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Chapter 1 )
OverVieW %I;ec;:;égr

I don’t know what the language of the year 2000 will look like,
but it will be called Fortran
C.A.R. Hoare

Aims
The aims of the chapter are to provide a background to the organisation of the book.

1.1 Introduction

The book aims to provide coverage of a reasonable working subset of the Fortran
programming language. The subset chosen should enable you to solve quite a wide
range of frequently occurring problems.

This book has been written for three audiences:

e the complete beginner with little or no programming background

e an experienced Fortran programmer who wants to update their skills and move to
a modern version of the language

e aprogrammer familiar with another language wanting to see what modern Fortran
has to offer

Chapters 2 and 3 provide a coverage of problem solving and the history and
development of programming languages. Chapter 2 is essential for the beginner as the
concepts introduced there are used and expanded on throughout the rest of the book.
Chapter 3 should be read at some point but can be omitted initially. Programming
languages evolve and some understanding of where Fortran has come from and where
it is going will prove valuable in the longer term.

e Chapter 2 looks at problem solving in some depth, and there is a coverage of the
way we define problems, the role of algorithms, the use of both top-down and
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2 1 Overview

bottom-up methods, and the requirement for formal systems analysis and design
for more complex problems.

e Chapter 3 looks at the history and development of programming languages. This
is essential as Fortran has evolved considerably from its origins in the mid-1950s,
through the first standard in 1966, the Fortran 77 standard, the Fortran 90 standard,
the Fortran 95 standard, TR 15580 and TR 15581, Fortran 2003, Fortran 2008 to
Fortran 2018. It helps to put many of the current and proposed features of Fortran
into context. Languages covered include Cobol, Algol, Lisp, Snobol, PL/1, Algol
68, Simula, Pascal, APL, Basic, C, Ada, Modula, Modula 2, Logo, Prolog, SQL,
ICON, Oberon, Oberon 2, Smalltalk, C++, C#, Java and Python.

Chapters 4-8 cover the major features provided in Fortran for numeric program-
ming in the first instance and for general purpose programming in the second. Each
chapter has a set of problems. It is essential that a reasonable range of problems are
attempted and completed, as it is impossible to learn any language without practice.

e Chapter 4 provides an introduction to programming with some simple Fortran
examples. For people with a knowledge of programming this chapter can be cov-
ered fairly quickly.

e Chapter 5 looks at arithmetic in some depth, with a coverage of the various numeric
data types, expressions and assignment of scalar variables. There is also a thorough
coverage of the facilities provided in Fortran to help write programs that work on
different hardware platforms.

e Chapter 6 is an introduction to arrays and do loops. The chapter starts with some
examples of tabular structures that one should be familiar with. There is then an
examination of what concepts we need in a programming language to support
manipulation of tabular data.

e Chapter 7 takes the ideas introduced in Chap.6 and extends them to higher-
dimensioned arrays, additional forms of the dimension attribute and corresponding
form of the do loop, and the use of looping for the control of repetition and manip-
ulation of tabular information without the use of arrays.

e Chapter 8 looks at more of the facilities offered for the manipulation of whole
arrays and array sections, ways in which we can initialise arrays using constructors,
look more formally at the concepts we need to be able to accurately describe and
understand arrays, and finally look at the differences between the way Fortran
allows us to use arrays and the mathematical rules governing matrices.

Chapters 9, 10 and 11 look at input and output (I/O) and file handling in Fortran.
An understanding of I/O is necessary for the development of so-called production,
non interactive programs. These are essentially fully developed programs that are
used repeatedly with a variety of data inputs and results.

e Chapter 9 looks at output of results and how to generate something that is more
comprehensible and easy to read than what is available with free format output
and also how to write the results to a file rather than the screen.

e Chapter 10 extends the ideas introduced in Chap. 9 to cover input of data, or reading
data into a program and also considers file I/O.
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e Chapter 11 provides a summary of input and output concepts introduced in Chaps. 9
and 10, and expands on them by introducing additional features of the read, write,
open and close statements.

Chapter 12 introduces the first building block available in Fortran for the con-
struction of programs for the solution of larger, more complex problems. It looks at
the functions available in Fortran, the so-called intrinsic functions and procedures
(over 100 of them) and covers how you can define and use your own functions.

It is essential to develop an understanding of the functions provided by the lan-
guage and when it is necessary to write your own.

Chapter 13 introduces more formally the concept of control structures and their
role in structured programming. Some of the control structures available in Fortran
are introduced in earlier chapters, but there is a summary here of those already
covered plus several new ones that complete our coverage of a minimal working set.

Chapters 14—16 complete our coverage of the intrinsic facilities in Fortran for
data typing.

e Chapter 14 looks at the character data type in Fortran. There is a coverage of I/O
again, with the operators available—only one in fact.

e Chapter 15 looks at the last numeric data type in Fortran, the complex data type.
This data type is essential to the solution of a small class of problems in mathe-
matics and engineering.

e Chapter 16 looks at the logical data type. The material covered here helps consid-
erably in increasing the power and sophistication of the way we use and construct
logical expressions in Fortran. This proves invaluable in the construction and use
of logical expressions in control structures.

Chapter 17 introduces derived or user defined types with a small number of exam-
ples.

Chapter 18 looks at the dynamic data-structuring facilities now available in Fortran
with the addition of pointers. This chapter looks at the basic syntax of pointers. They
are used in range of examples in later chapters in the book.

The next two chapters look at the second major building block in Fortran — the
subroutine. Chapter 19 provides a gentle introduction to some of the fundamental
concepts of subroutine definition and use and Chapter 20 extends these ideas.

Chapter 21 introduces one of modern Fortran’s major key features - the module.
A Fortran module can be thought of as equivalent to a class in C++, Java and C#.
This chapter looks at the basic syntax, with a couple of simple examples.

Chapter 22 looks at simple data structuring in Fortran, as we have now covered
modules in a bit more depth.

Chapter 23 introduces algorithms and the big O notation.

Chapter 24 looks briefly at operator overloading, first introduced in Fortran 90.

Chapter 25 looks at generic programming.

Chapter 26 has a small set of mathematical examples.

Chapter 27 introduces parameterised derived types.

Chapter 28 introduces object oriented programming in Fortran.
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Chapter 29 is the second chapter on object oriented programming

Chapters 30-34 look at parallel programming in Fortran with coverage of MPI,
OpenMP and Coarray Fortran.

Chapter 35 looks at C interoperability.

Chapter 36 looks at IEEE Arithmetic support in Fortran.

Chapter 37 looks at derived type I/O in Fortran

Chapter 38 looks at a number examples of sorting and searching

Chapter 39 looks at handling missing data in calculations

Chapter 40 looks at converting from Fortran 77 to more modern Fortran.

Chapter 41 looks at using a graphics library for plotting

Chapter 42 has an example of abstract interfaces and procedure pointers in Fortran

Some of the chapters have annotated bibliographies. These often have pointers
and directions for further reading. The coverage provided cannot be seen in isolation.
The concepts introduced are by intention brief, and fuller coverage must be sought
where necessary. References to the standard in the book are to the current Fortran
2018 revision unless otherwise stated. There are several appendices:

e Appendix A—This is a glossary which provides coverage of both the new concepts

provided by Fortran and a range of computing terms and ideas.

Appendix B—is a reference appendix on attribute declarations and specifications

e Appendix C—provides details of compatibility between standards

e Appendix D—Contains a list of some of the more commonly used intrinsic proce-
dures in Fortran and includes an explanation of each procedure with a coverage of
the rules and restrictions that apply and examples of use where appropriate. There
also some tables summarising information about the procedures

e Appendix E—Contains the English and Latin text extracts used in one of the

problems in the chapter on characters, and the coded text extract used in one of

the problems in Chap. 14.

Appendix F—Formal syntax.

Appendix G—Sample compiler options

This book is not and cannot possibly be completely self-contained and exhaustive
in its coverage of the Fortran language. Our first intention has been to produce a
coverage of the features that will get you started with Fortran and enable you to
solve arange of problems successfully. All in all Fortran is an exciting language, and
it has caught up with language developments of the last 50 years.

1.2 Program Examples

All of the program examples are available on line at

https://www. fortranplus.co.uk/
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All examples have been reformatted using the Nag compiler polish option. This
makes the programs have a consistent style. The examples in the book have been
formatted to have a line length of 48 characters to fit the printed page. They were
then manually edited to improve where the lines broke. The examples on the web
site have been formatted to have a line length of 132 characters.

1.3 Web Addresses

Web addresses are used throughout the book. As some of these are likely to change
over the lifetime of the book our web site will have up to date addresses. We have
organised them by chapter.
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They constructed ladders to reach to the top of the enemy’s wall,
and they did this by calculating the height of the wall from the
number of layers of bricks at a point which was facing in their
direction and had not been plastered. The layers were counted
by a lot of people at the same time, and though some were likely
to get the figure wrong the majority would get it right...Thus,
guessing what the thickness of a single brick was, they
calculated how long their ladder would have to be

Thucydides, The Peloponnesian War

‘When I use a word,” Humpty Dumpty said, in a rather scornful
tone, ‘it means just what I choose it to mean — neither more nor
less’
‘The question is,” said Alice, ‘whether you can make words mean
so many different things’

Lewis Carroll, Through the Looking Glass and What Alice
Found There

It is possible to invent a single machine which can be used to
compute any computable sequence
Alan Turing

Aims
The aims of this chapter are:

To examine some of the ideas and concepts involved in problem solving.

To introduce the concept of an algorithm.

To introduce two ways of approaching algorithmic problem solving.

To introduce the ideas involved with systems analysis and design, i.e., to show the
need for pencil and paper study before using a computer system.

To introduce the Unified modelling Language - UML, a general purpose modelling
language used in the field of software engineering.
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8 2 Introduction to Problem Solving

2.1 Introduction

It is informative to consider some of the dictionary definitions of problem:

A matter difficult of settlement or solution, Chambers.

A question or puzzle propounded for solution, Chambers.

A source of perplexity, Chambers.

Doubtful or difficult question, Oxford.

Proposition in which something has to be done, Oxford.

A question raised for inquiry, consideration, or solution, Webster’s.
An intricate unsettled question, Webster’s.

A common thread seems to be a question that we would like answered or solved.
So one of the first things to consider in problem solving is how to pose the problem.
This is often not as easy as is seems. Two of the most common methods to use here
are:

e In natural language.
e In artificial or stylised language.

Both methods have their advantages and disadvantages.

2.2 Natural Language

Most people use natural language and are familiar with it, and the two most common
forms are the written and spoken word. Consider the following language usage:

o The difference between a 3-year-old child and an adult describing the world.

e The difference between the way an engineer and a physicist would approach the
design of a car engine.

e The difference between a manager and a worker considering the implications of
the introduction of new technology.

Great care must be taken when using natural language to define a problem and a
solution. Itis possible that people use the same language to mean completely different
things, and one must be aware of this when using natural language whilst problem
solving.

Natural language can also be ambiguous: Old men and women eat cheese. Are
both the men and women old?

2.3 Artificial Language

The two most common forms of artificial language are technical terminology and
notations. Technical terminology generally includes both the use of new words and
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alternate use of existing words. Consider some of the concepts that are useful when
examining the expansion of gases in both a theoretical and practical fashion:

Temperature.
Pressure.

Mass.

Isothermal expansion.
Adiabatic expansion.

Now look at the following:

A chef using a pressure cooker.

A garage mechanic working on a car engine.
A doctor monitoring blood pressure.

An engineer designing a gas turbine.

Each has a particular problem to solve, and all will approach their problem in their
own way; thus they will each use the same terminology in slightly different ways.

2.3.1 Notations

Some examples of notations are:

e Algebra.
e Calculus.
e Logic.

All of the above have been used as notations for describing both problems and
their solutions.

2.4 Resume

We therefore have two ways of describing problems and they both have a learn-
ing phase until we achieve sufficient understanding to use them effectively. Having
arrived at a satisfactory problem statement we next have to consider how we get the
solution. It is here that the power of the algorithmic approach becomes useful.

2.5 Algorithms

An algorithm is a sequence of steps that will solve part or all of a problem. One of
the most easily understood examples of an algorithm is a recipe. Most people have
done some cooking, if only making toast and boiling an egg.
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A recipe is made up of two parts:

e A check list of things you need.
e The sequence or order of steps.

Problems can occur at both stages, e.g., finding out halfway through the recipe
that you do not have an ingredient or utensil; finding out that one stage will take an
hour when the rest will be ready in ten minutes. Note that certain things can be done
in any order — it may not make any difference if you prepare the potatoes before
the carrots.

There are two ways of approaching problem solving when using a computer.
They both involve algorithms, but are very different from one another. They are
called top-down and bottom up.

The name algorithm is derived from the name of a ninth century Persian
mathematician Abu Ja’far Mohammed ibn Musa al-Kuwarizmi (father of Ja’far
Mohammed, son of Moses, native of Kuwarizmi), and has been corrupted in western
culture as Al-Kuwarizmi.

2.5.1 Top-Down

In atop-down approach the problem is first specified at a high or general level: prepare
a meal. It is then refined until each step in the solution is explicit and in the correct
sequence, e.g., peel and slice the onions, then brown in a frying pan before adding the
beef. One drawback to this approach is that it is very difficult to teach to beginners
because they rarely have any idea of what primitive tools they have at their disposal.
Another drawback is that they often get the sequencing wrong, e.g., now place in a
moderately hot oven is frustrating because you may not have lit the oven (sequencing
problem) and secondly because you may have no idea how hot moderately hot really
is. However, as more and more problems are tackled, top-down becomes one of the
most effective methods for programming.

2.5.2 Bottom-Up

Bottom-up is the reverse to top-down! As before you start by defining the problem at
ahighlevel, e.g., prepare a meal. However, now there is an examination of what tools,
etc. you have available to solve the problem. This method lends itself to teaching
since a repertoire of tools can be built up and more complicated problems can be
tackled. Thinking back to the recipe there is not much point in trying to cook a six
course meal if the only thing that you can do is boil an egg and open a tin of beans.
The bottom-up approach thus has advantages for the beginner. However, there may
be a problem when no suitable tool is available. A colleague and friend of the authors
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learned how to make Bechamel sauce, and was so pleased by his success that every
other meal had a course with a Bechamel sauce. Try it on your eggs one morning.
Here is a case of specifying a problem, prepare a meal, and using an inappropriate
but plausible tool, Bechamel sauce.

The effort involved in tackling a realistic problem, introducing the constructs as
and when they are needed and solving it is considerable. This approach may not lead
to a reasonably comprehensive coverage of the language, or be particularly useful
from a teaching point of view. case studies do have great value, but it helps if you
know the elementary rules before you start on them. Imagine learning French by
studying Balzac, before you even look at a French grammar book. You can learn this
way but even when you have finished, you may not be able to speak to a Frenchman
and be understood. A good example of the case study approach is given in the book
Software Tools, by Kernighan and Plauger.

In this book our aim is to gradually introduce more and more tools until you know
enough to approach the problem using the top-down method, and also realise from
time to time that it will be necessary to develop some new tools.

2.5.3 Stepwise Refinement

Both of the above techniques can be combined with what is called stepwise refine-
ment. The original ideas behind this approach are well expressed in a paper by Wirth,
entitled “Program Development by Stepwise Refinement”, published in 1971. It
means that you start with a global problem statement and break the problem down in
stages, into smaller and smaller sub problems that become more and more amenable
to solution. When you first start programming the problems you can solve are quite
simple, but as your experience grows you will find that you can handle more complex
problems.

When you think of the way that you solve problems you will probably realise that
unless the problem is so simple that you can answer it straight-away some thinking
and pencil and paper work are required. An example that some may be familiar
with is in practical work in a scientific discipline, where coming unprepared to the
situation can be very frustrating and unrewarding. It is therefore appropriate to look
at ways of doing analysis and design before using a computer.

2.6 Modular Programming

As the problems we try solving become more complex we need to look at ways of
managing the construction of programs that comprise many parts. Modula 2 was
one of the first languages to support this methodology and we will look at modular
programming in more depth in a subsequent chapter.
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2.7 Object Oriented Programming

There is a class of problems that are best solved by the treatment of the components
of these problems as objects. We will look at the concepts involved in object oriented
programming and object oriented languages in the next chapter.

2.8 Systems Analysis and Design

When one starts programming it is generally not apparent that one needs a method-
ology to follow to become successful as a programmer. This is usually because the
problems are reasonably simple, and it is not necessary to be explicit about all of the
stages one has gone through in arriving at a solution. As the problems become more
complex it is necessary to become more rigorous and thorough in one’s approach, to
keep control in the face of the increasing complexity and to avoid making mistakes.
It is then that the benefit of systems analysis and design becomes obvious. Broadly
we have the following stages in systems analysis and design:

Problem definition.

Feasibility study and fact finding.
Analysis.

Initial system design.

Detailed design.

Implementation.

Evaluation.

Maintenance.

and each problem we address will entail slightly different time spent in each of these
stages. Let us look at each stage in more detail.

2.8.1 Problem Definition

Here we are interested in defining what the problem really is. We should aim at
providing some restriction on both the scope of the problem, and the objectives we
set ourselves. We can use the methods mentioned earlier to help us out. It is essential
that the objectives are:

e Clearly defined.

e Understood and agreed to by all people concerned, when more than one person is
involved.

e Realistic.
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2.8.2 Feasibility Study and Fact Finding

Here we look to see if there is a feasible solution. We would try and estimate the cost
of solving the problem and see if the investment was warranted by the benefits, i.e.,
cost-benefit analysis.

2.8.3 Analysis

Here we look at what must be done to solve the problem. Note that we are interested
in finding out what we need to do, but that we do not actually do it at this stage.

2.8.4 Design

Once the analysis is complete we know what must be done, and we can proceed to
the design. We may find there are several alternatives, and we thus examine alternate
ways in which the problem can be solved. It is here that we use the techniques of
top-down and bottom-up problem solving, combined with stepwise refinement to
generate an algorithm to solve the problem. We are now moving from the logical
to the physical side of the solution. This stage ends with a choice among several
alternatives. Note that there is generally not one ideal solution, but several, each with
its own advantages and disadvantages.

2.8.5 Detailed Design

Here we move from the general to the specific, The end result of this stage should be
a specification that is sufficiently tightly defined to generate actual program code.

It is at this stage that it is useful to generate pseudocode. This means writing out
in detail the actions we want carried out at each stage of our overall algorithm. We
gradually expand each stage (stepwise refinement) until it becomes Fortran — or
whatever language we want.

2.8.6 Implementation

It is at this stage that we actually use a computer system to create the program(s)
that will solve the problem. It is here that we actually need to know enough about a
programming language to use it effectively to solve our problem. This is only one
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stage in the overall process, and mistakes at any of the stages can create serious
difficulties.

2.8.7 Evaluation and Testing

Here we try to see if the program(s) we have produced will actually do what they are
supposed to. We need to have data sets that enable us to say with confidence that the
program really does work. This may not be an easy task, as quite often we only have
numeric methods to solve the problem, which is why we are using the computer in
the first place — hence we are relying on the computer to provide the proof;i.e., we
have to use a computer to determine the veracity of the programs — and as Heller
says, Catch 22.

2.8.8 Maintenance

Itis rare that a program is run once and never used again. This means that there will be
an ongoing task of maintaining the program, generally to make it work with different
versions of the operating system or compiler, and to incorporate new features not
included in the original design. It often seems odd when one starts programming
that a program will need maintenance, as we are reluctant to regard a program in the
same way as a mechanical object like a car that will eventually fall apart through
use. Thus maintenance means keeping the program working at some tolerable level,
often with a high level of investment in manpower and resources. Research in this
area has shown that anything up to 80% of the manpower investment in a program
can be in maintenance.

2.9 Unified Modelling Language - UML

UML is a general purpose modelling language used in the field of software engi-
neering. It was developed by Grady Booch, Ivar Jacobson and James Rumbaugh
whilst working at Rational Software in the 1990’s. They were three of the leading
exponents of object oriented software methodologies at the time and decided to unify
the various approaches that each had developed.

UML combines techniques from data modelling (entity relationship diagrams),
business modelling (work flows), object modelling, and component modelling. It
can be used with all processes, throughout the software development life cycle, and
across different implementation technologies.

It tends to be used more in business computing than scientific computing.
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2.10 Conclusions

A drawback, inherent in all approaches to programming and to problem solving in
general, is the assumption that a solution is indeed possible. There are problems
which are simply insoluble — not only problems like balancing a national budget,
weather forecasting for a year, or predicting which radioactive atom will decay, but
also problems which are apparently computationally solvable.

Knuth gives the example of a chess problem — determining whether the game is
a forced victory for white. Although there is an algorithm to achieve this, it requires
an inordinately long time to complete. For practical purposes it is unsolvable.

Other problems can be shown mathematically to be undecidable. The work of
Godel in this area has been of enormous importance, and the bibliography contains a
number of references for the more inquisitive and mathematically orientated reader.
The Hofstader coverage is the easiest, and least mathematical.

As far as possible we will restrict ourselves to solvable problems, like learning a
programming language.

Within the formal world of Computer Science our description of an algorithm
would be considered a little lax. For our introductory needs it is sufficient, but a
more rigorous approach is given by Hopcroft and Ullman in Introduction to Automata
Theory, Languages and Computation, and by Beckman in Mathematical Foundations
of programming.

2.11 Problems

2.1 What is an algorithm?

2.2 What distinguishes top-down from bottom-up approaches to problem solving?
Ilustrate your answer with reference to the problem of a car, motor-cycle or bicycle
having a flat tire.

2.12 Bibliography

A.V. Aho A.V., Hopcroft J.E.,and J.D. Ullman J.D., The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1982.
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e Theoretical coverage of the design and analysis of computer algorithms.

Beckman E.S., Mathematical Foundations of Programming, Addison-Wesley,
1981.

e Good clear coverage of the theoretical basis of computing.

Bulloff J.J., Holyoke T.C., Hahn S.W., Foundations of Mathematics — Sympo-
sium Papers Commemorating the 60th Birthday of Kurt Godel, Springer-Verlag,
1969.

e The comment by John von Neumann highlights the importance of Godel’s work,..
Kurt Godel’s achievement in modern logic is singular and monumental — indeed
it is more than a monument, it is a landmark which will remain visible far in space
and time. Whether anything comparable to it has occurred in the logic of modern
times may be debated. In any case, the conceivable proxima are very, very few.
The subject of logic has certainly changed its nature and possibilities with Godel’s
achievement.

Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured programming, Academic
Press, 1972.

e This is the seminal book on structured programming.
Davis M., Computability and Unsolvability, Dover, 1982.

e The book is an introduction to the theory of computability and noncomputability
— the theory of recursive functions in mathematics. Not for the mathematically
faint hearted!

Davis W.S., Systems Analysis and Design, Addison-Wesley, 1983.

e Good introduction to systems analysis and design, with a variety of case studies.
Also looks at some of the tools available to the systems analyst.

Edmonds D., Eidinow J., Wittgensteins Poker, Faber and Faber, 2001.

e The subtitle of the book provides a better understanding of the content - “The story
of a 10 minute argument between two great philosophers’, which took place on
Friday 25 October 1946 at the Cambridge Moral Science Club. The title of Poppers
paper was ’Are there Philosophical problems?’. Ludwig Wittgenstein and Bertrand
Russell were in the audience. Well worth a read.

e Here is an extract of a quote from the Times Literary Supplement. A succinctly
composed, informative, wonderfully readable and often funny account of a sin-
gle impassioned encounter between the great overbearing philosopher Ludwig
Wittgenstein and the younger, less great but equally overbearing philosopher Karl
Popper... reads like an inspired collaboration between Iris Murdoch and Monty
Python.

Fogelin R.J., Wittgenstein, Routledge and Kegan Paul, 1980.
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e The book provides a gentle introduction to the work of the philosopher Wittgen-
stein, who examined some of the philosophical problems associated with logic
and reason.

Godel K., On Formally Undecidable Propositions of Principia Mathematica and
Related Systems, Oliver and Boyd, 1962.

e An English translation of Godel’s original paper by Meltzer, with quite a lengthy
introduction by R.B. Braithwaite, then Knightbridge Professor of Moral Philos-
ophy at Cambridge University, England, and classified under philosophy at the
library at King’s, rather than mathematics.

Hofstadter D.,The Eternal Golden Braid, Harvester Press, 1979.

e A very readable coverage of paradox and contradiction in art, music and logic,
looking at the work of Escher, Bach and Gddel, respectively.

Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

e Coverage of the theoretical basis of computing.

