in (14.28)
are orthogonal in L2(P07 R, f4n)- Since the series converges uniformly on Py g,
we can then interchange sum and integral to obtain

2 2 2
Z |al’l| ||Zn||L2(P01R,Hh) = ||F||L2(P0,R;Hh) '
n
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By applying monotone convergence to both the sum over n and the integrals
over Py r, we may let R tend to infinity to obtain

2 2 2
Z |an| ||Zn||L2(<cn,M) = ||F||L2(ccn_,%) < 0.
n

Thus, the series in (14.28) converges in L?(C™, u15) and this L? limit must
coincide with the pointwise limit, namely F' itself. m

14.4.2  The Ezxponentiated Commutation Relations

To apply the Stone—von Neumann theorem to the Segal-Bargmann space,
we define self-adjoint “position” and “momentum” operators as follows:

1 0
i 0
5= (5

We will identify one-parameter unitary groups having (extensions of) these
operators as their infinitesimal generators, which will show (by Stone’s
theorem) that the generators are indeed self-adjoint on suitable domains.
We will then verify the exponentiated commutation relations and check
irreducibility.

Let us compute heuristically and then check that our results are correct.
If we formally apply Theorem 14.1 to the (unbounded) operators Y a;z;
and —hY a;0/9z;, we obtain

n

0
exXp E (—C_Lij + h(ﬁa)
J

j=1
1., 9 “L - d
= exp —§h|a| exp —Zajzj exp hZajg . (14.29)
j=1 j=1 J

This calculation suggests that we define operators T, by the formula
(TaF)(z) = e "2 /2¢732F (5 4 ha), aecC™, (14.30)

where for any a,b € C", we define a-b = Zj a;b; (no complex conjugates).
Since the exponent on the left-hand side of (14.29) is skew-self-adjoint (the
difference of an operator and its adjoint), we expect the operators T, to
be unitary. For suitable choices of a, the operator on the left-hand side
of (14.29) will become the one-parameter group generated by A; or B;.
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Theorem 14.16 For each a € C", the operator T, defined by (14.30) is
a unitary operator on the Segal-Bargmann space, and the map a — T, is
strongly continuous. These operators satisfy

TaTp = PmEP)T (14.31)
In particular, for each j, the maps

Uj(t) = Titej/ﬂ; ‘/J(t) = Ttej/ﬂ

are strongly continuous one-parameter unitary groups. The infinitesimal
generators A; and B; of these groups satisfy the exponentiated commutation
relations.

For any F € Dom(A;), we have

(A, F)(z) = % (sz(z) + hg—i)

and for any F' € Dom(Bj), we have

(B,F)(z) = \/% (sz(z) _ hg—i) .

Furthermore, the domains of A; and Bj contain all holomorphic polyno-
mials.

Finally, the operators A; and B; act irreducibly on the Segal-Bargmann
space, in the sense of Definition 14.6.

Proof. It is evident that T, F'(z) is holomorphic as a function of z for each
fixed a. Meanwhile, for any F' € HL?*(C", up), we have

ITaF en g = (1) [ o2 [ ) el
= (wh)_"/ e~ l=thal*/h |F(z + ha)|* dz

2
= ||F||L2(ccn,#ﬁ,) )

showing that T, is isometric. The formula for T,T} follows from direct
computation (Exercise 7), and from this formula we see that ToT_, = I,
which shows that T, is surjective and thus unitary. The strong continuity
of T, is easily verified on polynomials (Exercise 8), which are dense in the
HLQ ((Cn, /Lh).

It easily follows from (14.31) that U;(-) and V;(-) are one-parameter uni-
tary groups, and also that (the infinitesimal generators of) these unitary
groups satisfy the exponentiated commutation relations. If F' is in the do-
main of the infinitesimal generator of U,(+), the limit

(A;F)(z) = %}g%% e M4 (g ithe; [V2) ~ F(a)| (1432)
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must exist in L?(C", uz). The L? limit coincides with the easily computed
pointwise limit, giving

AjF(z) = % <%@F(Z) + %%) )

as claimed. If F' is a polynomial, it is easily shown, using dominated con-
vergence, that the limit in (14.32) exists in L?(C", up). The analysis of B;
is similar.

Finally, we address irreducibility. If the A;’s and B;’s did not act ir-
reducibly, then in the application of the Stone—von Neumann theorem to
HL?(C™, up), there would exist at least two subspaces V;. Thus, there would
exist at least two linearly independent vectors F; such that for all j, we have
that Fj is in the domain of A; and B; and

_ 2h 0F,
V20
(Take Fj to be the preimage under U; of the function ¢¢ in (14.12), with o =

h.) This would mean that each Fj is constant, contradicting the assumption
that the F;’s are linearly independent. m

0=(A; +iB))F,

14.4.3 The Reproducing Kernel

According to (14.27), evaluation of F' € HL?(C", uy) at a fixed point z is
a continuous linear functional. Thus, this linear functional can be written
as the inner product with a unique element y, of HL?(C", uz), which we
now compute. The vector x, is called the coherent state with parameter z.

Proposition 14.17 For all F € HL*(C", uy), we have
F(z) = / e* /NP (W) pn(w) dw. (14.33)

The function e*%/" is called the reproducing kernel for HL?*(C™, up),

since integration against this kernel simply gives back (or “reproduces”)
the function F. Of course, the relation (14.33) holds only for holomorphic
functions in L?(C", up). Equation (14.33) can be rewritten as

F(Z) = <XZ7F>HL2(C7L”UJL)7

where )
Xa(w) = 20,

Proof. We begin by establishing the result in the case z = 0. We have

already established, in the proof of Proposition 14.15, that the Taylor series

of F converges to F' in HL*(C", up), and the distinct monomials in this
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series are orthogonal. Thus, when computing <1,F>HL2(Cn 1n)? only the
constant term in the expansion of F' survives, giving

(L, F)gyreicn oy = F1(0) (1, 1)g12(cn 0y = £(0), (14.34)

since p is a probability measure. But this relation is precisely the z = 0
case of (14.33).

Let us now apply (14.34) to ToF, where T, is the unitary operator
in (14.30). According to Theorem 14.16, Ty, is unitary with inverse equal
to T_,, giving

(TaF)(0) = (L, TaF )y 12(cn iy = (T=als F)yyr2(cn ) -

Writing this relation out using w as our variable of integration gives
efh‘a‘Q/QF(ha) = /e*h|a|2/285'WF(W),uh(w) dw.

Setting a = z/h and simplifying gives the desired result. m

14.4.4 The Segal-Bargmann Transform

Since the operators A; and B; in Theorem 14.16 satisfy the exponentiated
commutation relations and act irreducibly on HL?(C", i), the second part
of the Stone—von Neumann theorem tells us that there is a unitary map
U : HL*(C", up) — L*(R™), unique up to a constant, that intertwines these
operator with the usual position and momentum operators. The inverse
map V : L*(R") — HL?(C", up) is called the Segal-Bargmann transform.

Theorem 14.18 Let V be the inverse of the map U : HL*(C", up) —
L?(R™) given by the Stone—von Neumann theorem, normalized so that V
takes the function ¢og € L*(R™) in (14.12) (with o = h) to the constant
function 1 € HL*(C™, up). Then V may be computed as follows:

(Vy)(z) = (nh) /4 / exp {_i (z z—2V2z x+x- x) } P(x) dx.

2h

Recall that we define a-b =37, a;b; for all a,b € C", with no complex
conjugates in the definition. In particular, the integrand in the formula for
V1 is a holomorphic function of z, for each fixed x.

Note that the value of (V4))(z) at z = 0 is simply the inner product of
with the ground state function ¢, with ¢ = . The proof of Theorem 14.18
will show that the value of (V4))(z) at an arbitrary z is a certain constant
¢z times the inner product of ¥ with a phase space translate of ¢, that is,
a vector of the form e®@Xe™® P g, [See (14.36).] According to (the obvious
higher-dimensional counterpart to) Proposition 12.11, ¢ is a minimum un-
certainty state, meaning that equality is achieved in Corollary 12.9 for each
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j. Thus, by (the obvious higher-dimensional counterpart to) Exercise 3 in
Chap. 12, each state of the form e’ Xe™ P gy is also a minimum uncertainty
state.
Proof. By the unitarity of V' and the z = 0 case of Proposition 14.17, we
have

<¢07¢>L2(R”) = (Vo, V¢>HL2(<CH,M) = {1, V¢>HL2(<CH,M) = (V4)(0).

Thus, the value of V4 at 0 is just the inner product of v with ¢y. More
generally,

= (e BeaAy)(0), (14.35)

@A means the product (in any order) of the operators %4

ib-B

where e
similarly for e

Recall that A;’s and B;’s are defined as the infinitesimal generators
of the groups U; and V; in Theorem 14.16, which in turn are defined in
terms of the operators Ty. If we use (14.31) to compute the right-hand side
of (14.35), we obtain

(eib~Beia~Av¢)(0) = (Tb/\/iTia/\/ivw)(O)
_ ezha-b/2(T(b+ia)/\/§V’(/1)(0)
— cihab/2o=hal’ B A (1) (h(b + ia) /V3).
Thus, if we apply (14.35) with a = /2y, /h and b = v/2x(/h, we obtain
(e X iR g, )

i, and

_ eixoryo/ (%ol +Iyol)/ 1) (1744) (x0 + o). (14.36)
Solving (14.36) for (V4)(xo + iyo) gives
(V) (x0 + o) = ()~ e~ ixo-vo/hellxol*+lyol)/ 1)

></ eiﬂy”'x/he_|x_\/§x0|2/(2h)z/z(x) dx,

which simplifies to the claimed formula for V. m

14.5 Exercises

1. Show that if operators A and B satisfy the exponentiated commu-
tation relations of Sect.14.2, they satisfy the “semi-exponentiated”
commutation relations, that is, the hypotheses of Theorem 12.8.
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Hint: For any a,s € R and ¢ € Dom(A), rearrange the expression

eisA (eiaB dj) _ (eian)

S

using the exponentiated commutation relations. Then let s tend to
zero and apply Stone’s theorem.

2. (a) Suppose « : R — B(H) is a differentiable map, meaning that

lim alt +h) — alt)
h—0 h

exists in the norm topology of B(H) for each t. Show that if
da/dt = 0 for all ¢, then « is constant.

(b) Suppose o : R — B(H) is a differentiable map such that
— =a(t)A
o = o)
for some fixed A € B(H). Show that a(t) = a(0)e!” for all t.
3. Show that the operators A; := P; and B; := —X; on L*(R") sat-

isfy the exponentiated commutation relations. Determine the unitary
operator U : L?(R") — L?(R™) (unique up to a constant) such that

UeitAj U71 _ eith
UeitBj U—l — eitpj
4. Verify that the operators U, b(t) in (14.9) form a strongly continuous
one-parameter unitary group.

5. In this exercise, we develop a discrete version of (the n = 1 case of)
the Stone—von Neumann theorem. Let p be a prime number, let Z/p
denote the field of integers modulo p, and let h be a nonzero ele-
ment of Z/p. Consider the finite-dimensional Hilbert space L?(Z/p),
taken with respect to the counting measure on Z/p. Let U denote the
“modulation” operator

(U f)(n) = e™"/7 f(n)
and let V denote the “translation” operator on L?(Z/p), given by
(V) = fln+h).

In the case of the modulation operator, note that the expression
e?™"/P descends unambiguously from n € Z to n € Z/p.



(a)

(b)
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Verify that UP = VP = I and that, for all [ and m in Z,
Ulvm — e—27rilm/meUl'

Suppose now that A and B are unitary operators on a finite-
dimensional Hilbert space H satisfying AP = BP = [ and

Ale _ e—27rilm/meVl.

Suppose also that the only subspaces of H invariant under both
A and B are {0} and H. Show that there is a unitary map W
from H to L*(Z/p) such that

WAW ' =U

WBW™! =V.
Hint: Show that if v € H is an eigenvector for A, then so is
B'v for any I. Show that each eigenspace for A has dimension 1

and identify the associated eigenvectors with the “d-functions”
in L*(Z/p).

6. Given a constant u € C with |u| =1 and a pair of vectors a,b € R™,
let Uy ap be the unitary operator on L*(R™) given by

()
(b)

(Upap®)(x) = ueia'xd)(x + hb).

Verify that the set of operators of this form a group under the
operation of composition, and denote this group by H,,.

Let H,, denote the set of (n+ 2) x (n + 2) matrices of the form

1 a1 a, ¢
1 by
A= : ,
1 b,
1
with a1,...,a, and by,...,b, in R. (The only nonzero entries

in A are on the main diagonal, in the first row, and in the last
column.) Verify that H, forms a group under matrix multipli-
cation. Show that there is a surjective group homomorphism
D fln — H,, with discrete kernel.

Hint: Compare the formulas for group multiplication in H,
and ﬁn.

Note: In the language of Chap. 16, H,, is the universal covering group
of H,,. The group H,, is called the Heisenberg group.
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7. Show by direct computation that the operators Ty in (14.30) satisfy
the relations (14.31).

8. Using dominated convergence, show that for every holomorphic poly-
nomial F' on C", we have

. 2 _
lim | ToF — ToF |,y = 0.

where T}, is as in (14.30).



15
The WKB Approximation

15.1 Introduction

The WKB method, named for Gregor Wentzel, Hendrik Kramers, and Léon
Brillouin, gives an approximation to the eigenfunctions and eigenvalues of
the Hamiltonian operator H in one dimension. The approximation is best
understood as applying to a fixed range of energies as A tends to zero. (It
is also reasonable in many cases to think of the approximation as applying
to a fixed value of /i as the energy tends to infinity.)

The idea of the WKB approximation is that the potential function V (x)
can be thought of as being “slowly varying,” with the result that solutions
to the time-independent Schrodinger equation will look locally like the so-
lutions in the case of a constant potential. In the classically allowed region,
this line of thinking will yield an approximation consisting of a rapidly os-
cillating complex exponential multiplied by a slowly varying amplitude. We
make the “local frequency” of the exponential equal to what it would be if
V' were constant. Having made this choice, there is a unique choice for the
amplitude that yields an error that is of order #2. This amplitude, however,
tends to infinity as we approach the “turning points,” that is, the points
where the classical particle changes directions. Similarly, in the classically
forbidden region, we obtain approximate solutions that are rapidly grow-
ing or decaying exponentials, multiplied by a slowly varying factor. Again,
there is a unique choice for the slowly varying factor that gives errors of
order 72, and again, this factor blows up at the turning points.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 305
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_15,
© Springer Science+Business Media New York 2013
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The difficulty near the turning points means that we cannot directly
“match” the approximate solutions in different regimes the way we did in
Chap. 5. Instead, we will use the Airy function to approximate the solution
to the Schrédinger equation near the turning points. Asymptotics of the
Airy function will then yield the appropriate matching condition, which
turns out to be a corrected form of the Bohr—Sommerfeld rule that appears
in the “old” quantum theory.

15.2 The Old Quantum Theory and the
Bohr-Sommerfeld Condition

The old quantum theory, developed by Bohr, Sommerfeld, and de Broglie,
among others, may be pictured as follows. Consider, for simplicity, a par-
ticle with one degree of freedom, and let C' be a level set in phase space of
the Hamiltonian,

C={(z,p) eR?*|H(x,p) = E}, (15.1)

which we assume to be a closed curve. We now imagine drawing a “wave”
on C, that is, some oscillatory function defined over C. Following the de
Broglie hypothesis (Sect. 1.2.2), we postulate that the local frequency k of
the wave as a function of  is p/h. This means that the phase of our wave
should be obtained by integrating the 1-form

%p dx (15.2)

along the curve. Thus, the wave itself can be pictured as a function on C'

of the form | r2
cos (—/ p dx — 5> , (15.3)
h )y,

where z( is some arbitrary starting point on the curve C' and where § is an
arbitrary phase. Note that the old quantum theory did not offer a physical
interpretation of this wave; it was simply a crude attempt to introduce
waves into the picture.

The Bohr-Sommerfeld condition is simply the requirement that the func-
tion in (15.3) should match up with itself when we go all the way around
the curve. This will happen precisely if

l/ p dx = 2mn, (15.4)
hlJc

for some integer n. The energy levels in the old quantum theory were taken
to be those numbers E for which the corresponding level curve C sat-
isfies the Bohr-Sommerfeld condition (15.4). Although Bohr-Sommerfeld
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quantization had some successes, notably explaining the energy levels of
the hydrogen atom, it ultimately failed to correctly predict the energies of
complex systems.

For systems with one degree of freedom, a vestige of the Bohr—Sommerfeld
approach survives in modern quantum theory, with two modifications.
First, the condition (15.4) has to be corrected by replacing the n by n+1/2
on the right-hand side of (15.4). (The replacement of n by n+1/2 is known
as the Maslov correction.) Second, this condition does not (in most cases)
give the exact energy levels, but only the leading-order semiclassical ap-
proximation to the energy levels. The preceding discussion leads to the
following definition.

Condition 15.1 A number E is said to satisfy the Maslov-corrected Bohr—
Sommerfeld condition if

i_li/cp de =2m(n+1/2) (15.5)

for some integer n, where C is the classical energy curve in (15.1). In light
of Green’s theorem, this condition may be rewritten as

%(Area enclosed by C) =n + %

When the Maslov correction is included, the Bohr—-Sommerfeld condition
can be stated as saying that the wave with phase given by integrating the
1-form in (15.2) should be 180° out of phase with itself after one trip around
the energy curve. Figure 15.1 shows an example, which should be contrasted
with Fig. 1.3. (Note also that Fig. 1.3 is drawn in the configuration space,
whereas Fig. 15.1 is in the phase space.)

In our analysis in the subsequent sections, we will see that the Maslov
correction—that is, the extra 1/2 in (15.5), as compared to (15.4)—actually
consists of a contribution of 1/4 from each of the two “turning points” of
the classical particle. (The turning points are the points where the classical
particle changes directions.) Specifically, in the WKB approximation, the
phase of the wave function will be computed as the integral of (p dz)/k
along one “branch” of the classical energy curve C. Using the Airy function
to approximate the wave function near the turning points, we will obtain
an “extra” mw/4 of phase between each turning point and the last local
maximum or minimum of the wave function. Because of the two branches
of C, the extra 7/4 of phase near each of the two turning points actually
contributes an extra m to the integral on the left-hand side of (15.5).

The reader may wonder why there is no comparable correction term
in our discussion of the Bohr—de Broglie model of the hydrogen atom in
Sect. 1.2.2. One way to answer this question is as follows. As we will see in
Sect. 18.1, the Schrédinger operator for the hydrogen atom can be reduced



308 15. The WKB Approximation

p

FIGURE 15.1. A trajectory satisfying the corrected Bohr—Sommerfeld condition
with n = 10.

to a one-dimensional Schrédinger operator with an effective potential of the
form

Ve (r) = —QTQ + M

2mr?

Here [ is a non-negative integer that labels the “total angular momentum”
of the wave function. At least when [ > 0, one can analyze this Schrodinger
operator using a WKB-type analysis very similar to the one in the current
chapter, with one important modification: The radial wave function [the
quantity h(r) in (18.5)] must be zero at r = 0 in order for the wave function
to be in the domain of the Hamiltonian.

If one analyzes the situation carefully, it turns out that the zero boundary
condition at r = 0 introduces another correction into the Bohr—Sommerfeld
condition in the amount of 1/2. There is still also a correction of 1/4 for
each of the two turning points, leading to the condition

1/ de—=2r(n+ s+ 14l = 27(n + 1)
hcp:b—ﬂn4 1 2—7Tn .

Since n + 1 is again an integer, we are effectively back to the uncorrected
Bohr—Sommerfeld condition. See Chap. 11 of [8] for a discussion of different
approaches to the WKB approximation for radial potentials.

15.3 Classical and Semiclassical Approximations

We are interested in finding approximate solutions to the time-independent
Schrédinger equation,

2 d?y
2m dz?

+ (V(z) = E)Y(z) =0 (15.6)
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for small values of h. Ultimately, we will need to analyze the behavior of
solutions in three different regions, the classically allowed region [points
where V(z) < EJ, the classically forbidden region (points where V(z) >
E), and the region near the “turning points,” that is, the points where
V(z) =E.

Let us consider at first the classically allowed region. Given a potential
V and an energy level E, we can solve (up to a choice of sign) for the
momentum of a classical particle as a function of position as

p(z) = v/2m(E — V(z)).