Jacobson, Ivar, Grady Booch, James Rumbaugh, (1998). The Unified Software
Development Process. Addison Wesley Longman. ISBN 0-201-57169-2.

e The original book on UML.
Kernighan B.W., Plauger P.J., Software Tools, Addison-Wesley, 1976.

Interesting essays on the program development process, originally using a non-
standard variant of Fortran. Also available using Pascal.

Knuth D.E., The Art of Computer Programming, Addison-Wesley,

Vol 1. Fundamental Algorithms, 1974
e Vol 2. Semi-numerical Algorithms, 1978
Vol 3. Sorting and Searching, 1972

— Contains interesting insights into many aspects of algorithm design. Good source
of specialist algorithms, and Knuth writes with obvious and infectious enthusi-
asm (and erudition).

Millington D., Systems Analysis and Design for Computer Applications, Ellis
Horwood, 1981.

e Short and readable introduction to systems analysis and design.

Popper K., The Logic of Scientific Discovery, 1934 (as Logik der Forschung,
English translation 1959), Routledge, ISBN 0-415-27844-9.
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e Popper argues that science should adopt a methodology based on falsifiability,
because no number of experiments can ever prove a theory, but a single experiment
can contradict one. A classic.

Salmon M.H., Logic and Critical Thinking, Harcourt Brace Jovanovich, 1984.

e Quite a good introduction to logic and critical thinking. Coverage of arguments,
deductive and inductive arguments, causal arguments, probability and inductive
logic, confirmation of hypotheses.

Wirth N., Algorithms + Data Structures = Programs, Prentice Hall, 1976.
e One of the seminal texts in computer science. Essential reading.

Wirth N., Program Development by Stepwise Refinement, Communications of
the ACM, April 1971, Volume 14, Number 4, pp. 221-227.

e Clear and simple exposition of the ideas of stepwise refinement.



Chapter 3 ®)
Introduction to Programming Languages o

We have to go to another language in order to think clearly
about the problem
Samuel R. Delany, Babel-17

Aims

The primary aim of this chapter is to provide a short history of program language
development and give some idea as to the concepts that have had an impact on
Fortran. It concentrates on some but not all of the major milestones of the last 40
years, in roughly chronological order. The secondary aim is to show the breadth of
languages available. The chapter concludes with coverage of a small number of more
specialised languages.

3.1 Introduction

It is important to realise that programming languages are a recent invention. They
have been developed over a relatively short period — 60 years — and are still
undergoing improvement. Time spent gaining some historical perspective will help
you understand and evaluate future changes. This chapter starts right at the beginning
and takes you through some, but not all, of the developments during this 55 year span.
The bulk of the chapter describes languages that are reasonably widely available
commercially, and therefore ones that you are likely to meet. The chapter concludes
with a coverage of some more specialised and/or recent developments.
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3.2 Some Early Theoretical Work

Some of the most important early theoretical work in computing was that of Turing
and von Neumann. Turing’s work provided the base from which it could be shown
that it was possible to get a machine to solve problems. The work of von Neumann
added the concept of storage and combined with Turing’s work to provide the basis
for most computers designed to this day.

3.3 What Is a Programming Language?

For a large number of people a programming language provides the means of get-
ting a digital computer to solve a problem. There is a wide range of problems and
an equally wide range of programming languages, with particular languages being
suited to a particular class of problems, all of which often appears bewildering to the
beginner.

3.4 Program Language Development and Engineering

There is much in common between the development of programming languages and
the development of anything from the engineering world. Consider the car: old cars
offer much of the same functionality as more modern ones, but most people prefer
driving newer models. The same is true of programming languages, where you can
achieve much with the older languages, but the newer ones are easier to use.

3.5 The Early Days

A concept that proves very useful when discussing programming languages is that
of the level of a machine. By this is meant how close a language is to the under-
lying machine that the program runs on. In the early days of programming (up to
1954) there were only two broad categories: machine languages and assemblers. The
language that digital machines use is that of 0 and 1, i.e., they are binary devices.
Writing a program in terms of patterns of 0 and 1 was not particularly satisfactory
and the capability of using more meaningful mnemonics was soon introduced. Thus
it was realised quite quickly that one of the most important aspects of program-
ming languages is that they have to be read and understood by both machines and
humans.
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3.5.1 Fortran’s Origins

The next stage was the development of higher-level languages. The first of these was
Fortran and it was developed over a 3 year period from 1954 to 1957 by an IBM team
led by John Backus. This group achieved considerable success, and helped to prove
that the way forward lay with high-level languages for computer-based problem
solving. Fortran stands for formula translation and was used mainly by people with a
scientific background for solving problems that had a significant arithmetic content.
It was thus relatively easy, for the time, to express this kind of problem in Fortran.
By 1966 and the first standard Fortran:

Was widely available.

Was easy to teach.

Had demonstrated the benefits of subroutines and independent compilation.
Was relatively machine independent.

Often had very efficient implementations.

Possibly the single most important fact about Fortran was, and still is, its
widespread usage in the scientific community.

3.5.2 Fortran 77

The next standard in 1977 (actually 1978, and thus out by one — a very common
programming error, more of this later!) added a number of major improvements
including

e Block IF and END IF statements, with optional ELSE and ELSE IF clauses, to
provide improved language support for structured programming

e DO loop extensions, including parameter expressions, negative increments, and
zero trip counts

e OPEN, CLOSE, and INQUIRE statements for improved I/O capability

e IMPLICIT statement, to override implicit conventions that undeclared variables
are INTEGER if their name begins with I, J, K, L, M, or N (and REAL otherwise)

e CHARACTER datatype, replacing Hollerith strings with vastly expanded facilities

for character input and output and processing of character-based data

PARAMETER statement for specifying constants

SAVE statement for persistent local variables

Generic names for intrinsic functions

A set of intrinsics (LGE, LGT, LLE, LLT) for lexical comparison of strings

One important feature sometimes overlooked was backwards compatibility. This
meant that the standard did not invalidate any standard conformant Fortran 66 pro-
gram. This protected investment in old code.
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3.5.3 Cobol

The business world also realised that computers were useful and several languages
were developed, including FLOWMATIC, AIMACO, Commercial Translator and
FACT, leading eventually to Cobol — COmmon Business Orientated Language.
There is a need in commercial programming to describe data in a much more complex
fashion than for scientific programming, and Cobol had far greater capability in this
area than Fortran. The language was unique at the time in that a group of competitors
worked together with the objective of developing a language that would be useful on
machines used by other manufacturers.
The contributions made by Cobol include:

Firstly the separation among:

The task to be undertaken.

The description of the data involved.

The working environment in which the task is carried out.

Secondly a data description mechanism that was largely machine independent.
Thirdly its effectiveness for handling large files.

Fourthly the benefit to be gained from a programming language that was easy to
read.

Modern developments in computing — of report generators, file-handling soft-
ware, fourth-generation development tools, and especially the increasing availability
of commercial relational database management systems — are gradually replacing
the use of Cobol, except where high efficiency and/or tight control are required.

3.5.4 Algol

Another important development of the 1950s was Algol. It had a history of develop-
ment from Algol 58, the original Algol language, through Algol 60 eventually to the
Revised Algol 60 Report. Some of the design criteria for Algol 58 were:

e The language should be as close as possible to standard mathematical notation and
should be readable with little further explanation.

e It should be possible to use it for the description of computing processes in pub-
lications.

e The new language should be mechanically translatable into machine programs.

A sad feature of Algol 58 was the lack of any input/output facilities, and this
meant that different implementations often had incompatible features in this area.

The next important step for Algol occurred at a UNESCO-sponsored conference
in June 1959. There was an open discussion on Algol and the outcome was Algol
60, and eventually the Revised Algol 60 Report.

It was at this conference that John Backus gave his now famous paper on a method
for defining the syntax of a language, called Backus Normal Form, or BNF. The full
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significance of the paper was not immediately recognised. However, BNF was to
prove of enormous value in language definition, and helped provide an interface
point with computational linguistics.

The contributions of Algol to program language development include:

e Block structure.

e Scope rules for variables because of block structure.

e The BNF definition by Backus — most languages now have a formal definition.
e The support of recursion.

e Its offspring.

Thus Algol was to prove to make a contribution to programming languages that
was never reflected in the use of Algol 60 itself, in that it has been the parent of one
of the main strands of program language development.

3.6 Chomsky and Program Language Development

Programming languages are of considerable linguistic interest, and the work of
Chomsky in 1956 in this area was to prove of inestimable value. Chomsky’s system
of transformational grammar was developed in order to give a precise mathematical
description to certain aspects of language. Simplistically, Chomsky describes gram-
mars, and these grammars in turn can be used to define or generate corresponding
kinds of languages. It can be shown that for each type of grammar and language there
is a corresponding type of machine. It was quickly realised that there was a link with
the earlier work of Turing.

This link helped provide a firm scientific base for programming language devel-
opment, and modern compiler writing has come a long way from the early work of
Backus and his team at IBM. It may seem unimportant when playing a video game at
home or in an arcade, but for some it is very comforting that there is a firm theoretical
basis behind all that fun.

3.7 Lisp

There were also developments in very specialized areas. List processing was proving
to be of great interest in the 1950s and saw the development of IPLV between 1954
and 1958. This in turn led to the development of Lisp at the end of the 1950s. Lisp
has proved to be of considerable use for programming in the areas of artificial intel-
ligence, playing chess, automatic theorem proving and general problem solving. It
was one of the first languages to be interpreted rather than compiled. Whilst inter-
preted languages are invariably slower and less efficient in their use of the underlying
computer systems than compiled languages, they do provide great opportunities for
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the user to explore and try out ideas whilst sitting at a terminal. The power that this
gives to the computational problem solver is considerable.

Possibly the greatest contribution to program language development made by Lisp
was its functional notation. One of the major problems for the Lisp user has been the
large number of Lisp flavours, and this has reduced the impact that the language has
had and deserved.

3.8 Snobol

Snobol was developed to aid in string processing, which was seen as an important part
of many computing tasks, e.g., parsing of a program. Probably the most important
thing that Snobol demonstrated was the power of pattern matching in a programming
language, e.g., it is possible to define a pattern for a title that would include Mr, Mrs,
Ms, Miss, Rey, etc., and search for this pattern in a text using Snobol. Like Lisp it
is generally available as an interpreter rather than a compiler, but compiled versions
do exist, and are often called Spitbol. Pattern-matching capabilities are now to be
found in many editors and this makes them very powerful and useful tools. It is in
the area of text manipulation that Snobol’s greatest contribution to program language
development lies.

3.9 Second-Generation Languages

3.9.1 PL/I and Algol 68

It is probably true that Fortran, Algol 60 and Cobol are the three main first-generation
high-level languages. The 1960s saw the emergence of PL/1 and Algol 68. PL/1 was
a synthesis of features of Fortran, Algol 60 and Cobol. It was soon realised that whilst
PL/1 had great richness and power of expression this was in some ways offset by the
greater difficulties involved in language definition and use.

These latter problems were also true of Algol 68. The report introduced its own
syntactic and semantic conventions and thus forced another stage in the learning
process on the prospective user. However, it has a small but very committed user
population who like the very rich facilities provided by the language.

3.9.2 Simula

Another strand that makes up program language development is provided by Sim-
ula, a general purpose programming language developed by Dahl, Myhrhaug and
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Nygaard of the Norwegian Computing Centre. The most important contribution that
Simula makes is the provision of language constructs that aid the programming of
complex, highly interactive problems. It is thus heavily used in the areas of simulation
and modelling. It was effectively the first language to offer the opportunity of object
orientated programming, and we will come back to this very important development
in programming languages later in this chapter.

3.9.3 Pascal

The designer of Pascal, Niklaus Wirth, had participated in the early stages of the
design of Algol 68 but considered that the generality and complexity of Algol 68
was a move in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60 but
aimed at providing expressive power through a small set of straightforward concepts.
This set is relatively easy to learn and helps in producing readable and hence more
comprehensible programs.

It became the language of first choice within the field of computer science during
the 1970s and 1980s, and the comment by Wirth sums up the language very well:
“although Pascal had no support from industry, professional societies, or government
agencies, it became widely used. The important reason for this success was that many
people capable of recognising its potential actively engaged themselves in its promo-
tion. As crucial as the existence of good implementations is the availability of docu-
mentation. The conciseness of the original report made it attractive for many teachers
to expand it into valuable textbooks. Innumerable books appeared between 1977 and
1985, effectively promoting Pascal to become the most widespread language used in
introductory programming courses. Good course material and implementations are
the indispensable prerequisites for such an evolution.”

3.94 APL

APL is another interesting language of the early 1960s. It was developed by Iverson
early in the decade and was available by the mid to late 1960s. It is an interpretive
vector and matrix based language with an extensive set of operators for the manipu-
lation of vectors, arrays, etc., of whatever data type. As with Algol 68 it has a small
but dedicated user population. A possibly unfair comment about APL programs is
that you do not debug them, but rewrite them!

3.9.5 Basic

Basic stands for Beginners All Purpose Symbolic Instruction Code, and was devel-
oped by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue to
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its audience and it is very easy to learn. It is generally interpreted, though compiled
versions do exist. It has proved to be well suited to the rapid development of small
programs. It is much criticised because it lacks features that encourage or force the
adoption of sound programming techniques.

396 C

There is a requirement in computing to be able to access the underlying machine
directly or at least efficiently. It is therefore not surprising that computer professionals
have developed high-level languages to do this. This may well seem a contradiction,
but it can be done to quite a surprising degree. Some of the earliest published work
was that of Martin Richards on the development of BCPL.

This language directly influenced the work of Ken Thompson and can be clearly
seen in the programming languages B and C. The UNIX operating system is almost
totally written in C and demonstrates very clearly the benefits of the use of high-level
languages wherever possible.

With the widespread use of UNIX within the academic world C gained consid-
erable ground during the 1970s and 1980s. UNIX systems also offered much to the
professional software developer, and became widely used for large-scale software
development and as Ritchie says: “C is quirky, flawed, and an enormous success.
while accidents of history surely helped, it evidently satisfied a need for a system
implementation language efficient enough to displace assembly language, yet suffi-
ciently abstract and fluent to describe algorithms and interactions in a wide variety
of environments.”

There have been several versions of C. Before the language was standardised most
people relied on an informal specification contained in the book by Dennis Ritchie
and Brian Kernighan, and this version is called K&R C. In 1989 the American
National Standards Institute published the ANSI C or C89 standard. It became an
ISO standard a year later. The second edition of the K&R book covers the ANSI C
standard. ISO later released an extension to the internationalization support of the
standard in 1995, and a revised standard (C99) in 1999.

C99 introduced several new features, including inline functions, several new data
types (including long long int and a complex type to represent complex numbers),
variable-length arrays, improved support for IEEE 754 floating point, support for
variadic macros (macros of variable arity), and support for one-line comments begin-
ning with // which are part of C++. This increased the compatibility of C and C++.
Many of these had already been implemented as extensions in several C compilers.

The current version of the standard - C11 was approved in December 2011.

The C11 standard adds several new features to C and the library, including type
generic macros, anonymous structures, improved Unicode support, atomic opera-
tions, multithreading, and bounds-checked functions. It improved compatibility with
C++.
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3.10 Some Other Strands in Language Development

There are many strands that make up program language development and some of
them are introduced here.

3.10.1 Abstraction, Stepwise Refinement and Modules

Abstraction has proved to be very important in programming. It enables a complex
task to be broken down into smaller parts concentrating on what we want to happen
rather than how we want it to happen. This leads almost automatically to the ideas
of stepwise refinement and modules, with collections of modules to perform specific
tasks or steps.

3.10.2 Structured Programming

Structured programming in its narrowest sense concerns itself with the development
of programs using a small but sufficient set of statements and, in particular, control
statements. It has had a great effect on program language design, and most languages
now support the minimal set of control structures.

In a broader sense structured programming subsumes other objectives, includ-
ing simplicity, comprehensibility, verifiability, modifiability and maintenance of
programs.

3.10.3 Data Structuring and Procedural Programming

By the 1970’s languages started to emerge that offered the ability to organise data
logically - so called data structuring, and we will look at two of these in the coverage
below - C and Pascal.

C provided this facility via structs and Pascal did it via records. These languages
also offered two ways of processing the data - directly or via procedures. The terms
concrete and abstract data type are sometimes also used in the literature.

An example may help here. Consider a date. This is typically made up of three
components, a day, a month and a year. In C we can create a user defined type called
a date using structs. We can then create variables of this type. This is done in Pascal
in a similar way using records.

Access to the components of a date (day, month and year) can then either be direct
- an example of a concrete data types, or indirect (via procedures) - an abstract data

types.
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Simplistically direct access (or concrete data types) offer the benefit of efficiency,
and the possibility of lack of data integrity. In our date example we may set a day to
the value 31 when the month is February.

Indirect access (or abstract data types) are slightly less efficient as we now have
the overhead of a procedure call to access the data, but better opportunity for data
integrity as we can provide hidden code within the procedures to ensure that the day,
month and year combinations are valid.

Fortran did not provide this facility until the Fortran 90 standard.

3.10.4 Standardisation

The purposes of a standard are quite varied and include:

e Investment in people: by this we mean that the time spent in learning a stan-
dard language pays off in the long term, as what one learns is applicable on any
hardware/software platform that has a standard conformant compiler.

e Portability: one can take the code one has written for one hardware/software plat-
form and move it to any hardware/software platform that has a standard conformant
compiler.

e Known reference point: when making comparisons one starts with reference to
the standard first, and then between the additional functionality of the various
implementations

These are some but not all of the reasons for the use of standards. Their importance
is summed up beautifully by Ronald G. Ross in his introduction to the Cannan and
Otten book on the SQL standard: “Anybody who has ever plugged in an electric
cord into a wall outlet can readily appreciate the inestimable benefits of workable
standards. Indeed, with respect to electrical power, the very fact that we seldom even
think about such access (until something goes wrong) is a sure sign of just how
fundamentally important a successful standard can be.”

3.11 Ada

Ada represents the culmination of many years of work in program language develop-
ment. It was a collective effort and the main aim was to produce a language suitable
for programming large-scale and real-time systems. Work started in 1974 with the
formulation of a series of documents by the American Department of Defence (DoD),
which led to the Steelman documents. It is a modern algorithmic language with the
usual control structures and facilities for the use of modules, and allows separate
compilation with type checking across modules.
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Ada is a powerful and well-engineered language. Its widespread use is certain
as it has the backing of the DoD. However, it is a large and complex language and
consequently requires some effort to learn.

The latest version of the language is Ada 2012. The following url

http://www.ada-europe.org/resources/online

provides a good starting point. Visit this site if you want up to date details about Ada.
Another good source is

http://www.adaic.org/ada-resources/standards/adal?2

Both sites have free electronic versions of the various Ada standards.

3.12 Modula

Modula was designed by Wirth during the 1970s at ETH, for the programming of
embedded real-time systems. It has many of the features of Pascal, and can be taken
for Pascal at a glance. The key new features that Modula introduced were those of
processes and monitors.

As with Pascal it is relatively easy to learn and this makes it much more attractive
than Ada for most people, achieving much of the capability without the complexity.

3.13 Modula 2

Wirth carried on developing his ideas about programming languages and the culmi-
nation of this can be seen in Modula 2. In his words: “In 1977, a research project
with the goal to design a computer system (hardware and software) in an integrated
approach, was launched at the Institut fur Informatik of ETH Zurich. This system
(later to be called Lilith) was to be programmed in a single high level language,
which therefore had to satisfy requirements of high level system design as well as
those of low level programming of parts that closely interact with the given hardware.
Modula 2 emerged from careful design deliberations as a language that includes all
aspects of Pascal and extends them with the important module concept and those of
multi-programming. Since its syntax was more in line with Modula than Pascal’s the
chosen name was Modula 2.”
The language’s main additions with regard to Pascal are:

e The module concept, and in particular the facility to split a module into a definition
part and an implementation part.



30 3 Introduction to Programming Languages

e A more systematic syntax which facilitates the learning process. In particular,
every structure starting with a keyword also ends with a keyword, i.e., is properly
bracketed.

e The concept of process as the key to multiprogramming facilities.

e So-called low-level facilities, which make it possible to breach the rigid type
consistency rules and allow one to map data with Modula 2 structure onto a store
without inherent structure.

e The procedure type, which allows procedures to be dynamically assigned to
variables.

A sad feature of Modula 2 was the long time taken to arrive at a standard for the
language.

3.14 Other Language Developments

The following is a small selection of language developments that the authors find
interesting — they may well not be included in other people’s coverage.

3.14.1 Logo

Logo is alanguage that was developed by Papert and colleagues at the Artificial Intel-
ligence Laboratory at MIT. Papert is a professor of both mathematics and education,
and has been much influenced by the psychologist Piaget. The language is used to
create learning environments in which children can communicate with a computer.
The language is primarily used to demonstrate and help children develop fundamen-
tal concepts of mathematics. Probably the turtle and turtle geometry are known by
educationalists outside of the context of Logo. Turtles have been incorporated into
the Smalltalk computer system developed at Xerox Palo Alto Research Centre —
Xerox PARC.

3.14.2  Postscript, TEX and BTEX

The 1980s saw a rapid spread in the use of computers for the production of printed
material. The 3 languages are each used quite extensively in this area.

Postscript is a low-level interpretive programming language with good graphics
capabilities. Its primary purpose is to enable the easy production of pages containing
text, graphical shapes and images. It is rarely seen by most end users of modern
desktop publishing systems, but underlies many of these systems. It is supported by
an increasing number of laser printers and typesetters.
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TeX is a language designed for the production of mathematical texts, and was
developed by Donald Knuth. It linearises the production of mathematics using a
standard computer keyboard. It is widely used in the scientific community for the
production of documents involving mathematical equations.

IATEX is Leslie Lamport’s version of TgX, and is regarded by many as more
friendly. It is basically a set of macros that hide raw TgX from the end user. The TEX
ratio is probably 1-9 (or so I'm reliably informed by a TgXie).

3.14.3 Prolog

Prolog was originally developed at Marseille by a group led by Colmerauer in
1972/73. 1t has since been extended and developed by several people, including
Pereira (L.M.), Pereira (F), Warren and Kowalski. Prolog is unusual in that it is a
vehicle for logic programming. Most of the languages described here are basically
algorithmic languages and require a specification of how you want something done.
Logic programming concentrates on the what rather than the how. The language
appears strange at first, but has been taught by Kowalski and others to 10-year-old
children at schools in London.

3.144 SOL

SQL stands for Structured Query Language, and was originally developed by people
mainly working for IBM in the San Jose Research Laboratory. It is a relational
database language, and enables programmers to define, manipulate and control data
in a relational database. Simplistically, a relational database is seen by a user as a
collection of tables, comprising rows and columns. It has become the most important
language in the whole database field.

3.14.5 ICON

ICON is in the same family as Snobol, and is a high-level general purpose program-
ming language that has most of the features necessary for efficient processing of
nonnumeric data. Griswold (one of the original design team for Snobol) has learnt
much since the design and implementation of Snobol, and the language is a joy to
use in most areas of text manipulation.

It is available for most systems via anonymous FTP from a number of sites on the
Internet.
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3.15 Object Oriented Programming

Object oriented represents a major advance in program language development. The
concepts that this introduces include:

Classes.
Objects.
Messages.
Methods.

These in turn draw on the ideas found in more conventional programming languages
and correspond to

Extensible data types.

Instances of a class.

Dynamically bound procedure calls.
Procedures of a class.

Inheritance is a very powerful high-level concept introduced with object oriented
programming. It enables an existing data type with its range of valid operations
to form the basis for a new class, with more data types added with corresponding
operations, and the new type is compatible with the original.

Fortran 2003 offered support for object oriented programming. This is achieved
via the module facility rather than the class facility found in other languages like
C++, Java and C#.

3.15.1 Simula

As was mentioned earlier, the first language to offer functionality in this area was Sim-
ula, and thus the ideas originated in the 1960s. The book Simula Begin by Birtwistle,
Dahl, Myhrhaug and Nygaard is well worth a read as it represents one of the first
books to introduce the concepts of object oriented programming.

3.15.2 Smalltalk

Language plus use of a computer system.

Smalltalk has been under development by the Xerox PARC Learning Research
Group since the 1970s. In their words: “Smalltalk is a graphical, interactive pro-
gramming environment. As suggested by the personal computer vision, Smalltalk
is designed so that every component in the system is accessible to the user and can
be presented in a meaningful way for observation and manipulation. The user inter-
face issues in Smalltalk revolve around the attempt to create a visual language for
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each object. The preferred hardware system for Smalltalk includes a high resolution
graphical display screen and a pointing device such as a graphics pen or mouse.
With these devices the user can select information viewed on the screen and invoke
messages in order to interact with the information.” Thus Smalltalk represents a
very different strand in program language development. The ease of use of a system
like this has long been appreciated and was first demonstrated commercially in the
Macintosh microcomputers.

Wirth has spent some time at Xerox PARC and has been influenced by their work.
In his own words “the most elating sensation was that after sixteen years of working
for computers the computer now seemed to work for me.” This influence can be
seen in the design of the Lilith machine, the original Modula 2 engine, and in the
development of Oberon as both a language and an operating system.

3.15.3 Oberon and Oberon 2

As Wirth says: “The programming language Oberon is the result of a concentrated
effort to increase the power of Modula-2 and simultaneously to reduce its complexity.
Several features were eliminated, and a few were added in order to increase the
expressive power and flexibility of the language.”

Oberon and Oberon 2 are thus developments beyond Modula 2. The main new
concept added to Oberon was that of type extension. This enables the construction
of new data types based on existing types and allows one to take advantage of what
has already been done for that existing type.

Language constructs removed included:

Variant records.
Opaque types.
Enumeration types.
Subrange types.

Local modules.

With statement.

Type transfer functions.
Concurrency.

The short paper by Wirth provides a fuller coverage. It is available at ETH via
anonymous FTP.

3.15.4 Eiffel

Eiffel was originally developed by Interactive Software Engineering Inc. (ISE)
founded by Bertrand Meyer. Meyer’s book Object-Oriented Software Construction
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contains a detailed treatment of the concepts and theory of the object technology that
led to Eiffel’s design.

The language first became available in 1986, and the first edition of Meyer’s book
was published in 1988. The following is a quote from the Wikipedia entry.

e The design goal behind the Eiffel language, libraries, and programming meth-
ods is to enable programmers to create reliable, reusable software modules. Eiffel
supports multiple inheritance, genericity, polymorphism, encapsulation, type-safe
conversions, and parameter covariance. Eiffel’s most important contribution to
software engineering is design by contract (DbC), in which assertions, precondi-
tions, postconditions, and class invariants are employed to help ensure program
correctness without sacrificing efficiency.

3.15.5 C++

Stroustrup did his PhD thesis at the Computing Laboratory, Cambridge University,
England, and worked with Simula. He had previously worked with Simula at the Uni-
versity of Aarhus in Denmark. His comments are illuminating: “but was pleasantly
surprised by the way the mechanisms of the Simula language became increasingly
helpful as the size of the program increased. The class and co-routine mechanisms
of Simula and the comprehensive type checking mechanisms ensured that problems
and errors did not (as I - and I guess most people - would have expected) grow lin-
early with the size of the program. Instead, the total program acted like a collection
of very small (and therefore easy to write, comprehend and debug) programs rather
than a single large program.”

He designed C++ to provide Simula’s functionality within the framework of C’s
efficiency, and he succeeded in this goal as C++ is one of the most widely used object
oriented programming language.

The language began as enhancements to C, adding classes, virtual functions,
operator overloading, multiple inheritance, templates and exception handling by the
time of the first standard.

Its influence in the area of programming language design can be seen in Java and
CH.

Table 3.1 summarises the C++ standardisation history.

The following are some of the guidelines used by the standards committee in the
development of C++11.

Table 3.1 C++ standardisation history

Year C++ standard Informal name
1998 ISO/IEC 14882:1998 C++98

2003 ISO/IEC 14882:2003 C++03

2007 ISO/IEC TR 19768:2007 C++TR1

2011 ISO/IEC 14882:2011 C++11
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e Maintain stability and compatibility with C++98 and possibly with C;

e Prefer introduction of new features through the standard library, rather than extend-
ing the core language;

e Prefer changes that can evolve programming technique;

Improve C++ to facilitate systems and library design, rather than to introduce new

features useful only to specific applications;

Increase type safety by providing safer alternatives to earlier unsafe techniques;

Increase performance and the ability to work directly with hardware;

Provide proper solutions for real-world problems;

Implement zero-overhead principle (additional support required by some utilities

must be used only if the utility is used);

e Make C++ easy to teach and to learn without removing any utility needed by expert
programmers.

C++14 was a small extension over C++11 and was published in December 2014.
C++17 was a major update and was published in December 2017.

3.15.6 Java

Bill Joy (of Sun fame) had by the late 1980s decided that C++ was too complicated
and that an object oriented environment based upon C++ would be of use. At around
about the same time James Gosling (mister emacs) was starting to get frustrated with
the implementation of an SGML editor in C++. Oak was the outcome of Gosling’s
frustration.

Sun over the next few years ended up developing Oak for a variety of projects. It
wasn’t until Sun developed their own web browser, Hotjava, that Java as a language
hit the streets. And as the saying goes the rest is history.

Javais arelatively simple object oriented language. Whilst it has its origins in C++
it has dispensed with most of the dangerous features. It is OO throughout. Everything
is a class.

It is interpreted and the intermediate byte code will run on any machine that
has a Java virtual machine for it. This is portability at the object code level, unlike
portability at the source code level — which is what we expect with most conventional
languages. Some of the safe features of the language include:

e Built in garbage collection.
e Array subscript checking.
e No pointers — everything is passed by reference.

It is multithreaded, which makes it a delight for many applications. It has an
extensive windows toolkit, the so called AWT that was in the original release of the
language and Swing that came in later.

Itis under continual development and at the time of writing was in its eighth major
release.

Sun was acquired by Oracle in 2010.
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3.15.7 C#

C#is arecent language from Microsoft and is a key part of their .NET framework. It is
a modern, well-engineered language in the same family of programming languages
in terms of syntax as C, C++ and Java. If you have a knowledge of one of these
languages it will look very familiar.

One of the design goals was to produce a component oriented language, and to
build on the work that Microsoft had done with OLE, ActiveX and COM:

e ActiveX is a set of technologies that enables software components to interact with
one another in a networked environment, regardless of the language in which they
were created. ActiveX was built on the Component Object Model (COM).

e COM is the object model on which ActiveX Controls and OLE are built. COM
allows an object to expose its functionality to other components and to host appli-
cations. It defines both how the object exposes itself and how this exposure works
across processes and networks. COM also defines the object’s life cycle.

e OLE is a mechanism that allows users to create and edit documents containing
items or objects created by multiple applications. OLE was originally an acronym
for Object Linking and Embedding. However, it is now referred to simply as
OLE. Parts of OLE not related to linking and embedding are now part of Active
technology.

Other design goals included creating a language:

e Where everything is an object — C# also has a mechanism for going between
objects and fundamental types (integers, reals, etc.).

e Which would enable the construction of robust and reliable software — it has
garbage collection, exception handling and type safety.

e Which would use a C/C++/Java syntax which is already widely known and thus
help programmers converting from one of these languages to C#.

It has been updated three times since its original release. Some of the more impor-
tant features added in C# 2 were Generics, Iterators, Partial Classes, Nullable Types
and Static Classes. The major feature that C# 3 added for most people was LINQ,
a mechanism for data querying. C# 4 was released in 2010 and added a number of
additional features.

3.15.8 Python

Python is an object-oriented, interpreted, and interactive programming language.
Python was conceived in the late 1980s, and its implementation was started in
December 1989 by Guido van Rossum at CWI in the Netherlands as a successor
to the ABC language (itself inspired by SETL) capable of exception handling and
interfacing with the Amoeba operating system. Van Rossum is Python’s principal
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author, and his continuing central role in deciding the direction of Python is reflected
in the title given to him by the Python community, (benevolent dictator for life -
BDFL).

Heres a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at
CWI, and from working with this group I had learned a lot about language design. This is the
origin of many Python features, including the use of indentation for statement grouping and
the inclusion of very-high-level data types (although the details are all different in Python).
I had a number of gripes about the ABC language, but also liked many of its features. It was
impossible to extend the ABC language (or its implementation) to remedy my complaints
in fact its lack of extensibility was one of its biggest problems. I had some experience with
using Modula—2+ and talked with the designers of Modula-3 and read the Modula—3 report.
Modula—3 is the origin of the syntax and semantics used for exceptions, and some other
Python features. I was working in the Amoeba distributed operating system group at CWI. We
needed a better way to do system administration than by writing either C programs or Bourne
shell scripts, since Amoeba had its own system call interface which wasnt easily accessible
from the Bourne shell. My experience with error handling in Amoeba made me acutely
aware of the importance of exceptions as a programming language feature. It occurred to
me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific
language, so I decided that I needed a language that was generally extensible. During the
1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the
Amoeba project with increasing success, and the feedback from colleagues made me add
many early improvements. In February 1991, after just over a year of development, I decided
to post to USENET. The rest is in the Misc/HISTORY file.

Python 2.0 was released on 16 October 2000 and had many major new features,
including a cycle-detecting garbage collector and support for Unicode. With this
release the development process was changed and became more transparent and
community-backed.

Python 3.0 (also called Python 3000 or py3k), a major, backwards-incompatible
release, was released on 3 December 2008 after a long period of testing. Many of its
major features have been backported to the backwards-compatible Python 2.6 and
2.7.

Here is the main Python web site.

https://www.python.org/

It is quite widely used. Large organizations that make use of Python include
Google, Yahoo!, CERN, and NASA.

Our involvement with Python started when we were asked about Python training
by people working at the Atomic Weapons Establishment in Aldermaston. We put
together a short 3 day intensive course for them.

Quite a fun language!



38 3 Introduction to Programming Languages

3.16 Back to Fortran!

We finish off with a coverage of the developments since the Fortran 77 standard.
Practically all of the Fortran compilers available today fully support the Fortran 90
and 95 standards. Support for features from the Fortran 2003 and 2008 standards is
improving on a regular basis. See the following document

https://www. fortranplus.co.uk/
fortran-information/

for up to date information on what each compiler offers in terms of standard support.

3.16.1 Fortran 90

Almost as soon as the Fortran 77 standard was complete and published, work began
on the next version. The language drew on many of the ideas covered in this chapter
and these help to make Fortran 90 a very promising language. Some of the new
features included:

e New source form, with blanks being significant and names being up to 31 charac-
ters.

Implicit none.

Better control structures.

Control of the precision of numerical computation.
Array processing.

Pointers.

User defined data types and operators.

Procedures.

Modules.

Recursion.

Dynamic storage allocation.

This was the major update that the Fortran community had been waiting a long time
for. Backwards compatibility was again a key aim. This standard did not invalidate
any standard conformant Fortran 77 program.

3.16.2 Fortran 95

Fortran was next standardised in 1996 — yet again out by one! Firstly we have a clear
up of some of the areas in the standard that had emerged as requiring clarification.
Secondly Fortran 95 added the following major concepts:
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The forall construct.

Pure and elemental procedures.

Implicit initialisation of derived-type objects.
Initial association status for pointers.

The first two help considerably in parallelization of code.
Minor features include amongst others:

Automatic deallocation of allocatable arrays.

Intrinsic sign function distinguishes between —0 and +0.

Intrinsic function null returns disconnected pointer.

Intrinsic function cpu_ time returns the processor time.

References to some pure functions are allowed in specification statements.
Nested where constructs.

Masked el sewhere construct.

Small changestothe ceiling, floor,maxloc andminloc intrinsic functions

Some of these were added to keep Fortran in line with High Performance Fortran
(HPF). More details are given later.

Part 2 of the standard (ISO/IEC 1539-2:1994) adds the functional specification
for varying length character data type, and this extends the usefulness of Fortran for
character applications very considerably.

3.16.3 ISO Technical Reports TR15580 and TR15581

There are two additional reports that have been published on Fortran. TR 15580
specifies three modules that provide access to IEEE floating point arithmetic and
TR15581 allows the use of the allocatable attribute on dummy arguments, function
results and structure components.

3.16.4 Fortran 2003

The language is known as Fortran 2003 even though the language did not make it
through the standardisation process until 2004. It was a major revision.

e Derived type enhancements

— parameterised derived types (allows the kind, length, or shape of a derived type’s
components to be chosen when the derived type is used)

— mixed component accessibility (allows different components to have different
accessibility)

— public entities of private type

— improved structure constructors

— finalisers
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e Object oriented programming support

enhanced data abstraction (allows one type to extend the definition of another
type)

polymorphism (allows the type of a variable to vary at run time)

dynamic type allocation

select type construct (allows a choice of execution flow depending upon the type
a polymorphic object currently has)

type-bound procedures

e The associate construct (allows a complex expression or object to be denoted by
a simple symbol)
e Data manipulation enhancements

allocatable components

deferred-type parameters

volatile attribute

explicit type specification in array constructors

intent specification of pointer arguments

specified lower bounds of pointer assignment, and pointer rank remapping
extended initialisation expressions

max and min intrinsics for character type

enhanced complex constants

e Input/output enhancements

asynchronous transfer operations (allow a program to continue to process data
while an input/output transfer occurs)

stream access (allows access to a file without reference to any record structure)
user specified transfer operations for derived types

user specified control of rounding during format conversions

the flush statement

named constants for preconnected units

regularisation of input/output keywords

access to input/output error messages

e Procedure pointers
e Scoping enhancements

the ability to rename defined operators (supports greater data abstraction)
control of host association into interface bodies

e Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a
processor’s arithmetic supports the IEC standard)

e Interoperability with the C programming language (allows portable access to many
libraries and the low-level facilities provided by C and allows the portable use of
Fortran libraries by programs written in C)

e Support for international usage
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— ISO 10646
— choice of decimal or comma in numeric formatted input/output

e Enhanced integration with the host operating system

— access to command line arguments and environment variables
— access to the processor’s error messages (improves the ability to handle excep-
tional conditions)

The earlier web address has details of Fortran compiler conformance to this
standard.

3.16.5 DTR 19767 Enhanced Module Facilities

The module system in Fortran has a number of shortcomings and this DTR addresses
some of the issues.

One of the major issues was the so-called recompilation cascade. Changes to
one part of a module forced recompilation of all code that used the module. Mod-
ula 2 addressed this issue by distinguishing between the definition or interface and
implementation. This can now be achieved in Fortran via submodules.

3.16.6 Fortran 2008

The next standard, ISO/IEC 1539-1:2010, commonly known as Fortran 2008, was
approved in September 2010. The new features include:

e Submodules
e Coarrays
e Performance enhancements

— do concurrent
— Contiguous attribute
— Simply contiguous arrays

e Data declaration

— Maximum rank

— Long integers

— Allocatable components of recursive type
— Implied-shape array

— Pointer initialization

— Data statement restrictions lifted

— Kind of a forall index

— Type statement for intrinsic types

— Declaring type-bound procedures
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— Extensions to value attribute
e Data usage

— Omitting an allocatable component in a structure constructor
— Multiple allocations with source=

— Copying the properties of an object in an allocate statement
— Polymorphic assignment

— Accessing real and imaginary parts

— Pointer functions

— Elemental dummy argument restrictions lifted

e Input/Output

— Finding a unit when opening a file
— g0 edit descriptor

— Unlimited format item

— Recursive input/output

e Execution control

— The block construct
— Exit statement
— Stop code

e Intrinsic procedures and modules

— Bit processsing

— Storage size

— Optional argument radix added to selected real kind

— Extensions to trigonometric and hyperbolic intrinsic functions
— Bessel functions

— Error and gamma functions

— Euclidean vector norms

— Parity

— Execute command line

— Optional argument back added to maxloc and minloc

— Find location in an array

— String comparison

— Constants

— Compiler information

— Function for C sizeof

— Additional optional argument for ieee_selected_real_kind

e Programs and procedures

— Save attribute for module and submodule data

— Empty contains part

— Form of the end statement for an internal or module procedure
— Internal procedure as an actual argument or pointer target
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— Null pointer or unallocated allocatable as an absent dummy argument
— Non-pointer actual for pointer dummy argument

— Generic resolution by pointer/allocatable or data/procedure

— Elemental procedures that are not pure

— Entry statement becomes obsolescent

e Source form
— Semicolon at line start

A more thorough coverage can be found in John Reid’s paper.

https://wgb-fortran.org/N1851-N1900/N1891.pdf

3.16.7 TS 29113 Further Interoperability of Fortran with C

This TS was published in 2012.

3.16.8 Fortran 2018

According to the current WG5S work schedule it is expected that the Fortran 2018
standard will be published in August 2018.

Here is a short list of some of the changes introduced by this standard. It has been
taken from John Reid’s paper on the new features of Fortran 2018. The first edition
of this paper is N2127 and was published in 2017. The second edition is N2145 and
was published in January 2018.

e Additional parallel features in Fortran

— Teams

— Image failure

— Form team statement

— Change team construct

— Coarrays allocated in teams

— Critical construct

— Lock and unlock statements

— Sync team statement

— Image selectors

— Intrinsic functions get team and team number
— Intrinsic function image index
— Intrinsic function num images
— Intrinsic function this image
— Intrinsic function move alloc
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— Fail image statement

— Detecting failed and stopped images

— Collective subroutines

— New and enhanced atomic subroutines
— Failed images and stat=specifiers

— Events

e Conformance with ISO/IEC/IEEE 60559:2011

— Subnormal values

— Type for floating-point modes
— Round away from zero

— Decimal rounding mode

— Rounded conversions

— Fused multiply-add

— Test sign

— Conversion to integer type

— Remainder function

— Maximum and minimum values
— Adjacent machine numbers

— Comparisons

e Removal of deficiencies and discrepancies

— Default accessibility for entities accessed from a module
— Implicit none enhancement

— Enhancements to inquire

— d0.d, e0.d, es0.d, en0.d, g0.d and ew.d e0 edit descriptors
— Formatted input error conditions

— Rules for generic procedures

— Enhancements to stop and error stop

— Intrinsics that access the computing environment

— New elemental intrinsic function out of range

— New reduction intrinsic reduce

— Intrinsic function coshape

— Intrinsic subroutine random init

— Intrinsic function sign

— Intrinsic functions extends type of and same type as

— Nonstandard procedure from a standard intrinsic module
— Kind of the do variable in implied do

— Locality clauses in do concurrent

— Control of host association

— Connect a file to more than one unit

— Advancing input with size=

— Extension to the generic statement

— Removal of anomalies regarding pure procedures

— Recursive and non-recursive procedures
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— Simplification of calls of the intrinsic cmplx
— Removal of the restriction on argument dim of many intrinsic functions
— Kinds of arguments of intrinsic and IEEE procedures

— Hexadecimal input/output
— Deletions
Arithmetic if
Nonblock do construct
— New obsolescences
common and equivalence
Labelled do statements

Specific names for intrinsic functions
The forall construct and statement

Both N2127 and N2145 can be found on the WGS5 site.

https://wgb-fortran.org/documents.html

Both versions can also be found at the ACM Fortran Forum site.

http://dl.acm.org/citation.cfm?id=J286

N2127 was published in the August 2017 edition, and N2145 can be found in the

April 2018 edition.

Table 3.2 summarises the Fortran standardisation history.
Fortran 2018 is currently on schedule for a 2018 publication date.

Table 3.2 Fortran standardisation history

Year Fortran standard Informal name

1966 Ansi x3.9-1966 Fortran 66

1978 Ansi x3.9-1977 Fortran 77

1978 ISO 1539-1980 Fortran 77

1991 ISO/IEC 1539:1991 Fortran 90

1997 ISO/IEC 1539-1:1997 Fortran 95

1998 ISO/IEC TR 15580:1998 Floating-point exception handling
1998 ISO/IEC TR 15581:1998 Enhanced data type facilities

1999 ISO/IEC 1539-3:1999 Conditional compilation

2000 ISO/TEC 1539-2:2000 Part 2: varying length character strings
2001 ISO/TEC TR 15580:2001 | Floating-point exception handling
2004 ISO/IEC 1539-1:2004 Fortran 2003

2009 ISO/IEC 1539-1 Module TSR

2010 1539-1:2010 Fortran 2008

2012 ISO/TEC TS 29113:2012 Further interoperability of fortran with C

ISO/TEC NP TS 18508

Additional parallel features in fortran

201? 1539-1:2018

Fortran 2018
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3.17 Fortran Discussion Lists

The first to look at is the Fortran 90 list. Details can be found at

http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html

If you subscribe you will have access to people involved in Fortran standardisation,
language implementers for most of the hardware and software platforms, people using
Fortran in many very specialised areas, people teaching Fortran, etc.

There is also a comp.lang.fortran list available via USENET news. This provides
access to people worldwide with enormous combined expertise in all aspects of
Fortran. Invariably someone will have encountered your problem or one very much
like it and have one or more solutions.

Here is an extract from Wikipedia.

Usenet is a worldwide distributed Internet discussion system. It was developed from the
general purpose UUCP dial-up network architecture. Tom Truscott and Jim Ellis conceived
the idea in 1979 and it was established in 1980. Users read and post messages (called articles
or posts, and collectively termed news) to one or more categories, known as newsgroups.
Usenet resembles a bulletin board system (BBS) in many respects, and is the precursor to
Internet forums that are widely used today. Usenet can be superficially regarded as a hybrid
between email and web forums. Discussions are threaded, as with web forums and BBSes,
though posts are stored on the server sequentially.

One notable difference between a BBS or web forum and Usenet is the absence of a central
server and dedicated administrator. Usenet is distributed among a large, constantly changing
conglomeration of servers that store and forward messages to one another in so-called news
feeds. Individual users may read messages from and post messages to a local server operated
by a commercial usenet provider, their Internet service provider, university, employer, or
their own server.

Another to consider is the Fortran group on ‘linkedin’ The address is

https://www.linkedin.com/

3.18 ACM Fortran Forum

Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest Publica-
tion on Fortran, ACM Press. Visit

http://portal.acm.org/citation.cfm?id=J286

for more information.



3.18 ACM Fortran Forum 47

3.19 Other Sources

The following URLSs are very useful:
Our Fortran web site.

https://www.fortranplus.co.uk

The Fortran Company, maintained by Walt Brainerd.

http://www. fortran.com/

3.20 Summary

It is hoped that you now have some idea about the wide variety of uses that program-
ming languages are put to.

3.21 Bibliography

Fortran 2008 Standard, ISO/IEC 1539-1:2010, price CHF 338. Publication date:
2010-10-06.

http://www.iso.org/iso/home/store.htm
Fortran 2003 Standard, ISO/IEC DIS 1539-1:2004(E)

DTR 19767: Enhanced module Facilities: ISO/IEC TR 19767:2004(E)
The Fortran 77 and 66 standards are available from the WGS site.
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Both have copies of working documents.
Adobe Systems Incorporated, Postscript Language:

Tutorial and Cookbook, Addison-Wesley, 1985; Reference Manual, Addison-
Wesley, 1985; Program Design, Addison-Wesley, 1985.

e The three books provide a comprehensive coverage of the facilities and capabilities
of Postscript.

They third edition of the reference manual is available online.

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

ACM SIG PLAN, History of programming Languages Conference — HOPL-II,
ACM Press, 1993.

e One of the best sources of information on C++, CLU, Concurrent Pascal, For-
mac, Forth, Icon, Lisp, Pascal, Prolog, Smalltalk and Simulation Languages by
the people involved in the original design and or implementation. Very highly
recommended. This is the second in the HOPL series, and the first was edited by
Wexelblat. Details are given later.

Adams J.C., Brainerd W.S., Hendrickson R.A., Maine R.E., Martin J.T., Smith
B.T., The Fortran 2003 Handbook, Springer, 2009.

e Their most recent version, and a complete coverage of the 2003 standard. As with
the Metcalf, Reid and Cohen book some of the authors were on the J3 committee.
Very thorough.

Annals of the History of Computing, Special Issue: Fortran’s 25 Anniversary,
ACM, Atrticle 6,1, 1984.

e Very interesting comments, some anecdotal, about the early work on Fortran.
Barnes J., Programming in Ada 95, Addison-Wesley, 1996.
e One of the best Ada books. He was a member of the original design team.

Bergin T.J., Gibson R.G., History of Programming Languages, Addison-Wesley,
1996.

e This is a formal book publication of the Conference Proceedings of HOPL II. The
earlier work is based on preprints of the papers.

Birtwistle G.M., Dahl O. J., Myhrhaug B., Nygaard K.,
SIMULA BEGIN, Chartwell-Bratt Ltd, 1979.

e A number of chapters in the book will be of interest to programmers unfamiliar
with some of the ideas involved in a variety of areas including systems and models,
simulation, and co-routines. Also has some sound practical advice on problem
solving.
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Brinch-Hansen P., The Programming Language Concurrent Pascal, IEEE Trans-

actions on Software Engineering, June 1975, 199-207.

e Looks at the extensions to Pascal necessary to support concurrent processes.
Cannan S., Otten G., SQL — The Standard Handbook, McGraw-Hill, 1993.

e Very thorough coverage of the SQL standard, ISO 9075:1992(E).