We look for approximate solutions ¢ to (15.6) of the form
U(x) = A(z)eFS@/R, (15.7)

where S satisfies S'(z) = p(x). Note that we are taking the phase of our
wave function to be

1
phase = iﬁ /p(:v) dx,

as in the old quantum theory in Sect. 15.2. The “amplitude function” A(x)
will be chosen to be independent of i and thus “slowly varying” (for small /)
compared to the exponent S(x)/h.

Our first, elementary, result is that for any number E for which there is
a classically allowed region and for any reasonable choice of the amplitude
A(x) in (15.7), we obtain an approximate eigenvector solution to the time-
independent Schrodinger equation, with an error term of order .

Proposition 15.2 For any two numbers E1 and By with E1> infcg V(z),
there exists a constant C' and a nonzero function A € CX(R) with the
following property. For every E € [Ey, Es), the support of A is contained
in the classically allowed region at energy E and the function ¢ given by

v(o) = Al exp {1 [ ) o}

satisfies
|Hy — E¢| < Chj¢| . (15.8)

Proof. For any F € [E, Es], the classically allowed region for energy F
contains the classically allowed region for energy F;. We choose, then, A to
be any nonzero element of C2°(R) with support in the classically allowed
region for energy F;. If we evaluate H 1) — E1 by direct calculation, there
will a term in which two derivatives fall on the exponential factor, bringing
down a factor involving p(z)?. The definition of p(z) is such that the term
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involving p(z)? will cancel the term involving V (z) — E, leaving us with

. 2 1 7
i — By =~ (A"(ac) £ oA (w)p(a) ﬁp'@cm(m))

m

« exp{:l:% /p(x) d:c}. (15.9)

(Here, each occurrence of the symbol £ has the same value, either all pluses
or all minuses.) Thus,

. h? h
Hy — Ey|| < —||A” — |24’ Ap'||. 15.1
|6 — BYll < 5| A")|+ 5 = [[24'p + Ap| (15.10)

Since ||¢|| is independent of 7, the right-hand side of (15.10) is of order
Iu|jy] . It is easy to check that [|2A'p 4+ Ap/|| is bounded as a function of £
for any E in the range [E1, E»] and the result follows. m

Proposition 15.2, along with elementary spectral theory, tells us that for
any F larger than the minimum of V| there is a point F in the spectrum
of H such that

|E — E| < ch. (15.11)

(See Exercise 4 in Chap. 10.) If we assume that V(x) tends to +oo as
x — £oo, then H will have discrete spectrum and we can say that E is
an eigenvalue for H. The conclusion, for such potentials, is this: Given any
number E € [E4, Es), there is an eigenvalue of H within C of E. Thus, as
h tends to zero, the eigenvalues of H “fill up” the entire range of values of
the classical energy function.

Proposition 15.2 is one manifestation of the “classical limit” of quantum
mechanics: the quantum energy spectrum is, in a certain sense, approxi-
mating the classical energy spectrum as i gets small. Notice, however, that
this result tells us only that the eigenvalues are at most order A apart and
nothing further about the location of the individual eigenvalues.

In this chapter, we will show that if E satisfies the corrected Bohr—
Sommerfeld condition, then there exists an eigenvalue E of H such that

|E — E| < Ch%/3. (15.12)

An estimate of the form (15.12) locates eigenvalues with an error bound
that is small compared to the expected average spacing between the eigen-
values, which is of order . On the other hand, the approximate energy
levels E are determined by Condition 15.1, which is a condition on the
classical energy curve. Thus, (15.12) can be described as a semiclassi-
cal estimate: It is estimating quantum mechanical quantities (the indi-
vidual energy levels) in classical terms (the level curves of the classical
Hamiltonian).
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15.4 The WKB Approximation Away
from the Turning Points

We consider only the simplest interesting case of the WKB approximation,
in which the following assumption holds. See the book of Miller [30] for
much about this sort of asymptotic analysis.

Assumption 15.3 Consider a smooth, real-valued potential V(x), with
V(z) = 400 as © — too. Assume that the functions V'(z)/V(xz) and
V"(z)/V (x) are bounded for x near £oo.

Consider also a range of energies of the form Ey < E < FE5. Assume
that for each E in this range, there are exactly two points, a(E) and b(E),
with a(E) < b(E), for which V(x) = E. Further assume that the derivative
of V' is nonzero at a(E) and b(E), for all E € [E1, Es).

See Fig. 15.2 for a typical example. Since V is locally bounded and tends
to 400 at infinity, H is essentially self-adjoint on C2°(R) (Theorem 9.39)
and has purely discrete spectrum (Theorem XIII.16 in Volume IV of [34]).
The assumption that V//V and V" /V be bounded near infinity is stronger
than necessary, but still applies to most of the interesting cases.

We refer to a(E) and b(FE) as the turning points, since these are the
points where a classical particle with energy E changes direction. When
the energy F' is understood as being fixed, we will write the turning points
simply as a and b.

15.4.1 The Classically Allowed Region

As in Sect. 15.3, we seek approximate solutions to the time-independent
Schrédinger equation having the following form in the classically allowed
region:

1 = A(x) exp {:I:% /p(x) dw} , (15.13)
where p(x) = \/2m(F — V(z)) is the momentum of a classical particle with
energy F and position z. According to (15.9), this form for ¢ gives
2

. h
HY — B = —

« exp?i% /p(x) d:c} . (15.14)

Since we want to obtain an approximate solution with an error smaller
than %, we require that the second and third terms in parentheses in (15.14)
cancel. This cancellation will occur if A satisfies

24 (x)p(x) = —p'(x) A()

(40 22400l £ 3500400
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1

a(E) b(i)

FIGURE 15.2. A potential satisfying Assumption 15.3.

or
/ /
T = e 15.15)
which we can easily solve (Exercise 3) as
A(z) = C(p(x))~ 2. (15.16)
If A is given by (15.16), we will have
Hy — Ey = —%‘j(%)w(x), (15.17)

indicating that our error is of order h2. This expression, however, is only
local, in that it applies only in the classically allowed region. Furthermore,
p(z) tends to zero at the turning points, which means that A(x) becomes
unbounded at these points. This blow-up of the amplitude is a substantial
complicating factor in the analysis.

We can get an approximate solution to the Schréodinger equation by tak-
ing a linear combination of the function in (15.13) with two different choices
for the sign in the exponent, with constants ¢; and cs. It is convenient to
take the basepoint of our integration to be the left-hand turning point
a = a(E). Furthermore, since the Schrodinger operator H commutes with
complex conjugation, the real and imaginary parts of any solution to the
time-independent Schrodinger equation is again a solution. We will there-
fore consider only real-valued approximate solutions, i.e., those in which
co = ¢1. Using Exercise 1, we can then write our approximate solution as
follows.
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Summary 15.4 Suppose ¢ is a real-valued solution to the time-independent
Schrodinger equation. Then in the classically allowed region but away from
the turning points, we expect that v is well approzimated by an expression

of the form
R 1 [*
—p(x) CcoSs {}—1/(1 p(y) dy — 5} ) (15.18)

where p(x) = \/2m(E — V (x)) is the momentum of a classical particle with
energy E and position x. Here R and 0 are real constants, referred to as
the amplitude and the phase of the approximate solution.

We refer to the function in (15.18) as the oscillatory WKB function. In
integrating the square of the oscillatory WKB function over some interval,
we may apply the identity cos?# = (1 + cos(26))/2 to the cosine factor.
The rapidly oscillating cos(26) term will be small for small % because of
cancellation between positive and negative values. Thus, the integral of
¥?(z) over an interval will be, to leading order, just a constant times the
integral of 1/p(x), or, equivalently, a constant times 1/v(x), where v is
the velocity of the classical particle. But the integral of 1/v(x) = dt/dx
with respect to z is just the time ¢ that the classical particle spends in the
interval. We obtain, then, the following result.

Conclusion 15.5 If the amplitude R in (15.18) is chosen so that v has
L? norm 1 over [a, b], then the probability of finding the quantum particle in
an interval [c,d] C [a,b] is approzimately the fraction of time the classical
particle spends in [c,d] over one period of classical motion.

15.4.2 The Classically Forbidden Region

In the classically forbidden region, let us introduce the quantity
q(z) == +/2m(V(z) — E).

We look for approximate solutions to the Schrodinger equation (15.6) of
the form L
vo) = A esp {1 [ ot av}.

n S,
If we analyze approximate solutions of this form precisely as in the classi-
cally allowed region, we again find that there is a unique choice for A (up
to multiplication by a constant) that causes the order-h terms in H P —Ey
to cancel, namely A(x) = C(g(x))~ /2. If we are hoping to approximate a
square-integrable solution of the Schrodinger equation, we want to take a
minus sign in the exponent on the interval (b, 00), and it is convenient to
the basepoint of our integration to be b. In the region (—o0, a), we want to
take a plus sign in the exponent; it is then convenient to take the basepoint
of our integration to be a and to reverse the direction of integration, which
changes the sign in the exponent back to being negative.



314 15. The WKB Approximation

oo

FIGURE 15.3. The WKB functions, extended all the way to the turning points.

Summary 15.6 If1(x) is a solution to the time-independent Schrédinger
equation that tends to zero as x approaches —oo, we expect that 11 will be
well approximated on (—oo,a), but away from the turning point, by the
exrpression

%exp{_%/j a(y) dy}, (15.19)

where q(x) = \/2m(V(z) — E). Meanwhile, if 1¥2(x) is a solution to the
time-independent Schrodinger equation that tends to zero as x approaches
+o00, we expect that ¥ will be well approzimated on (b, +00), but away from
the turning point, by the expression

22(96) exp {—% /bz q(y) dy} . (15.20)

We refer to the functions in (15.19) and (15.20) as the exponential WKB
functions. The general theory of ordinary differential equations tells us that
any solution to the time-independent Schrédinger equation for a smooth
potential is smooth. Thus, the singularity at the turning points is an artifact
of our approximation method. Nevertheless, for small values of £, the true
solution will “track” the WKB approximation until z gets very close to
the turning point, with the result that the true solution will be large, but
finite, near the turning points.

Figure 15.3 plots a potential function V(z), an energy level E, and the
WKB functions in both the classically allowed and classically forbidden
regions. In the figure, the WKB functions have been (improperly) used all
the way up to the turning points.
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15.5 The Airy Function and the Connection
Formulas

For any constant ¢; and any energy level F, we expect that there is a unique
solution 1 of the Schrodinger equation (15.6) that is well approximated
for x tending to —oo by a function of the form (15.19). We expect that this
solution will be well approximated in the classically allowed region (but
not too close to the turning points) by a function of the form (15.18) for
a unique pair of constants R and . In this section, we will see that the
correct choices for R and § are

R=2, 6= %. (15.21)
The formula (15.21) for R and § is called a connection formula; there is a
similar formula connecting an approximate solution that tends to zero as x
tends to +o00 to an approximate solution in the classically allowed region.
By comparing the two connection formulas, we will obtain conditions on
the energy E under which the two approximate solutions (one that decays
near —oo and one that decays near +00) agree up to a constant in the
classically allowed region. The condition on E will turn out to be precisely
Condition 15.1.

The discussion in the previous paragraph should be compared to the
analysis in Chap. 5, where we determined the constants for the solution
inside the well in terms of the energy level and the constant in front of
the exponentially decaying solution outside the well. Here, of course, the
analysis is more complicated because neither of the approximations (15.19)
or (15.18) is valid near the turning point. The connection formula will be
obtained, then, by using the Airy equation to approximate the Schrédinger
equation near the turning points.

To get a reasonable approximation of our wave function near the turning
points, we approximate V locally by a linear function. (By contrast, in the
WKB functions, we are essentially thinking of V' as being locally constant.)
Thus, for example, near the turning point a, we write V(z) ~ (a — z)Fyp,
where Fy = —V’(a), yielding the approximate equation

B h? d%y
2m dz?

By making the change of variable

+ (a - LL‘)F()’(/J =0.

omEy\ 3
u = ( = > (a —x) (15.22)
we can reduce the equation to
d2
v_ up(u) = 0, (15.23)

du?
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which is the Airy equation.

Equation (15.23) has two linearly independent solutions, denoted Ai(u)
and Bi(u). We are interested in the solution Ai(u), since this is the one
that decays for u > 0, that is, for z < a. The function Ai(u) is defined by
the following convergent improper integral

o0 3
Ai(u) = l/ cos <% + ut) dt. (15.24)
0

™

Intuitively, convergence is due to the very rapid oscillation of the integrand
for large ¢, which produces a cancellation between the positive and nega-
tive values of the cosine function. Rigorously, convergence can be proved
using integration by parts, as in Exercise 6. By differentiating under the
integral sign (Exercise 7), one can show that Ai indeed satisfies the Airy
equation (15.23).

As |u] gets large, the integrand in (15.24) becomes more and more rapidly
oscillating, producing more cancellation. The only exception to this behav-
ior is when the derivative (with respect to t) of the function 3/3+ut is zero.
Near such a point, the argument of the cosine function is changing slowly
and there is little oscillation. If u is negative, there is a unique critical point
of t3/3 + ut, at t = \/—u, and we expect that the main contribution to the
integral in (15.24) will come from ¢ ~ v/—u. If u is positive, 3 /3 +ut has no
critical points, and we expect that the integral in (15.24) will become quite
small as u tends to +oo. This sort of reasoning can be used to determine
the precise asymptotics of the Airy function as u tends to +oo and as u
tends to —oo; see the discussion following (15.32) and (15.33).

We now state our main result, which will be derived in the remainder of
this section. The result is not rigorous, because we have not estimated any
of errors involved; such error estimates will be performed in Sect. 15.6.

Claim 15.7 If ¢y is a solution of the Schridinger equation (15.6) that
tends to zero near —oo, then 1y can be normalized so that the following
approximations hold

a

q(y) dy} (near — o) (15.25)

wlumw;q(_x)exp{—%/w

— AN
() =~ (2mF\/'0_h)1/6Ai ((2 hQFO) (a— x)) (near x = a) (15.26)

wl(ac)zﬁcos{%/jp(y) dy—%} (a<z<b) (15.27)

Here Fo = —V'(a) and in the case of (15.27), x should not be too close to
a or tob.
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Similarly, if ¥e is a solution of the Schridinger equation (15.6) that

tends to zero mear 400, then Yo can be normalized so that the following
approzimations hold

b
U)Q(I)%;COS{—%/ p(y) dy—l—g} (a<x<b) (15.28)

p(z)
s 1m 1/3
Pa(x) = (2mF\/‘1—h)1/6 Ai <<2Fh2 > (x — b)) (near x =b) (15.29)

1 1/
Yo(x) & 2\/ﬁexp {_ﬁ/b q(y) dy} (near + o). (15.30)

Here Fy = V'(b) and in the case of (15.28), x should not be too close to a
or to b.

The approximate formulas for 1 and ¥y will agree, up to multiplication
by a constant, in the classically allowed region if and only if we have

v ’ (o) do = (n+3) (15.31)

for some non-negative integer n.

More specifically, (15.27) and (15.28) are equal when the integer n in
(15.31) is even and they are negatives of each other when n is odd. Note
that there is a factor of 2 in the denominator in (15.25) but not in (15.27);
this factor accounts for the expression R = 2¢; in (15.21).

Since the classical energy curve consists of two “branches,” of the form
(x,p(x)) and (x,—p(x)), the compatibility condition (15.31) is equivalent
to Condition 15.1. Since the phase of the approximate wave function in
the classically allowed region is given by 1/A times the integral of p duz,
the condition (15.31) says that the wave function goes through a little
more than n half-cycles between the two turning points, where a half-cycle
corresponds to a change in the phase in the amount of 7, or the interval
between two critical points of the wave function. In particular, the wave
function has exactly n+1 critical points inside the classically allowed region.
The first and last critical points occur slightly inside the turning points,
leaving a change in phase of roughly /4 between the extreme critical point
and the turning point.

Figure 15.4 considers the same potential as in Fig. 15.3. The figure shows
the WKB functions (15.25) and (15.27), together with the scaled Airy func-
tion (15.26), near the turning point = a. Note that there is a good match
between the WKB functions and the scaled Airy function when x is close
to, but not too close to, the turning point. Meanwhile, Fig. 15.5 then shows
the full approximate wave function with & chosen so that (15.31) holds
with n = 39, obtained by using the WKB functions away from the turn-
ing points and the scaled Airy functions near the turning points. Finally,
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FIGURE 15.4. Plots of the scaled Airy function (thick curve) and the WKB
functions, near the turning point z = a.

FIGURE 15.5. The approximate wave function with n = 39.

Fig. 15.6 shows the probability distribution associated to the approximate
wave function, plotted together with the function 1/p(x). (Compare the
discussion preceding Conclusion 15.5.)

We now derive the results in Claim 15.7. The Airy function Ai(u) is
known to have the following asymptotic behavior:

1 2
Al(u) ~ W exXp {_§U3/2} 5 u — +OO, (1532)
and
. 1 2 T
Ai(u) =~ N = cos (5(—11)3/2 - Z) , U — —00. (15.33)

For u tending to —oo, the asymptotics in (15.33) can be obtained by a
straightforward application of the “method of stationary phase,” as ex-
plained in Exercise 9. For u tending to +o00, repeated integrations by parts
(Exercise 8) show that Ai(u) decays faster than any power of u, which is all
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a b

FIGURE 15.6. The probability distribution of the approximate wave function,
plotted against the function 1/p(z).

that is strictly required for the main theorem of Sect. 15.6. To obtain the
precise asymptotics in (15.32), one should deform the contour of integra-
tion to obtain a different integral representation of Ai(u), and then apply
some variant of the method of stationary phase, such as Laplace’s method
or the method of steepest descent. See Sect. 4.7 of [30] for one approach to
this analysis.

We will use the Airy function on an interval around the turning points
with a length that goes to zero as K tends to zero (so that the linear
approximation to the potential gets better and better) but with a length
that is large compared to h?/3 (so that the value of u at the ends of the
interval will be large, putting us into the asymptotic region of the Airy
function). See Sect. 15.6 for more information.

We use the linear approximation V(z) ~ (a — x)Fy to the potential near
x = a, where Fy = —V’(a), which turns the Schrédinger equation (15.6)
into the Airy equation, as previously noted. Now, the linear approximation
to V yields

p A\ 2mFyva —a (15.34)

and

v m Tr — a /2
1 / ply) dy ~ Y20 (@ —0) = 2 (15.35)

h h 3/2

From here it is a simple matter to check, using (15.33), that

i = plm eos (5 [ v -7

for x > a, where the approximation holds in an intermediate region where
x is close to a but not too close to a. Thus, if we scale our solution ¥ to
the Schrédinger equation so that it is approximated by 7'/2(2mFyh)~/6
times Ai(u) near x = a, it should satisfy (15.27) in the classically allowed
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region (but away from the turning points). It is then straightforward to
verify, using (15.32), that this multiple of Ai(u) satisfies (15.25) for  near
—00. The analysis of 1 is entirely similar.

Finally, to compare the approximations (15.27) and (15.28), we note that

—%/:p(y) dy+%= ([p(y) dy—g) — 0,

b
(b:%/a p(y) dy — /2.

Now, if ¢ is an odd multiple of 7, then cos(d — ¢) = —cosf and if ¢ is
an even multiple of 7, then cos(f — ¢) = cosé. For all other values of ¢
(Exercise 4), cos(f — ¢) is not a constant multiple of cos#. Thus, (15.31)
is a necessary and sufficient condition for the two approximate solutions to
agree up to a constant in the classically allowed region.

where

15.6 A Rigorous Error Estimate

The preceding sections give a treatment of the WKB approximation that is
typical of many books in the literature. This treatment gives the idea that
energies F satisfying the corrected Bohr—Sommerfeld Condition (Condi-
tion 15.1) should be approximate eigenvalues for the Hamiltonian operator
H , without specifying the sense in which this approximation holds. In this
section, we prove a rigorous estimate, as follows.