Chivers I.D., Clark M.W., History and Future of Fortran, data Processing, vol. 27
no 1, January/February 1985.

e Short article on an early draft of the standard, around version 90.
Chivers Ian, Essential C# Fast, Springer, ISBN 1-85233-562-9.
e A quick introduction to the C# programming language.
Chivers 1.D., A Practical Introduction to Standard Pascal, Ellis Horwood, 1986.
A short introduction to Pascal.

Date C.J., A Guide to the SQL Standard, Addison-Wesley, 1997.

Date has written extensively on the whole database field, and this book looks at
the SQL language itself. As with many of Date’s works quite easy to read.

Deitel H.M., Deitel P.J., Java: How to program, 10th Edition Pearson Education

e A good introduction to Java and programming for people with little or no back-
ground in programming.

Deitel H.M., Deitel P.J., Visual Basic How to Program, Pearson Education, 2014.

Good practical introduction to VB .NET.

Dyson G., Turing’s Cathedral, The origins of the Digital Universe, Pantheon
Books, 2012.

e The following is taken from the books blurb. ... Dyson focuses on a small group
of men and women, led by John von Neuman at the Institute of Advanced Study
in Princeton, New Jersey, who build one of the first computers to realise Alan
Turing’s vision of a Universal Machine.

Eckstein R., Loy M., Wood D., Java Swing, O’Reilly, 1998.
e Comprehensive coverage of the visual interface features available in Java.

Geissman L.B., Separate Compilation in Modula 2 and the Structure of the Modula
2 Compiler on the Personal Computer Lilith, Dissertation 7286, ETH Zurich.

e Fascinating background reading concerning Modula 2 and the Lilith architecture.

Goldberg A., Robson D., Smalltalk 80: The Language and its Implementation,
Addison-Wesley, 1983.
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e Written by some of the Xerox PARC people who have been involved with the
development of Smalltalk. Provides a good introduction (if that is possible with
the written word) of the capabilities of Smalltalk.

Goos G., Hartmanis J. (Eds), The programming Language Ada — Reference
Manual, Springer Verlag, 1981.

e The definition of the language.

Goossens M., Mittelbach F., Rahtz S., Roegel D., Vo H. The I4TgX Graphics
Companion, second edition, Addison Wesley, 2007.

e Another essential IXTEX book.

Griswold R.E., Poage J.F., Polonsky I.P., The Snobol4 programming Language,
Prentice-Hall, 1971.

e The original book on the language. Also provides some short historical material
on the language.

Griswold R.E., Griswold M.T., The Icon programming Language, Prentice-Hall,
1983.

e The definition of the language with a lot of good examples. Also contains infor-
mation on how to obtain public domain versions of the language for a variety of
machines and operating systems.

Harbison S.P., Steele G.L., A C Reference Manual, Prentice-Hall, 2002.

e Very good coverage of the various flavours of C, including K&R C, Standard C
1989, Standard C 1995, Standard C 1999 and Standard C++

Hellman D., The Python Standard Library by Example, Addison-Wesley, 2011.
e Good introduction to the Python standard library.

Hoare C.A.R., Hints on programming Language Design, SIGACT/SIGPLAN
Symposium on Principles of programming Languages, October 1973.

e The first sentence of the introduction sums it up beautifully: “I would like in
this paper to present a philosophy of the design and evaluation of programming
languages which I have adopted and developed over a number of years, namely
that the primary purpose of a programming language is to help the programmer in
the practice of his art.”

Jacobi C., Code Generation and the Lilith Architecture, Dissertation 7195, ETH
Zurich

e Fascinating background reading concerning Modula 2 and the Lilith architecture.
Jenson K., Wirth N., Pascal: User Manual and Report, Springer-Verlag, 1975.

e The original definition of the Pascal language. Understandably dated when one
looks at more recent expositions on programming in Pascal.
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Kemeny J.G., Kurtz T.E., Basic programming, Wiley, 1971.
e The original book on Basic by its designers.

Kernighan B.W., Ritchie D.M., The C programming Language, Prentice-Hall;
first edition 1978; second edition 1988.

e The original work on the C language, and thus essential for serious work with C.

Kowalski R., Logic programming in the Fifth Generation, The Knowledge Engi-
neering Review, The BCS Specialist Group on Expert Systems.

e A short paper providing a good background to Prolog and logic programming,
with an extensive bibliography.

Knuth D. E., The TgXbook, Addison-Wesley, 1986.

e Knuth writes with an tremendous enthusiasm and perhaps this is understandable
as he did design TEgX. Has to be read from cover to cover for a full understanding
of the capability of TEX.

Lamport L., I4TEX User’s Guide and Reference Manual, 2005, Addison Wesley,
ISBN 0201529831.

e The original IXTEX book. Essential reading.
Lyons J., Chomsky, Fontana/Collins, 1982.

e A good introduction to the work of Chomsky, with the added benefit that Chomsky
himself read and commented on it for Lyons. Very readable.

Malpas J., Prolog: A Relational Language and its Applications, Prentice-Hall,
1987.

e A good introduction to Prolog for people with some programming background.
Good bibliography. Looks at a variety of versions of Prolog.

Marcus C., Prolog programming: Applications for Database Systems, Expert Sys-
tems and Natural Language Systems, Addison-Wesley.

e Coverage of the use of Prolog in the above areas. As with the previous book aimed
mainly at programmers, and hence not suitable as an introduction to Prolog as
only two chapters are devoted to introducing Prolog.

Metcalf M. and Reid J., Cohen M., Modern Fortran Explained, Oxford University
Press, 2011

e A clear compact coverage of the main features of Fortran. John Reid is Convener
of the WG5S committee and Malcolm Cohen was the editor of Fortran 2008.

Mittelbach F., Goossens M., Braams J., Carlisle D., and Rowley C., The I4TgX
Companion, 2005, Addison Wesley, ISBN 0201362996.

e The I4TEX book. It is required if you are setting a book using IATEX.
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Mossenbeck H., Object-Orientated programming in Oberon-2, Springer-Verlag,
1995.

e One of the best introductions to object oriented programming. Uses Oberon-2 as
the implementation language. Highly recommended.

Papert S., Mindstorms - Children, Computers and Powerful Ideas, Harvester Press,
1980.

e Very personal vision of the uses of computers by children. It challenges many
conventional ideas in this area.

Sammet J., programming Languages: History and Fundamentals, Prentice-Hall,
1969.

e Possibly the most comprehensive introduction to the history of program language
development — ends unfortunately before the 1980s.

Sethi R., programming Languages: Concepts and Constructs, Addison-Wesley,
1989.

e The annotated bibliographic notes at the end of each chapter and the extensive
bibliography make it a useful book.

Reiser M., Wirth N., programming in Oberon — Steps Beyond Pascal and Modula,
Addison-Wesley, 1992.

e Good introduction to Oberon. Revealing history of the developments behind
Oberon.

Reiser M., The Oberon System: User Guide and programmer’s Manual, Addison-
Wesley, 1991.

e How to use the Oberon system, rather than the language.

Stroustrup B., The C++ Programming Language, Addison-Wesley; third edition
1997; fourth edition 2014. 1997.

e The C++ book. Written by the designer of the language. The third edition is a
massive improvement over the earlier editions. The fourth edition covers C++11.
One of the best books on C++ and C++11 in particular.

Young S. J., An Introduction to Ada, 2nd Edition, Ellis Horwood, 1984.
e A readable introduction to Ada. Greater clarity than the first edition.

Wexelblat, History of programming Languages, HOPL I, ACM Monograph
Series, Academic Press, 1978.

e Very thorough coverage of the development of programming languages up to June
1978. Sessions on Fortran, Algol, Lisp, Cobol, APT, Jovial, GPSS, Simula, JOSS,
Basic, PL/I, Snobol and APL, with speakers involved in the original languages.
Very highly recommended.
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Wiener R., Software development using Eiffel, Prentice Hall, 1995.

e The book’s subtitle is There can be life other than C++ The book gives a good
introduction to object oriented analysis and design using the Booch 94 method
using Eiffel.

Wirth N., An Assessment of the Programming Language Pascal, IEEE Transac-
tions on Software Engineering, June 1975, 192-198.

e Short paper by Wirth on his experience with Pascal.
Wirth N., History and Goals of Modula 2, Byte, August 1984, 145-152.
e Straight from the horse’s mouth!

Wirth N., On the Design of programming Languages, Proc. IFIP Congress 74,
386-393, North-Holland.

e Short paper given in 1974 on designing programming languages.
Wirth N., The programming Language Pascal, Acta Informatica 1, 35-63, 1971.
e Short paper on the development of Pascal from Algol 60.

Wirth N., Modula: a language for modular multiprogramming, Software Practice
and Experience, 7, 3-35, 1977.

e Short paper on Modula, the precursor of Modula 2.
Wirth N., Programming in Modula 2, Springer-Verlag, 1983.

e The original definition of the language. Essential reading for anyone considering
programming in Modula 2 on a long term basis.

Wirth N. Type Extensions, ACM Trans. on Prog. Languages and Systems, 10, 2
(April 1988), 2004-214

e Short paper on type extension.

Wirth N. From Modula 2 to Oberon, Software — Practice and Experience, 18,7
(July 1988), 661-670

e Brief paper on the move from Modula 2 to Oberon, looking at features that were
removed and added.

Wirth N., Gutknecht J., Project Oberon: The Design of an Operating System and
Compiler, Addison-Wesley, 1992.

e Fascinating background to the development of Oberon. Highly recommended for
anyone involved in large scale program development, not only in the areas of
programming languages and operating systems, but more generally.
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Introduction to Programming e

Though this be madness, yet there is method in 't
Shakespeare

Plenty of practice’ he went on repeating, all the time that Alice
was getting him on his feet again. ‘plenty of practice.

The White Knight, Through the Looking Glass and What Alice
Found There, Lewis Carroll

Aims
The aims of the chapter are:

To introduce the idea that there is a wide class of problems that can be solved with

a computer and, further, that there is a relationship between the kind of problem

to be solved and the choice of programming language that is used.

e To give some of the reasons for the choice of Fortran.

e To introduce the fundamental components or kinds of statements to be found in a
general purpose programming language.

e To introduce the three concepts of name, type and value.

e To illustrate the above with sample programs based on three of the five intrinsic
data types:

e character, integer and real.

To introduce some of the formal syntactical rules of Fortran.

4.1 Introduction

We have seen that an algorithm is a sequence of steps that will solve a part or the
whole of a problem. A program is the realisation of an algorithm in a programming
language, and there are at first sight a surprisingly large number of programming
languages. The reason for this is that there is a wide range of problems that are
solved using a computer, e.g., the telephone company generating itemised bills or
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the meteorological centre producing a weather forecast. These two problems make
different demands on a programming language, and it is unlikely that the same
language would be used to solve both.

The range of problems that you want to solve will therefore strongly influence
your choice of programming language. Fortran stands for FORmula TRANslation,
which gives a hint of the expected range of problems for which it is suitable.

4.2 Language Strengths and Weaknesses

Some of the reasons for choosing Fortran are:

e Itis a modern and expressive language;

e The language is suitable for a wide class of both numeric and nonnumeric prob-
lems;

e The language is widely available on a range of hardware and operating system
platforms;

e A lot of software already exists that has been written in Fortran. Some 15% of
code worldwide is estimated to be in Fortran.

There are a few warts, however. Given that there has to be backwards compatibility
with earlier versions some of the syntax is clumsy to say the least. However, a
considerable range of problems can now be addressed quite cleanly, if one sticks to
a subset of the language and adopts a consistent style.

4.3 Elements of a Programming Language

As with ordinary (so-called natural) languages, e.g., English, French, Gaelic, Ger-
man, etc., programming languages have rules of syntax, grammar and spelling. The
application of these rules in a programming language is more strict. A program has
to be unambiguous, since it is a precise statement of the actions to be taken. Many
everyday activities are rather vaguely defined — Buy some bread on your way home
— but we are generally sufficiently adaptable to cope with the variations which occur
as a result. if, in a program to calculate wages, we had an instruction deduct some
money for tax and insurance we could have an awkward problem when the program
calculated completely different wages for the same person for the same amount of
work every time it was run. One of the implications of the strict syntax of a pro-
gramming language for the novice is that apparently silly error messages will appear
when one first starts writing programs. As with many other new subjects you will
have to learn some of the jargon to understand these messages.

Programming languages are made up of statements. We will look at the various
kinds of statements briefly below.
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4.3.1 Data Description Statements

These are necessary to describe the kinds of data that are to be processed. In the wages
program, for example, there is obviously a difference between people’s names and
the amount of money they earn, i.e., these two things are not the same, and it would
not make any sense adding your name to your wages. The technical term for this is
data type — a wage would be of a different data type (a number) to a surname (a
sequence of characters).

4.3.2 Control Structures

A program can be regarded as a sequence of statements to solve a particular problem,
and it is common to find that this sequence needs to be varied in practice. Consider
again the wages program. It will need to select among a variety of circumstances (say
married or single, paid weekly or monthly, etc), and also to repeat the program for
everybody employed. So there is the need in a programming language for statements
to vary and/or repeat a sequence of statements.

4.3.3 Data-Processing Statements

It is necessary in a programming language to be able to process data. The kind of
processing required will depend on the kind or type of data. In the wages program,
for example, you will need to distinguish between names and wages. Therefore there
must be different kinds of statements to manipulate the different types of data, i.e.,
wages and names.

4.3.4 Input and Output (I/0) Statements

For flexibility, programs are generally written so that the data that they work on exist
outside the program. In the wages example the details for each person employed
would exist in a file somewhere, and there would be a record for each person in this
file. This means that the program would not have to be modified each time a person
left, was ill, etc., although the individual records might be updated. It is easier to
modify data than to modify a program, and it is less likely to produce unexpected
results. To be able to vary the action there must be some mechanism in a programming
language for getting the data into and out of the program. This is done using input
and output statements, sometimes shortened to I/O statements.
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4 Example 1: Simple Text I/0

Let us now consider a simple program which will read in somebody’s first name and
print it out:

in

program ch0401
!

! This program reads in and prints out a name
1

implicit none

character *20 :: first_name
print *, ’ type in your first name.’
print *, ’ up to 20 characters’

read *, first_name
print *, first_name
end program ch0401

There are several very important points to be covered here, and they will be taken
turn:

e Each line is a statement.
e There is a sequence to the statements. The statements will be processed in the

order that they are presented, so in this example the sequence is print, read, print.
The first statement names the program. It makes sense to choose a name that
conveys something about the purpose of the program.

The next three lines are comment statements. They are identified by a ! . Comments
are inserted in a program to explain the purpose of the program. They should be
regarded as an integral part of all programs. It is essential to get into the habit of
inserting comments into your programs straight away.

The implicit none statement means that there has to be explicit typing of
each and every data item used in the program. It is good programming practice to
include this statement in every program that you write, as it will trap many errors,
some often very subtle in their effect. Using an analogy with a play, where there
is always a list of the persona involved before the main text of the play we can say
that this statement serves the same purpose.

The character*20 statement is a type declaration. It was mentioned earlier
that there are different kinds of data. There must be some way of telling the
programming language that these data are of a certain type, and that therefore
certain kinds of operations are allowed and others are banned or just plain stupid!
It would not make sense to add a name to a number, e.g., what does Fred + 10
mean? So this statement defines that the variable first_name is to be of type
character and only character operations are permitted. The concept of a variable
is covered in the next section. character variables of this type can hold up to 20
characters.
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e The print statements print out an informative message to the screen — in this
case a guide as to what to type in. The use of informative messages like this
throughout your programs is strongly recommended.

e The read statement is one of the I/O statements. It is an instruction to read from
the terminal or keyboard; whatever is typed in from the keyboard will end up
being associated with the variable £ irst_name. Input/output statements will be
explained in greater detail in later sections.

e The print statement is another I/O statement. This statement will print out what
is associated with the variable first_name and, in this case, what you typed in.

e The end program statement terminates this program. It can be thought of as
being similar to a full stop in natural language, in that it finishes the program in
the same way that a period ( . ) ends a sentence. Note the use of the name given in
the program statement at the start of the program.

e Note also the use of the asterisk in three different contexts.

e Indentation has been used to make the structure of the program easier to determine.
Programs have to be read by human beings and we will look at this in more depth
later.

e Lastly, when you do run this program, character input will terminate with the first
blank character.

The above program illustrates the use of some of the statements in the Fortran
language. Let us consider the action of the read * statement in more detail — in
particular, what is meant by a variable and a value.

4.5 Variables — Name, Type and Value

The idea of a variable is one that you are likely to have met before, probably in a
mathematical context. Consider the following:

circumference = 2mr 4.1

This is an equation for the calculation of the circumference of a circle. The fol-
lowing represents a translation of this into Fortran:

circumference = 2 * pi * radius

There are a number of things to note about this equation:

Each of the variables on the right-hand side of the equals sign (pi and radius)

will have a value, which will allow the evaluation of the expression.

e When the expression is fully evaluated the value is assigned to the variable on the
left-hand side of the equals sign.

e In mathematics the multiplication is implied. In Fortran we have to use the *

operator to indicate that we want to multiply 2 by pi by the radius.

We do not have access to mathematical symbols like v in Fortran but have to use

variable names based on letters from the Roman alphabet.
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Table 4.1 Variable name,

Variable name Data type Value stored
type and value

Temperature Real 28.55

Number_of_people Integer 100

First_name Character Jane

The whole line is an example of an arithmetic assignment statement in Fortran.
The following arithmetic assignment statement illustrates clearly the concepts of
name and value, and the difference in the equals sign in mathematics and computing:

i=i+1 4.2)

In Fortran this reads as take the current value of the variable 1 and add one to it, store
the new value back into the variable i, i.e., i takes the value i+1. Algebraically,
i =i+ 1 does not make any sense.

Variables can be of different types. Table 4.1 shows some of those available in
Fortran.

Note the use of underscores to make the variable names easier to read.

The concept of data type seems a little strange at first, especially as we commonly
think of integers and reals as numbers. However, the benefits to be gained from this
distinction are considerable. This will become apparent after you have written several
programs.

4.6 Example 2: Simple Numeric I/O and Arithmetic

Let us now consider another program, one that reads in three numbers, adds them up
and prints out both the total and the average:

program ch0402

!

! This program reads in three numbers and sums
! and averages them

|

implicit none

real :: nl, n2, n3, average = 0.0, total = 0.0
integer :: n = 3

print *, ’ type in three numbers.’

print *, ’ Separated by spaces or commas’

read *, nl, n2, n3

total = nl + n2 + n3

average = total/n

print *, ‘Total of numbers is ’, total

print *, ‘Average of the numbers is ', average
end program ch0402
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Here are some of the key points about this program.

e This program has declarations for numeric variables and Fortran (in common with
most programming languages) discriminates between real and integer data
types.

e The variables average, total and n are also given initial values within the
type declaration.

Variables are initially undefined in Fortran, so the variables n1, n2, n3 fall into
this category, as they have not been given values at the time that they are declared.

e The first print statement makes a text message (in this case what is between the
apostrophes) appear at the screen. As was noted earlier, it is good practice to put
out a message like this so that you have some idea of what you are supposed to
type in.

e The read statement looks at the input from the keyboard (i.e., what you type)
and in this instance associates these values with the three variables. These values
can be separated by commas (,), spaces ( ), or even by pressing the carriage return
key, i.e., they can appear on separate lines.

e The next statement actually does some data processing. It adds up the values of
the three variables (nl, n2, and n3) and assigns the result to the variable total.
This statement is called an arithmetic assignment statement.
and is covered more fully in the next chapter.

e The next statement is another data-processing statement. It calculates the average
of the numbers entered and assigns the result to average. We could have actually
used the value 3 here instead, i.e., written average = total/3 and have
exactly the same effect. This would also have avoided the type declaration for
n. However, the original example follows established programming practice of
declaring all variables and establishing their meaning unambiguously. We will see
further examples of this type throughout the book.

e Indentation has been used to make the structure of the program easier to determine.

e The sum and average are printed out with suitable captions or headings. Do
not write programs without putting captions on the results. It is too easy to make
mistakes when you do this, or even to forget what each number means.

e Finally we have the end of the program and again we have the use of the name in
the program statement.

4.7 Some More Fortran Rules

There are certain things to learn about Fortran which have little immediate meaning
and some which have no logical justification at all, other than historical precedence.
Why is a cat called a cat? At the end of several chapters there will be a brief summary
of these rules or regulations when necessary. Here are a few:
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e Source is free format.

e Lower case letters are permitted, but not required to be recognised.

e Multiple statements may appear on one line and are separated by the semicolon
character.

e There is an order to the statements in Fortran. Within the context of what you have
covered so far, the order is:

— Program statement.

— Type declarations, e.g., implicit, integer, real or character.
— Processing and I/O statements.

— End program statement.

e Comments may appear anywhere in the program, after program and before end;
they are introduced with a ! character, and can be in line.

e Names may be up to 63 characters in length and include the underscore character.

e Lines may be up to 132 characters.

e Up to 39 continuation lines are allowed (using the ampersand (&) as the continu-
ation character).

e The syntax of the read and print statement introduced in these examples is

— read format, input-item-list.
— print format, output-item-list.
where format is * in the examples and called list directed formatting.
and input-item-list is a list of variable names separated by commas.
and output-item-list is a list of variable
names and/or a sequence of characters enclosed in either “or ” , again separated
by commas.

o If the implicit none statement is not used, variables that are not explicitly declared
will default to real if the first letter of the variable name is A—H or O-Z, and to
integer if the first letter of the variable name is I-N.

4.8 Fortran Character Set

Table 4.2 has details of the Fortran character set.

The default character type shall support a character set that includes the Fortran
character set. By supplying non-default character types, the processor may support
additional character sets. The characters available in the ASCII and ISO 10646 char-
acter sets are specified by ISO/IEC 646:1991 (International Reference Version) and
ISO/IEC 10646-1:2000 UCS-4, respectively; the characters available in other non
default character types are not specified by the standard, except that one character in
each non default character type shall be designated as a blank character to be used
as a padding character.
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Table 4.2 The Fortran character set
Graphic Name of character Graphic Name of character
Alphanumeric characters
A-Z Uppercase letters 0-9 Digits
a—z Lowercase letters _ Underscore
Special characters
Blank ; Semicolon
= Equals ! Exclamation mark
+ Plus " Quotation mark
- Minus % Percent
* Asterisk & Ampersand
/ Slash or oblique ~ Tilde
\ Backslash < Less than
( Left parenthesis > Greater than
) Right parenthesis ? Question mark
[ Left square bracket ’ Apostrophe
] Right square bracket | * Grave accent
{ Left curly bracket . Circumflex accent
} Right curly bracket | Vertical bar or line
, Comma $ Currency symbol
Period or decimal # Number sign
point
Colon @ Commercial at

Table 4.3 has details of the ASCII character set.

If you live and work outside of the USA and UK you may well have problems
with your keyboard when programming. There is a very good entry in Wikipedia on
keyboards, that is well worth a look at for the curious.

Table 4.3 ASCII character set

Decimal | Character | Decimal | Character | Decimal | Character | Decimal | Character
0 nul 32 & 64 @ 96 ’
1 soh 33 ! 65 A 97 a
2 stx 34 " 66 B 98 b
3 etx 35 67 C 99 c
4 eot 36 $ 68 D 100 d
5 enq 37 % 69 E 101 e
6 ack 38 & 70 F 102 f
7 bel 39 ’ 71 G 103 g
8 bs 40 ( 72 H 104 h

(continued)
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9 ht 41 ) 73 1 105 i
10 If 42 * 74 J 106 ]
11 vt 43 + 75 K 107 k
12 ff 44 R 76 L 108 1
13 cr 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 si 47 / 79 (0] 111 o
16 dle 48 0 80 P 112 p
17 del 49 1 81 Q 113 q
18 dc2 50 2 82 R 114 r
19 dc3 51 3 83 S 115 s
20 dc4 52 4 84 T 116

21 nak 53 5 85 U 117 u
22 syn 54 6 86 \Y% 118 v
23 etb 55 7 87 w 119 w
24 can 56 8 88 X 120 X
25 em 57 9 89 Y 121 y
26 sub 58 90 Z 122 z
27 esc 59 H 91 [ 123 {
28 fs 60 < 92 \ 124 |
29 gs 61 = 93 ] 125 }
30 1S 62 > 94 ~ 126 ~
31 us 63 ? 95 _ 127 del

4.9 Good Programming Guidelines

The following are guidelines, and do not form part of the Fortran language definition:

e Use comments to clarify the purpose of both sections of the program and the whole
program.

Choose meaningful names in your programs.
Use indentation to highlight the structure of the program. Remember that the

program has to be read and understood by both humans and a computer.

Use implicit none in all programs you write to minimise errors.
Do not rely on the rules for explicit typing, as this is a major source of errors in
programming.
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4.10 Compilers Used

A number of hardware platforms, operating systems and compilers have been used
when writing this book and earlier books. The following have been used in the
production of this edition of the book:

NAG Fortran Builder 6.1 and 6.2 for Windows.

NAG Fortran Compiler 6.1 and 6.2 for Windows.

NAG Fortran Compiler 6.1 and 6.2 for Linux.

Intel Fortran 16.x, 17.x, 18.x for Windows.

Intel Fortran 16.x, 18.x for Linux.

gnu gfortran 4.8.x, 4.9.x, 4.10.x, 5.4.x, 7.x, 8.0.x for Windows.
gnu gfortran 4.8.x, 6.3.x for Linux.

Cray Fortran: Version 8.x.x - Cray Archer service.

Oracle Solaris Studio 12.6 for Linux.

Our recommendation is that you use at least two compilers in the development of
your code. Moving code between compilers and platforms teaches you a lot.
The following were used in the production of the third edition of the book:

NAG Fortran Builder 6.0 for Windows.

NAG Fortran compiler 6.0 for Windows.

NAG Fortran Compiler 6.0 for Linux.

NAG Fortran Builder 5.3.1 for Windows.

Nag Fortran compiler 5.3.1 and 5.3.2 for Windows.
Intel Fortran 14.x, 15.x for Windows.

Intel Fortran 15.x for Linux.

gnu gfortran 4.8.x, 4.9.x, 4.10.x for Windows.
gnu gfortran 4.8.x for Linux.

Cray Fortran: Version 8.2.1 - Cray Archer service.
Oracle Solaris Studio 12.4 for Linux.

The following were used in the production of earlier editions.

NAG Fortran Builder 5.1, 5.2, 5.3 for Windows.
NAG Fortran Compiler 5.1, 5.2, 5.3 for Linux.
Intel Fortran 11.x, 12.x, 13.x for Windows.

Intel Fortran 12.x for Linux.

gnu gfortran 4.x for Windows.

gnu gfortran 4.x for Linux.

Cray Fortran: Version 7.3.1 - Cray Hector service.
295 for Linux.

pgi 10.x - Cray Hector service.

IBM XL Fortran for AIX, V13.1 (5724-X15), Version: 13.01.0000.0002.
Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux.

The following have been used with earlier books:
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DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90 compiler.
DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler.
Sun Ultra Sparc under Solaris:

— NAGACE F90 compiler.
— NAGWare F95 compiler.
— Sun (Release 1.x) FO0 compiler.
— Sun (Release 2.x) FO0 compiler.

PCs under DOS and Windows:

— DEC/Compaq Fortran 90 and Fortran 95 compilers.
— Intel Compiler (7.x, 8.x).

— Lahey Fujitsu Fortran 95 (5.7).

— NAG Fortran 95 Compiler.

— NAG Salford Fortran 90 Compiler.

— Salford Fortran 95 Compiler.

e PCs under Linux:

— Intel Compiler.
— Lahey Fujitsu Fortran 95 Pro (6.1).
— NAG Fortran 95 (4.x, 5.x).

It is very illuminating to use more than one compiler whilst developing programs.

4.11 Compiler Documentation

The compiler may come with documentation. Here are some details for a number of
compilers.

4.11.1 gfortran

Manuals are available at
http://gcc.gnu.org/wiki/GFortran\#manuals
The following

http://gcc.gnu.org/onlinedocs/
gcc-4.5.2/gfortran.pdf

is a 236 page pdf.
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4.11.2 IBM

Here is a starting point. The urls have been split as the lines are too long.

http://www-03.1ibm.com/software/
products/en/fortcompfami/

Here is a starting point for the XLF for AIX system.

http://www-01.1ibm.com/support/
docview.wss?uid=swg27036673

and the starting point for the pdf version of the documentation is.

http://www-01.ibm.com/support/
docview.wss?uid=swg27036673

They provide

e Getting Started with XL Fortran for AIX 15.1 This book introduces you to XL
Fortran for Linux and its features, including features new for 15.1.

e Installation Guide - XL Fortran for AIX 15.1 This book contains information for
installing XL Fortran and configuring your environment for basic compilation and
program execution.

e Compiler Reference - XL Fortran for AIX 15.1 This book contains information
about the many XL Fortran compiler options and environment variables that you
can use to tailor the XL Fortran compiler to your application development needs.

e Language Reference - XL Fortran for AIX 15.1 This book contains information
about the Fortran programming language as supported by IBM, including language
extensions for portability and conformance to non-proprietary standards, compiler
directives and intrinsic procedures.

e Optimization and Programming Guide - XL Fortran for AIX 15.1 This book con-
tains information on advanced programming topics, such as application porting,
inter language calls, floating-point operations, input/output, application optimiza-
tion and parallelization, and the XL Fortran high-performance libraries.

4.11.3 Intel

Windows. The following will end up available after a complete install.

e Intel MKL

— Release notes
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— Reference Manual
— User Guide

e Parallel Debugger Extension
— Release Notes
e Compiler

— Reference Manual, Visual Studio Help files or html.
— User Guide, Visual Studio Help files or html.

Intel also provide the following

https://software.intel.com/en-us/articles/
intel-software-technical-documentation/

4.11.4 Nag

Windows
e Fortran Builder Help

— Fortran Builder Tutorial - 44 pages

— Fortran Builder Operation Guide - 67 pages

— Fortran Language Guide - 115 pages

— Compiler Manual - 149 pages

— LAPACK Guide - 70 pages (440 MB as PDF!)
— GTK+ Library - 201 pages

— OpenGL/GLUT Library - 38 pages

— SIMDEM Library - 78 pages

4.11.5 Oracle/Sun

Oracle make available a range of documentation. From within Oracle Solaris Studio
e Help

— Help Contents
— Online Docs and Support

— Quick Start Guide
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and you will get taken to the Oracle site by some of these entries.
You can also download a 300+ MB zip file which contains loads of Oracle docu-
mentation. You should be able to locate (after some rummaging around)

e Sun Studio 12: Fortran Programming Guide - 174 pages
e Sun Studio 12: Fortran User’s Guide - 216 pages

e Sun Studio 12: Fortran Library Reference - 144 pages

e Fortran 95 Interval Arithmetic Programming Reference - 166 pages

Happy reading :-)

4.12 Program Development

A number of ways of developing programs have been used, including:
e Using an integrated development environment, including

— NAG Fortran Builder under Windows.
— Microsoft Visual Studio with the Intel compiler under Windows.
— Oracle Sunstudio under SuSe Linux.

Using a DOS box and simple command line prompt under Windows.

Using ssh to log in to the Archer service.

Using a VPN, and SSH to log in to the IBM Power 7 system at Slovak Hydrome-
teorological Institute Jeseniova 17.

Using a console or terminal window under SuSe Linux.

Using X-Windows software to log into the SUN Ultra Sparc systems.

Using terminal emulation software to log into the SUN Ultra Sparc.

Using DEC terminals to log into the DEC VAX and DEC Alpha systems.

Using PCs running terminal emulation software to log into the DEC VAX and
DEC Alpha systems.

It is likely that you will end up doing at least one of the above and probably more.
The key stages involved are:

Creating and making changes to the Fortran program source.

Saving the file.

Compiling the program:

If there are errors you must go back to the Fortran source and make the changes
indicated by the compiler error messages.

Linking if successful to generate an executable:

Automatic link. This happens behind the scenes and the executable is generated
for you immediately.

Manual link. You explicitly invoke the linker to generate the executable.
Running the program.
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e Determining whether the program actually works and gives the results expected.

These steps must be taken regardless of the hardware platform, operating system
and compiler you use. Some people like working at the operating system prompt
(e.g., DOS, Linux and UNIX), and others prefer working within a development
environment. Both have their strengths and weaknesses.

4.13 Problems

4.1 Compile and run Example 1 in this chapter. Experiment with the following types
of input.

Ian

Ian Chivers

“Jane Margaret Sleightholme”

4.2 Compile and run Example?2 in this chapter.
Think about the following points:

Is there a difference between separating the input by spaces or commas?
Do you need the decimal point?

What happens when you type in too many data?

What happens when you type in too few data?

If you have access to more than one compiler repeat the above and compare the
results.

4.3 Write a program that will read in your name and address and print them out in
reverse order.
Think about the following points:

e How many lines are there in your name and address?

What is the maximum number of characters in the longest line in your name and

address?

What happens at the first blank character of each input line?

Which characters can be used in Fortran to enclose each line of text typed in and

hence not stop at the first blank character?

e If you use one of the two special characters to enclose text what happens if you
start on one line and then press the return key before terminating the text?

The action here will vary between Fortran implementations.



Chapter 5 ®)
Arithmetic St

Taking Three as the subject to reason about — A convenient
number to state — We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight. The result we proceed to
divide, as you see, By Nine Hundred and Ninety and Two: then
subtract Seventeen, and the answer must be Exactly and
perfectly true.

Lewis Carroll, The Hunting of the Snark

Round numbers are always false.
Samuel Johnson

Aims
The aims of this chapter are to introduce:

The Fortran rules for the evaluation of arithmetic expressions to ensure that they
are evaluated as you intend;

e The idea of truncation and rounding;
e The use of the parameter attribute to define or set up constants;
e The use of Fortran’s kind types to determine and control the precision by which

arithmetic in Fortran is carried out;

The concept of numeric models and positional number systems for integer and
real arithmetic and their implementation on binary devices.

Testing the numerical representation of different integer kind types on a system —
8, 16, 32 and 64 bit integers

Testing the numerical representation of different real kind types on a system
— 32, 64, 80 and 128 bit reals

e Round off
e Relative error
e Absolute error

© Springer International Publishing AG, part of Springer Nature 2018 71
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5.1 Introduction

Most problems in the academic and scientific communities require arithmetic evalua-

tion as part of the algorithm. The arithmetic performed by computers is not the same

as the arithmetic you are familiar with in conventional mathematics and algebra.
There are two areas that we need to address

e computation involving finite precision - so called computer arithmetic
e the rules that apply in a programming language - different programming languages
have different rules for the evaluation of expressions

The outcome of the above means that 2 + 2 is not necessarily 4 when using a
computer!

5.2 The Fortran Operators and the Arithmetic
Assignment Statement

In the previous chapter, we introduced the arithmetic assignment statement, empha-
sising the concepts of name, type and value. Here we will consider the way that
arithmetic expressions are evaluated in Fortran.

Table 5.1 lists the five arithmetic operators available in Fortran.

Table 5.1 Fortran operators

Mathematical operation Fortran symbol or operator
Addition +

Subtraction -

Division /

Multiplication *

Exponentiation *E

Exponentiation is raising a number to a power. Note that the exponentiation oper-
ator is the * character twice.

The following are some examples of valid arithmetic assignment statements in
Fortran:

taxable_income = gross_wage - personal_allowance
cost = bill + vat + service

delta = deltax/deltay

area = pi * radius * radius

cube = big ** 3



5.2 The Fortran Operators and the Arithmetic Assignment Statement 73

These expressions are all simple, and there are no problems when it comes to
evaluating them. However, now consider the following:

tax = gross_wage - personal_allowance * tax_rate

This is a poorly written arithmetic expression. There is a choice of doing the
subtraction before or after the multiplication. Our everyday experience says that the
subtraction should take place before the multiplication. However, if this expression
were evaluated in Fortran the multiplication would be done before the subtraction.

5.3 [Example 1: Simple Arithmetic Expressions in Fortran

A complete program to show the correct form in Fortran is as follow:

program ch0501
implicit none

! Example of a Fortran program
! to calculate net pay
! given an employee’s gross pay

! The UK personal allowance is
! correct as of 2014

real :: gross_wage, net_wage, tax
real :: tax_rate = 0.25

integer :: personal_allowance = 10000
character (len=60) :: their_name

print *, ‘Input employees name’

read *, their_name

print *, ’‘Input Gross wage’

read *, gross_wage

tax = (gross_wage-personal_allowance) *tax_rate
net_wage = gross_wage - tax

print *, ‘Employee: ‘', their_ name
print *, ‘Gross Pay: ', gross_wage
print *, ’‘Tax: ', tax

print *, ’‘Net Pay:’, net_wage

end program ch0501
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Let us look at some of the key points of this program.

We have the implicit none statement which aids in detecting typing errors.

We declare the variables gross_wage, net_wage, tax and tax_rate

to be of type real as they will hold floating point values, i.e. numbers with a dec-

imal point.

e The variable their_name is of type character and can hold up to 60 char-
acters.

e The variable personal_allowance is of type integer as it holds integer
values.

e We then have some i/o statements to prompt the user for input and read in their
name and gross pay.

e We then calculate the tax payable and net income using two simple arithmetic
assignment statements.

e We then print out the results.

This example illustrates some basic arithmetic in Fortran.

5.4 The Fortran Rules for Arithmetic

We need to look at three areas here:

e The rules for forming expressions — the syntax.
e The rules for interpreting expressions — the semantics.
e The rules for evaluating expressions — optimisation.

The syntax rules determine which expressions are valid. The semantics determine
a valid interpretation, and once this has been done the compiler can replace the
expression with any other one that is mathematically equivalent, generally in the
interests of optimisation.

Here is the section of the Fortran 2018 standard on expression evaluation.

e 10.1.5.2.4 Evaluation of numeric intrinsic operations

— 1 The execution of any numeric operation whose result is not defined by the
arithmetic used by the processor is prohibited. Raising a negative real value to
a real power is prohibited.

— 2 Once the interpretation of a numeric intrinsic operation is established, the
processor may evaluate any mathematically equivalent expression, provided
that the integrity of parentheses is not violated.

— 3 Two expressions of a numeric type are mathematically equivalent if, for all
possible values of their primaries, their mathematical values are equal. However,
mathematically equivalent expressions of numeric type may produce different
computational results.
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The rules for the evaluation of expressions in Fortran are as follows:

e Brackets are used to define priority in the evaluation of an expression.

e Operators have a hierarchy of priority — a precedence. The hierarchy of operators
is:

e Exponentiation: when the expression has multiple exponentiation, the evaluation
is from right to left. For example,

1 =i ** 5 ** k

is evaluated by first raising j to the power k, and then using this result as the
exponent for i; more explicitly,

1:i~k‘k (j **k)

Although this is similar to the way in which we might expect an algebraic expres-
sion to be evaluated, it is not consistent with the rules for multiplication and
division, and may lead to some confusion. When in doubt, use brackets.

e Multiplication and division: within successive multiplications and divisions, the
rules regarding any mathematically equivalent expression means that you must
use brackets to ensure the evaluation you want. For example, with

a=Db*c/d*e

for real and complex numeric types the compiler does not necessarily evaluate in a
left to right manner, i.e., evaluate b times c, then divide the result by d and finally
take that result and multiply by e.

e Addition and subtraction: as for multiplication and division the rules regarding
any equivalent expression apply. However, it is seldom that the order of addition
and subtraction is important, unless other operators are involved.

Table 5.2 summarises the hierarchy of the operators.

Table 5.2 Hierarachy or

Mathematical operation Fortran symbol or operator
precedence of the Fortran — -
operators Exponentiation Hk

Division /

Multiplication *

Addition +

Subtraction -
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The following are all examples of valid arithmetic expressions in Fortran:

slope = (yl-y2)/(x1-x2)

x1l = (-b+((b*b-4*a*c)**0.5))/(2*%a)

g = mass_d/2* (mass_a*veloc_a/mass_d) **2 + &
((mass_a * veloc_a)**2)/2

Note that brackets have been used to make the order of evaluation more obvious.
It is often possible to write involved expressions without brackets, but, for the sake
of clarity, it is often best to leave the brackets in, even to the extent of inserting a few
extra ones to ensure that the expression is evaluated correctly. The expression will
be evaluated just as quickly with the brackets as without. Also note that none of the
expressions is particularly complex. The last one is about as complex as you should
try: with more complexity than this it is easy to make a mistake.

5.5 Expression Equivalence

The rule regarding any equivalent expression means if a, b and ¢ are numeric then
the following are true:

a+b=>,
-a+ b=

a

o+

a+ b+ c a + (b + c)
The last is nominally evaluated left to right, as the additions are of equal prece-
dence:

a*b=Db*a
a*b*c=a* (b*c)

and again the last is nominally evaluated left to right, as the multiplications are of
equal precedence:

a*b-a*c=a?* (b-c)
a/b/c=a/ (b*c)

The last is true for real and complex numeric types only.

Problems arise when the value that a faulty expression yields lies within the
range of expected values and the error may well go undetected. This may appear
strange at first, but a computer does exactly what it is instructed to do. If, through a
misunderstanding on the part of a programmer, the program is syntactically correct
but logically wrong from the point of view of the problem definition, then this will not
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be spotted by the compiler. If an expression is complex, break it down into successive
statements with elements of the expression on each line, e.g.,

temp = b *b -4 * a *c
x1 = (-Db+ ( temp ** 0.5 )) / (2 * a)

and

Moment = Mass_A * Veloc_A
Q = Mass_D / 2 * ( Moment / Mass_D ) **2 + &
( Moment **2) / 2

5.6 Rounding and Truncation

Computer arithmetic can be subject to truncation and rounding.

e Truncation. This operation involves throwing away part of the number, e.g., with
14.6 truncating the number to two figures leaves 14.

e Rounding. Consider 14.6 again. This is rounded to 15. Basically, the number is
changed to the nearest whole number. It is still a real number. What do you think
will happen with 14.5; will this be rounded up or down?

You must be aware of these two operations. They may occasionally cause problems
in division and in expressions with more than one data type.
5.7 Example 2: Type Conversion and Assignment

To see some of the problems that can occur consider the examples below:

program ch0502

implicit none

real :: a, b, ¢
integer :: 1
a=1.5

b=2.0

c = a/b

i =a/b

print *, a, b
print *, c
print *, i

end program ch0502
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After executing these statements ¢ has the value 0.75, and i has the value zero!
This is an example of type conversion across the = sign. The variables on the right
are all real, but the last variable on the left is an integer. The value is therefore made
into an integer by truncation. In this example, 0.75 is real, so i becomes zero when
truncation takes place.

5.8 Example 3: Integer Division and Real Assignment

Consider now an example where we assign into a real variable (so that no truncation
due to the assignment will take place), but where part of the expression on the right-
hand side involves integer division:

program ch0503
implicit none

integer :: i, j, k
real :: answer
i=25

Jj=2

k=4

answer = i/j*k

print *, i

print *, jJ

print *, k

print *, answer
end program ch0503

The value of answer is 8, because the 1 /7 term involves integer division. The
expected answer of 10 is not that different from the actual one of 8, and it is cases like
this that cause problems for the unwary, i.e., where the calculated result may be close
to the actual one. In complicated expressions it would be easy to miss something like
this.

To recap, truncation takes place in Fortran:

e Across an = sign, when a real is assigned to an integer.
e In integer division.

It is very important to be careful when attempting mixed mode arithmetic — that
is, when mixing reals and integers. If a real and an integer are together in a division or
multiplication, the result of that operation will be real; when addition or subtraction
takes place in a similar situation, the result will also be real. The problem arises when
some parts of an expression are calculated using integer arithmetic and other parts
with real arithmetic:
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c=a+b-1/73

The integer division is carried out before the addition and subtraction; hence the
result of i/7 is integer, although all the other parts of the expression will be carried
out with real arithmetic.

5.9 Example 4: Time Taken for Light to Travel
from the Sun to Earth

How long does it take for light to reach the Earth from the Sun? Light travels 9.46
10'2 km in 1 year. We can take a year as being equivalent to 365.25 days. (As all
school children know, the astronomical year is 365 days, 5h, 48 min and 45.9747 s
— hardly worth the extra effort.) The distance between the Earth and Sun is about
150,000,000 km. There is obviously a bit of imprecision involved in these figures,
not least since the Earth moves in an elliptical orbit, not a circular one. One last
point to note before presenting the program is that the elapsed time will be given in
minutes and seconds. Few people readily grasp fractional parts of a year:

program ch0504
implicit none

real :: light_minute, distance, elapse

integer :: minute, second

real, parameter :: light_vyear = 9.46*10**12
! Light_year : Distance travelled by light

! in one year in km
! Light_minute : Distance travelled by light
! in one minute in km

! Distance : Distance from sun to earth in
! km

! Elapse : Time taken to travel a

! distance (Distance) in minutes

! Minute : integer number part of elapse
! Second : integer number of seconds

! equivalent to fractional
! part of elapse

light_minute = light_year/(365.25*24.0%60.0)
distance = 150.0*10**6

elapse = distance/light_minute

minute = elapse

second = (elapse-minute)*60

print *, ’ Light takes ’, minute, ’ Minutes’
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print *, ’ ', second, ' Seconds’
print *, ’ To reach the earth from the sun’
end program ch0504

The calculation is straightforward; first we calculate the distance travelled by
light in 1 min, and then use this value to find out how many minutes it takes for
light to travel a set distance. Separating the time taken in minutes into whole-number
minutes and seconds is accomplished by exploiting the way in which Fortran will
truncate a real number to an integer on type conversion. The difference between
these two values is the part of a minute which needs to be converted to seconds.
Given the inaccuracies already inherent in the exercise, there seems little point in
giving decimal parts of a second.

It is worth noting that some structure has been attempted by using comment lines
to separate parts of the program into fairly distinct chunks. Note also that the comment
lines describe the variables used in the program.

Can you see any problems with this example?

5.10 The Parameter Attribute

This attribute is used to provide a way of associating a meaningful name with a
constant in a program. Consider a program where 7 was going to be used a lot. It
would be silly to have to type in 3.14159265358 every time. There would be a lot
to type and it is likely that a mistake could be made typing in the correct value. It
therefore makes sense to set up pi once and then refer to it by name. However, if
pi was just a variable then it would be possible to do the following:

real :: 1i,pi
pi=4.0*atan(1.0)

pi=4*alpha/beta

The pi =4*alpha/beta statement should have been 11 =4*alpha/beta.
What has happened is that, through a typing mistake (p and | are close together on a
keyboard), an error has crept into the program. It will not be spotted by the compiler.
Fortran provides a way of helping here with the parameter attribute, which should
be added to or combined with a type declaration.

Table 5.3 has details of some commonly used physical constants.
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Table 5.3 Some commonly used physical constants

Atomic mass constant Ny 1.660 538 921 x 10~%" kg
Avogadro constant Na,L 6.022 141 29 x 1023 mol ™!
Boltzmann constant k 1.380 6488 x 10-23 J K !
Electron mass me 9.109 38291 x 103 kg
Elementary charge e 1.602 176 565 x 10712 C
Proton mass mp 1.672 621 777 x 10727 kg
Speed of light in vacuum ¢, co 299 792 458 ms~!

Newtonian constant of gravitation G 6.673 84 x 10~ m3 kg' —1 572

The data has been taken from

http://physics.nist.gov/cuu/index.html

A type statement with a parameter attribute may contain an arithmetic expres-
sion, so that some relatively simple arithmetic may be performed in setting up these
constants. The evaluation must be confined to addition, subtraction, multiplication,
division and integer exponentiation.

The following are some examples of the parameter attribute for some of the
physical constants.

real , parameter :: pi = &
4.0*atan(1.0)

real , parameter :: ¢ = &
299792458 * 10.0 ** (-1)

real , parameter :: e = &

1.602176565 * 10.0 ** (-19)

We have introduced the Fortran intrinsic function atan in this example, and
for further details see Appendix D. We will also be covering intrinsic functions in
a later chapter. The advantage of the parameter attribute is that you could not then
assign another value to pi, c or charge. If you tried to do this, the compiler would
generate an error message.

5.11 Round Off Errors and Computer Arithmetic

Precision is not the same as accuracy. In this age of digital timekeeping, it is easy to
provide an extremely precise answer to the question What time is it? This answer need
not be accurate, even though it is reported to tenths (or even hundredths!) of a second.
Do not be fooled into believing that an answer reported to ten places of decimals
must be accurate to ten places of decimals. The computer can only retain a limited
precision. When calculations are performed, this limitation will tend to generate
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inaccuracies in the result. The estimation of such inaccuracies is the domain of the
branch of mathematics known as Numerical Analysis.