Theorem 15.8 For any potential V and range [Ey, Ea| of energies sat-
isfying Assumption 15.3, there is a constant C such that the following
holds. For any energy E € [E1, Ea| satisfying Condition 15.1, there exists

a nonzero function v belonging to Dom(H) such that
| Hyp — Ey|| < CR3 ||y . (15.36)

As noted already in Sect. 15.3, an estimate of the form ||Hy — E|| <
e |l|| implies that there is a point E in the spectrum of H with |[E —
E| < . (See Exercise 4 in Chap. 10.) Since, under our assumptions on V,
the spectrum of H is purely discrete, we conclude that for each number
Ee [E1, E»] satisfying Condition 15.1, there is an actual eigenvalue E for
H with

|E — E| < Ch%/3. (15.37)
If E satisfies Condition 15.1, then the estimate (15.37) actually holds

with A%/8 replaced by A% on the right-hand side. It is not, however, pos-
sible to obtain such an optimal estimate by the methods we are using
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in this chapter. Specifically, the approximate eigenvector i constructed
in the proof of Theorem 15.8 does not satisfy an estimate of the form
| Hp — Evp|| < Ch2. One can, however, construct an approximate eigenvec-
tor by different methods—for example, the method in [31]—that satisfies an
order-h? error estimate, for any E satisfying the corrected Condition 15.1.
Nevertheless, the error bound in (15.37) is small compared to the typical
spacing between the energy levels, which is of order .

Recall, as we noted at the beginning of Sect. 15.4, that a Schrodinger
operator with potential V' that is smooth and tends to 4+oco at +oo is
essentially self-adjoint on C2°(R). The operator H in Theorem 15.8 is,
more precisely, the unique self-adjoint extension of the Schrédinger operator
defined on CS°(R).

15.6.1 Preliminaries

Our construction of the approximate eigenfunction ¢ will be essentially
by the WKB approximation as outlined in Claim 15.7. That is to say,
we will define ¢ using scaled Airy functions near the turning points and
by the standard WKB functions in the classically allowed and classically
forbidden regions. There is, however, a difficulty with this approach, which
is that at the boundary between different regions, the scaled Airy function
does not ezxactly match the WKB functions, but only approximately. What
this means is that if we define v by the WKB formula in, say, an interval
of the form (—o0,a — ¢) and we define ¢ by a scaled Airy function on
(a — e,a + ), then 1 may be discontinuous at a — ¢. Even if we scale
by a constant on one of these intervals to eliminate the discontinuity in ¢
itself, the derivative of v will still probably be discontinuous. But if the
derivative of v is discontinuous, v is not actually in the domain of H , and
the left-hand side of (15.36) does not make sense. (Compare Sect. 5.2.)

The condition that @’ be continuous is not just a technicality: If we
did not worry about continuity of 1/, then we could always match the
scaled Airy function to the WKB functions, just by multiplying the various
functions by constants, regardless of whether or not the energy satisfies the
corrected Bohr-Sommerfeld Condition. In that case, we would be claiming
that any number E € [E), Fy] is within Ch%/® of an eigenvalue of H, which
is false already for the harmonic oscillator.

To work around the difficulty described in the previous paragraphs, we
must put in a transition region over which we smoothly pass from one func-
tion to the other, using the “join” construction described in Sect. 15.6.4.
Thus, we define the function ¥ in Theorem 15.8 as follows. We use the
formulas in Claim 15.7 in the indicated intervals, except that multiply
the functions (15.28), (15.29), and (15.30) by —1 when n is odd. We use
the scaled Airy functions (15.26) and (15.29) on intervals of the form
(a—e,a+¢) and (b—e,b+¢), respectively, for some ¢ depending on i in a
manner to be determined later. We then put in four transition regions, each
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a-e= a-e a ate | a+t /6

FIGURE 15.7. The approximate eigenfunction %, with the transition regions
shaded.

having length §, where ¢ also depends on /& in a manner to be determined
later. The first transition region, for example, is the interval (a —e—0,a—¢)
between the first classically forbidden region and the first turning point.
In each transition region, we change over smoothly from one function to
another. See Fig. 15.7 for an illustration of the transition regions around
the turning point = = a.

Suppose Hy denotes the Schrédinger operator with potential V, with
domain equal to C2°(R). Then, as we have noted, Hy is essentially self-
adjoint, and we are letting H, which coincides with the adjoint operator
ﬁg , denote the unique self-adjoint extension of H,. Now, the domain of
ﬁg consists of all functions ¢ € L?(R) such that the Schrédinger operator,
computed in the distributional sense, again belongs to L?(R). In particular,
if ¢ is smooth, then 1 belongs to the domain of H = flg if and only if v
is in L?(R) and —(h?/2m)y" + Vb is also in L?(R).

Because of the joins, our approximate eigenfunction is ¢ actually in-
finitely differentiable on all of R. And since V(x) tends to +o0o at too,
the exponential WKB functions (15.25) and (15.30) have rapid decay at
infinity, which shows that 1 is in L?(R). Furthermore, for z near +o00o, the
calculation (15.17) applies, with A(z) = Cq(z)~ /2. We obtain, after a
short calculation,

2

A (a) + V(@)la)

o h2 5 V/(.’L') 2 1 V”(:v)
T 2m (E (V(x) - E> T AV () = E) (). (15.38)

Since V'/V and V" /V are assumed to be bounded near infinity and (x)
tends to +00 at 00, we see that the Schrodinger operator applied to v is
bounded by a constant times ¢ near infinity and is thus square integrable.
This shows that 1 is in the domain H.

In Sect. 15.6.2, we will take the width 2¢ of the region around the turning
points to be of order A'/2. In that case, the L? norm of our approximate
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wave function is of order 1 (bounded and bounded away from zero) as &
tends to zero, despite the blow-up of order A~ '/6 very near the turning
points. Although this result is not hard to verify (Exercise 10), if anything,
the norm would be blowing up as h tends to zero, which would only help
us in showing that || Hy — E1|| is small compared to ||¢]] .

To prove Theorem 15.8, we must estimate the contributions to the quan-
tity || Hy — Eq|| from four different types of regions: the classically allowed
region, the classically forbidden regions, the regions near the turning points,
and the transition regions. These estimates will occupy the remainder of
this section, with the analysis in the transition regions being the most in-
volved. In particular, it is essential that the derivative of scaled Airy func-
tion almost match the derivative of the WKB function in the transition
region, as in the second part of Lemma 15.9.

15.6.2 The Regions Near the Turning Points

We use a scaled Airy function in an interval around each turning point.
[We use (15.26) near = a and either (15.29) or the negative thereof near
x = b, depending on whether n is even or odd.] We now verify that taking
these intervals to have length of order 4'/? will give satisfactory estimates.
If v denotes one of the scaled Airy functions, then 1) satisfies a Schrodinger
equation in which the potential V is replaced by a linear approximation 1%
near one of the turning points, which means that

Hip — By = (V(z) — V(2))0. (15.39)

The difference between V(x) and its linear approximation f/(:v) grows at
most quadratically with the distance from the turning point. Meanwhile,
the asymptotics of the Airy function tell us that it can be bounded as
|Ai(u)| < Cu~'/%. (This is terrible estimate for small u, but still true.)
Now u, as defined in (15.22), is of order h~%/3 times the distance to the
turning point. Since, also, there is factor of A~/6 in (15.26) and the distance
from the turning point is at most of order 4!/2, we find that

|ﬁ1/} _ E1/1| < C(h1/2)2h_1/6(h_2/3h1/2)_1/4 _ Oh7/8

over the interval around each turning point. Finally, if a function f satisfies
|f| < D on an interval of length L, then the L? norm of f over that interval
will be at most Dv/L. Thus, over the interval around the turning points,

[|Hy — BEY|| = O(hT/3ht/4) = O(R7#).

15.6.3 The Classically Allowed and Classically Forbidden
Regions

The expression (15.38) for Hv — Ev, derived from (15.17), applies both in
the classically allowed region and in the classically forbidden regions. Let us



324 15. The WKB Approximation

consider first the classically allowed region. Although (15.38) is nominally
of order h?, we use this expression on an interval whose ends get closer and
closer to the turning point as & tends to zero. Since, also, the expression
in (15.38) is blowing up at the turning points, the contribution to ||]§I¢ —
E|| from this interval is of order larger than hZ.

We have taken the interval around the turning point to have length 2¢
that is of order %'/2, and we will also take (Sect. 15.6.4) the transition
regions to have length § that is of order '/2. Thus, we use the oscillatory
WKB function on an interval of the form (a4 ~,b— ), where y =+ is
of order h'/2. Now, the formula for v in the classically allowed regions has
a factor of 1/4/p(z) times a bounded quantity (the cosine factor). Since
V'(a) is assumed to be nonzero, V(z) — E behaves like a constant times
(x — a) and so 1/y/p(z) behaves like a constant time (z — a)~'/* for x
approaching a, with similar behavior near the other turning point.

Meanwhile, the more problematic term in (15.38) is the term having
(V(z) — E)? in the denominator. Keeping in mind the 1/,/p blowup of 1
itself, this term behaves like (2 — a)_g/ 4 as = approaches a. Thus, we may
estimate the norm of H 1 — E1 over the left half of the classically allowed
region as

ain 1/2
||Hy — Ep|| < CH? </( (z —a)~9/? dw)

a+b)/2
= O'R (T = ((a+0)/2)7).

Since v is of order '/2, the contribution to ||[Hv — E1|| from the interval
(a+1, (a+b)/2) will consist of a term of order h2h~7/8 = h?/®, plus lower-
order terms. The estimate over the other half of the classically allowed
region is similar.

Meanwhile, in the first classically forbidden region, we also apply (15.38).
By Assumption 15.3, V'/V and V" /V are bounded near infinity. Thus,
V'/(V — E) and V" /(V — E) will also be bounded near infinity, and thus
also bounded on (—oo,a—1), since V — F is strictly positive on this interval
and tends to +00 as x tends to —oo. We see, then, that the norm of flw—Ew
over (—oo,a — 1) is bounded by a constant times h? ||| .

The norm of Hi) — Et) over an interval of the form (a—1,a—") can be
analyzed similarly to the classically allowed region. The estimates from this
region are better, however, because of the exponentially decaying factor in
the definition of the WKB function. Thus, the contribution to || Hy — E1b||
from the classically forbidden region (—oo, a—+) is certainly no larger than
order 1h/®, and similarly for the other classically forbidden region.
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1 1
@ a+d

FIGURE 15.8. The join of two functions over the interval [a, a+ 8] (thick curve).

15.6.4 The Transition Regions

Given two smooth functions v¢; and 1y and some interval of the form
[cr, o + 6], we now define a “join” 11 U 1o of ¢ and )9, where 91 Ll o (x)
is equal to ¥1(x) for z < « and equal to ¥ (x) for x > « + ¢, and where
11 L 1pg is smooth everywhere. Let x be a smooth function on [0, 1] that is
identically equal to 0 in a neighborhood of 0 and identically equal to 1 in
a neighborhood of 1. Then define ¥, Ly by

(Y1 W) () = 1 (x) + (P2(2) — ¢1(@))x((z — a)/9).

(See Fig. 15.8.) By direct calculation, we have

(H — ED)(1 Utpn) = (Hopy — En) U (Hipn — Etbo)
— 2 ) — v @)X (@~ 0)/6)

e (wale) ~ ha(@)Y (&~ @)/5). (15.40)

In our constructing our approximate eigenfunction, we use five different
formulas in five different regions: the two classically forbidden regions, the
classically allowed region, and the regions near the two turning points. Since
none of these functions exactly matches the function in the next interval,
we put in a total of four joins in order to produce a function that is in the
domain of H. We choose the width & of the interval on which the join takes
place to be of the same size as the intervals around the turning points,
namely, order h'/2.

The most critical case is the transition from the region near the turning
points to the classically allowed region. Consider, for example, the scaled
Airy function 7 in (15.26) and the oscillatory WKB function s in (15.27).
There are two contributions to the mismatch between these two functions.
First, there is a discrepancy between the Airy function and its leading-
order asymptotics. Second, there is an error in the approximations (15.34)
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and (15.35), which come from the discrepancy between the potential V (z)
and its linear approximation V(x) near x = a. We need to consider both
contributions to the mismatch in our estimation of 11 — 1) and of ¥} — 5.

Lemma 15.9 Let ¢ denote the scaled Airy function in (15.26), let 1
denote the same function with the Airy function replaced by the right-hand
side of (15.33), and let 1o denote the oscillatory WKB function in (15.27).
If © — a is positive and of order h*/?, we have

Y1 () — Y1 (z)| = O(KY®)
Y1 (z) — Yo (z)| = O(KY?)

and

[0 (x) = ()] = O(h=°/%)
[01(2) = va(x)| = O(°/F).

Before giving the proof of this lemma, let us verify that these estimates
are sufficient to control the contribution to ||ﬁ ¥ — E|| from the transition
region (a + &,a + ¢ + ) between the first turning point and the classically
allowed region, where both & and § are taken to be of order /2. We must
consider each of the three lines in (15.40). The L? norm of the first line is
of order at most i%/%, by precisely the same argument as in Sect. 15.6.3.

For the second and third lines, we recall that if a function f is bounded
by C, then the L? norm of f over an interval of length L is at most Cv/L.
Since we are taking the length 0 of our transition interval to be of order
7'/ the L? norm of the second line of (15.40) is of order

11/2 h2h_5/8hl/4 _ h9/8.
h

Meanwhile, the contribution from the third line of (15.40) is of order

%h2h1/8h1/4 _ hll/S'

Thus, the contribution to || A — Ev|| from the transition region (a+¢,a+
€ +0) is of order at most h%/®.

The analysis of the transition between the classically allowed region and
the region around z = b is entirely similar. The analysis of the transitions
between the regions near the turning points and the classically forbidden
regions is also similar, but much less delicate, because all of the functions
involved are very small in the transition region. When (a — z) is positive
and of order h'/2, for example, u, as defined in (15.22) will be of order R—1/6
and so u?/? is of order h~/4. Thus, the exponential factor in leading-order
asymptotics of the Airy function for u > 0 will behave like exp(—Ch~/4),
which is very small for small A, certainly smaller than any power of f. Since



15.6 A Rigorous Error Estimate 327

all the factors in front of the exponential will behave like & to a power, the
overall contribution to || Ht) — Ev| from the transition between the region
near the turning points and the classically forbidden region is smaller than
any power of fi. Thus, none of the transition regions contributes an error
worse that O(h/®).
Proof of Lemma 15.9. We consider only the estimates for the derivatives
of the functions involved. The analysis of the functions themselves is similar
(but easier) and is left as an exercise to the reader (Exercise 11).

We begin by considering 1] — 1&’1 With a little algebra, we compute that

% B d;/;ll = V/R(2mEFy) YRS (AT (u) —Ki/(u)) (15.41)

where u is as in (15.22) and where Al is the function on the right-hand side
of (15.33).
Now, Ai(u) has an asymptotic expansion for u — —oo given by

Ai(u) = Ai(u)(1+ Cu=?? 4 ...),

and Ai’(u) has the asymptotic expansion obtained by formally differenti-
ating this with respect to . [See Eq. (7.64) in [30].] From this, we obtain

A¥' (1) — Al (u) = AT ()O((—u)~%2) + Al(w)O((—u)~%2).  (15.42)

From the explicit formula for Ai, we see that Ai(u) is of order (—u)~1/4,

Meanwhile, the formula :&/(u) will contain two terms, the larger of which
will be of order u!/4. Thus, the slower-decaying term on the right-hand side
of (15.42) is the first one, which is of order (—u)~5/4. Now, in the transition
regions, u behaves like h=2/3h1/2 = h=1/6, Thus, (15.42) goes like h°/?* and
so (15.41) goes like i~5/645/24 — =5/8 a5 claimed.

We now consider 1/3& — 4. By direct calculation, the derivatives of U
and 1y each consist of two terms, a “dominant” obtained by differentiating
the cosine factor and a “subdominant” term obtained by differentiating the
coefficient of the cosine factor. In the case of ¢}, the dominant term in the
derivative may be simplified to

- glemR)e - ) (Sew T )

According to Exercise 12, we have, when = — a is of order h'/2, the
estimates

(2mEFy)(a — x)* = /p+ /pO(h'/?) (15.44)
and

2w =1 [ o) dy+ o, (15.45)
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Since the derivative of sinf is bounded, a change of order £'/* in the
argument of a sine function produces a change of order h'/* in the value
of the sine. Thus, if we substitute (15.44) and (15.45) into (15.43), we find
that the difference between the dominant term in z/NJ'l and the dominant
term in ] is

1
7—1\/50(51/4) + lower-order terms.

Since /p is of order (z — a)'/* or h'/8, we get an error of order h=%/%, as
claimed.

Finally, the subdominant terms in the derivatives of 1/;1 and 19 are easily
seen to be separately of order i~5/8. Thus, even without taking into account
the cancellation between these terms, they do not change the order of the
estimate. m

15.6.5 Proof of the Main Theorem

We have estimated the contributions to ||Hiy — Et|| from each type of
region: classically allowed and classically forbidden regions, the regions
around the turning points, and the transition regions. In each case, we have
found a contribution that is of order at most 4%/® ||¢||. Thus, it remains
only to verify that the constants in all estimates are bounded uniformly
over the given range E1 < F < F» of energies.

This verification is straightforward. Near the turning point x = a, for
example, we need to estimate the difference between the potential V(x)
and its linear approximation V(z) near z = a. As a consequence of the
Taylor remainder formula, |V (z) — V(x)] will be bounded by C'|z — a|? /2,
where C' is the maximum of |V”(z)| over the interval from a to z. As E
varies over [Ei, Fs], the set of points where we have to evaluate |V (z)]
will be bounded, meaning that C can be taken to be independent of F, for
F in such a range.

Similarly, in the classically allowed region, the blow-up of 1/(V (z) — E)?
near z = a(F) can be controlled by the minimum of [V'(y)| for y between a
and x. By assumption, |V’(z)| > 0 at all the turning points a(E) and b(E)
with By < E < FEs, and thus, by continuity, in some neighborhood of that
set of turning points. Thus, blow-up of 1/(V(z) — E)? will be controlled by
the minimum of |V’(z)| on an interval of the form [a(E2) + «, a(F1) + o]
for some small o > 0. The remaining details of this verification are left to
the reader.

15.7 Other Approaches

The main complicating factor in the WKB approximation is the singular
behavior near the turning points. The turning points, meanwhile, are only
problematic because we are working in the position representation. The
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turning points, after all, are the points on the classical trajectory where
the position of the particle achieves a maximum or a minimum. If we were
to work in the momentum representation, the points where the momen-
tum achieves a maximum or a minimum would instead be the problematic
points. A. Voros [42] has proposed working in the Segal-Bargmann repre-
sentation (Sect. 14.4). In Voros’s analysis, there are no turning points and,
thus, the analysis is much simpler. The problem with Voros’s approach is
that he only gives an approximation to the wave function on the classical
energy curve. Even in simple cases, Voros’s expression does not admit a
holomorphic extension to the whole plane, but has branching behavior in-
side the classical energy curve. Thus, Voros’s formula does not define an
element of the quantum Hilbert space (which is a space of entire holomor-
phic functions), let alone an element of the domain of the Hamiltonian.

Nevertheless, it is possible to build approximate eigenfunctions as su-
perpositions of coherent states, using formulas similar to those in Voros.
This approach avoids dealing with turning points but still yields a rigorous
eigenvalue estimate, with the same corrected Bohr-Sommerfeld condition
as in Condition 15.1. See [31, 23, 7], or (in greater generality) [26].

15.8 Exercises

1. Show that if ¢; is any complex number, then we have an identity of
the form

c1e + e " = Rcos(6 — 0)
for some real numbers R and §.

2. Let H(x,p) = p*/2m + mw?z?/2 be the Hamiltonian for a harmonic
oscillator having mass m and classical frequency w. Show that a pos-
itive number F satisfies the corrected Bohr—Sommerfeld condition
(Condition 15.1) if and only if F is of the form (n+ 1/2)Aw, where n
is a non-negative integer.

Note: In light of the results of Chap. 11, this calculation means that,
in this very special case, the corrected Bohr-Sommerfeld condition
gives the exact eigenvalues of the quantum Hamiltonian H.

3. Suppose A and p are two nonzero, smooth functions satisfying (15.15).
Show that A(z) = C(p(z))~"/? for some constant C.