To give some idea of the problems, consider an imaginary decimal computer
which retains two significant digits in its calculations. For example, 1.2, 12.0, 120.0
and 0.12 are all given to two-digit precision. Note therefore that 1234.5 would be
represented as 1200.0 in this device. When any arithmetic operation is carried out,
the result (including any intermediate calculations) will have two significant digits.
Thus:

130 + 12 = 140 (rounding down from 142)

and similarly:

17 / 3 = 5.7 (rounding up from 5.666666...)

and:
16 * 16 = 260

where there are more involved calculations, the results can become even less attrac-
tive. Assume we wish to evaluate

(16 * 16) / 0.14

We would like an answer in the region of 1828.5718, or, to two significant digits,
1800.0. if we evaluate the terms within the brackets first, the answer is 260/0.14, or
1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better, we
could rewrite the fraction as

(16 / 0.14) * 16

Which gives a result of 1800.0.

Algebra shows that all these evaluations are equivalent if unlimited precision is
available.

A round-off error, also called rounding error, is the difference between the calcu-
lated approximation of a number and its exact mathematical value. We will look at
this issue in more depth later in this chapter.

5.12 Relative and Absolute Errors

When we are calculating numerical approximations to a solution we often need to
measure how accurate our estimated solution is. If we are using an iterative method
we could look at the difference between successive calculations, or our algorithm
may have an expression for estimating errors.



5.12 Relative and Absolute Errors 83

Either way there are two types of errors, absolute and relative.

Looking at relative errors is a better way of measuring accuracy than absolute
errors because an absolute error depends on the size of the number being approxi-
mated.

If p’ is an approximation to p then the relative error is |p — p’|/|p| and the
absolute error is |p — p'|.

Here is an example to illustrate the above.

5.13 Example 5: Relative and Absolute Error

program ch0505
implicit none

real :: p = 0.4e-4, papprox = 0.41le-4
real :: abs_error, rel_error

integer :: i

doi=1, 3

abs_error abs (p-papprox)
rel_error = abs (p-papprox) /abs(p)
print 100, p, papprox
100 format (’p = ', ell.4, /, &
'papprox = ', ell.4)
print 110, abs_error, rel_error
110 format (’abs error:’, 12x, ell.4, /, &
'rel error:’', 12x, ell.4, /)
p = p*l.0eb
papprox = papprox*1l.0e5
end do
end program ch0505

This program introduces the intrinsic abs function and a new statement, the
format statement and the (e) edit descriptor. For the moment just concentrate on
the output. We will look at the format statement and (e) edit descriptor in more
depth in a later chapter. See Appendix D for more information on the abs intrinsic.

Here is the output from the Nag compiler.

i) = 0.4000E-04
approx to p = 0.4100E-04
abs error: 0.1000E-05

rel error: 0.2500E-01
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Y = 0.4000E+01
approx to p = 0.4100E+01
abs error: 0.1000E+00
rel error: 0.2500E-01
P = 0.4000E+06
approx to p = 0.4100E+06
abs error: 0.1000E+05
rel error: 0.2500E-01

This example shows that the same relative error of 0.25 * 10~ occurs for widely
varying absolute errors, therefore the absolute error can be misleading.

The relative error is more meaningful because it takes into consideration the size
of the number.

5.14 Range, Precision and Size of Numbers

The range of integer numbers and the precision and the size of floating point numbers
in computing are directly related to the number of bits allocated to their internal rep-
resentation. Tables 5.4 and 5.5 summarise this information for the two most common
bit sizes in use for integers and reals — 32 bits and 64 bits, as defined in the IEEE
standard. Most hardware in use today supports these standards to a greater or lesser
extent.

We will look at IEEE 754 in later sections and in a separate chapter.

Table 5.4 looks at integer numbers and Table 5.5 looks at real numbers.

For practical purposes all compilers support the information contained in these
two tables.

Table 5.4 Word size and integer numbers

Number of bits Power of 2 Power of 10 Maximum integer
32 (2%*31)-1 O(10%*9) 2, 147, 483, 647
64 (2#%63)-1 O(10%*18) 9,223,372, 036, 854, 774, 807

Table 5.5 Word size and real numbers

Number of bits Precision Smallest real Largest real
32 6-9 ~0.3E-38 ~1.7E38
64 15-18 ~0.5E-308 ~0.8E+308
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5.15 Overflow and Underflow

Care should also be taken when is one is near the numerical limits of the machine.
Consider the following:

z=Db *c/ d
where b, ¢ and d are all O(10°°) and we are using 32-bit floating point numbers
where the maximum realis O (10°%). Here the productb * c generates a number of

0(10%°) — beyond the limits of the machine. This is called overflow as the number
is too large. Note that we could avoid this problem by retyping this as

z =b * (c / d)

where the bracketed expression ¢ /d would now be O (10%%)/0(10*°), and is within
machine limits.

5.15.1 Example 6: Overflow

Here is a sample program that illustrates the above.

program ch0506
implicit none

real :: z = 0.0
real :: b = 1.0e30
real :: ¢ = 1.0e30
real :: d = 1.0e30
z = b*c/d

print *, z

z = b*(c/d)

print *, z
end program ch0506

Here is the output from the Intel compiler.

Infinity
1.0000000E+30

Here is the output from the Nag compiler.

nagfor ch0506.£90
NAG Fortran Compiler
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Error: ch0506.f90, line 7:
Floating-point overflow in single-precision
multiplication

[NAG Fortran Compiler error termination, 1 error]

So the Nag compiler diagnoses the problem at compile time.

5.15.2 Example 7: Underflow

There is aninverse called underflow when the number is too small, which is illustrated
below:

z =b *c *d
where b and c are 0(10’30)/ 0(10%). The intermediate result of b * c is

0(107%0) — again beyond the limits of the machine. This problem could have been
overcome by retyping as

z =Db * (c *d)
Here is a simple program that illustrates underflow.

program ch0507
implicit none

real :: z = 0.0
real :: b = 1.0e-30
real :: ¢ = 1.0e-30
real :: d = 1.0e30
z = b*c*d

print *, z

z = b*(c*d)

print *, z

end program ch0507

Here is the output from running the program with the Nag and Intel compilers.

0.0000000E+00
1.0000000E-30

We will look at underflow in more detail in the chapter on IEEE arithmetic.
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5.16 Health Warning: Optional Reading, Beginners
Are Advised to Leave Until Later

Most people take arithmetic completely for granted and rarely think much about the
subject. It is necessary to look at it in a bit more depth if we are to understand what
the computer is doing in this area.

5.16.1 Positional Number Systems

Our way of working with numbers is essentially a positional one. When we look
at the number 1024, for example, we rarely think of it in terms of 1 * 1000 + 0 *
100 4+ 2 * 10 + 4 * 1. Thus the normal decimal system we use in everyday life is a
positional one, with a base of 10.

We are probably aware that we can use other number bases, and 2, 8 and 16 are
fairly common alternate number bases. As the computer is a binary device it uses
base 2.

We are also reasonably familiar with a mantissa exponent or floating point com-
bination when the numbers get very large or very small, e.g., a parsec is commonly
expressed as 3.08 * 10 ** 16, and here the mantissa is 3.08, and the exponent is 10
**16.

The above information will help in understanding the way in which integers and
reals are represented on computer systems.

5.16.2 Fortran Representational Models

Fortran has three representational models for data

e the bit model
e the integer number system model
e the real number system model

and these models (and the corresponding intrinsic functions) return values related to
the models. We look at each in turn below.

5.16.2.1 Bit Data Type and Representation Model

The model is only defined for positive integers (or cardinal numbers), where they
are represented as a sequence of binary digits, and is based on the model:

n—1
i=> b2t

k=0
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where i is the integer value, n is the number of bits, and by is a bit value of 0 or 1,
with bit numbering starting at 0, and reading right to left. Thus the integer 43 and bit
pattern 101011 is given by:

43=(1%32)+O0%16)+(1%8) +O0%4) +(1%2)+(1*1)
or
43 = (1%25) 4+ (0524 4+ (1 %23) + (0% 22) + (1 %2") + (1 %2

5.16.2.2 Integer Data Type and Representation Model

The integer data type is based on the model

q
i=s E lkrk_l
k=1

where i is the integer value, s is the sign, g is the number of digits (always positive),
r is the radix or base (integer greater than 1), and /; is a positive integer (less than r).
A base of 2 is typical so 1023 is

1023 = (1%2%) + (1 %2%) + (1 %27) + (1 %2°) + (1 %x2%) + (1 % 2% +
(123 + (122 + (121 4+ (1 %2%

5.16.2.3 Real Data Type and Representation model

The real data type is based on the model

x = sb® i fib7*

k=1

where x is the real number, s is the sign, b is the radix or base (greater than 1), m is
the number of bits in the mantissa, e is an integer in the range epi, t0 emax, and fi is
a positive number less than b.

This means that with, for example, a 32-bit real there would be 8 bits allocated to
the exponent and 24 to the mantissa. One of the bits in each part would be used to
represent the sign and is called the sign bit. This reduces the number of bits that can
actually be used to represent the mantissa and exponent to 31 and 7, respectively.
There is also the concept of normalisation, where the exponent is adjusted so that
the most significant bit is in position 22 — bits are typically numbered 0-22, rather
than 1-23. This form of representation is not new, and is first documented around
1750 BC, when Babylonian mathematicians used a sexagesimal (radix 60) positional
notation. It is interesting that the form they used omitted the exponent!

This is the theoretical basis of the representation of these three data types in
Fortran.
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This information together with the following provide a good basis for writing
portable code across a range of hardware.

5.17 Kind Types

Fortran 90 introduced the concept of a kind parameter for the intrinsic types. Each
of the intrinsic types has a kind parameter that selects a processor dependent
representation of objects of that type and kind.

Each intrinsic type is classified as a numeric type or a nonnumeric type. The
numeric types are integer, real, and complex. The nonnumeric intrinsic types are
character and logical.

5.17.1 Example 8: Testing What Kind Types Are Available

The follow program shows what kind types are available for each intrinsic type.

program ch0508

use iso_fortran_env

print *, ’ Real kinds ', real_kinds
print *, ’ Integer kinds ', integer_kinds
print *, ’ Character kinds ‘', character_kinds
print *, ’ Logical kinds ", logical_kinds

end program ch0508

The intrinsic module ISO_FORTRAN_ENYV provides public entities relating to
the Fortran environment. The processor shall provide the named constants, derived
types, and procedures described in sub-clause 16.10.2. of the Fortran 2018 standard.

Here is sample output from a number of compilers. In each case the numbers refer
to the number of bytes.

gfortran
Real kinds 4 8 10 16
Integer kinds 1 2 4 8 16

Character kinds

Intel
Real kinds 4 8 16
Integer kinds 1 2 4 8

Character kinds
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Nag
Real kinds 4 8 16
Integer kinds 12438
Character kinds 1 2 3 4
Logical kinds 1248

The Nag compiler has to be invoked with the -kind = byte flag to generate the
above output.

Oracle
Real kinds 4 8 16
Integer kinds 1 2 4 8

Character kinds 1

The gfortran compiler supports a 10 byte real kind. We will look at this in more
depth later.

All four compilers support 1, 2, 4 and 8 byte integer types. The gfortran compiler
also supports a 16 byte integer type.

All compilers support a 1 byte character type. gfortran also supports a 4 byte
character type. Nag supports 2 and 3 byte character types.

All four compilers support a 1 byte logical type. Nag also supports 2, 3 and 4 byte
logical types.

5.18 Testing the Numerical Representation of Different
Kind Types on a System

Table 5.6 provides details of the kind query functions and Table 5.7 provides details
of the numeric query functions.

The next set of programs test out the kinds of the intrinsic types supported by
compilers.

Table 5.6 Kind inquiry functions

Function name Simple explanation

kind Kind parameter
selected_char_kind Kind parameter of a specified character set
selected_int_kind Kind parameter of an integer data type
selected_real_kind Kind parameter of a real data type
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Table 5.7 Numeric inquiry functions

Function name Simple explanation

digits Number of digits in the model number
epsilon Smallest difference between two reals
huge Returns the largest number
maxexponent Maximum value for the model exponent
minexponent Minimum value for the model exponent
precision Returns the decimal precision

radix Base of a model number

range Decimal exponent range of a model number
tiny Returns the smallest number

5.19 Example 9: Using the Numeric Inquiry Functions
with Integer Types

This program looks at using the kind intrinsics with integer types.

program ch0509
implicit none
! example of the use of the kind function

! and the numeric inquiry functions

! for integer kind types

! 8 bit -128 to

1127 10**2

! 16 bit -32768 to

! 32767 10**4

! 32 bit -2147483648 to

! 2147483647 10**9

! 64 bit

! -9223372036854775808 to

! 9223372036854775807 10**18
integer :: i

integer, parameter :: 18 = selected_int_kind(2 &
)
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integer, parameter :: 116 = selected_int_kind( &
4)

integer, parameter :: i32 = selected_int_kind( &
9)

integer, parameter :: 164 = selected_int_kind( &
18)

integer (i8) :: il

integer (il6) :: 12

integer (i32) :: i3

integer (i64) :: i4

print *, ’ '

print *, ' integer kind support’

print *, ’ kind huge’

print *, ’ '

print *, ’ ’, kind(i), ’ ', huge(i)

print *, ’ '

print *, ’ ’, kind(il), ’ ', huge(il)

print *, * ’, kind(i2), ' ‘', huge(i2)

print *, ’ ’, kind(i3), ’ ', huge(i3)

print *, ’ ’, kind(i4), ' ’, huge(i4)

print *, ’ '

end program ch0509

In this example we introduce parameters for each of the supported integer kind

types.
Table 5.8 has details of the names we have given to the integer kind types.

Table 5.8 Integer kind type Parameter Integer type

parameter name and integer - -

value i8 8 bit value
ile 16 bit value
i32 32 bit value
i64 64 bit value
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As the kind type parameter has some information about the underlying represen-
tation.

Section 16.10.2.14 of the Fortran 2018 standard has details about these named
constants:

int8

intlé6
int32
int64

where the values correspond to an integer type whose storage size expressed in bits
is 8, 16, 32, and 64 respectively.

They are available via the TSO_FORTRAN_ENV intrinsic module.

They were introduced in the Fortran 2008 standard, and as only one compiler
supports the whole of the Fortran 2008 standard at the time of writing the book we
will use 18, 116, 132 and 164 in the examples.

Table 5.9 has details of huge for each of the integer types.

Table 5.9 Integer kind and huge comparision

gfortran Intel Nag

Kind | Huge Kind | Huge Kind | Huge

4 2147483647 4 2147483647 3 2147483647

1 127 1 127 1 127

2 32767 2 32767 2 32767

4 2147483647 4 2147483647 3 2147483647

8 9223372036854775807 | 8 9223372036854775807 | 4 9223372036854775807

As can be seen from the output for these three compilers they all support the same
4 integer kind types, namely 8 bit, 16 bit, 32 bit and 64 bit.

Run this program on whatever system you have access to and compare the output
with the above examples.

5.20 Example 10: Using the Numeric Inquiry Functions
with Real Types

program ch0510
implicit none
! real arithmetic

! 32 and 64 bit reals are normally available.
! The IEEE format is as described below.

! 32 bit reals 8 bit exponent, 24 bit mantissa
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64 bit reals 11 bit exponent,

53 bit mantissa

real :: r

integer, parameter sp = selected_real_kind(
6, 37)

integer, parameter dp = selected_real_kind(
15, 307)

integer, parameter gp = selected_real_kind(
30, 291)

real (sp) rsp

real (dp) rdp

real (gp) rgp

print *, ====================='

print *, Real kind information’

print *, ====================='

print *, ’ kind number’

print *, ", kind(r), ’ ', kind(rsp), ' '
kind(rdp), ' ‘', kind(rgp)

print *, ’ digits details’

print *, - ', digits(r), * ', digits(rsp),
rr, digits(rdp), ’ ', digits(rap)

print *, ’ epsilon details’

print *, ', epsilon(r)

print *, ', epsilon(rsp)

print *, ', epsilon(rdp)

print *, ', epsilon(ragp)

print *, ' huge value’

print *, - ', huge(r)

print *, ’, huge (rsp)

print *, ', huge (rdp)

print *, ", huge (rap)

print *, ‘' maxexponent value’

print *, ', maxexponent (

print *, ', maxexponent (rsp)

print *, ', maxexponent (rdp)

print *, /', maxexponent (rgp)

print *, ’ minexponent value’

print *, ', minexponent (r)

print *, - ', minexponent (rsp)

print *, /', minexponent (rdp)

print *, /', minexponent (rgp)

print *, ' precision details’

print *, ', precision(r), ' ', &
precision(rsp), ' ‘', precision(rdp), ' ', &

&

&

&

5 Arithmetic
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precision (ragp)

print *, ' radix details’

print *, ', radix(r), ' ', radix(rsp), &
r ', radix(rdp), ' ', radix(rgp)

print *, ’ range details’

print *, ', range(r), ' ', range(rsp), &
7', range(rdp), ’ ', range(rdp)

print *, ' tiny details’

print *, *, tiny(r)

print *, ', tiny(rsp)

print *, ", tiny (rdp)

print *, ", tiny(rap)

end program ch0510

In the above example we use a naming convention used by LAPACK95, which
is a Fortran 95 interface to LAPACK.
For the real numeric kind types, where we have

e sp - single precision
e dp - double precision
e gp - quad precision

LAPACK is written in Fortran 90 and provides routines for solving systems of
simultaneous linear equations, least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems. The associated matrix factoriza-
tions (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are
related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex matrices,
in both single and double precision.

Their address is

http://www.netlib.org/lapack95/

Section 13.8.2.18 of the Fortran 2008 standard introduced real32, real64,
and real128, where the values of these default integer scalar named constants shall
be those of the kind type parameters that specify a real type whose storage size
expressed in bits is 32, 64, and 128 respectively.

They are available via the TSO_FORTRAN_ENV intrinsic module.

As only one compiler supports the whole of the Fortran 2008 standard at the time
of writing the book we will use sp, dp and gp in the examples.

Table 5.10 is a summary of the details of an extended type.
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Table 5.10 Extended real type comparison

Function name | Cray gfortran Intel Nag Oracle

digits 113 113 113 106 113
maxexponent | 16384 16384 16384 1023 16384
minexponent | —16381 —16381 —16381 —968 —16381
precision 33 33 33 31 33
radix 2 2 2 2 2
range 4931 4931 4931 291 4931

As can be seen all five compilers support the same 32 and 64 bit real types. They
all support an extended 128 bit type, and Cray, gfortran, Intel and Oracle are the
same, but Nag is different.

Here are the details for epsilon, huge and tiny for these compilers.

Epsilon
Cray
1.92592994438723585305597794258492732E-34
gfortran
1.92592994438723585305597794258492732E-0034
Intel
1.925929944387235853055977942584927E-0034
Nag
2.46519032881566189191165177E-32
Oracle (Sun)
1.9259299443872358530559779425849273E-34
Huge
Cray
1.18973149535723176508575932662800702E+4932
gfortran
1.18973149535723176508575932662800702E+4932
Intel
1.189731495357231765085759326628007E+4932
Nag
8.98846567431157953864652595E+307
Oracle (Sun)
1.189731495357231765085759326628007E+4932
Tiny
Cray
3.3621031431120935062626778173217526E-4932
gfortran
3.36210314311209350626267781732175260E-4932
Intel
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3.362103143112093506262677817321753E-4932
Nag
2.00416836000897277799610805E-292
Oracle (Sun)
3.3621031431120935062626778173217526E-4932

Run this program on whatever system you have access to with your compiler(s)
and compare the output with the above examples. Most compilers will offer support
for 32, 64 and 128 bit reals.

5.21 gfortran Support for Intel Extended (80 bit) Precision

As was seen earlier the gfortran compiler also supports a 10 byte real. This is the
Intel x86 extended precision format.

The x86 extended precision format is an 80-bit format first implemented in the
Intel 8087 math coprocessor and is supported by all processors that are based on
the x86 design which incorporate a floating-point unit (FPU). This 80-bit format
uses one bit for the sign of the significand, 15 bits for the exponent field (i.e. the
same range as the 128-bit quadruple precision IEEE 754 format) and 64 bits for the
significand.

We will look at an example of using this kind type in a later chapter.

5.22 Example 11: Literal Real Constants in a Calculation

We have seen how to specify integer and real variables of different kind types but we
also need to be able to do the same for literal constants. Examples of literal constants
are 1.23, 5.643E-2 (default reals) and 400, -3 (default integers). To declare a
literal constant to be of a different kind you need to specify the constant followed by
an underscore and the kind type parameter. The following are two examples of 64
bit real literal constants: 1.23_dp, 5.643E-2_dp.

You should be careful when writing programs using variables that are not the
default kind making sure that any literal constants are also of the same kind. For
example if you are using 64 bit real variables then make sure all your real literal
constants are 64 bit. Here is a program where the variables and constants pi, area
and r are 32 bit reals and pid, aread and rd are 64 bit reals. Try compiling and
running the program. Do you get the same results as us?

program ch0511
implicit none
integer, parameter :: dp = selected_real_kind( &
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15, 307)
real, parameter :: pi = 3.1415926535897931
real (dp), parameter :: pid = &
3.1415926535897931_dp
real :: area, r = 2.0
real (dp) :: aread, rd = 2.0_dp
area = pi*r*r

aread = pid*rd*rd
print 100, r, rd

100 format ('r = ', £22.18, /, ’'rd = ', &
£22.18)
print 110, area, aread
110 format ('‘area = ', £f22.18, /, 'aread = ', &
£22.18, /, 16x, ' ######")

end program ch0511

Here is the Nag compiler output.

C:\fortran\fortran_book_edition3\chapter5>a

r = 2.000000000000000000
rd = 2.000000000000000000
area = 12.566370964050292969
aread = 12.566370614359172464
HHH#HHH

Now edit the program and remove the _dp from the literal constant assigned to
pid. You will see that the results for area (32 bit real) and aread (64 bit real) are
the same. This is because the literal constant for pid reverts to a default 32 bit real.

C:\fortran\fortran_book_edition3\chapter5>a

r = 2.000000000000000000
rd = 2.000000000000000000
area = 12.566370964050292969
aread = 12.566370964050292969
HHHHHH

5.23 Summation and Finite Precision

The next example look at some of the problems that occur with the summation of
floating point numbers. We will look at more summation problems in later chapters.
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5.23.1 Example 12: Rounding Problem
Consider the following program.

program ch0512

implicit none

real :: x1 = 1.0
real :: x2 = 0.1
integer 1
print *, ’ x1 = ', x1
print *, ’ x2 = ', x2
do i =1, 990

x1l = x1 + x2
end do
print *, ’ x1 = ', x1

end program ch0512

Here is the output from the Intel compiler.

x1l = 1.000000
X2 = 0.1000000
x1l = 99.99905

Here is the output from the Nag compiler.

x1l = 1.0000000
X2 = 0.1000000
x1l = 99.9990463

In both cases the summation is inexact, due to rounding errors.

5.24 Example 13: Binary Representation of Different
Integer Kind Type Numbers

For those who wish to look at the internal binary representation of integer numbers
with a variety of kinds, we have included the following program
selected_int_kind(2) means provide at least an integer representation
with numbers between —10? and +102.
selected_int_kind(4) means provide at least an integer representation
with numbers between —10* and +10*.
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selected_int_kind(9) means provide at least an integer representation
with numbers between —10° and +10°.

We use the int function to convert from one integer representation to another.

We use the logical function btest to determine whether the binary value at that
position within the number is a zero or a one, i.e., if the bit is set.

i_in_bits is a character string that holds a direct mapping from the internal
binary form of the integer and a text string that prints as a sequence of zeros or ones:

program ch0513

!

! use the bit functions in Fortran to write out
I a

! 32 bit integer number as a sequence of

! zeros and ones

implicit none

integer :: jJ

integer :: i

integer, parameter :: 18 = selected_int_kind(2 &
)

integer, parameter :: il1l6 = selected_int_kind( &
4)

integer, parameter :: 132 = selected_int_kind( &
9)

integer (i8) :: il

integer (il6) :: i2

integer (i32) :: i3

character (len=32) :: i_in_bits

print *, ' type in an integer ’

read *, i

il = int (i, kind(2))

12 = int (i, kind(4))

i3 = int(i, kind(9))

i_in bits = " '
do j =0, 7
if (btest(il,j)) then

i_in bits(8-j:8-j) = ’'1°
else
i_in bits(8-j:8-j) = 0’
end 1if
end do

print *, 1 2 3
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print *, 712345678901234567890123456789012"
print *, il
print *, i_in_bits
do j = 0, 15
if (btest(i2,j)) then

i_in_bits(16-j:16-j) = '1°
else
i_in bits(1l6-j:16-j) = ‘0’
end if
end do

print *, 1i2
print *, i_in_bits
do § =0, 31
if (btest(i3,3j)) then

i_in bits(32-j:32-j) = '1°
else
i_in bits(32-j:32-j) = ‘0’
end if
end do

print *, i3
print *, i_in_bits
end program ch0513

The do loop indices follow the convention of an 8-bit quantity starting at bit 0
and ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc.

The numbers written out follow the conventional mathematical notation of having
the least significant quantity at the right-hand end of the digit sequence, i.e., with
127 in decimal we have 1 * 100, 2 * 10 and 7 * 1, so 00100001 in binary means 1 *
32 +1 * 1 decimal.

Try running this program on the system you are using. Does it produce the results
you expect? Experiment with a variety of numbers. Try at least the following 0, +1,
—1, —128, 127, 128, —32768, 32767, 32768.

5.25 Example 14: Binary Representation of a Real Number

The following program is a simple variant of the previous one, but we now look at a
floating point number:

program ch0514

!

! use the bit functions in Fortran to write out
I a

! 32 bit integer number equivalenced to a real
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! using the transfer intrinsic as a sequence of
! zeros and ones
|

implicit none

integer :: i, J

character (len=32) :: i_in_bits = ' '
real :: x = 1.0

print *, 1 2 3

print *, 12345678901234567890123456789012"
print *, i_in_bits
i = transfer(x, 1)
do § =0, 31
if (btest(i,j)) then

i_in bits(32-j:32-j) = '1°
else
i_in bits(32-j:32-j) = ‘0’
end if
end do

print *, x
print *, i_in_bits
end program ch0514

We use the intrinsic function transfer to help out here. The btest intrinsic
takes an integer argument, so we need to copy the bit pattern of the real number into
an integer variable.

5.26 Example 15: Initialisation of Physical Constants,
Version 1

This is the first of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.

program ch0515

implicit none

real, parameter :: atomic_mass_constant = &
1.660538921*10** (-27)

real, parameter :: avogadro_constant = &
6.02214129*10**23

real, parameter :: boltzmann_ constant = &
1.3806488*10** (-23)

real, parameter :: electron_mass = 9.10938291* &
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10**(-31)

real, parameter :: elementary_charge = &
1.602176565*10** (-19)

real, parameter :: proton_mass = 1.672621777* &
10**(-27)

real, parameter :: speed_of_light_in_vacuum = &
299792458

real, parameter :: &

newtonian_constant_of_gravitation = 6.67384* &
10** (-11)

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary_charge

print *, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation
end program ch0515

Here is the output from the Intel compiler.

.0000000E+00
.2066952E+18
.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.9979245E+08
.0000000E+00

O N O O O O KL O

Here is the output from the Nag compiler.

nagfor ch0514.£f90

NAG Fortran Compiler

Error: ch0514.f90, line 6:

Integer overflow for exponentiation 10**23
Errors in declarations,

no further processing for CHO0514

[NAG Fortran Compiler error termination, 1 error]
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5.27 Example 16: Initialisation of Physical Constants,
Version 2

This is the second of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.

program ch0516
implicit none

real, parameter :: atomic_mass_constant = &
1.660538921e-27

real, parameter :: avogadro_constant = &
6.02214129e23

real, parameter :: boltzmann_constant = &
1.3806488e-23

real, parameter :: electron_mass = &
9.10938291e-31

real, parameter :: elementary_ charge = &
1.602176565e-19

real, parameter :: proton_mass = &
1.672621777e-27

real, parameter :: speed_of_light_in_vacuum = &
299792458

real, parameter :: &

newtonian_constant_of_gravitation = &
6.67384e-11

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary_charge

print *, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0516
5.28 Example 17: Initialisation of Physical Constants,
Version 3

This is the third of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.
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program ch0517
implicit none

real, parameter :: atomic_mass_constant = &
1.660538921*10.0%* (-27)

real, parameter :: avogadro_constant = &
6.02214129%10.0**23

real, parameter :: boltzmann_ constant = &
1.3806488*10.0**(-23)

real, parameter :: electron_mass = 9.10938291* &
10.0**(-31)

real, parameter :: elementary charge = &
1.602176565*10.0**(-19)

real, parameter :: proton_mass = 1.672621777* &
10.0*%*(-27)

real, parameter :: speed_of_light_in_vacuum = &
299792458

real, parameter :: &

newtonian_constant_of_gravitation = 6.67384* &
10.0**(-11)

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary charge

print *, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0517

5.29 Summary of How to Select the Appropriate Kind Type

To write programs that will perform arithmetically in a similar fashion on a variety
of hardware requires an understanding of:

e The integer data representation model and in practice the word size of the various
integer kind types.

e The real data representation model and in practice the word size of the various real
kind types and the number of bits in both the mantissa and exponent.

Armed with this information we can then choose a kind type that will ensure
minimal problems when moving from one platform to another. End of health warning!
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5.30 Variable Status

Fortran has two concepts regarding the status of a variable: defined and undefined. If
a program does not provide an initial value (in a type statement) for a variable then
its status is said to be undefined. Consider the following code segment taken from
the earlier example that calculated the sum and average of three numbers:

real :: nl, n2, n3, average=0.0, total=0.0
integer :: n = 3

In the above the variables average, total and n all have a defined status. However,
nl, n2 and n3 are said to be undefined. The use of undefined values is implementation
dependent and therefore not portable. Care must be taken when writing programs to
ensure that your variables have a defined status wherever possible. We will look at
this area again in subsequent chapters.

5.31 Fortran and the IEEE 754 Standard

The ISO TR 15580 introduced IEEE Arithmetic support to Fortran.

IEEE 754-2008 governs binary floating-point arithmetic. It specifies number for-
mats, basic operations, conversions, and exceptional conditions. The 2008 edition
superseded both the

e 754-1985
standard and the related
o IEEE 854-1987

which generalized 754-1985 to cover decimal arithmetic as well as binary. The first
standard IEEE 754: 1985 covered binary floating point arithmetic. The later IEEE
754: 1987 standard added decimal arithmetic.

The latest version of the standard is ISO/IEC/IEEE 60559:2011.

A considerable amount of hardware now offers support for the IEEE 754 standard.
The standard can be purchased from

http://www.iso.org/
The following is a useful site.
http://grouper.ieee.org/groups/754/

There are quite a lot of good links.
There is a separate chapter in the book on IEEE arithmetic and Fortran.
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5.32 Summary

The following are some practical rules and guidelines:

e Learn the rules for the evaluation of arithmetic expressions.

e Break expressions down where necessary to ensure that the expressions are eval-
uated in the way you want.

e Take care with truncation owing to integer division in an expression. Note that this
will only be a problem where both parts of the division are integer.

e Take care with truncation owing to the assignment statement when there is an
integer on the left-hand side of the statement, i.e., assigning a real into an integer
variable.

e When you want to set up constants which will remain unchanged throughout the
program, use the parameter attribute.

e Do not confuse precision and accuracy.

e Learn what the default kinds are for the numeric types you work with, what the
maximum and minimum values and precision are for real data, and what the
maximum and minimum are for integer data.

e You have been introduced to the use of several intrinsic functions.

5.33 Bibliography

Some understanding of floating point arithmetic and numerical analysis is essential
for successful use of Fortran when programming. As Froberg says “numerical anal-
ysis is a science — computation is an art.” The separate chapter on IEEE arithmetic
also has several references.

The following are some of the more accessible books available.
Burden R.L., Faires J.D., Numerical Analysis, Brooks Cole, 2010.

e The first section of the book covers some of the mathematical preliminaries includ-
ing a review of calculus, round-off errors and computer arithmetic, algorithms and
convergence. They provide programs or software to solve the problems in C,
Fortran, Maple, Mathematica, Matlab and Pascal.

Froberg C.E., Introduction to Numerical Analysis, Addison-Wesley, 1969.

e The short chapter on numerical computation is well worth a read; it covers some
of the problems of conversion between number bases and some of the errors that
are introduced when we compute numerically. The Samuel Johnson quote owes
its inclusion to Froberg!

Goldberg D., What Every Computer Scientist Should Know About Floating-Point
Arithmetic, Computing Surveys, March 1991.

e The paper is a very good introduction to floating point arithmetic. It is available
on line.
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Higham Nicholas J., Accuracy and Stability of Numerical Algorithms, STAM, 2002.

e The first four chapters cover finite precision computation, floating point arithmetic,
error analysis and summation methods.

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

e A more thorough and mathematical coverage than Wakerly. The chapter on posi-
tional number systems provides a very comprehensive historical coverage of the
subject. As Knuth points out the floating point representation for numbers is very
old, and is first documented around 1750 B.C. by Babylonian mathematicians.
Very interesting and worthwhile reading.

Wakerly J.F., Microcomputer Architecture and programming, Wiley, 1981.

e The chapter on number systems and arithmetic is surprisingly easy. There is a
coverage of positional number systems, octal and hexadecimal number system
conversions, addition and subtraction of nondecimal numbers, representation of
negative numbers, two’s complement addition and subtraction, one’s complement
addition and subtraction, binary multiplication, binary division, bcd or binary
coded decimal representation and fixed and floating point representations. There
is also coverage of a number of specific hardware platforms, including DEC PDP-
11, Motorola 68000, Zilog Z8000, TT 9900, Motorola 6809 and Intel 8086. A little
old but quite interesting nevertheless.

5.34 Problems

5.1 Compile and run Examples 1-3 in this chapter.

5.2 Have another look at Example 4. Compile and run it. It will generate an error
on some systems. Can you see where the error is?

5.3 Write a program to calculate the period of a pendulum. This is given mathemat-

ically as
t =2my/length/9.81

use the following Fortran arithmetic assignment statement:
t =2 * pi * (length / 9.81) ** .5

The length 1ength is in metres, and the time t in seconds, and pi was given a
value earlier in this chapter.

Repeat the above using two other methods. Try a hand-held calculator and a
spreadsheet. Do you get the same answers?
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5.4 Base conversion.

In this chapter you have seen a brief coverage of base conversion. The following
program illustrates some of the problems that can occur when going from base 10 to
base 2 and back again. Which numbers will convert without loss?

program base_conversion
implicit none
real :: x1 = 1.0
real :: x2 = 0.1
real :: x3 = 0.01
real :: x4 = 0.001
real :: x5 = 0.0001

print *, ’ ', x1
print *, * ', x2
print *, ’ ', x3
print *, ’ ', x4
print *, ’ ', x5

end program base_conversion

Which do you think will provide the same number as originally entered?

5.5 Simple subtraction. In this chapter we looked at representing floating point
numbers in a finite number of bits.
Try the following program:

program subtract

implicit none

real a = 1.0002
real :: b = 1.0001
real c

c=a->
print *, a
print *, b
print *, c
end program subtract

‘What are the absolute and relative errors in this calculation?

5.6 Expression equivalence. We introduced some of the rules that apply in Fortran
for expression evaluation. In mathematics the following is true:

oy =(xx—yxy) =@ -y xx+y)

Try the following program:
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program expression_equivalence
!

! simple evaluation of x*x-y*vy
! when x and y are similar

! we will evaluate in three ways.

implicit none

real :: x = 1.002

real :: yv = 1.001

real :: tl, t2, t3, t4, t5

tl = x -y
t2 = x +y
print *, tl
print *, t2
t3 = tl*t2
td = x**2 - y**2
th = x*x - y*y
print *, t3
print *, t4
print *, t5

end program expression_equivalence

Solve the problem with pencil and paper, calculator and Excel.

5 Arithmetic

The last three examples show that you must be careful when using a computer to

solve problems.

5.7 The following is a simple variant of ch0504. In this case we initialise light year
in an assignment statement. Do you think you will get the same results as from

running the earlier example?

program ch0504p
implicit none

real :: light_minute, distance, elapse
integer :: minute, second
real :: light_year

! Light_year : Distance travelled by light

! in one year in km

! Light_minute : Distance travelled by light
! in one minute in km

! Distance : Distance from sun to earth in km
! Elapse : Time taken to travel a

! distance (Distance) in minutes

! Minute : integer number part of elapse
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! Second : integer number of seconds
! equivalent to fractional part of elapse

light_vyear = 9.46*10**12

light_minute = light_year/(365.25*24.0*%60.0)
distance = 150.0*10**6

elapse = distance/light_minute

minute = elapse

second = (elapse-minute) *60

print *, ’ Light takes ’, minute, ’ Minutes’
print *, ’ ', second, ' Seconds’

print *, ’ To reach the earth from sun’

end program ch0504p

5.8 Many communications satellites follow a geosynchronous orbit, some 35,870
km above the Earth s surface. What is the time lag incurred in using one such satellite
for a telephone conversation?

This will also be the time delay for satellite based internet access.

You can use the above program as the basis for this problem. You will need to
calculate the time in seconds (rather than minutes and seconds), as the distance is
much smaller.

5.9 The Moon is about 384,400 km from the Earth on average What implications
does this have for control of experiments on the Moon? What is the time lag?

5.10 The following table gives the distance in mkm from the Sun to the planets in
the Solar system.

Mercury 57.9
Venus 108.9
Earth 149.6
Mars 227.9
Jupiter 778.3
Saturn 1427.0
Uranus 2869.6
Neptune 4496.6
Pluto 5900.0

Use this information to find the greatest and least time taken to send a message
from the Earth to the other planets.

Assume that all orbits are in the same plane and circular. If it was good enough
for Copernicus it’s good enough for this example.
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Thy gifts, thy tables, are within my brain Full charactered with
lasting memory.
William Shakespeare, The Sonnets
Here, take this book, and peruse it well: The iterating of these
lines brings gold.
Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of the chapter are to introduce the fundamental concepts of arrays and do
loops, in particular:

To introduce the idea of tables of data and some of the formal terms used to describe
them:

— Array.
— Vector.
— List and linear list.

To discuss the array as a random access structure where any element can be
accessed as readily as any other and to note that the data in an array are all of
the same type.

To introduce the twin concepts of data structure and corresponding control struc-
ture.

To introduce the statements necessary in Fortran to support and manipulate these
data structures.

6.1 Tables of Data

Consider the examples below.

© Springer International Publishing AG, part of Springer Nature 2018 113
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6.1.1 Telephone Directory

A telephone directory consists of the following kinds of entries:

Name Address Number
Adcroft A.| 61 Connaught Road, Roath, Cardiff 223309
Beale K. 14 Airedale Road, Balham 745 9870

Blunt R.U.| 81 Stanlake Road, Shepherds Bush | 674 4546

Sims Tony | 99 Andover Road,Twickenham 898 7330

This structure can be considered in a variety of ways, but perhaps the most common
is to regard it as a table of data, where there are three columns and as many rows as
there are entries in the telephone directory.

Consider now the way we extract information from this table. We would scan the
name column looking for the name we are interested in, and then read along the row
looking for either the address or telephone number, i.e., we are using the name to
look up the item of interest.

6.1.2 Book Catalogue

A catalogue could contain:

Author(s) Title Publisher
Carroll L. Alice through the Looking Glass Penguin
Steinbeck J.| Sweet Thursday Penguin
Wirth N. Algorithms plus data Structures = programs| Prentice-Hall

Again, this can be regarded as a table of data, having three columns and many
rows. We would follow the same procedure as with the telephone directory to extract
the information. We would use the Author to look up what books are available.
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6.1.3 Examination Marks or Results

This could consist of:

Name Physics| Maths| Biology| History| English| French
Fowler L. 50 47 28 89 30 46
Barron L.W 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

This can again be regarded as a table of data. This example has seven columns
and five rows. We would again look up information by using the Name.

6.1.4 Monthly Rainfall

The following data are a sample of monthly average rainfall for London in inches:

Month Rainfall
January 3.1
February 2.0
March 2.4
April 2.1
May 22
June 2.2
July 1.8
August 2.2
September 2.7
October 2.9
November 3.1
December 3.1

In this table there are two columns and twelve rows. To find out what the rainfall
was in July, we scan the table for July in the Month column and locate the value in
the same row, i.e., the rainfall figure for July.

These are just some of the many examples of problems where the data that are
being considered have a tabular structure. Most general purpose languages therefore
have mechanisms for dealing with this kind of structure. Some of the special names
given to these structures include:

e Linear list.
e List.
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e Vector.
e Array.

The term used most often here, and in the majority of books on Fortran program-
ming, is array.

6.2 Arrays in Fortran

There are three key things to consider here:

e The ability to refer to a set or group of items by a single name.
e The ability to refer to individual items or members of this set, i.e., look them up.
e The choice of a control structure that allows easy manipulation of this set or array.

6.2.1 The Dimension Attribute

The dimension attribute defines a variable to be an array. This satisfies the first
requirement of being able to refer to a set of items by a single name. Some examples
are given below:

real , dimension(1:100) :: wages
integer , dimension(1:10000) :: sample

For the variable wages it is of type real and an array of dimension or size 100,
i.e., the variable array wages can hold up to 100 real items.

For the variable sample it is of type integer and an array of dimension or
size 10,000, i.e., the variable sample can hold up to 10,000 integer items.

6.2.2 An Index

An index enables you to refer to or select individual elements of the array. In the
telephone directory, book catalogue, exam marks table and monthly rainfall examples
we used the name to index or look up the items of interest. We will give concrete
Fortran code for this in the example of monthly rain fall.

6.2.3 Control Structure

The statement that is generally used to manipulate the elements of an array is the
do statement. It is typical to have several statements controlled by the do statement,



6.2 Arrays in Fortran 117

and the block of repeated statements is often called a do loop. Let us look at two
complete programs that highlight the above.

6.3 Example 1: Monthly Rainfall

Let us look at this earlier example in more depth now. Consider the following:

Month Associated integer| Array Rainfall

representation and index value
January 1 rainfall(1) 3.1
February 2 rainfall(2) 2.0
March 3 rainfall(3) 2.4
April 4 rainfall(4) 2.1
May 5 rainfall(5) 2.2
June 6 rainfall(6) 2.2
July 7 rainfall(7) 1.8
August 8 rainfall(8) 2.2
September 9 rainfall(9) 2.7
October 10 rainfall(10) 2.9
November 11 rainfall(11) 3.1
December 12 rainfall(12) 3.1

Most of you should be familiar with the idea of the use of an integer as an alternate
way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st March
2000 (Anglicised style) or January 3rd (Americanised style). Fortran, in common
with other programming languages, only allows the use of integers as an index into
an array. Thus when we write a program to use arrays we have to map between
whatever construct we use in everyday life as our index (names in our examples of
telephone directory, book catalogue, and exam marks) to an integer representation
in Fortran. The following is an example of an assignment statement showing the
use of an index:

rainfall(1)=3.1

We saw earlier that we could use the dimension attribute to indicate that a variable
was an array. In the above example Fortran statement our array is called rainfall.
In this statement we are assigning the value 3.1 to the first element of the array; i.e.,
the rainfall for the month of January is 3.1. We use the index 1 to represent the first
month. Consider the following statement:

summeraverage = (rainfall(6) + rainfall(7) + &
rainfall(8))/3
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This statement says take the values of the rainfall for June, July and August, add
them up and then divide by 3, and assign the result to the variable summeraverage,
thus providing us with the rainfall average for the three summer months — Northern
Hemisphere of course!

The following program reads in the 12 monthly values from the keyboard, com-
putes the sum and average for the year, and prints the average out.

program ch0601
implicit none
real :: total = 0.0, average = 0.0
real, dimension (1:12) :: rainfall

integer :: month

print *, ’ type in the rainfall wvalues’
print *, ' one per line’
do month = 1, 12
read *, rainfall (month)
end do
do month = 1, 12
total = total + rainfall (month)
end do
average = total/12
print *, ' Average monthly rainfall was’
print *, average

end program ch0601

rainfall is the array name. The variable month in brackets is the index. It takes
on values from 1 to 12 inclusive, and is used to pick out or select elements of the
array. The index is thus a variable and this permits dynamic manipulation of the array
at run time. The general form of the do statement is

do counter = start, end, increment

The block of statements that form the loop is contained between the do statement,
which marks the beginning of the block or loop, and the enddo statement, which
marks the end of the block or loop.

In this program, the do loops take the form:

do month=1,12 start
e body
enddo end

The body of the loop in the program above has been indented. This is not required
by Fortran. However it is good practice and will make programs easier to follow.
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The number of times that the do loop is executed is governed by the last part of
the do statement, i.e., by the

counter = start, end, increment

start as it implies, is the initial value which the counter (or index, or control
variable) takes. Each time the loop is executed, the value of the counter will be
increased by the value of increment, until the value of endisreached. If increment
is omitted, it is assumed to be 1. No other element of the do statement may be omitted.
In order to execute the statements within the loop (the body) it must be possible to
reach end from start. Thus zero is an illegal value of increment. In the event that
it is not possible to reach end, the loop will not be executed and control will pass to
the statement after the end of the loop.

In the example above, both loops would be executed 12 times. In both cases, the
first time around the loop the variable month would have the value 1, the second
time around the loop the variable month would have the value 2, etc., and the last
time around the loop month would have the value 12.

A summation:

i=12

2%

i=1

is often expressed in Fortran as a loop as in this example:

do month=1,12
total = total + rainfall (month)
enddo

6.4 Possible Missing Data

The rainfall data in this example has been taken from the UK Met Office site. Visit

https://www.metoffice.gov.uk/public/weather/
climate-historic/#?tab=climateHistoric

to see where some of the stations are. One of us was born in Wales, the other in
Yorkshire so we have chosen stations accordingly. The urls have been split over two
lines when too long.

The following is one of the mid Wales stations:

https://www.metoffice.gov.uk/pub/data/weather/
uk/climate/stationdata/cwmystwythdata.txt
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Here is a sample of data from this site for 1965.

YYyYyy mm tmax tmin af rain sun

degC degC days mm hours
1965 1 4.8 -0.2 17 214.8 38.8
1965 2 4.4 -1.2 17 25.1 33.3
1965 3 7.7 0.5 11 93.7 114.6
1965 4 9.9 2.4 9 146.9 134.3
1965 5 13.5 5.8 3 108.7 120.8
1965 6 15.9 8.3 0 115.0 140.4
1965 7 15.3 8.6 0 105.0 106.4
1965 8 -—— 9.6 0 155.7 140.2
1965 9 - 6.6 0 245.7 70.6
1965 10 13.5 7.0 0 92.5 134.3
1965 11 6.2 0.8 11 115.7 73.8
1965 12 7.0 1.6 8 417.3 31.4

Wales is relatively wet for the UK!
The following station is Whitby:

https://www.metoffice.gov.uk/pub/data/weather/
uk/climate/stationdata/whitbydata.txt

Here is a sample of the Whitby data.

VYVY —mm tmax tmin af rain sun
degC degC days mm hours

1968 1 6.9 1.7 12 24 .4

1968 2 4.3 -0.7 16 45.1

1968 3 9.4 3.4 2 34.5

1968 4 10.8 1.6 9 28.8

1968 5 10.6 2.8 2 37.1

1968 6 16.7 6.8 0 58.5

1968 7 15.0 8.1 0 81.4

1968 8 16.3 9.6 0 28.0

1968 9 15.7 - -—- 66.0

1968 10 14.7 -—— -—— 35.2

1968 11 8.5 5.1 1 35.1

1968 12 5.7 1.5 9 -—=

Bram Stoker found some of his inspiration for Dracula after staying in the town.
If you look at the data for some of these stations you will notice that data is missing
for some months.
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How do you think you could cope with missing data in Fortran?

The SQL standard has the concept of nulls or missing values, and missing data in
a statistics package is commonly flagged by an exceptional value e.g. —999.

We will look at using this data in Chap. 10.

6.5 Example 2: People’s Weights and Setting the Array Size
With a Parameter

In the table below we have ten people, with their names as shown. We associate
each name with a number — in this case we have ordered the names alphabetically,
and the numbers therefore reflect their ordering. weight is the array name. The
number in brackets is called the index and it is used to pick out or select elements
of the array. The table is read as the first element of the array weight has the value
85, the second element has the value 76, etc.