Hint: Think in terms of the logarithms of the functions involved.
4. Show that cos(f — §), viewed as a function of 6, agrees, up to mul-

tiplication by a constant, with cos(d — ¢’) if and only if § — ¢’ is an
integer multiple of 7.
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If ¢ is an eigenvector for H that is approximated by (15.25) near
—o0, one might hope to find an approximate expression for ¢ in
the classically allowed region by analytically continuing around the
turning point in the complex plane. Even assuming V is analytic,
however, it is fairly evident that analytic continuation in the upper
half-plane does not give the same answer as in the lower half-planes.
Nevertheless, one could use the average of the upper and lower half-
plane results as a (totally nonrigorous) guess for the behavior of ¥ in
the classically allowed region.

Show that the above approach gives the correct phase ¢ in the con-
nection formula (15.21) but is off by a factor of 2 in the amplitude R.

Using integration by parts, show that the limit

A 43
lim cos (— + ut) dt
A—+oco 0 3

exists.

Hint: Multiply and divide by t? +u (avoiding points where t2 +u = 0
in the case u < 0).

. In this exercise, we sketch an argument that the Airy function in

(15.24) satisfies the differential equation ¢ (u) — uw(u) = 0. For
the purposes of this exercise, let us say that fooo fit) dt = C if

fOA f(t) dt = C+g(A), where the function g is bounded and oscillates
around an average value of zero.

Assuming that it is legal to differentiate under the integral sign, verify
that Ai(u) satisfies the stated equation.

Hint: After differentiating under the integral, look for a term that
can be integrated explicitly.

Note: A more rigorous approach to this verification would be to in-
tegrate by parts as in Exercise 6 and then differentiate under the
integral. This approach is, however, a bit messier.

By integrating by parts repeatedly in (15.24), show that Ai(u) decays
faster than any power of u as u tends to +o0.

Hint: A key point is to show that the boundary terms in the integra-
tion by parts vanish at every stage. After performing the integrations
by parts, estimate the resulting integral by using the inequality

1 - 1 1
E+ur ([t 1)Fank

u>1,

for some appropriate choice of k.
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(a) For v < 0, make the change-of-variable 7 = t/4/—u in the
integral formula for the Airy function, to obtain the expression

[ la(Z)) i s

3/2

Ai(u) =

where oo = (—u)

(b) Suppose f is a smooth function on [a, b] having a unique critical
point zp. Assuming that x( is in the interior of [a,b] and that
1" (xo) # 0, the method of stationary phase asserts that

b
; ot ; 2 1
iof(x) dr = iaf(zo) Lim/4 ol =
/a (z)e @ = g(ao)e ‘ alf @)l (04)

for a tending to 400, where the plus sign in the exponent is taken
when f”(x0) > 0 and the minus sign is taken when f”(x¢) < 0.
(See, e.g., Eq.(5.12) in [30].)

Using this result, obtain the asymptotic formula (15.33).

Hint: Divide the integral in (15.46) into an integral over [0, 2] and an
integral over [2,00). Use stationary phase for the first interval and
integration by parts (as in Exercise 6) for the second interval.

Let ¥ be the approximate eigenfunction for H defined in the begin-
ning of Sect. 15.6. Show that the norm of 1 is bounded and bounded
away from zero as h tends to zero.

Hint: First show that the L2 norm of v over the intervals around
the turning points goes like i~1/6%1/4. Then check that the functions
p(x)_1/2 and q(gc)_l/2 are square integrable near the turning points.

By imitating the arguments in the proof of Lemma 15.9, prove the
estimates for ¢¥; — %1 and 17 — 19 in the lemma.

By writing V (z) as Fy(a—x) plus an error term of order (z—a)?, verify

that the estimates (15.44) and (15.45) in the proof of Lemma 15.9
hold in the transition region. (Assume that = — a is of order A'/? in
the transition region.)

Hint: The leading-order Taylor expansion of (1+2)% is 14+az+0(z?),
for any real number a.
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Lie Groups, Lie Algebras, and
Representations

An important concept in physics is that of symmetry, whether it be
rotational symmetry for many physical systems or Lorentz symmetry in
relativistic systems. In many cases, the group of symmetries of a system is
a continuous group, that is, a group that is parameterized by one or more
real parameters. More precisely, the symmetry group is often a Lie group,
that is, a smooth manifold endowed with a group structure in such a way
that operations of inversion and group multiplication are smooth. The tan-
gent space at the identity in a Lie group has a natural “bracket” operation
that makes the tangent space into a Lie algebra. The Lie algebra of a Lie
group encodes many of the properties of the Lie group, and yet the Lie
algebra is easier to work with because it is a linear space.

In quantum mechanics, the way symmetry is encoded is usually through
a unitary action of the group on the relevant Hilbert space. That is, we
assume we are given a unitary representation of the relevant symmetry
group G, that is, a continuous homomorphism of G into U(H), the group
of unitary operators on the quantum Hilbert space H. Actually, since two
unit vectors in H that differ only by a constant represent the same physi-
cal state, we should more properly consider projective unitary representa-
tions. A projective representation is a homomorphism of a group G into
U(H)/U(1), where U(1) is the group of complex numbers of magnitude 1,
thought of multiples of I in U(H). An ordinary or projective representa-
tion of a Lie group gives rise to an ordinary or projective representation
of its Lie algebra. The angular momentum operators, for example, form a
representation of the Lie algebra of the rotation group.

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 333
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_16,
© Springer Science+Business Media New York 2013
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Saying that, for example, the Hamiltonian operator of a quantum system
is invariant under rotations means that H commutes with the relevant
representation of the rotation group and thus also with the associated Lie
algebra operators. This commutativity, in turn, implies that the eigenspaces
for H are invariant under rotations. We will use this commutativity in
Chap. 18 to help us in determining the energy eigenvectors for the hydrogen
atom.

In this chapter, we will make a brief survey of Lie groups, Lie algebras,
and their representations. For our purposes, it suffices to consider matriz
Lie groups, those that can be realized as closed subgroups of the group of
n X n invertible matrices. Inevitably, I have had to present some of the
deeper results without proof. Proofs of all results stated here can be found
n [21]. The results of this chapter will be put to use in Chap. 17, in our
study of angular momentum, and in Chap. 18, in our study of the hydrogen
atom.

16.1 Summary

In this chapter, we will consider a matrix Lie group G, which is, by defini-
tion, a (topologically) closed subgroup of some GL(n;C), where GL(n; C) is
the group of n x n invertible matrices with complex entries. To each such
G, we will associate the Lie algebra g of G, where g is a real subspace of
M,,(C), the space of all n x n matrices. We will see that G is automatically
an embedded real submanifold of M, (C) and that g is the tangent space
of G at the identity matrix.

Now, g is not just a real vector space, but comes with a “bracket” opera-
tion mapping g x g into g. Specifically, we will show that for all X and Y in
g, the matrix XY —Y X belongs again to g. Thus, we define our bracket by
setting [X, Y] equal to XY — Y X. As it turns out, the Lie algebra g, as a
vector space with the bracket operation, encodes a lot of information about
the group G. On the other hand, computing at the level of the Lie algebra
is generally easier than computing at the group level, simply because g is
a linear space.

We will be interested in unitary representations of our group G, that is,
continuous homomorphisms of G into U(H), the group of unitary operators
on a Hilbert space. If we restrict attention, at first, to the case in which
H is finite dimensional, then each representation II of G gives rise to a
representation 7w of the Lie algebra g of G. That is to say, 7 is a linear
map of g into the space of linear maps of V to V| satisfying n([X,Y]) =
[7(X),m(Y)]. A deeper question is whether every representation = of g
comes from a representation II of G. As it turns out, the answer in general
is no, but the answer is yes if G is simply connected.
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We may consider, for example, the case G = SO(3). This group is not
simply connected. On the other hand, the Lie algebra so(3) of SO(3) is iso-
morphic to the Lie algebra su(2) of SU(2), and SU(2) is simply connected.
[That is, SU(2) is the “universal cover” of SO(3).] Thus, given a represen-
tation 7 of so(3), there may or may not be an associated representation II
of SO(3). Even if there is not, however, there is always a representation I’
of the group SU(2).

In quantum mechanics, the vector e?1) represents the same physical
state as 1. Thus, it is natural to consider “projective” unitary representa-
tions, that is, homomorphisms of G into the quotient group U(H)/{e?I}.
In the finite-dimensional case, each projective representation can be “de-
projectivized” at the level of the Lie algebra g of G. We can then pass
from the Lie algebra to the universal cover of GG, that is, the simply con-
nected group with Lie algebra g. In particular, in the finite-dimensional
case, the irreducible projective unitary representations of SO(3) are in one-
to-one correspondence with irreducible ordinary unitary representations of
the universal cover SU(2) of SO(3). Although the Hilbert spaces of phys-
ical systems are usually infinite dimensional, for compact groups such as
SO(3), general unitary representations can be decomposed as direct sums
of finite-dimensional ones. (See, e.g., Proposition 17.19 and the discussion
following it.)

16.2 Matrix Lie Groups

Let M,,(C) denote the space of n x n matrices with complex entries. We
identify M, (C) with €™, equipped with the usual topology. Thus, a se-
quence A,, in M, (C) converges to a matrix A € M,,(C) if (4,,),x converges
to Aji as m tends to infinity, for all 1 < j, k < n. Let GL(n;C) denote the
general linear group, consisting of all invertible n x n matrices with com-
plex entries. Then GL(n;C) forms a group under the operation of matrix
multiplication. Furthermore, GL(n; C)—that is, the set of A € M,,(C) with
det A # 0—is an open subset of M, (C). Since M, (C) is a complex vector
space of dimension n2, it may be identified with C** = R2""_ Since GL(n; C)
is an open subset of M,,(C), it looks locally like R2"" and is therefore a real
manifold of dimension 2n2.

Definition 16.1 A subgroup G of GL(n;C) is closed if for each sequence
Ay in G that converges to a matriz A, either A is again in G or A is not
invertible. A matriz Lie group is a closed subgroup of some GL(n;C).

A subgroup G of GL(n; C) is closed if it is topologically closed as a subset
of GL(n;C)—but not necessarily as a subset of M, (C). We will see that
each matrix Lie group is a real embedded submanifold of GL(n; C) and thus
is a Lie group.
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Definition 16.2 If G; and G5 are matriz Lie groups, then a Lie group
homomorphism of Gy to G is a continuous group homomorphism of Gy
into Go. A Lie group homomorphism is called a Lie group isomorphism
if it is one-to-one and onto with continuous inverse. Two matriz Lie groups
are called isomorphic if there exists a Lie group isomorphism between
them.

Example 16.3 The real general linear group, denoted GL(n,R), is the
group of invertible n X n matrices with real entries. The groups SL(n,C)
and SL(n,R) are, respectively, the groups of complex and real matrices with
determinant 1. They are called the special linear groups.

Example 16.4 An n x n matric U € M,(C) is said to be unitary if
U*U =UU* =1. A matriz U is unitary if and only if

(Uv,Uw) = (v, w)

for all v,w € C™. The group of unitary matrices is denoted U(n) and called
the (n X n) unitary group. The special unitary group, denoted SU(n),
is the subgroup of U(n) consisting of unitary matrices with determinant 1.

The condition (U*U);r = d;, is equivalent to the condition that the
columns of U form an orthonormal set in C", as can be seen by direct
computation. Geometrically, the condition U*U = I is equivalent to the
condition that (Uvy,Uvs) = (v1,vs9) for all v1,ve € C", i.e., that U pre-
serves the inner product on C". By taking the determinant of the condition
U*U = I, we see that |det U| =1 for all U € U(n).

In this, the finite-dimensional case, the condition U*U = [ implies that
U~ is the inverse of U and thus that UU* = I. This result does not hold
in the infinite-dimensional case.

Example 16.5 An n x n real matriz R € M, (R) is said to be orthogonal
if R" R = RR' = 1. A matriz R is orthogonal if and only if

(Rv, Rw) = (v, w)

for all vyw € R™. The group of orthogonal matrices is denoted O(n) and
is called the (n x n) orthogonal group. The special orthogonal group,
denoted SO(n), is the subgroup of O(n) consisting of orthogonal matrices
with determinant 1.

As in the unitary case, the condition R R = I implies that RR!" = I
and that the columns of R form an orthonormal set in R™. Geometrically,
a real matrix R is in O(n) if and only if (Rvy, Rve) = (v1,vs) for all
v1,v9 € R™, i.e., if and only if R preserves the inner product on R™. By
taking the determinant of the condition R"R = I we see that det R = +1
for all R € O(n).

It is easy to verify that all the groups in Examples 16.3, 16.4, and 16.5
are, indeed, subgroups of GL(n,C) and that they are closed.
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Definition 16.6 A matriz Lie group G is connected if for all A,B € G
there is a continuous path A : [0,1] — M,(C) such that A(0) = A and
A(1) = B and such that A(t) lies in G for all t. A matriz Lie group G is
simply connected if it is connected and every continuous loop in G can
be shrunk continuously to a point in G. A matriz Lie group G is compact
if it is compact as a subset of M, (C) = R27°

By the Heine-Borel theorem (e.g., Proposition 0.26 of [12]), a matrix
Lie group G is compact if and only if it is a closed and bounded subset
of M,,(C). The condition we are calling “connected” is, more properly, the
condition of being path connected. We will see, however, that each matrix
Lie group is an embedded real submanifold of M, (C) and is, therefore,
locally path connected. For matrix Lie groups, then, connectedness and
path connectedness are equivalent.

To prove that a matrix Lie group G is connected, it suffices to prove that
for all A € G, there is a continuous path in G connecting A to I. After all,
if both A and B can be connected to I, then they can be connected to each
other.

Example 16.7 The groups O(n), SO(n), U(n), and SU(n) are compact.

Proof. The conditions defining these groups are obtained by setting certain
continuous functions equal to a constant. The group SU(n), for example, is
defined by setting (U*U) jr = 0, for each j and k and by setting det U = 1.
These groups are thus closed not just as subsets of GL(n;C) but also as
subsets of M,,(C). Furthermore, each of these groups has the property that
each column of any matrix in the group is a unit vector. Thus, each group
is a bounded subset of M, (C). m

Example 16.8 The group U(n) is connected.

Proof. If U € M,(C) is unitary, then U has an orthonormal basis of
eigenvectors with eigenvalues of absolute value 1. Thus, there is another
unitary matrix V' (the change of basis matrix) such that

eiel
ei@g
U=V v
oifn
for some real numbers 61,6, ...,0,. Thus, we can define a family U(t) of
unitary matrices by setting
e’itel
e’it@z
Uuit)y=Vv ) VL
' iton
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Then U(-) is a continuous path lying in U(n) with U(0) = I and U(1) = U.
u

Example 16.9 The group SU(2) is simply connected.

Proof. We claim that

wo-{(5 )

It is easy to see that each matrix of the indicated form is indeed unitary and
has determinant 1. On the other hand, if U is any element of SU(2), then
the first column of U is a unit vector («, 8) € C2 The second column of
U must then be orthogonal to («, 8). Since (—3, @) is orthogonal to (a, 3)
and C? is 2-dimensional, the second column of U must be a multiple of
(—f,a). But the only multiple that produces a matrix with determinant
1is 1.

We see, then, that SU(2) is, topologically, the unit sphere S* inside C? =
R* and is, therefore, simply connected. m

a,BeC, |of+]|87= 1}.

16.3 Lie Algebras

We now introduce the general algebraic concept of a Lie algebra. Once this
is done, we will show how to associate a real Lie algebra with an arbitrary
matrix Lie group.

Definition 16.10 A Lie algebra over a field F is a vector space g over

F, together with a “bracket” map [-,-] : g X g — @ having the following
properties:

1. [-,-] is bilinear

2. [V, X]|=—-[X,Y] foradl X,Y € g

3. [X,X]=0forall X €g
4. For all XY, Z € g we have the Jacobi tdentity

(X, IV, 21 + [V, [Z, X)) + [ 2, [X, Y]] = 0.

If the characteristic of F is not equal to 2, then Property 3 is a conse-
quence of Property 2. If F = R, then we say that g is a real Lie algebra. An
example of a real Lie algebra is the vector space R? with the bracket equal
to the cross product. Properties 1, 2, and 3 are evident from the definition
of the cross product, while the Jacobi identity is a known property of the
cross product that can be verified by direct calculation.

A large class of Lie algebras may be obtained by the following procedure.
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Example 16.11 Let A be an associative algebra and let g be a subspace of
A with the property that for all z,y in g, vy — yx is again in g. Then the
bracket

[z,y] = 2y —yx

makes g into a Lie algebra.

In Example 16.11, we may take, for example, g = A. It is evident that
this bracket satisfies Properties 1, 2, and 3 of a Lie algebra, and the Ja-
cobi identity is easily verified by direct calculation. As it turns out, every
Lie algebra is isomorphic to a Lie algebra of this type. (This claim is a
consequence of the Poincaré-Birkhoff-Witt theorem, which is proved, for
example, in Sect. 5.2 of [25]. The algebra A in the Poincaré-Birkhoff-Witt
theorem is the so-called universal enveloping algebra of g.)

Definition 16.12 If g; and g2 are Lie algebras, a map ¢ : g1 — g2 i
called a Lie algebra homomorphism if ¢ is linear and ¢ satisfies

O([X,Y]) = [6(X), (Y]

for all X,Y € g1. A Lie algebra homomorphism is called a Lie algebra
isomorphism if it is one-to-one and onto.

Definition 16.13 If g is a Lie algebra, a subalgebra of g is a subspace b
of g with the property that [X,Y] € b for all X and Y in b. An ideal in g
is a subalgebra by of g with the stronger property that [X,Y] € b for all X
mgandy inb.

The notion of a subalgebra of a Lie algebra is analogous to the notion
of a subgroup of a group, while the notion of an ideal in a Lie algebra is
analogous to the notion of a normal subgroup of a group. In particular,
the kernel of any Lie algebra homomorphism is an ideal, just as the kernel
of a group homomorphism is a normal subgroup.

Definition 16.14 The direct sum of Lie algebras g1 and g2, denoted
g1 D g2, is the direct sum of g1 and g2 as a vector space, equipped with the
bracket given by

[(le Yl)v (X27 Y2)] = ([le X2]7 [Ylv YQ])

for all X1,X5 € g1 and Y1,Ys € go.

16.4 The Matrix Exponential

In the next section, we will associate a Lie algebra with each matrix Lie
group. To describe this association, we need the notion of the exponential
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of a matrix. Given a matrix X € M, (C), we define the matriz exponential
of X, denoted by eX or exp(X), by the usual power series,

oo

xm
€X: ZW,

m=0

where X = I (the identity matrix). This series converges absolutely for
all X € M,,(C), as can easily be seen using the inequality || X™| < || X||™,
where || X|| is the operator norm of X; see Definition A.35. (In this, the
finite-dimensional case, we could just as well use the Hilbert—Schmidt norm,
which amounts to using the usual Euclidean norm on M, (C) = C"’. See
Exercise 3.) The matrix exponential shares some but not all of the proper-
ties of the exponential of a number.

Theorem 16.15 The matriz exponential has the following properties for
all X,Y € M, (C).

1. =1
2. X" = (eX)t and X" = (eX)*
8. If A is an invertible n x n matriz, then

1 3
eAXAT = AeX AL

det(ex) _ etrace(X)

If XY =YX then eX1Y =XV

X

eX is invertible and (eX)~1

= e_X

X S &

Even if XY # Y X, we have

m
XY = lim (eX/meY/m) .
m—r 00

Here X' and X* denote the transpose and adjoint (conjugate transpose)
of X, respectively. Property 7 is known as the Lie Product Formula and is
a special case of the Trotter Product formula (Theorem 20.1). Properties
1, 2, and 3 are easily verified using term-by-term computation. Property 6
follows from Property 5 by taking Y = —X and applying Property 1. The
proofs of Properties 4, 5, and 7 are outlined in Exercises 5, 6, and 7.

Suppose a matrix X is diagonalizable, meaning that

A 0
X=A AL
0 An
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for some invertible matrix A and complex numbers Aj, Ao, ..., A,. Then
using Property 3 of Theorem 16.15, it is easy to see that

eM 0
eX=A AL

0 ern

If X is not diagonalizable, eX can be computed in terms of the SN decom-
position of X. See Sect. 2.2 of [21] for details.

x=(5)

X cosa sina
~\ —sina cosa /)’
Proof. The eigenvalues of X are *+ia and the corresponding eigenvectors
are (1, +4). Thus, we may calculate that

= (527 e (S )

B 1 _,L'(eia +e*ia) _eia +67ia
- Z eia _ e*ia _Z'(eia 4 efia) )

Example 16.16 If

then

which simplifies to the desired result. m
The relation eX ™Y = eXeY certainly does not hold for general (noncom-
muting) matrices X and Y. Nevertheless, for any X € M,,(C) we have
e(s-l—t)X _ esXetX
for all s and ¢ in R, since sX commutes with tX. Thus, for each X, the set
of matrices of the form e'X, t € R, forms a subgroup of GL(n;C). It is not
hard to show (Exercise 4), using term-by-term differentiation, that

d
—el =X (16.1)
at |,

Here, the derivative of a matrix-valued function is defined as being entry-
wise. [That is, if f(¢) is a matrix-valued function, df /dt is the matrix-valued
function whose (7, k) entry is d(f(¢);x)/dt.]

Definition 16.17 A one-parameter subgroup of GL(n;C) is a continu-
ous homomorphism of R into GL(n;C), that is, a continuous map A : R —
GL(n; C) such that A(0) =1 and A(s+t) = A(s)A(t) for all s,t € R.
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Theorem 16.18 If A(-) is a one-parameter subgroup of GL(n;C), there
exists a unique X € My (C) such that

A(t) =¥
for allt € R.

This is Theorem 2.13 in [21].

16.5 The Lie Algebra of a Matrix Lie Group

We now associate a Lie algebra g to each matrix Lie group G.

Definition 16.19 If G C GL(n;C) is a matriz Lie group, then the Lie
algebra g of G is defined as follows:

g:{XEMn((C)’etXerorallteR}.

That is to say, X belongs to g if and only if the one-parameter subgroup
generated by X lies entirely in GG. Note that to have X belong to g, we
need only have etX belong to G for all real numbers t.

Proposition 16.20 For any matriz Lie group G, the Lie algebra g of G
has the following properties.

1. The zero matriz 0 belongs to g.

2. For all X in g, tX belongs to g for all real numbers t.
3. For all X andY in g, X +Y belongs to g.

4. Forall A€ G and X € g we have AXA™! € g.

5

. For all X and Y in g, the commutator [X,Y] := XY — Y X belongs
to g.

The first three properties of g say that g is a real vector space. Since

M, (C) is an associative algebra under the operation of matrix multipli-
cation, the last property of g shows that g is a real Lie algebra (Exam-
ple 16.11).
Proof. Points 1 and 2 are elementary, and Point 3 follows from the Lie
product formula, using the assumption that G is closed. Point 4 follows
from Property 3 in Theorem 16.15. To verify Point 5, we observe that the
commutator [X,Y] may be computed as

d
[(X,Y] = —eXye ™| |
dt —o



16.5 The Lie Algebra of a Matrix Lie Group 343

using (4) and an easily verified product rule for differentiation of matrix-
valued functions. For X,Y € g, e!XYe "X belongs to g for all t € R, by
Point 4. Furthermore, we have already shown that g is a real subspace of
M,,(C) and therefore a closed subset of M, (C). Thus,

hXY —hX Ve
[X,Y] = lim e re =1
h—0 h

belongs to g. m

Example 16.21 Let gl(n; C), gl(n;R), sl(n; C), and sl(n;R) denote the Lie
algebras of GL(n;C), GL(n;R), SL(n;C), and SL(n;R), respectively. Then
we have

Proof. Let us consider, for example, the case of sl(n; C). By Property 4 of
Theorem 16.15, if trace(X) = 0, then

det(etx) — ettrace(X) _ 60 =1,
so that e € SL(n;C). In the other direction, if X € sl(n;C), then by
the above calculation, we must have e'"2¢(X) = 0 for all ¢t € R, which is

possible only if trace(X) = 0. The proofs of the other cases are similar and
are omitted. m

Example 16.22 The Lie algebras u(n) and su(n) of U(n) and SU(n) are
given by

un) ={X e M,,(C)|X*=-X}
su(n) = {X € u(n) [trace(X) =0} .

The Lie algebra so(n) of SO(n) is given by
so(n) = {X € M,(R) | X" =-X}.
Finally, the Lie algebra of O(n) is equal to so(n).
Proof. If X* = —X, then by Property 2 of Theorem 16.15,
(e X)* = X" = e=tX = (X)L,
showing that e*¥ is unitary. In the other direction, if e*¥ is unitary for all

t € R, then (e!X)* = (e"X)~! = e~ X, Thus, e = e~*X. Differentiating
this relation at ¢t = 0, using (16.1), gives X* = —X. Thus, the Lie algebra of
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U(n) consists exactly of the matrices with the property that X* = —X. For
the Lie algebra of SU(n), we add the trace-zero condition, as in the proof
of Example 16.21. The calculations for SO(n) are similar and are omitted.
Note that if X € M, (R) satisfies X" = — X, then the diagonal entries of X
are zero and, thus, trace(X) is automatically 0. This observation explains
why the Lie algebras of O(n) and SO(n) are the same. m

Specializing Proposition 16.22 the case n = 3 gives

0 a b
so(3) = —a 0 ¢ ||a,b,ceR
-b —c O

We can use the following basis for so(3):

00 0 00 1 0 -1 0
Fe=|00 -1 |;FR:= 000 ]|;m=1 00
01 0 -1 0 0 0 00

(16.2)

Direct calculation establishes the following commutation relations for the
F j ’s:

[F1, Fy] = F3

[Fy, F3] = Fy

[F5, Fy] = Fb. (16.3)
More concisely, we have [Fy, F5] = F3, together with relations obtained

from this one by cyclic permutation of the indices. Note that all remaining
commutation relations follow from (16.3) by means of the skew-symmetry
of the bracket; we have, for example, [Fy, F1] = —F3 and [Fy, Fy] = 0.

16.6 Relationships Between Lie Groups and Lie
Algebras

In this section, we explore the relationships between matrix Lie groups and
their Lie algebras. In particular, we investigate the question of the extent
to which a matrix Lie group is determined (up to isomorphism) by its Lie
algebra. We begin by showing that every Lie group homomorphism gives
rise to a Lie algebra homomorphism in a natural way.

Theorem 16.23 Suppose Gy and Go are matriz Lie groups with Lie al-
gebras g1 and g, respectively, and suppose ® : G1 — G is a Lie group
homomorphism. Then there exists a unique linear map @ : g1 — go such

that
(I)(etX) _ etqb(X)
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for all t € R and X € g. This linear map has the following additional
properties:

1. ¢([X,Y]) = [(X),6(Y)] for all X,Y € g
2. p(AXA™Y) = d(A)p(X)P(A)! forall A€ G and X € g
3. ¢(X) may be computed as

g (X

OX) = 5

t=0

Point 1 shows that ¢ is a Lie algebra homomorphism. Part of the assertion
of Point 3 of the theorem is that ®(e!X) is a smooth function of t for each X.

To construct ¢, note that since ® is a continuous homomorphism, the
map t — ®(e!X) is a one-parameter subgroup. By Theorem 16.18, there
exists a unique Y such that ®(e!X) = ¥ for all t € R. We then set
¢(X) = Y. An argument similar to the proof of Proposition 16.20 then
establishes the desired properties of ¢. See the proof of Theorem 2.21 in
[21] for the details.

Corollary 16.24 Suppose that G1 and G2 are matrixz Lie groups with Lie
algebras g1 and gz, respectively. If Gy is isomorphic to Ga, then g1 is iso-
morphic to go.

Proof. See Exercise 11. m

Our next task is to show that for any matrix Lie group G, the Lie algebra
g of GG is large enough to capture what is happening in a neighborhood of
the identity in G. This will show, for example, that for connected matrix
Lie groups, a Lie group homomorphism is determined by the corresponding
Lie algebra homomorphism.

Theorem 16.25 Let G be a matriz Lie group with Lie algebra g. Then
there exists a neighborhood U of 0 in M, (C) and a neighborhood V of I in
M,,(C) such that the matriz exponential maps U diffeomorphically onto V
and such that for all X € U, we have that X belongs to g if and only if eX
belongs to G.

See Theorem 2.27 in [21]. This result has a number of important conse-
quences.

Corollary 16.26 Fvery matriz Lie group G C GL(n;C) is a real embedded
submanifold of M,,(C) with the dimension of G equal to the dimension of
g as a real vector space.

The claim means, more precisely, that for each A € G, there exists a
neighborhood U of A and a diffeomorphism ® of U with a neighborhood
V of 0 in R2"” such that ®(U N G) = V NR?, where d = dim g. That is to
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say, after a change of coordinates, G “looks” locally like a little piece of R?
sitting inside M, (C) = R2""

Proof. We use exponential coordinates in the neighborhood V of I in
M,,(C), meaning that we write each element A of V as A = e¥, with
X € U. Theorem 16.25 says that near the identity, in these coordinates, G
“looks like” the real vector space g inside M,,(C). Given any other point
A € G, we can use left multiplication by A~! to move the action to the
identity (Exercise 17), with the result that G looks like g C M,,(C) near A.
Thus, G is a real embedded submanifold of dimension d = dimg. =

Corollary 16.27 The Lie algebra g of a matriz Lie group G is the tangent
space to G at I. That is to say, g coincides with the set of those X in M, (C)
for which there exists a smooth curve v : R — M, (C) lying entirely in G
and such that v(0) = I and v'(0) = X.

Proof. If X € g, then X is the derivative of !X at ¢ = 0, so g is contained
in the tangent space at I. In the other direction, if v is any smooth curve
in M, (C) that lies entirely in G and passes through I at ¢ = 0, then by
Theorem 16.25, we can express vy as y(t) = () (at least for small t), where
0 is a smooth curve in g with §(0) = 0. It is then easy to see (Exercise 8)
that 4/(0) = ¢’(0). But if 6 lies in g, then §’(0), which equals 4/(0), also lies
in g, as in the proof of Proposition 16.20. Thus, the tangent space at [ is
contained in g. m

Corollary 16.28 If a matriz Lie group G is connected, then for all A € G
there exists a finite sequence X1, Xo, ..., XN of elements of g such that

A=eXeXe. . eXN,

Proof. If G is connected in the sense of Definition 16.6 (which really means
that G is path connected), then G is certainly connected in the usual topo-
logical sense of having no nontrivial sets that are both open and closed.
Let U denote the set of points in G that can be expressed as a product
of exponentials of elements of g. This set is open in G because if A € U
and B € G is close to A, then A™'B is close to I in G, and therefore
A7'B = X for some X € g. Thus, B = AeX, which means that B is also
a product of exponentials. In the other direction, if B € G is in the closure
of U, then there is some element A of U that is close to B. We then have,
again, that B = AeX for some X € g, which, again, means that B € U.
Now, G is connected and U is both open and closed. Since U is nonempty
(I€U),wehave U =G. m

Corollary 16.29 Suppose that G1 and G2 are matriz Lie groups with
Lie algebras g1 and gs, respectively. Suppose that &1 : G1 — G2 and
d, 1 Gy — Go are Lie group homomorphisms, with associated Lie algebra
homomorphisms ¢1 and ¢, respectively. If G is connected and ¢1 = ¢,
then (1)1 = (1)2.
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Proof. The result follows from Corollary 16.28 and the condition ®;(eX) =
e X)) j=1,2. m

We have seen that a homomorphism of matrix Lie groups gives rise to a
homomorphism of the associated Lie algebra, and (Corollary 16.29) that if
the domain group is connected, the Lie algebra homomorphism determines
the Lie group homomorphism. A more difficult question is whether we can
go in the opposite direction, from a Lie algebra homomorphism to a Lie
group homomorphism. That is to say, given a Lie algebra homomorphism
between the Lie algebras of two matrix Lie groups, does there exist a Lie
group homomorphism related in the usual way to the Lie algebra homomor-
phism? The answer turns out to be yes, provided that the domain group
G is connected and simply connected (i.e., that every continuous loop in
G1 can be shrunk continuously in G; to a point).

Theorem 16.30 Suppose that G1 and G4 are matriz Lie groups with Lie
algebras g1 and g2, respectively, and suppose that ¢ : g1 — g2 is a Lie
algebra homomorphism. If Gy is connected and simply connected, then
there exists a unique Lie group homomorphism ® : G1 — G5 such that ®
and ¢ are related as in Theorem 16.23.

One way to prove this deep result is to make use of the Baker—Campbell-
Hausdorff formula. (See, e.g., Chap. 3 of [21].) This formula states that for
all sufficiently small X and Y in M,,(C) we have

eXeY — oXAY+H3[X Y415 X [X Y] - 5[V [X Y]]+

Here - -- denotes terms that are expressible in terms of repeated commu-
tators involving X and Y, with coefficients that are “universal,” that is,
independent of n (the size of the matrices) and of the choice of X and YV in
M, (C). Given a Lie algebra homomorphism ¢ : g3 — go2, one can use the
Baker—Campbell-Hausdorff formula to construct a “local homomorphism,”
mapping a neighborhood of the identity in G; into Ga. If G is connected
and simply connected, it is possible to extend this local representation to a

global representation. See Sect. 3.6 of [21] for the details of this construc-
tion.

Corollary 16.31 Suppose that G1 and G2 are matrixz Lie groups with Lie
algebras g1 and go, respectively. If G1 and Gz are connected and simply
connected and g1 is isomorphic to go, then Gy is isomorphic to Gs.

Proof. Suppose ¢ : g1 — g2 is a Lie algebra isomorphism. Since G is
connected and simply connected, there exists a Lie group homomorphism
d : G1 — Gs related in the usual way to ¢. Since G2 is connected and
simply connected, there exists a Lie group homomorphism ¥ : Go — G;
related in the usual way to ¢~!. Consider now the homomorphism ¥ o ® :
Gl — Gl.
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By the composition property of Lie algebra homomorphisms (Exercise 10),
the Lie algebra homomorphism associated with Wo® is ¢! o¢ = I. It then
follows from Corollary 16.29 that ¥ o® = I. A similar argument shows that
® o ¥ =], which means that ® is a Lie group isomorphism. m

Corollary 16.31 does not hold without the assumption that both groups
are simply connected, as the following important example shows.

Example 16.32 The Lie algebras su(2) and so(3) are isomorphic, but the
groups SU(2) and SO(3) are not isomorphic.

Since SU(2) is simply connected (Example 16.9), SO(3) must fail to be
simply connected. Indeed, m1(SO(3)) = Z/2, as can be seen from Exam-
ple 16.34.

Proof. The Lie algebra su(2) of SU(2) is the space of 2 x 2 skew-self-adjoint
matrices with trace zero. Explicitly,

B ia b+ ic
5”(2)_{< ~b+ic —ia )

We may consider the following basis for su(2):

1/4 0 1/ 01 1/0 i
El_E(o —i)’ EQ‘é(—1 0)’ E3_§<z' 0)'(16'4)

Direct calculation shows that [Eq, Es] = E3 and relations obtained from
this by cyclic permutation of the indices. These are the same relations as
those satisfied by the basis elements F;, j = 1,2,3, for so(3) in (16.2)
and (16.3). Thus, there is a Lie algebra isomorphism ¢ : su(2) — so(3) such
that ¢(E;) = Fj, j =1,2,3.

On the other hand, there can be no isomorphism between SU(2) and
SO(3), since SU(2) has a nontrivial center (containing at least I and —1I),
whereas the center of SO(3) is trivial (Exercise 14). m

a,b,ceR}.

Definition 16.33 Suppose G is a connected matrix Lie group with Lie
algebra g. A universal cover of G is an ordered pair (é, D) consisting
of a simply connected matriz Lie group G and a Lie group homomorphism
® : G — G such that the associated Lie algebra homomorphism ¢ : § — g
is an isomorphism of the Lie algebra § of G with g. The map ® is called
the covering map for G.

Although each Lie group has a universal cover that is again a Lie group,
the universal cover of a matriz Lie group may not be isomorphic to any
matrix Lie group. [The universal cover of SL(2;R), e.g., is not a matrix Lie
group.] It can be shown, however, that if a matrix Lie group G is compact,
then the universal cover of G is again a matrix Lie group (not necessarily
compact).

Suppose G is any simply connected Lie group with a Lie algebra § that
is isomorphic to g. The choice of a particular isomorphism ¢ : g — g gives
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rise, by Theorem 16.30, to a Lie group homomorphism & : G — G, so that
(G, ®) is a universal cover of G.

If (G,®) is a universal cover of G, it is often convenient to use the
isomorphism ¢ to identify g with g. If we follow this convention, we may
say that a universal cover of G is a simply connected group G having “the
same” Lie algebra as G.

If (G1,®,) and (Go, ®3) are two universal covers of a given matrix Lie
group G, then there is a unique Lie group isomorphism ¥ : G1 — G5 such
that ®o(W(A)) = ®1(A) for all A € Gy. (This result follows easily from
Corollary 16.31.) In light of this uniqueness result, we will often speak of
“the” universal cover of G.

Example 16.34 Let ® : SU(2) — SO(3) be the unique Lie group homo-
morphism for which the associated Lie algebra homomorphism ¢ satisfies
¢(E;) =Fj,j=1,2,3. Thenker® = {I,—I} and (SU(2),®) is a universal
cover of SO(3).

Proof. Since F; is diagonal, it is easy to see that e?™F1 = —J in SU(2).
On the other hand, by a trivial extension of Example 16.16, we have

1 0 0
et = 0 cosa —sina
0 sina cosa

for all a € R. In particular, et = I. Thus,
O(—1) = B(*™Fr) = 2™ = .

This shows that —I belongs to the kernel of ®.

Now, since ¢ is injective, ® is injective in a neighborhood of I. After all,
given distinct elements A and B of SU(2) near I, Theorem 16.25 tells us
that we can express A as eX and B as ¢¥, with X and Y being distinct
small elements of su(2). Then ¢(X) and ¢(Y) are distinct small elements
of so(3). Applying Theorem 16.25 again tells us that ®(A4) = ¢?X) and
®(B) = e?Y) are distinct.

We see, then, that ker @ is a discrete normal subgroup of SU(2). But a
standard exercise (Exercise 1) shows that a discrete normal subgroup of a
connected group is automatically central. On the other hand, it is easily
verified (Exercise 2) that the center of SU(2) is {I, —I}, so ker ® cannot be
larger than {I,—T}.

To show that ® maps onto SO(3), we first verify (Exercise 13) that each
element R of SO(3) can be expressed as R = e, with X € so(3). Since ¢
is surjective and ®(eX) = e?(X) & maps onto SO(3). m
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16.7 Finite-Dimensional Representations of Lie
Groups and Lie Algebras

A representation of a group G is a homomorphism II of G into GL(V),
the group of invertible linear transformations on some vector space. If II
is injective then G is isomorphic to its image under II; thus, II serves to
“represent” G concretely as a group of invertible linear transformations.
(We continue to use the term “representation” even if II is not injective.)
Similarly, a representation of a Lie algebra g is a Lie algebra homomorphism
of g into gl(V), the space of all linear transformations of V, where we equip
gl(V) with the bracket [X,Y] := XY — YV X.

Recall that an action of a group G on a set X is a map from G x X to X,
denoted (g, z) — g-x satisfying e-x = x forallx € X and g-(h-x) = (gh)-x
for all g,h € G and z € X. A representation II of G on some vector space
V gives rise to a linear action of G on V, given by g-v = II(g)v. (A linear
action is an action for which the map v — g - v is linear for each g.) Thus,
we may use ¢ - v as an alternative notation to II(g)v, when convenient.

16.7.1  Finite-Dimensional Representations

If G is a matrix Lie group, then G is already represented as a group of
matrices. Nevertheless, it is of interest [as we will see in Chap. 17 in the
case G = SO(3)] to explore other representations of G. Since a matrix Lie
group has a topological structure (inherited from M,,(C)), it is natural to
require representations to be continuous. It is also simpler to deal at first
with finite-dimensional representations, that is, those where the vector
space in question is finite dimensional, although eventually we will need to
consider infinite-dimensional representations as well. This discussion leads
to the following definition.

Definition 16.35 Let G C GL(n;C) be a matriz Lie group. A finite-
dimensional representation of G is a continuous homomorphism of G
into GL(V), the group of invertible linear transformations of a finite-
dimensional vector space V.

We will assume that all of our vector spaces are over the field C, even
though it is occasionally of interest to consider also representations over R.
The topology on GL(V) is defined by picking a basis, and thereby identifying
the space of linear maps of V' to V' with M, (C). We then use the subset
topology on GL(V) 2 GL(n;C) C M, (C). This topology is easily seen to
be independent of the choice of basis.

An important example of representations in quantum theory arises from
the time-independent Schrodinger equation in R™, namely the equation
H ¢ = Ev, for a fixed constant £ € R. If H is invariant under rotations,
then the space of solutions to this equation is invariant under rotations.
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Note that an individual solution % to this equation may or may not be a
rotationally invariant (i.e., radial) function. But if H is rotationally invari-
ant, then rotating a solution to H 1 = E1 will give another solution of this
equation. Even if the quantum Hilbert space is infinite dimensional, the
solution spaces to H 1 = E1 are typically finite dimensional and consti-
tute finite dimensional representations of the group SO(n) of rotations. If
we can understand what all possible finite-dimensional representations of
SO(n) look like, we will have made a lot of progress in understanding solu-
tions to H 1) = F1 in the rotationally invariant case. This line of reasoning
will be explored in detail in Chap. 18.

We may consider as well finite-dimensional representations of Lie alge-
bras. Assuming our Lie algebra g is finite dimensional (which is the only
case we will consider in this chapter), there is no need to impose a re-
quirement of continuity, since a linear map of one finite-dimensional real
or complex vector space to another is automatically continuous.

Definition 16.36 A finite-dimensional representation of a Lie algebra
g is a Lie algebra homomorphism of g into gl(V'), the space of all linear
transformations of V. Here gl(V') is considered as a Lie algebra with bracket
given by [X,Y] = XY - Y X.

We typically consider Lie algebras defined over the field R, since the Lie
algebra of a matrix Lie group is in general only a real subspace of M, (C).
Nevertheless, it is convenient to consider vector spaces over C. If g is a
real Lie algebra and V', and therefore also gl(V), is a complex vector space,
then we require only that 7 : g — gl(V) be real linear, which is the only
requirement that makes sense.

In the interest of simplifying the terminology, we will sometimes speak
of “a representation V,” without making explicit mention of the homomor-
phism IT or 7.

Definition 16.37 IfII : G — GL(V) is a representation of a matriz Lie
group G, then a subspace W of V is called an invariant subspace if
I(g)w € W for all g € G and w € W. Similarly, if 7 : g — gl(V) is
a representation of a Lie algebra g, then a subspace W of V' is called an
invariant subspace if 7(X)w € W for all X € g and w € W. A represen-
tation of a group or Lie algebra is called irreducible if the only invariant

subspaces are W =V and W = {0}.

Definition 16.38 If (II, V1) and (X,V2) are representations of a matrix
Lie group G, a map ® : Vi — Va is called an intertwining map (or
morphism) if ®(Il(g)v) = X(g)®(v) for all v € Vi, with an analogous
definition for intertwining maps of Lie algebra representations. If an in-
tertwining map s an invertible linear map, it is called an tsomorphism.
Two representations are said to be isomorphic (or equivalent) if there
ezists an isomorphism between them.
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In the “action” notation, the requirement on an intertwining map ® is
that ®(g - v) = g - ®(v), meaning that ® commutes with the action of G.
A typical goal of representation theory is to classify all finite-dimensional
irreducible representations of G up to isomorphism.

Given a representation IT : G — GL(V) of a matrix Lie group G, we
can identify GL(V) with GL(N;C) and gl(V) with gl(n;C) by picking a
basis for V. We may then apply Theorem 16.23 to obtain a representation
7 : g — gl(V) such that

(eX) = ™)
for all X € g.

Proposition 16.39 Suppose G is a connected matriz Lie group with Lie
algebra g. Suppose that 11 : G — GL(V) is a finite-dimensional representa-
tion of G and 7 : g — gl(V) is the associated Lie algebra representation.
Then a subspace W of V' is invariant under the action of G if and only if it
1s tnvariant under the action of g. In particular, 11 is irreducible if and only
if m is irreducible. Furthermore, two representations of G are isomorphic if
and only if the associated Lie algebra representations are isomorphic.

In general, given an representation 7 of g, there may be no representation

IT such that 7 and IT are related in the usual way. If, however, G is simply
connected, Theorem 16.30 tells us that there is, in fact, a IT associated with
every T.
Proof. Suppose W C V is invariant under m(X) for all X € g. Then
W is invariant under 7(X)™ for all m. Since V is finite dimensional, any
subspace of it is automatically a closed subset and thus W is invariant
under

I(eX) = e™X) = Z W(X') )
m!
m=0

Since G is connected, every element of G is (Corollary 16.28) a product
of exponentials of elements of g, and so W is invariant under II(A) for all
Aed.

In the other direction, if W is invariant under II(A) for all A € G, then
since W is closed, it is invariant under

hX—I

() = i

)

for all X € g.

Now suppose II; and II; are two representations of GG, acting on vector
spaces V7 and Va, respectively. If ® : V3 — V5 is an invertible linear map,
then an argument similar to the above shows ®II;(A) = 3(A4)® for all
A € G if and only if &m(X) = me(X)® for all X € g. Thus, @ is an
isomorphism of group representations if and only if it is an isomorphism of
Lie algebra representations. m
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Theorem 16.40 (Schur’s Lemma) IfV; and Vs are two irreducible rep-
resentations of a group or Lie algebra, then the following hold.

1. If ® : Vi — Va is an intertwining map, then either ® =0 or ® is an
isomorphism.

2. If®: V3 — Vo and ¥ : Vi — Vo are nonzero intertwining maps, then
there exists a nonzero constant ¢ € C such that ® = cVU. In particular,
if ® is an intertwining map of Vi to itself then ® = cl.

Although the first part of Schur’s lemma holds for representations over

an arbitrary field, the second part holds only for representations over alge-
braically closed fields.
Proof. It is easy to see that ker ® is an invariant subspace of V. Since
V1 is irreducible, this means that either ker ® = V7, in which case & = 0,
or ker® = {0}, in which case ® is injective. Similarly, the range of ® is
invariant, and thus equal to either {0} or V. If ® is not zero, then the
range of ® is not zero, hence all of V5. Thus, if ® is not zero, it is both
injective and surjective, establishing Point 1.

For Point 2, since ® and ¥ are nonzero, they are isomorphisms, by
Point 1. It suffices to prove that I' := ®~'W¥ is a multiple of the iden-
tity, where I' is an intertwining map of V;j to itself. Since we are work-
ing over C, I' must have at least one eigenvalue A. If W denotes the \-
eigenspace of I', then W is invariant under the action of the group or Lie
algebra. After all, if Tw = A\w, then (in the notation of the group case)
NII(A)w) = I(A)Tw = AI(A)w. Since A is an eigenvector of T, the in-
variant subspace W is nonzero and thus W = Vj, which means precisely
that T =\Al. m

16.7.2 Unitary Representations

In quantum mechanics, we are interested not only in vector spaces, but,
more specifically, in Hilbert spaces, since expectation values are defined in
terms of an inner product. We wish to consider, then, actions of a group
that preserve the inner product as well as the linear structure. Although
the Hilbert spaces in quantum mechanics are generally infinite dimensional,
we restrict our attention in this section to the finite-dimensional case.

Definition 16.41 Suppose V is a finite-dimensional Hilbert space over C.
Denote by U(V) the group of invertible linear transformations of V' that pre-
serve the inner product. A (finite-dimensional) unitary representation
of a matriz Lie group G is a continuous homomorphism of 11 : G — U(V),
for some finite-dimensional Hilbert space V.

Proposition 16.42 Let II : G — GL(V) be a finite-dimensional repre-
sentation of a connected matrixz Lie group G, and let m be the associated
representation of the Lie algebra g of G. Let {-,-) be an inner product on V.
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Then 11 is unitary with respect to (-,-) if and only if 7(X) is skew-self-
adjoint with respect to {-,-) for all X € g, that is, if and only if

m(X)" = —n(X)
forall X € g.

In a slight abuse of notation, we will refer to a representation 7 of a
Lie algebra g on a finite-dimensional inner product space as unitary if
m(X)* = —7(X) for all X € g.

Proof. Suppose first that II(A) is unitary for all A € G. Then for all X € g
and t € R we have

H(etX)* _ H(etX)fl _ H(eftX) _ eftw(X)'
On the other hand,

H(etX)* _ (etﬂ’(X))* _ etw(X)*'

Thus,

etﬁ(X)* —tm(X)

=e

for all ¢. Differentiating at ¢t = 0 yields 7(X)* = —7(X).
In the other direction, if 7(X)* = —7w(X) for all X € g, then

H(eX)* _ eﬂ'(X)* _ e—ﬂ'(X) _ H(e_X) — H@X)—lj

meaning that II(e™) is unitary. Since G is connected, Corollary 16.28 tells
us that each element A of G is expressible as a product of exponentials,
from which it follows that II(A) is unitary. m

16.7.3  Projective Unitary Representations

In quantum mechanics, two unit vectors in the quantum Hilbert space that
differ by multiplication by a constant are considered to represent the same
physical state. Thus, an operator of the form eI, with 6 € R, will act as the
identity at the level of the physical states. Suppose that V' is a Hilbert space
over C, assumed for the moment to be finite dimensional. Then it is natural
to consider homomorphisms not into U(V') but rather into the quotient
group U(V)/{eI}. Of course, given a homomorphism II of G into U(V),
we can always turn II into a homomorphism of G into the quotient group,
just by composing II with the quotient map. Not every homomorphism into
the quotient group, however, arises from a homomorphism into U(V).

Definition 16.43 Suppose V is a finite-dimensional Hilbert space over C.
Then the projective unitary group over V, denoted PU(V'), is the quo-
tient group

PU(V) = U(V)/{e"I},

where {eI} denotes the group of matrices of the form eI, 6 € R.
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Note that {e?I} is a closed normal subgroup of U(V). Now, U(V) is
(isomorphic to) a matrix Lie group, since we can identify it with U(n) by
picking an orthonormal basis for V. In general, the quotient of a matrix
Lie group by a closed normal subgroup may not be a matrix Lie group. In
this case, however, it is not hard to realize the quotient U(n)/{e”I} as a
matrix Lie group.

Proposition 16.44 IfV is a finite-dimensional Hilbert space over C, then
PU(V) is isomorphic to a matriz Lie group.

Let @ : U(V) — PU(V) be the quotient homomorphism and let q :
u(V)) — pu(V) be the associated Lie algebra homomorphism. Then q maps
u(V') onto pu(V) and the kernel of q is the space of matrices of the form
ial with a € R. Thus, pu(V') is isomorphic to u(V')/{ial}.

The Lie algebra u(V') of U(V) is the space of skew-self-adjoint operators
on V. In Proposition 16.44, the space {ial} is an ideal in u(V) and the
quotient is in the sense of Lie algebras over R; see Exercise 9. If dim V' = N,
then it is not hard to see that the Lie algebra pu(V) = u(V)/{ial} is
isomorphic to the Lie algebra su(N). The group PU(V) is not, however,
isomorphic to the group SU(N). See Exercise 16.

Proof. If dim V = N, then gl(V), the space of all linear maps of V to V,
has dimension N2. Given U € U(V'), we can define

Cu :gl(V) = gl(V)

by

Cy(X)=UXU"

(That is to say, Cy is conjugation by U.) Note that (Cyr)~! = Cy-1 and
Cyv = CyCy. Thus, C (ie., the map U — Cy) is a homomorphism of
U(V) into GL(gl(V')), and this homomorphism is clearly continuous. If U
is a multiple of the identity, then Cp is the identity operator on gl(V).
Conversely, if Cy is the identity, then UX = XU for all X € gl(V'), which
implies (Exercise 18) that U is a multiple of the identity. Thus, the kernel
of C' consists precisely of those scalar multiples of the identity that are in
U(V); that is, ker C = {eI}.

We have constructed, then, a homomorphism of U(V') into GL(gl(V')) =
GL(N?;C) with a kernel that is precisely {e?I}. The image of U(V) un-
der this homomorphism is, therefore, isomorphic to the quotient group
U(V)/{e*I}. Furthermore, since U(V) is compact, the image of U(V) un-
der C' is compact and thus closed. This image is, then, a matrix Lie group
isomorphic to PU(V).
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Let ¢ be the associated Lie algebra homomorphism associated with the
homomorphism C. Using Point 3 of Theorem 16.23, we may calculate that

d
ex(Y) = EetXYe_tX
=XY-YX
=[X,Y].

t=0

Using Exercise 18 again, we see that cx = 0 if and only if X is a multiple
of the identity. Thus, the kernel of ¢ consists of all the scalar multiples of
I in u(V), namely {ial}.

Now, the image of U(V') under C' is (isomorphic to) PU(V); in particular,
C maps U(V) onto PU(V). Tt follows that ¢ must map u(V') onto pu(V).
(This claim follows from Theorem 3.15 in [21].) Thus, pu(V) = u(V)/{ial}.
[ ]

Definition 16.45 A finite-dimensional projective unitary representa-
tion of a matrixz Lie group G is a continuous homomorphism Il of G into
PU(V), where V is a finite-dimensional Hilbert space over C. A subspace
W of V is said to be invariant under 11 if for each A € G, W is invariant
under U for every U € U(V) such that [U] = II(A). A projective unitary
representation (I, V') is irreducible if the only invariant subspaces are {0}
and V.

Given an ordinary unitary representation, ¥ : G — U(V), we can always
form a projective representation, II : G — PU(V), simply by setting II =
Q@ o X. Not every projective representation, however, arises in this fashion.
Thus, considering projective representations gives us more flexibility than
considering ordinary unitary representations.

Proposition 16.46 LetI1: G — PU(V) be a finite-dimensional projective
unitary representation of a matriz Lie group G, and let w: g — pu(V') be
the associated Lie algebra homomorphism. Then there exists a Lie algebra
homomorphism o : g — u(V) such that m7(X) = q(o(X)) for all X € g.
It is possible to choose o so that trace(o(X)) = 0 for all X € g, and o is
unique if we require this condition.

That is to say, every finite-dimensional projective representation can be
“de-projectivized” at the Lie algebra level. In general, o is not unique,
because there may be o’s for which trace(o(X)) is nonzero for some X.
On the other hand, if g has the property that every X € g is a linear
combination of commutators—which is true if g = so(3)—then ¢ is unique.
See Exercise 15.

Proof. Recall that pu(V) = u(V)/{ial}. That is, for each X € g, m(X)
denotes a whole family of operator that differ by adding ial. If Y € u(n)
is any representative of 7(X), then since Y* = —Y, the trace of Y will
be pure imaginary. Thus, there is a unique pure-imaginary constant ¢ =
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—trace(Y)/dimV such that the trace of Y + ¢I is zero. Let us then set
o(X) =Y + ¢l. Since 7 is a Lie algebra homomorphism, o([X,Y]) will
equal [0(X),o(Y)] + ial, for some a € R. Since trace(o([X,Y])) = 0 by
construction and since the commutator of any two matrices has trace zero,
we see that actually a = 0. Thus, a ¢ as in the proposition exists, and it is
unique if we require that ¢(X) have trace zero. m

Theorem 16.47 Suppose G is a matriz Lie group and G is a universal
cover of G, with covering map ®. Then the following hold.

1. Let II : G — PU(V) be a finite-dimensional projective unitary rep-
resentation of G. Then there is an ordinary unitary representation
G — u(v) of G such that o ® = Q o ¥. Any such ¥ is irre-
ducible if and only if I1 is irreducible. It is possible to choose ¥ so
that det(X(A)) =1 for all A € G, and X is unique if we require this
condition.

2. Let X be a finite-dimensional irreducible unitary representation of G.
Then the kernel of the associated projective unitary representation
Qo X contains the kernel of the covering map ®. Thus, Q oX factors
through G and gives rise to a projective unitary representation of G.

In the finite-dimensional case, then, there is a one-to-one correspondence
between irreducible projective unitary representations of G and irreducible,
determinant-one ordinary unitary representations of G. Point 1 of the the-
orem means that any finite-dimensional projective unitary representation
of the group G can be “de-projectivized” at the expense of passing to the
universal cover G of G.

Note that Theorem 16.47 applies only to finite-dimensional projective
unitary representations. Example 16.56 will provide an infinite-dimensional
example in which Point 1 of the theorem fails.

Proof. If g is the Lie algebra of GG, Proposition 16.46 tells us that we can
find an ordinary representation o : g — u(V') such that go o = 7. We then
define a representation & : g — u(V') of the Lie algebra g of G by setting
5(X) = o(¢(X)), X € §. Since G is simply connected, we can then find
a unique representation ¥ : G — U(V) such that X(e¥) = ™) for all
X € g. Since

go3=qoogop=mod,

it follows that QoY% = Ilo®. Furthermore, if ¥ maps into SU(V), 0 = Gogp~*
maps into su(n). This condition uniquely determines ¢ and thus also & and
3], establishing Point 1 of the theorem.

For Point 2, observe that ker ® is a discrete normal subgroup of G, which
is therefore central (Exercises 1 and 12). Thus, for all A € ker ®, we have

S(A)S(B) = $(AB) = £(BA) = %(B)S(A)
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for all B € G. That is to say, £(A) is an intertwining map of V' to itself.
Since V is also irreducible as a representation of G, Schur’s lemma tells us
that X(A) = cI, where |¢| = 1 because £(A) € U(V). Thus, A is in the
kernel of the associated projective representation Q o X. m

16.8 New Representations from Old

In this section, we consider three basic mechanisms for combining repre-
sentations to produce new representations: direct sums, tensor products,
and duals. This section assumes familiarity with these notions at the level
of vector spaces; a brief review is provided in Appendix A.1.

Definition 16.48 Suppose (111,V1) and (1, V2) are representations of a
matriz Lie group G. The direct sum of these two representations is the
representation 111 & Iy : G — GL(V; & Va) given by

(I} ® II2)(A) = 11 (A) © T2 (A).

The tensor product of 111 and Il is the representation 11; @ Ils : G —
GL(Vi ® Va) given by

(IT; ® 1) (A) = 11, (A) ® T (A).

Finally, the dual of 11, is the representation 11" : G — GL(V*) given by

I (A) = I (A™Y)" = (I (A)7) 7.

Similarly, the direct sum, tensor product, and dual of Lie algebra repre-
sentations can be defined by

(m1 & m2)(X) = m(X) & m2(X)
(71'1 ®7T2)(X) = 7T1(X) ®I+I®7T2(X)
(X)) = —m (X))

It is important to note the differences in formulas between the group and
the Lie algebra in the case of tensor products and dual representations. It
is easy to motivate the definitions for the Lie algebra: If G acts on V; ® V3
by II; (A) ® TI5(A), then the associated Lie algebra action will be given by

d
aHl(etX) @I (e™)| =m(X)@I+1em(X).
t=0

Of course, we continue to use this last formula for tensor products of Lie
algebra representations, even if there is no associated group representations.
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Remark 16.49 If (II1, V1) and (I, Va) are representations of a group G,
it is possible to view Vi ® Vo as a representation of the direct product group
G x G, by setting

(I ® )(A, B) = 111 (A4) @ [I2(B).

Similarly, if (71, V1) and (w2, V2) are representations of a Lie algebra g, it
1s possible to view Vi, ® Vo as a representation of g B g by setting

(M @m)(X,)Y)=m((X) @1+ 1T@m(Y).

Nevertheless, it is, in most cases, more natural to view V; ® V5 as a
representation of G itself, rather than of G x G. Even if V; and V; are
irreducible representations of G, the space V3 ® V5 will in most cases fail
to be irreducible as a representation of G. If, for example, we take V; =
Vo = V, then the space of symmetric tensors inside V ® V will form a
nontrivial invariant subspace, unless dim V' = 1. An important problem in
representation theory is to decompose Vi ® V5 as a direct sum of irreducible
representations, where V7 and V5 are irreducible representations of a fixed
group or Lie algebra. In the case of the Lie algebra su(2), this decomposition
is discussed in Sect. 17.9.

Definition 16.50 A finite-dimensional representation of a group or Lie
algebra is said to be completely reducible if it is isomorphic to a direct
sum of irreducible representations.

Proposition 16.51 Every finite-dimensional unitary representation of a
group or Lie algebra is completely reducible.

Proof. Suppose (I, V) is a unitary representation of a matrix Lie group G.
If W is a subspace of V invariant under each II(A), then W+ is invariant
under each TI(A)*, as the reader may easily verify. But since II is unitary,

H(A)* =TI(A) "t =T1(A ).

Thus, W+ is invariant under II(A~!) for all A € G, hence under II(A) for all
A € . We conclude that, in the unitary case, the orthogonal complement
of an invariant subspace is always invariant.

If V is irreducible, there is nothing to prove. If not, we pick a nontrivial
invariant subspace W and decompose V as W @ W=, The restriction of II
to W or to W+ is again a unitary representation, so we can repeat this
procedure for each of these subspaces. Since V' is finite dimensional, the
process must eventually terminate, yielding an orthogonal decomposition
of V as a direct sum of irreducible invariant subspaces.

If we consider a unitary representation 7 of a Lie algebra g, we have
the same argument, but with the identity II(A)* = II(A~!) replaced by
(X)) =—-7(X). =



360 16. Lie Groups, Lie Algebras, and Representations

Proposition 16.52 Suppose K is a compact matriz Lie group. For any
finite-dimensional representation (II, V') of K, there exists an inner product
on V such that II(A) is unitary for all A € G. In particular, every finite-
dimensional representation of K is completely reducible.

See Proposition 4.36 in [21].

16.9 Infinite-Dimensional Unitary Representations

For the applications we have in mind, we need to consider representa-
tions that are infinite dimensional. The theory of such representations is
inevitably more complicated than that of finite-dimensional representa-
tions. For our purposes, it suffices to consider the nicest sort of infinite-
dimensional representations—unitary representations in a Hilbert space.

16.9.1  Ordinary Unitary Representations

We begin by considering ordinary representations and then turn to projec-
tive representations.

Definition 16.53 Suppose G is a matriz Lie group. Then a unitary rep-
resentation of G is a strongly continuous homomorphism II : G — U(H),
where H is a separable Hilbert space and U(H) is the group of unitary op-
erators on H. Here, strong continuity of I1 means that if a sequence A, in
G converges to A € G, then

i [[T(A ) — ()] = 0
for all € H.

We can attempt to associate to a unitary representation IT of G some
sort of representation 7 of the Lie algebra g of GG, by imitating the con-
struction in Theorem 16.23. For any X € g, the map ¢ — II(e!¥) is a
strongly continuous one-parameter unitary group. Thus, Stone’s theorem
(Theorem 10.15) tells us that there exists a unique self-adjoint operator A
such that I(e!X) = ¢4 for all t € R. If we let 7(X) denote the skew-self-
adjoint operator 74, we will have

(X)) = (X, (16.5)

The operators m(X), X € g, are in general unbounded and defined only
on a dense subspace of H. Nevertheless, it can be shown (see, e.g., [43])
that there exists a dense subspace V of H contained in the domain of
each 7(X) and that is invariant under each 7(X), and on which we have
7([X,Y]) = [7(X),n(Y)]. In the case of the particular representation that
we will consider in the next chapter, we can avoid these difficulties by
looking at finite-dimensional invariant subspaces.
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Proposition 16.54 Suppose G is a matriz Lie group and 11 : G — U(H) is
a unitary representation of G. For each X € g, let 7(X) denote the operator
in (16.5). Suppose V.C H is a finite-dimensional subspace of H such that
II(A) maps V into V, for all A € G. Then for all X € g, V C Dom(w(X)),
7(X) maps V into V, and we have

([ X, Y])v = [7(X),7n(Y)]v (16.6)

for allv e V.

In the other direction, suppose G is connected and suppose V is any
finite-dimensional subspace of H such that for all X € g, V C Dom(w(X))
and m(X) maps V into V. Then II(A) also maps V into V, for all A € G.

Proof. Since V is invariant under both II(A) and II(A)* = II[(A~1), the
restriction to V' of each II(A) is unitary. The operators II(A)[,, form a
finite-dimensional unitary representation of G that is strongly continuous
and thus continuous. (In the finite-dimensional case, all reasonable notions
of continuity for representations coincide.) For each X € g, Theorem 16.18
tells us that there is an operator X on V such that

H(etX)’V _ etX'

Thus, for any v € V, we have

. (e —w o etXy—w ~
lim
t—0 t t—0 t

This calculation shows that v is in the domain of the infinitesimal gener-
ator 7(X) of the unitary group II(e'¥), and that 7(X)v = Xv. Since the
operators X, Xe g, form a representation of g, we have the relation (16.6).

In the other direction, if V is invariant under 7(X), the restriction of
7m(X) to V is automatically bounded. Thus, there is a constant C' such that

[ (X) ™ ]| < C™ o] (16.7)

for all v € V. If we use the direct-integral form of the spectral theorem
for the self-adjoint operator A := —iw(X), it is easy to see that (16.7) can
only hold if v, viewed as an element of the direct integral, is supported on
a bounded interval inside the spectrum of A. Since the power series of the
function \ — et converges to ¢* uniformly on any finite interval, we will

have
. >t X)™
H(etx)v =My = Z —Wn(zl ) .
m=0

Each term in the above power series belongs to V, which is finite dimen-
sional and thus closed. We conclude that II(e!*)v belongs to V for all
X € g. Since G is connected, each element of G is a product of exponen-
tials of Lie algebra elements, and we have the claim. ®
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16.9.2  Projective Unitary Representations

Given a Hilbert space H, let S® denote the unit sphere in H, that is, the
set of vectors with norm 1. Let PH be the quotient space (S™)/ ~, where
“~” denotes the equivalence relation in which u ~ v if and only if u = v
for some § € R. The quotient map ¢ : SH — PH induces a topology on
PH in which a set U C PH is open if and only if ¢~*(U) is open as a
subset of the metric space S? c H.

As in the finite-dimensional case, we can form the quotient group

PUH) := U(H)/{e"I}.

The action of U(H) on SH descends to a well-defined action of PU(H)
on PH.

Definition 16.55 A projective unitary representation of a matrix Lie
group G is a homomorphism 11 : G — PU(H), for some Hilbert space H,
with the property that if a sequence A,, in G converges to A in G, then

II(A,,)x — T(A)x
for all x € PH.

Recall that in the finite-dimensional case, every projective unitary rep-
resentation of G can be “de-projectivized” at the expense of possibly having
to pass to the universal cover G of G (Theorem 16.47). The
de-projectivization proceeds by passing to the Lie algebra, choosing the
trace-zero representative of each equivalence class, and then exponentiat-
ing back to the universal cover of the original group. This approach does
not work in the infinite-dimensional case. After all, even assuming we can
construct a Lie algebra homomorphism 7(X) for each X € g, the repre-
sentatives of m(X) are typically unbounded operators on H, for which the
notion of trace does not make sense. This difficulty is not just a technical-
ity; the corresponding result in the infinite-dimensional case is false, as we
will now see.

Example 16.56 For all (a,b) € R?, define an operator Tia,p) On L%(R) by

(Tap¥)(x) = ““(z —b).
Then T(ap) is unitary for all (a,b) € R? and we have

(Tay Ttar ) (z) = €7 =z — (b + 1))
=" (Tlasar o) (@). (16.8)
The map (a,b) — [T(4p)] is a homomorphism of R? into PU(L?(R)), and
this homomorphism is continuous in the sense of Definition 16.55. There

does not, however, exist any homomorphism S : R? — U(L?(R)) such that
[S(a.p)] = [T(ap)] for all (a,b) € R2.
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Thus, even though R? is simply connected (and thus its own universal

cover), there is no way to de-projectivize the projective unitary represen-
tation (a,b) — [T(,4p] of R2.
Proof. The map (a,b) — T, is easily seen to be strongly continuous,
and thus the map (a,b) = [T(4)] is continuous in the sense of Defini-
tion 16.55. If a homomorphism S with the indicated properties existed,
then there would be constants 6, such that S, ) = ei(’avbT(mb). But then
since S is a homomorphism from the commutative group R? into U(L?(R)),
the operator S(,) would have to commute with S(4 ;) for all (a,b) and
(a’,0"). But then the operators T, 3y and T{4 1), being constant multiples
of commuting operators, would need to commute as well. But this is not the
case; for example, T, ) does not commute with T(q y), as is easily verified
using (16.8). m

Despite the negative result in Example 16.56, there is a positive result in
this direction: If G is connected and “semi-simple,” every projective unitary
representation of G can be de-projectivized after passing to the universal
cover. Here, a Lie algebra g is said to be simple if g has no nontrivial ideals
and dim g > 2. A Lie algebra is said to be semi-simple if it is a direct sum
of simple algebras. Finally, a Lie group G is said to be semi-simple if the
Lie algebra g of G is semi-simple.

For any connected Lie group G, a projective unitary representation IT of
G can be de-projectivized by passing to a one-dimensional central exten-
sion. A one-dimensional central extension of G is a Lie group G’ together
with a surjective homomorphism ® : G’ — G such that the kernel of ® is
one-dimensional and contained in the center of G’. See the article [1] of V.
Bargmann for more information about these issues.

16.10 Exercises

1. Suppose that G is a connected matrix Lie group and that N is a
discrete normal subgroup of G, meaning that there is some neighbor-
hood U of I in G such that U N N = {I}. Show that N is contained
in the center of G.

Hint: Consider the quantity gng=! for g € G and n € N.

2. (a) Suppose two elements U and V of SU(2) commute. Show that
each eigenspace for U is invariant under V' and vice versa.

(b) Show that if U is in the center of SU(2), then U =T or U = —1I.

3. Define the Hilbert-Schmidt norm of a matrix X € M, (C) by the

formula
n
2 2
IXNfs = D X5l
jik=1
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Using the Cauchy—Schwarz inequality, show that
XY ks < 1 X lgs 1Y [lrs (16.9)
for all X,Y € M, (C).

Using term-by-term differentiation of power series, show that for all
X € M, (C) and all 1 < j, k < n, we have

1@,

= ik
t=0 J

. Verify Property 4 of Theorem 16.15. This should be easy in the case

that X is diagonalizable. In the general case, either use the Jordan
canonical form or appeal to the fact that diagonalizable matrices are
dense in M, (C).

Suppose X and Y are commuting n X n matrices. Show that

€X€Y = €X+Y.

This is Property 5 of Theorem 16.15.

Hint: Multiply together the power series for eX and e¥ and then
group terms where the total power of X and Y is n.

For A € M,,(C), define the logarithm of A by the power series

72 _ 73
logAzA—I—(A2I) +(A3I) —

whenever this series converges. Assume the following result: If A is
sufficiently close to I, then log A is defined and exp(log A) = A.
[This can be seen easily when A is diagonalizable, and the set of
diagonalizable matrices is dense in M, (C).]

(a) Show that there exists a constant C' such that for all A with
I|A—1I|| < 1/2 we have

log A= (A=D)f <CllA-T|*.
(b) Show that for all X, Y € M,,(C) we have
X Y 1
log (ex/mey/m) =—+4+—+40 (—2> : (16.10)
m m m
Note that eX/™eY/™ tends to I as m tends to infinity, so that

the left-hand side of (16.10) is defined for all sufficiently large m.
(¢) Prove the Lie Product Formula.
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8. (a) Show that for all X,Y € M, (C),

H— (X +ty)™ <m| X" Y]l

t=0

(b) Show that the map X ~ ¥ is a continuously differentiable
map of M, (C) = R2"" 10 itself.

(c) Using Exercise 4, show that the differential of the map X + X
at X = 0 is the identity map of M, (C) to itself. (Recall that the
differential of smooth map of R7 to R¥, evaluated at a point in
R/, is a linear map of R’ to R*.)

9. Suppose g is a Lie algebra and b is an ideal in g. Let g/b denote the
vector space quotient of g by . Show that the bracket on g descends
unambiguously to a bilinear map on g/h, and that g/h forms a Lie
algebra under this map.

10. Suppose that G1, G2, and G3 are matrix Lie groups with Lie algebras
g1, 02, and g3, respectively. Suppose that ® : G; — G2 and V¥ :
G2 — G3 are Lie group homomorphisms with associated Lie algebra
homomorphisms ¢ and v, respectively. Show that the Lie algebra
homomorphism associated to ¥ o ® : G; — G3 is 1 o ¢.

11. Show that isomorphic matrix Lie groups have isomorphic Lie alge-
bras.

12. Suppose G; and G2 are matrix Lie groups with Lie algebras g; and
g2, respectively. Suppose ® : G; — G5 is a Lie group homomorphism
with the property that the associated Lie algebra homomorphism
¢ : g1 — g2 is injective. Show that there exists a neighborhood U of
the identity in G such that U Nker ® = {I}.

Hint: Use Theorem 16.25.

13. (a) Show that every R € SO(3) has an eigenvalue of 1.

(b) Show that every R € SO(3) is conjugate in SO(3) to matrix of

the form
1 0 0

0 cosf —sinf
0 sinf cos6

for some 6 € R.
(¢) Show that the exponential map from so(3) to SO(3) is surjective.
(d) Show that SO(3) is connected.

14. Show that the center of SO(3) is trivial.
Hint: Use Part (a) of Exercise 13.
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15.

16.

17.

18.

19.
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Given a Lie algebra g, let [g, g] denote the space of linear combinations
of commutators, that is, the space spanned by elements of the form
[X,Y] with X, Y €g.

(a) Show that [g,g] is an ideal in g and that the quotient g/[g, g]
is commutative. (The ideal [g, g] is called the commutator ideal

of g.)
(b) If g = so(3), show that [g,g] = g.

(¢) f m: g — gl(V) is any finite-dimensional representation of g,
show that 7([g, g]) is contained in sl(V'), the space of endomor-
phisms of V' with trace zero.

(a) Show that the Lie algebra pu(n) 2 u(n)/{iaR} is isomorphic to
the Lie algebra su(n).

(b) Let {€2™*/" T} denote the group of matrices that are of the form
of an nth root of unity times the identity. Show that the group
PU(n) is isomorphic to SU(n)/{e>™*/"T}.

Suppose that GG is a matrix Lie group with Lie algebra g and that
A is an element of G. Show that the operation of left multiplication
by A7! is a diffeomorphism of M, (C). Now show that there exist
neighborhoods U of 0 in M,,(C) and V of A in M, (C) such that the
map X — AeX maps U diffeomorphically onto V' and such that for
X € U, we have X € g if and only if Ae® € V. (Use Theorem 16.25.)

Suppose that Z € M, (C) has the property that ZX = XZ for all
X € M, (C). Show that Z = ¢I for some c € C.

Suppose (II,H) is a unitary representation of a matrix Lie group
G, and suppose Vi and V5 are finite-dimensional irreducible invari-
ant subspaces of H. Show that if V3 and V5 are not isomorphic as
representations of GG, then Vj is orthogonal to V5 inside H.

Hint: Show that the orthogonal projection of H onto Vi or V3 is an
intertwining map, and use Schur’s lemma.
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Angular Momentum and Spin

17.1 The Role of Angular Momentum
in Quantum Mechanics

Classically, angular momentum may be thought of as the Hamiltonian
generator of rotations (Proposition 2.30). Angular momentum is a particu-
larly useful concept when a system has rotational symmetry, since in that
case the angular momentum is a conserved quantity (Proposition 2.18).
Quantum mechanically, angular momentum is still the “generator” of ro-
tations, meaning that it is the infinitesimal generator of a one-parameter
group of unitary rotation operators, in the sense of Stone’s theorem (The-
orem 10.15). The quantum angular momentum is again conserved in sys-
tems with rotational symmetry. This means that if the Hamiltonian His
invariant under rotations, then H commutes with the angular momentum
operators, in which case, the angular momentum operators are constants
of motion in the quantum mechanical sense.

The various components of the classical angular momentum vector for
a particle in R? satisfy certain simple commutation relations under the
Poisson bracket (Exercise 19 in Chap. 2). We will see that those relations are
the commutation relations for the Lie algebra so(3) of the rotation group
SO(3). If H commutes with each component of the angular momentum,
each eigenspace for H (the solution space to H Y = M\ for a given A) is
invariant under the angular momentum operators. Thus, the eigenspace
constitutes a representation of the Lie algebra so(3). By classifying the
irreducible (finite-dimensional) representations of so(3), we can obtain a lot

B.C. Hall, Quantum Theory for Mathematicians, Graduate Texts 367
in Mathematics 267, DOI 10.1007/978-1-4614-7116-5_17,
© Springer Science+Business Media New York 2013
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of information about the structure of the solution spaces to the equation
H 1) = A\, in the case that H is invariant under rotations. Specifically, the
representation theory of so(3) allows us to determine completely the angular
dependence of a solution ¢ (z), leaving only the radial dependence of v to
be determined. This has the effect of reducing the number of independent
variables from three to one (just the radius r in polar coordinates), thereby
reducing the problem to solving an ordinary differential equation.
Understanding angular momentum from the point of view of representa-
tions of a Lie algebra also prepares us to understand the concept of spin.
The Hilbert space for a particle in R? with spin is the tensor product
of L?(R3) with a finite-dimensional vector space V, where V carries an
irreducible action of the rotation group SO(3). In this setting, the proper
notion of “action” is a projective representation of SO(3), meaning a family
of operators satisfying the relations of SO(3) up to phase factors (constants
of absolute value one). These phase factors are permitted because, physi-
cally, two vectors that differ only by a constant represent the same physical
state. By Proposition 16.46, every projective representation of SO(3) can
be de-projectivized at the level of the Lie algebra so(3). Conversely, every
irreducible ordinary representation of the Lie algebra so(3) gives rise to a
representation of the universal cover SU(2) of SO(3), which in turn gives
rise (Theorem 16.47) to a projective representation of SO(3). Thus, the
possibilities for the space V' are in one-to-one correspondence with the irre-
ducible representations of the Lie algebra so(3). In the case of “half-integer
spin,” the space V' does not carry an ordinary representation of the group

SO(3).

17.2 The Angular Momentum Operators in R3

Recall from Sect. 2.4 that the classical angular momentum for a particle in
R3 is given by J = x x p, so that, say, J3 = z1p2 — xop1. As in Sect. 3.10,
we introduce the quantum mechanical counterpart, a “vector” J with com-
ponents that are operators,

J=XxP.

Thus, for example, jl = X5P3 — X3P,. Note that each component of the
angular momentum involves products of distinct components of the po-
sition and momentum operators X and P, which commute. Thus, in the
expression for, say, jg, it does not matter whether we write X P35 or P3X5.

The angular momentum operators are unbounded operators and are de-
fined only on a dense subspace of L?(R?). For the moment, we will not
specify the domain of these operators, leaving that until the next section.
We will see, however, that the domain of each angular momentum operator
contains the Schwartz space S(R?) (Definition A.15).
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As in Exercise 10 in Chap.3, we can use the canonical commutation
relations to obtain [Ji, J5] = ihJs. We may similarly compute [J2, J5] and
[Jl, JQ] to obtain the complete set of commutation relations among the .J’s:

1., - 5 1, - A 1. .. - R
— 1, o]l = J3;  —[J2, 3] =J1; =3, J1] = Ja.
zh[ 1, J2] 3; zh[ 2, J3] 13 zh[ 3,J1] 2
These relations compare well with the Poisson bracket relations among the
various components of the classical angular momentum vector (Exercise 19
in Chap.2).
Writing out J3 explicitly, we have

(J3¥)(x) = —ih <Ilai2 - 2%) (%) (17.1)

: (17.2)

L d
—ih @’Q/J(RQX) e

where Ry denotes a counterclockwise rotation by angle 6 in the (x1,x2)
plane, with similar expression for Ji and Jo. This description of the angu-
lar momentum operators demonstrates that they—Ilike the components of
the classical angular momentum—are closely connected to rotations (recall
Propositions 2.18 and 2.30). The connection between angular momentum
and rotations will be made more explicit in the following sections by recog-
nizing that they make up the Lie algebra action associated with the natural
action of the rotation group on L?(IR?).

We may define a new version of the angular momentum operators jj,
given by

Jj = =J;. (17.3)
Since Planck’s constant and angular momentum have the same units, the

jj’s do not depend on the choice of units; we refer to them as the dimen-
sionless versions of the angular momentum operators.

17.3 Angular Momentum from the Lie Algebra
Point of View

We begin this section by looking at the natural action of the rotation group

SO(3) on L*(R3).
Definition 17.1 For each R € SO(3), define II(R) : L*(R3) — L*(R?) by
(I(R)Y)(x) = $(R™"). (17.4)

Proposition 17.2 For each R € SO(3), the map I1(R) : L*(R3) — L*(R3)
is unitary. Furthermore, the map 11 : SO(3) — U(L?(R3)) is a strongly
continuous homomorphism.
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Proof. Since the Lebesgue measure on R? is invariant under rotations,
II(R) is unitary for all R € SO(3). It is easily checked that II(RyR2) =
I(R1)II(Ry); for this to be true, we need to have ¢(R™1z) rather than
1 (Rx) in the definition of II(R). Arguing as in the proof of Example 10.12,
we can easily verify that II is strongly continuous. ®

Recall the computation of the Lie algebra so(3) of SO(3) in Sect. 16.5,
and the basis {F1, Fy, F3} for so(3) in (16.2) in that section.

Proposition 17.3 For each X € so(3), let m(X) denote the skew-self-
adjoint operator such that

(etX) = (X, (17.5)

Then the domain of each m(F;) contains the Schwartz space S(R®) and on
S(R3) we have the relation

J; = ihm(Fy).

In the notation of Stone’s theorem (Theorem 10.15), the operator m(X)

in (17.5) is ¢ times the infinitesimal generator of the one-parameter unitary
group t — II(etX).
Proof. In the case of j3, we compute as in Example 16.16 that et is a
counterclockwise rotation in the (z1, z2)-plane. If 1) belongs to S(R?) then
the limit defining the derivative in (17.2) is easily seen to hold in the L?
sense. Thus, recalling the inverse on the right-hand side of (17.4), we see
that Js coincides with ihm(F3), as claimed. Similar calculations apply to
jl and jg. ]

Although it is not easy to determine the precise domain of each angular
momentum operator, we can see from Proposition 16.54 that if ¢ belongs
to a finite-dimensional subspace of L?(R3) that is invariant under rotations,
then 1 belongs to the domain of each jj.

17.4 The Irreducible Representations of so(3)

In this section, we classify the irreducible finite-dimensional representations
of the Lie algebra so(3), up to isomorphism. (See Sect. 16.7 for the defini-
tions and elementary properties of representations.) All representations are
taken over the field of complex numbers and assumed to have dimension
at least one. We continue to use the basis {Fy, Fs, F3} for so(3) in (16.2).

Theorem 17.4 Let 7 : so(3) — gl(V) be a finite-dimensional irreducible
representation of so(3). Define operators L™, L™, and L3 on V by

L+ = Z7T(F1) — 7T(F2)
L~ :ZTF(Fl)—FTF(FQ)
L3 :ZTF(Fg)
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Let | = L(dimV — 1), so that dimV = 21+ 1. Then there eists a basis
Vo, V1, ..., V9 Of V' such that

Lzv; = (I — j)v;

v if <2
L7v; = { 0 ifj=2 (17.6)
[ty =4 J@FT =G i j >0
i 0 ifj=0

Thus, the quantity [ completely determines the structure of an irreducible
representation of so(3). Since dim V' is a positive integer, [ has to have one
of the following values:

1.3
1=0,5,1,5,.... 17.7
727 527 ( )

The proof of Theorem 17.4 is given later in this section.

Definition 17.5 If (m, V) is an irreducible finite-dimensional representa-
tion of so(3), then the spin of (m, V) is the largest eigenvalue of the operator
L3 :=in(F3). Equivalently, 1 is the unique number such that dimV = 2141.

Our next result says that all the values of [ in (17.7) actually arise as
spins of irreducible representations of so(3).
Theorem 17.6 For anyl =0, %, 1, %, ... there exists an irreducible repre-
sentation of so(3) of dimension 21+ 1, and any two irreducible representa-
tions of so(3) of dimension 21 + 1 are isomorphic.

Note that the theorem is only asserting the existence, for each [, of a
representation of the Lie algebra so(3). As we will see in the next section,
an irreducible representation 7 of so(3) comes from a representation II of
SO(3) if and only if [ is an integer. Nevertheless, the representations of
so(3) with half-integer values of [—the ones where [ is half of an integer
but not an integer—still play an important role in quantum physics, as
discussed in Sect. 17.8. (Although it would be clearer to refer to the case
1=1/2,3/2,5/2,...as “integer plus a half,” the terminology “half-integer”
is firmly established.)

By comparison to Proposition 17.3, we may think of L3 as the analog
of the third component of the dimensionless angular momentum operator
on the space V. Indeed, we will eventually be interested in applying Theo-
rem 17.4 to the case in which V is a subspace of L?(R?) that is invariant
under the action of SO(3). In that case, L3 will be precisely (the restriction
to V of) the dimensionless angular momentum operator Js.

Observe that Theorem 17.4 bears a strong similarity to our analysis of
the quantum harmonic oscillator. In both cases, we have a “chain” of eigen-
vectors for a certain operator, along with raising and lowering operators
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that raise and lower the eigenvalue of that operator. In the case of the
harmonic oscillator, we have a chain that begins with a ground state and
then extends infinitely in one direction. In the case of so(3) representations,
we have a chain that is finite in both directions. The chain begins with an
eigenvector vy for L3 with maximal eigenvalue, so that vy is annihilated
by the raising operator L™. A key step in the proof of Theorem 17.4 is to
determine how the chain can terminate (in the direction of lower eigenval-
ues for L3) without violating the commutation relations among Ls, LV,
and L.

Proof of Theorem 17.4. Since 7 is a Lie algebra homomorphism, the
7(F;)’s satisfy the same commutation relations as the Fj’s themselves.
From this we can easily verify the following relations among the operators
LT, L=, and Ls:

[Ls, L] = L7 (17.8)
[Ls,L7]=~L" (17.9)
[Lt,L7] =2Ls. (17.10)

Now, since we are working over the algebraically closed field C, the operator
L3 has at least one eigenvector v with eigenvalue A. Consider, then, L.
Using (17.8), we compute that

LiLt v = (LYLy3+ LT)v=LT(Ww)+ LTv=(\+1)L"v. (17.11)

Thus, either L*v = 0 or L*v is an eigenvector for L3 with eigenvalue
A+ 1. We call L™ the “raising operator,” since it has the effect of raising
the eigenvalue of L3 by 1.

If we apply L™ repeatedly to v, we obtain eigenvectors for L3 with eigen-
values increasing by 1 at each step, as long as we do not get the zero vector.
Eventually, though, we must get 0, since the operator Lz has only finitely
many eigenvalues. Thus, there exists & > 0 such that (L*)*v # 0 but
(LT)**1y = 0. By applying (17.11) repeatedly, we see that (L*)*v is an
eigenvector for Lz with eigenvalue A + k.

Let us now introduce the notation vy := (L*)¥v and g = A + k. Then vy
is a nonzero vector with Ltvg = 0 and Lzvg = puvg. We now forget about
the original vector v and eigenvalue A and consider only vy and u. Define
vectors v; by

v; = (L Y vy, j=0,1,2,....

Arguing as in (17.11), but using (17.9) in place of (17.8), we see that L~
has the effect of either lowering the eigenvalue of L3 by 1 or of giving the
zero vector. Thus, Lav; = (1 — j)v;.

Next, we claim that for j > 1 we have

Ltv, =j2u+1—j;, j=1,2,3,..., (17.12)



17.4 The Irreducible Representations of so(3) 373

which is easily proved by induction on j, using (17.10) (Exercise 2). Since,
again, L3 has only finitely many eigenvectors, v; must eventually be zero.
Thus, there exists some N > 0 such that vy # 0 but vyy; = 0. Since
vn+1 = 0, applying (17.12) with j = N gives

0= L vy = (N+1)(2u— N)oy.

Since vy # 0 and N +1 > 0, we must have (2 — N) = 0. This means that
p must equal N/2.

Letting [ = N/2 and putting 4 = N/2 = [, we have the formulas recorded
in (17.6). Meanwhile, since the v;’s are eigenvectors for L3 with distinct
eigenvalues, the v;’s are automatically linearly independent. Furthermore,
the span of the v;’s is invariant under L™, L™, and Lg, hence under all of
so(3). Since V is assumed to be irreducible, the span of the v;’s must be
all of V. Thus, the v;’s form a basis for V. The dimension of V' is therefore
equal to the number of v;’s, whichis N+1=2[+1. m
Proof of Theorem 17.6. We construct V simply by defining a space
V with basis vg,v1,...,vy and defining the action of so(3) by (17.6). It
is a simple matter (Exercise 4) to check that L™, L™, and Ls, defined in
this way, have the correct commutation relations, so that V is indeed a
representation of so(3).

It remains to show that V' is irreducible. Suppose that W is an invariant
subspace of V and that W # {0}. We need to show that W = V. To
this end, suppose that w is some nonzero element of W, which we can
decompose as w = Z?l:o a;jvj. Let jo be the largest index for which a; is
nonzero. According to the formula for L' in (17.6), applying L™ to any
of the vectors vy, ..., vy gives a nonzero multiple of the previous element
in our chain. Thus, (L7)%w will be a nonzero multiple of vg. Since W
is invariant, this means that vy belongs to W. But then by applying L~
repeatedly, we see that v; belongs to W for each j, so that W = V.

Theorem 17.4 tells us that any irreducible representation of so(3) of di-
mension 2] 4+ 1 has a basis as in (17.6). We can then construct an isomor-
phism between any two irreducible representations by mapping this basis
in one space to the corresponding basis in the other space. m

In the rest of this section, we look at some additional properties of rep-
resentations of so(3).

Proposition 17.7 Let 7 : so(3) — gl(V') be an irreducible representation
of so(3). Then there exists an inner product on 'V, unique up to multiplica-
tion by a constant, such that w(X) is skew-self-adjoint for all X € so(3).

Proof. Recalling how the operators Lz, L™, and L~ are defined, we can
see that the assertion that each m(X), X € so(3), is skew-self-adjoint is
equivalent to the assertion that Ls is self-adjoint and that L™ and L~
are adjoints of each other. Since the v;’s are eigenvectors for Lz with dis-
tinct eigenvalues, if L3 is to be self-adjoint, the v;’s must be orthogonal.
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Conversely, if we have any inner product for which the v;’s are orthogonal,
then Lg will be self-adjoint, as is easily verified.

It remains to investigate the consequences of the condition (LT)* = L~.
Assuming this condition, we compute that

<’Uj, ’Uj> = <L7’Uj_1, Li’Uj_1> = <’Uj_1, L+L7’Uj_1> .

But LYL~ = L~ L* + 2L3. Furthermore, Lsv;_1 = (I — j + 1)vj_1 and
Ltv;1 =(j—1)(2l — j 4+ 2)vj_1 and, thus,

(vj,vj) = (vj—1, LT L7vj1)
= (= D@ =35 +2)(vj—1, L7vj—2) + 2(1 = j + 1) (vj—1,0j-1) -
Recalling that L™ v;_ = v;_1 and simplifying gives
(vj, v) = J(20 — j +1) (vj-1,v5-1) - (17.13)

It is easy to see that if the v;’s are orthogonal, then Lt and L~ are adjoints
of each other if and only if the normalization condition (17.13) holds for
Jj=1,2,...,2l. Since j(2I — j + 1) is positive for each such j, there is no
obstruction to normalizing the v;’s so that this condition holds, and so an
inner product with the desired property exists. Since the only freedom of
choice in defining the inner product is the normalization of vy, the inner
product is unique up to multiplication by a constant. m

Proposition 17.8 Suppose (7, V) is an irreducible representation of so(3)
of dimension 2l + 1. Define the Casimir operator Cp € End(V) by the
formula

Oﬂ- = 7T(F1)2 + 7T(F2)2 + 7T(F3)2.

Then for all v € V, we have
Crv=—=l(l+1)v.

Proof. See Exercise 3. m

If we look at the proof of Theorem 17.4, we see that the only place in
which irreducibility was used is in showing that the span of vy, vy, ..., vy
is equal to V. We can therefore obtain the following result, which will be
used in Sect. 17.9.

Proposition 17.9 Let (7, V) be any finite-dimensional representation of
s0(3), not necessarily irreducible. Suppose vy is a nonzero element of V' such
that LTvg = 0 and L3vg = Avg for some X\ € C. Then X is equal to a non-
negative integer or half-integer l. Furthermore, the vectors vg,vi,. ..,V
defined by

v; = (L™ )vy, j=0,1,...,2l,

span an irreducible invariant subspace of V of dimension 2l + 1, and LT,
L™, and L3 act on these vectors according to the formulas in Theorem 17.4.
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In general, given a finite-dimensional representation (w,V) of a Lie
algebra and a nonzero vector vy € V, we say that vy is a cyclic vec-
tor for V if the smallest invariant subspace of V containing vy is all
of V. In Proposition 17.9, the vector vy is certainly a cyclic vector for
W := span(vy, . . ., v9;). It should be noted, however, that a representation’s
having a cyclic vector does not, in general, mean that the representation
is irreducible (Exercise 5). Thus, the irreducibility of W is not the result
of some general result about cyclic vectors, but holds only because of the
assumed special properties of the vector vg.

17.5 The Irreducible Representations of SO(3)

Having classified the irreducible representations of the Lie algebra so(3),
we now turn to the classification of the representations of the group SO(3).
Since SO(3) is connected (Exercise 13 in Chap. 16), Proposition 16.39 tells
us that a representation of SO(3) is irreducible if and only if the associated
Lie algebra representation is irreducible, and that two representations of
SO(3) are isomorphic if and only if the associated Lie algebra represen-
tations are isomorphic. Thus, to classify the irreducible representations of
SO(3) up to isomorphism, we merely have to determine which irreducible
representations of the Lie algebra so(3) come from a representation of the
group SO(3).

Proposition 17.10 Let m; : so(3) — gl(V') be an irreducible representation
of so(3), with spinl := L(dimV — 1). If is an integer (i.e., if the dimension
of V is odd), then there exists a representation IT; : SO(3) — GL(V') such
that II; and 7, are related as in Theorem 16.23. If 1 is a half-integer (i.e.,
if the dimension of V is even) then no such representation II; exists.

It follows from this result and Proposition 16.39 that the irreducible
representations of the group SO(3) are precisely the II;’s for which [ is an
integer.

Proof. If [ is a half-integer, then L3 is diagonal in the basis {v;}, with
eigenvalues being half-integers. Thus,

e27rm(F3) — e27riL3 = 7.

(Here the “7” in front of m; is the number 7 = 3.14 .. ..) On the other hand,
by a simple modification of Example 16.16, we can see that the matrix
F3 € s0(3) satisfies e2™f% = [. Thus, if a corresponding representation II;
of SO(3) existed, we would have

IL(I) =10, (e2F3) = 2™ (Fs) = ],

which is a contradiction.
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If [ is an integer, we make use of the isomorphism ¢ between su(2)
and so(3) described in the proof of Example 16.32, which maps the ba-
sis {E1, Ea2, E3} of su(2) to the basis {F1, Fp, F3} of so(3). We obtain a
representation 7] of su(2) by setting 7 (X) = m(¢(X)). Since SU(2) is sim-
ply connected, Theorem 16.30 tell us that there is a representation II) of
SU(2) related to 7 in the usual way. We then compute that

H; (—I) — H; (eZTrEl) _ e?Trﬂ'i(El) _ eZTrm(Fl) _ e27riL3 — I,

since the eigenvalues of L3 are integers.

Now, by Example 16.34, there is a surjective homomorphism ¢ from
SU(2) onto SO(3) for which the associated Lie algebra homomorphism is ¢,
and ker ® = {I, —I}. Since the kernel of IIj contains {I, —1I}, the map II]
factors through SO(3), giving a representation II; of SO(3) such that IIj =
IT;0®. By Exercise 10 in Chap. 16, the associated Lie algebra representation
oy of so(3) satisfies 7, = 07 0 ¢, so that o7 = 7] 0 ¢! = m;. Thus, 1I; is the
desired representation of SO(3). m

17.6 Realizing the Representations Inside L?(S5?)

In this section, we deviate from the traditional treatment in the physics lit-
erature by thinking of the “spherical harmonics” as restrictions to the unit
sphere of certain polynomials on R?, rather than describing the spherical
harmonics in angular coordinates on the sphere. Our approach avoids some
messy computations in polar coordinates and it also generalizes readily to
higher dimensions.

Recall from Sect. 17.3 that there is a natural unitary representation II :
SO(3) — L?(R3) given by II(R)y(z) = ¥(R™1z). In solving rotationally
invariant problems such as the quantum hydrogen atom, it will be useful
to understand the structure of finite-dimensional subspaces V of L?(R?)
such that V is invariant under II and such that the restriction of II to V is
irreducible.

If we write functions on R? in polar coordinates, then SO(3) acts only on
the angle variables. Thus, it is useful to consider also the action of SO(3)
on L?(S?%), given by the same formula as for L*(R?), namely

(I(R)Y)(x) = (R 'x), x€ S5

In computing the norm for L%(S?), we use the surface area measure on
S?, which is invariant under the action of SO(3). Once we have found
invariant subspaces inside L?(S?), it is a simple matter to produce invariant
subspaces inside L?(R?) as well, as we will see in the next section.
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We will be interested in this section in harmonic polynomials on R3, that
is, polynomials p satisfying Ap = 0, where A is the Laplacian. Since we
always consider representations over C, we allow these polynomials to have
complex coefficients.

Definition 17.11 Let I be a non-negative integer. Define a subspace Vi of
L2(S?) by setting Vi equal to the space of restrictions to S? of harmonic
polynomials on R? that are homogeneous of degree l. Then V; is called the
space of spherical harmonics of degree l.

Note that if p is a homogeneous polynomial on R? of some degree [, then
the restriction of p to S? is identically zero only if p itself is identically zero.
After all, if p is homogeneous of degree I and zero on S?, then

p(x) = Ix|'p (%) -

for all x # 0, and hence, by continuity, for all x € R3. (By contrast, the
nonzero, nonhomogeneous polynomial p(x) := 23 + 23 + 23 — 1 is identically
zero on S2.) We are therefore free to shift back and forth between thinking
of the elements of V; as functions on S? or as functions on R3.

It is well known that the Laplacian A commutes with rotations. It follows
that each V; is invariant under the action of the rotation group. We will
eventually see that V; is irreducible under this action.

Every homogeneous polynomial of degree 0 or 1 is harmonic. Thus, V|
consists of the constant functions on S? and V; is spanned by the restric-
tions to S? of the functions x1, 2, and x3. Meanwhile, the space of homoge-
neous polynomials of degree 2 is 6-dimensional, and the space of harmonic
polynomials that are homogeneous of degree 2 is spanned by the following
five polynomials: x1x2, Tox3, 321, :v% — x%, and :v% — :v% (The polynomial

2% — 22 is also harmonic, but it is just the sum 2?7 — 23, and 23 — 22.)

Theorem 17.12 The spaces V) have the following properties.
1. Each V; has dimension 2l + 1.

2. Each V) is invariant under the action of the rotation group and
irreducible under this action.

3. For |l # m, the spaces Vi and Vi, are orthogonal in L?(S?).

4. The Hilbert space L*(S?) decomposes as the orthogonal direct sum of
the V;’s, as |l ranges over the mon-negative integers.

The remainder of this section will be devoted to the proof of
Theorem 17.12. We proceed in a series of lemmas, along with some corol-
laries of those lemmas.
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Lemma 17.13 Let P denote the space of polynomials on R® with complex
coefficients. There exists an inner product (-,-) on P with the property that

<p7 Aq>’P = <I2pa q>7) ’

where
2

xr° = x% + x% + 3:§

Proof. Although it is possible to give a combinatorial construction of the
desired inner product, we can also give an analytic construction. Every
polynomial p on R? certainly has a holomorphic extension to C3, denoted
pc. We may define, then,

el
weal = [ pelEac(s) g =

which is nothing but the inner product of pc and g¢ as elements of the
Segal-Bargmann space HL?(C3, uu1). According to Lemma 14.12, we have

aq(c ef|z|2/2 ef|z|2/2
‘/(C3 pC(Z)a—ZJ(Z)W dGZ = /(:3 ij(C(Z)QC(Z) 7T3/2_ dGZ

for all p,q € P and all j = 1,2, 3. This relation means that

0
<p78_q> = <:Ejpuq>"pa
i/ p

from which we readily obtain the desired property of our inner product. m

A standard bit of elementary combinatorics shows that the number of
ordered triples (I1,12,13) with Iy + 12 + I3 = [ is equal to (I 4+ 2)(I + 1)/2.
Since the monomials a:lll xl22 a:éf‘ with I; + Is + I3 = | form a basis for P;, we
have dimP; = (1 +2)(1+1)/2.

Corollary 17.14 If P; denotes the space of polynomials on R3 that are
homogeneous of degre