Person | Associated integer| Array and | Associated value
representation index
Andy 1 Weight(1) 85
Barry 2 Weight(2) 76
Cathy 3 Weight(3) 85
Dawn 4 Weight(4) 90
Elaine 5 Weight(5) 69
Frank 6 Weight(6) 83
Gordon 7 Weight(7) 64
Hannah 8 Weight(8) 57
lan 9 Weight(9) 65
Jatinda 10 Weight(10) 76

In the first example we so-called hard coded the number 12, which is the number
of months, into the program. It occurred four times. Modifying the program to work
with a different number of months would obviously be tedious and potentially error
prone.

In this example we parameterise the size of the array and reduce the effort involved
in modifying the program to work with a different number of people:

program ch0602

! The program reads up to number_of_ people
! weights into the array Weight

! Variables used

! Weight, holds the weight of the people

! Person, an index into the array

! Total, total weight

! Average, average weight of the people
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! Parameters used

! NumberOfPeople ,10 in this case.

! The weights are written out so that
! they can be checked

implicit none

integer, parameter :: number_of_people = 10
real :: total = 0.0, average = 0.0

integer :: person

real, dimension (1:number_of_people) :: weight

do person = 1, number_of_people
print *, ’ type in the weight for person ', &
person
read *, weight (person)

total = total + weight (person)
end do
average = total/number_of_people
print *, ‘' The total of the weights is ', &
total
print *, ’ Average Weight is ', average
print *, ’ ’, number_of_people, &

' Weights were '’
do person = 1, number_of_people
print *, weight (person)
end do
end program ch0602

6.6 Summary

The dimension attribute declares a variable to be an array, and must come at
the start of a program unit, with other declarative statements. It has two forms and
examples of both of them are given below. In the first case we explicitly specify the
upper and lower bounds.

real , dimension(1l:number_of_people) :: weight
In the second case the lower limit defaults to 1

real , dimension (number_of_people) :: weight

The latter form will be seen in legacy code, especially Fortran 77 code suites.
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The parameter attribute declares a variable to have a fixed value that cannot
be changed during the execution of a program. In our example above note that this
statement occurs before the other declarative statements that depend on it. Table 6.1
summarises Fortran’s statement ordering.

Table 6.1 Fortran statement ordering

Program First statement

Integer In any order and the dimension and
parameter attributes are added here

Real Declarative
Character

Arithmetic assignment In any order
Print *
Read * Executable
Do

Enddo
End program Last statement

We choose individual members using an index, and these are always of integer
type in Fortran.

The do loop is a very convenient control structure for manipulating arrays, and
we use indentation to clearly identify loops.

6.7 Problems

6.1 Compile and run example 1 from this chapter. If you live in the UK visit the
Met Office site mentioned earlier and choose a site near you, and a year of interest,
making sure that the data set is complete for that year.

If you don’t live in the UK is there a site similar to the Met Office site that has
data for the country your are from?

6.2 Compile and run program 2.

6.3 Using a do loop and an array rewrite the program which calculated the average
of three numbers to ten.

6.4 Modify the program that calculates the total and average of people’s weights
to additionally read in their heights and calculate the total and average of their
heights. Use the data given below, which have been taken from a group of first
year undergraduates:
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Height Weight
1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

6.5 Your body mass index is given by your weight (in kilos) divided by your height
(in metres) squared. Calculate and print out the BMI for each person.
Grades of obesity according to Garrow as follows:

Grade 0O (desirable) 20-24.9
Grade 1 (overweight) 25-29.9
Grade 2 (obese) 30-40

Grade 3 (morbidly obese) >40
Ideal BMI range,

Men, Range 20.1-25kg/m?
Women, Range 18.7-23.8kg/m?

6.6 When working on either a UNIX system or a PC in a DOS box it is possible to
use the following characters to enable you to read data from a file or write output to
a file when running your program:

character Meaning
< read from file
> write to file

On a typical UNIX system we could use

a.out < data.txt > results.txt

to read the data from the file called data.txt and write the output to a file called
results.txt.
On a PC in a DOS box the equivalent would be

program.exe < data.txt > results.txt

This is a quick and dirty way of developing programs that do simple 1/O; we don’t
have to keep typing in the data and we also have a record of the behaviour of the
program. Rerun the program that prints out the BMI values to write the output to a
file called results.txt. Examine this file in an editor.
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6.7 Modify the program that read in your name to read in ten names. Use an array
and a do loop. When you have read the names into the array write them out in reverse
order on separate lines.

Hint: Look at the formal syntax of the do statement.

6.8 Modify the rainfall program (which assumes that the measurement is in inches)
to convert the values to centimetres. One inch equals 2.54 cm. Print out the two sets
of values as a table.

Hint: use a second array to hold the metric measurements.

6.9 Combine the programs that read in and calculate the average weight with the
one that reads in peoples names. The program should read the weights into one array
and the names into another. Allow 20 characters for the length of a name. print out
a table linking names and weights.

6.10 In an earlier chapter we used the following formula to calculate the period of
a pendulum:

t =2 * pi * (length / 9.81) ** .5

write a program that uses a do loop to make the length go from 1 to 10m in 1-m
increments.
Produce a table with two columns, the first of lengths and the second of periods.
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Sir, In your otherwise beautiful poem (The Vision of Sin) there is
a verse which reads Every moment dies a man, every moment
one is born. Obviously this cannot be true and I suggest that in
the next edition you have it read Every moment dies a man,
every moment 1 1/16 is born. Even this value is slightly in error
but should be sufficiently accurate for poetry.

Charles Babbage in a letter to Lord Tennyson

Aims
The aims of the chapter are to extend the concepts introduced in the previous chapter
and in particular:

To set an array size at run time - allocatable arrays.

e To introduce the idea of an array with more than one dimension and the corre-
sponding control structure to permit easy manipulation of higher-dimensioned
arrays.

e To introduce an extended form of the dimension attribute declaration, and the
corresponding alternative form to the do statement, to manipulate the array in this
new form.

e To introduce the do loop as a mechanism for the control of repetition in general,
not just for manipulating arrays.

e To formally define the block do syntax.
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7.1 Varying the Array Size at Run Time

The earlier examples set the array size in the following two ways:

e Explicitly using a numeric constant
e Implicitly using a parameterised variable

In both cases we knew the size of the array at the time we compiled the program.
We may not know the size of the array at compile time and Fortran provides the

allocatable attribute to accommodate this kind of problem.

7.1.1 Example 1: Allocatable Arrays

Consider the following example.

program ch0701

!

! This program is a simple variant of ch0602.
! The array is now allocatable

! and the user is prompted for the

! number of people at run time.

implicit none

integer :: number_of_people

real :: total = 0.0, average = 0.0

integer :: person

real, dimension (:), allocatable :: weight
print *, ’ How many people?’

read *, number_of_people
allocate (weight (1:number_of_people))
do person = 1, number_of_people
print *, ’ type in the weight for person ', &
person
read *, weilght (person)

total = total + weight (person)
end do
average = total/number_of_people
print *, ' The total of the weights is ', &
total
print *, ’ Average Weight is ', average
print *, ’ ’, number_of_people, &

' Weights were '’
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do person = 1, number_of_people
print *, weight (person)
end do
end program ch0701

The first statement of interest is the type declaration with the dimension and
allocatable attributes, e.g.,

real , dimension(:) , allocatable :: weight
The second is the allocate statement
allocate (weight (1 :number_of_people))

where the value of the variable number_of_people is not known until run time.
This is known in Fortran as a deferred shape array.

7.2 Higher-Dimension Arrays

There are many instances where it is necessary to have arrays with more than one
dimension. Consider the examples below.

7.2.1 Example 2: Two Dimensional Arrays and a Map

Considerthe representation of the height of an area of land expressed as a two dimen-
sional table of numbers e.g., we may have some information represented in a simple
table as follows:

Longitude
1 2 3
Latitude
1 10.0 40.0 70.0
2 20.0 50.0 80.0
3 30.0 60.0 90.0

The values in the array are the heights above sea level. The example is obviously
artificial, but it does highlight the concepts involved. For those who have forgotten
their geography, lines of latitude run east—west (the equator is a line of latitude) and
lines of longitude run north—south (they go through the poles and are all of the same
length). In the above table therefore the latitude values are ordered by row and the
longitude values are ordered by column.
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A program to manipulate this data structure would involve something like the
following:

program ch0702

! Variables used

! Height - used to hold the heights above sea
! level

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.

! Correct - holds the correction factor

implicit none

integer, parameter :: n = 3

integer :: lat, long

real, dimension (l:n, 1:n) :: height
real, parameter :: correct = 10.0

do lat = 1, n
do long =1, n

print *, ’ type in value at ', lat, ' ', &
long
read *, height(lat, long)
end do
end do

do lat = 1, n
do long =1, n

height (lat, long) = height(lat, long) + &
correct
end do
end do
print *, ' Corrected data is '
do lat =1, n
do long =1, n
print *, height(lat, long)
end do
end do

end program ch0702

Note the way in which indentation has been used to highlight the structure in
this example. Note also the use of a textual prompt to highlight which data value is
expected. Running the program highlights some of the problems with the simple i/o
used in the example above. We will address this issue in the next example.
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The inner loop is said to be nested within the outer one. It is very common to
encounter problems where nesting is a natural way to express the solution. Nesting
is permitted to any depth. Here is an example of a valid nested do loop:

do ! Start of outer loop
do ! Start of inner loop
enddo ! End of inner loop
enddo ! End of outer loop

This example introduces the concept of two indices, and can be thought of as a
row and column data structure.

7.2.2 Example 3: Sensible Tabular Output

The first example had the values printed in a format that wasn’t very easy to work
with. In this example we introduce a so-called implied do loop, which enables us to
produce neat and humanly comprehensible output:

program ch0703
! Variables used
! Height - used to hold the heights above sea
! level
! Long - used to represent the longitude
! Lat - used to represent the latitude
! both restricted to integer values.
implicit none

integer, parameter :: n = 3

integer :: lat, long

real, dimension (l:n, 1:n) :: height
real, parameter :: correct = 10.0

do lat = 1, n
do long =1, n
read *, height(lat, long)
height (lat, long) = height(lat, long) + &
correct
end do
end do
do lat = 1, n
print *, (height(lat,long), long=1, n)
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end do

end program ch0703

The key statement in this example is

print * , (height(lat,long), long=1,n)

This is called an implied do loop, as the 1ongitude variable takes on values
from 1 through 3 and will write out all three values on one line.
We will see other examples of this statement as we go on.

7.2.3 Example 4: Average of Three Sets of Values

This example extends the previous one. Now we have three sets of measurements
and we are interested in calculating the average of these three sets. The two new data

sets are:
9. 39.5 69
19.5 49.5 79.5
29.5 59.5 89.5
and
10.5 40.5 70.5
20.5 50.5 80.5
30.5 60.5 90.5

and we have chosen the values to enable us to quickly check that the calculations for
the averages are correct.

This program also uses implied do loops to read the data, as data in files are
generally tabular:

program ch0704

Variables used

hl,h2,h3
used to hold the heights above sea level
ha

used to hold the average of the above
Long - used to represent the longitude
Lat - used to represent the latitude
both restricted to integer values.

implicit none
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integer, parameter :: n = 3
integer :: lat, long
real, dimension (1l:n, 1:n) :: hl, h2, h3, h4

do lat =1, n
read *, (hl
end do
do lat = 1,
read *, (h2(lat,long), long=1, n)
end do
do lat = 1,
read *, (h3(lat,long), long=1l, n)
end do
do lat =1, n
do long =1, n

(lat,long), long=1, n)

B

h4 (lat, long) = (hl(lat,long)+h2(lat,long) &
+h3 (lat,long)) /n
end do
end do

do lat =1, n
print *, (h4(lat,long), long=1, n)
end do
end program ch0704

The original data was accurate to three significant figures. The output from the
above has spurious additional accuracy. We will look at how to correct this in the
later chapter on output.

7.2.4 Example 5: Booking Arrangements in a Theatre
or Cinema

A theatre or cinema consists of rows and columns of seats. In a large cinema or a
typical theatre there would also be more than one level or storey. Thus, a program
to represent and manipulate this structure would probably have a 2-d or 3-d array.
Consider the following program extract:

program ch0705
implicit none

integer, parameter :: nr = 5
integer, parameter :: nc = 10
integer, parameter :: nf = 3

integer :: row, column, floor
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character *1, dimension (l:nr, l:nc, 1l:nf) :: &
seats = '

do floor = 1, nf
do row = 1, nr

read *, (seats(row,column, floor), column=1 &

, nc)
end do
end do
print *, ’ Seat plan is’
do floor = 1, nf
print *, ’ Floor = ', floor
do row = 1, nr
print *, (seats(row,column, floor), column= &
1, nc)
end do
end do

end program ch0705

Note here the use of the term parameter in conjunction with the integer dec-
laration. This is called an entity orientated declaration. An alternative to this is an
attribute-orientated declaration, e.g.,

integer :: nr,nc,nf

parameter :: nr=5,nc=10,nf=3

and we will be using the entity-orientated declaration method throughout the rest of
the book. This is our recommended method as you only have to look in one place to
determine everything that you need to know about an entity.

7.3 Additional Forms of the Dimension Attribute and Do
Loop Statement

7.3.1 Example 6: Voltage from -20 to +20 Volts

Consider the problem of an experiment where the independent variable voltage varies
from —20 to 420 volts and the current is measured at 1-volt intervals. Fortran has a
mechanism for handling this type of problem:

program ch0706
implicit none

real, dimension (-20:20) :: current
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real :: resistance
integer :: voltage
print *, ’ type in the resistance’

read *, resistance

do voltage = -20, 20
current (voltage) = voltage/resistance
print *, voltage, ' ', current(voltage)
end do

end program ch0706

We appreciate that, due to experimental error, the voltage will not have exact
integer values. However, we are interested in representing and manipulating a set of
values, and thus from the point of view of the problem solution and the program this
is a reasonable assumption. There are several things to note.

This form of the dimension attribute

dimension (first:last)

is of considerable use when the problem has an effective index which does not start
at 1.

There is a corresponding form of the do statement which allows processing of
problems of this nature. This is shown in the above program. The general form of
the do statement statement is therefore:

do counter=start, end, increment

where start, end and increment can be positive or negative. Note that zero is
a legitimate value of the dimension limits and of a do loop index.

7.3.2 Example 7: Longitude from —180 to +180

Consider the problem of the production of a table linking time difference with lon-
gitude. The values of longitude will vary from —180 to +180 degrees, and the time
will vary from +12 hours to —12 hours. A possible program segment is:

program ch0707
implicit none

real, dimension (-180:180) :: time = 0
integer :: degree, strip
real :: value

do degree = -180, 165, 15
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value = degree/15.
do strip = 0, 14

time (degree+strip) = value
end do
end do
do degree = -180, 180
print *, degree, ' ‘', time(degree)
end do

end program ch0707

7.3.3 Notes

The values of the time are not being calculated at every degree interval.

The variable t ime is a real variable. It would be possible to arrange for the time
to be an integer by expressing it in either minutes or seconds.

This example takes no account of all the wiggly bits separating time zones or of
British Summer Time or Daylight Saving Time.

What changes would you make to the program to accommodate +180? What is
the time at —180 and +180?

7.4 The Do Loop and Straight Repetition

7.4.1 Example 8: Table of Liquid Conversion Measurements

Consider the production of a table of liquid measurements. The independent variable
is the litre value; the gallon and US gallon are the dependent variables. Strictly
speaking, a program to do this does not have to have an array, i.e., the do loop can
be used to control the repetition of a set of statements that make no reference to an
array. The following shows a complete but simple conversion program:

program ch0708

implicit none

! 1 us gallon = 3.7854118 litres

! 1 uk gallon 4.545 litres

integer :: litre

real :: gallon, usgallon

do litre =1, 10
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gallon = litre/4.545
usgallon = litre/3.7854118
print *, litre, ’ ', gallon, ' ',
end do
end program ch0708

usgallon
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Note here that the do statement has been used only to control the repetition of a

block of statements — there are no arrays at all in this program.

This is the other use of the do statement. The do loop thus has two functions
— its use with arrays as a control structure and its use solely for the repetition of a

block of statements.

7.4.2 Example 9: Means and Standard Deviations

In the calculation of the mean and standard deviation of a list of numbers, we can
use the following formulae. It is not actually necessary to store the values, nor to
accumulate the sum of the values and their squares. In the first case, we would possibly
require a large array, whereas in the second, it is conceivable that the accumulated
values (especially of the squares) might be too large for the machine. The following
example uses an updating technique which avoids these problems, but is still accurate.
The do loop is simply a control structure to ensure that all the values are read in,
with the index being used in the calculation of the updates:

program ch0709
! variables used are

! mean - for the running mean

! ssqg - the running corrected sum of squares

! x - input values for

which

! mean and sd required

! w - local work variable

! sd - standard deviation

! r - another work variable
implicit none

real :: mean = 0.0, ssq = 0.0, x, w, sd, r
integer :: i, n
print *, ’ enter the number of readings’

read *, n

print *, ’ enter the ', n, &
' values, one per line’

doi=1, n

read *, x
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w = X - mean

r=1-1
mean = (r*mean+x) /i
ssq = ssqg + w*w*r/i
end do
sd = (ssqg/r)**0.5
print *, ’ mean is ‘', mean
print *, ' standard deviation is ’, sd

end program ch0709

7.5 Summary

Arrays can have up to fifteen dimensions.

Do loops may be nested, but they must not overlap.

The dimension attribute allows limits to be specified for a block of information
which is to be treated in a common way. The limits must be integer, and the second
limit must exceed the first, e.g.,

real , dimension(-123:-10) :: list
real , dimension(0:100,0:100) :: surface
real , dimension(1:100) :: value

The last example could equally be written

real , dimension(100) :: value

where the first limit is omitted and is given the default value 1. The array 1ist
would contain 114 values, while sur face would contain 10201.

A do statement and its corresponding enddo statement define a loop. The do
statement provides a starting value, terminal value, and optionally, an increment for
its index or counter.

The increment may be negative, but should never be zero. If it is not present, the
default value is 1. It must be possible for the terminating value to be reached from
the starting value.

The counter in a do loop is ideally suited for indexing an array, but it may be
used anywhere that repetition is needed, and of course the index or counter need not
be used explicitly.

The formal syntax of the block do construct is

[ do-construct-name : ] do [label] [ loop-control ]
[execution-part-construct ]
[ label ] end-do
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where the forms of the loop control are

[ , 1 scalar-variable-name =
scalar-numeric-expression |,
scalar-numeric-expression

[ , scalar-numeric-expression ]

and the forms of the end-do are

end do [ do-construct-name ]

continue

and [] identify optional components of the block do construct. This statement is
looked at in much greater depth in Chap. 13.

We have introduced the concept of a deferred-shape array. Arrays do not need
to have their shape specified at compile time, only their rank. Their actual shape
is deferred until runtime. We achieve this by the combined use of the allocatable
attribute on the variable declaration and the allocate statement, which makes Fortran
a very flexible language for array manipulation.

7.6 Problems

7.1 Compile and run all the examples in this chapter, except example 5. This is
covered in Problem 7.8.

7.2 Modify the first example to convert the height in feet to height in metres. The
conversion factor is one 1 foot equals 0.305 m.
Hint: You can either overwrite the height array or introduce a second array.

7.3 The following are two equations for temperature conversion

5 /9 * (t-32)
32 + 9 /5 * t

HhoQ
1l

Write a complete program where t is an integer do loop variable and loop from
—50 to 250. Print out the values of c, t and f on one line. What do you notice about
the c and f values?

7.4 Write a program to print out the 12 times table. Typical output would be of the
form:

* 12 = 12
2 * 12 = 24
3 * 12 = 36
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Hint: You don’t need to use an array here.

7.5 Write a program to read the following data into a two-dimensional array:

Calculate totals for each row and column and produce output similar to that shown
below:

2 3 6
5 6 15
7 8 9 24
12 15 18

Hint 1: Example ch0602 shows how to sum over a loop.

Hint 2: You need to introduce two one-dimensional arrays to hold the row and
column totals. You need to index over the rows to get the column totals and over the
columns to get the row totals.

7.6 Modify the above to produce averages for each row and column as well as the
totals.

7.7 Using the following data from Problem 6.4 in Chap. 6:

1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

Use the program that evaluated the mean and standard deviation to do so for these
heights and weights.

In the first case use the program as is and run it twice, first with the heights then
with the weights.

What changes would you need to make to the program to read a height and a
weight in a pair?

Hint: You could introduce separate scalar variables for the heights and weights.
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7.8 Example 5 looked at seat bookings in a cinema or theatre. Here is an example
of a sample data file for this program

PPPPPPPPPP
pPPCCCCPPP
CCCEEPPPPP
cccccccccecc
EEEPPPPPPP
CCEEPPCCETE
PPPPPPPPPP
PpPPPCCCCPPP
CCCEEPPPPP
cccccccccecc
EEEPPPPPPP
CCEEPPCCETE
PPPPPPPPPP
PpPPPCCCCPPP
CCCEEPPPPP

The key for this is as follows:

C = Confirmed Booking
P
E = Seat Empty

Provisional Booking

Compile and run the program. The output would benefit from adding row and column
numbers to the information displayed. We will come back to this issue in a subsequent
chapter on output formatting.

The data are in a file on the web and the address is given below.

https://www. fortranplus.co.uk

Problem 6.6 in the last chapter shows how to read data from a file.
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Whole Array and Additional Array oo
Features

A good notation has a subtlety and suggestiveness which at
times make it seem almost like a live teacher.
Bertrand Russell

Aims
The aims of the chapter are:

e To look more formally at the terminology required to precisely describe arrays.
To introduce ways in which we can manipulate whole arrays and parts of arrays
(sections).

To introduce the concept of array element ordering and physical and virtual mem-
ory.

To introduce ways in which we can initialise arrays using array constructors.

To introduce the where statement and array masking.

To introduce the forall statement and construct.

Physical and virtual memory

Type declaration statement summary.

8.1 Terminology

Fortran supports an abundance of array handling features. In order to make the
description of these features more precise a number of additional terms have to be
covered and these are introduced and explained below.

e Rank - The number of dimensions of an array is called its rank. A one dimensional
array has rank 1, a two dimensional array has rank 2 and so on.
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e Bounds - An array’s bounds are the upper and lower limits of the index in each
dimension.
Extent - The number of elements along a dimension of an array is called the extent.

integer, dimension(-10:15):: current

has bounds —10 and 15 and an extent of 26.

Size - The total number of elements in an array is its size.

Shape - The shape of an array is determined by its rank and its extents in each
dimension.

Conformable - Two arrays are said to be conformable if they have the same shape,
that is, they have the same rank and the same extent in each dimension.

8.2 Array Element Ordering

Array element ordering states that the elements of an array, regardless of rank, form
a linear sequence. The sequence is such that the subscripts along the first dimension
vary most rapidly, and those along the last dimension vary most slowly. This is best
illustrated by considering, for example, a rank 2 array a defined by

real , dimension(1:4,1:2) :: a

a has 8 real elements whose array element order is a(l, 1), a(2, 1), a(3, 1), a4, 1),
a(l, 2), a(2, 2), a(3, 2), a(4, 2) i.e., mathematically by column and not row. We will
look more formally at this later in this chapter.

8.3 Whole Array Manipulation

The examples of arrays so far have shown operations on arrays via array elements.
One of the significant features of modern Fortran is its ability to manipulate arrays
as whole objects. This allows arrays to be referenced not just as single elements but
also as groups of elements. Along with this ability comes a whole host of intrinsic
procedures for array processing. These procedures are mentioned in Chap. 12, and
listed in alphabetical order with examples in Appendix D.

8.4 Assignment

An array name without any indices can appear on both sides of assignment and input
and output statements. For example, values can be assigned to all the elements of an
array in one statement:
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real, dimension(1:12):: rainfall
rainfall=0.0

The elements of one array can be assigned to another:

integer, dimension(1:50) :: a,b

a=b

Arrays a and b must be conformable in order to do this.
The following example is illegal since x is rank 1 and extent 20, whilst z is rank
I and extent 41.

real, dimension(1:20) :: x
real, dimension(1:41) :: z
x=50.0

zZ=X

But the following is legal because both arrays are now conformable, i.e., they are
both of rank 1 and extent 41:

real , dimension (-20:20) :: x
real , dimension (1:41) :: vy
x=50.0

V=X

8.5 Expressions

All the arithmetic operators available to scalars are available to arrays, but care must
be taken because mathematically they may not make sense.

real , dimension (1:50) :: a,b,c,d,e
c=a+b

adds each element of a to the corresponding element of b and assigns the result to c.
e=c*d

multiplies each element of ¢ by the corresponding element of d. This is not vec-
tor multiplication. To perform a vector dot product there is an intrinsic procedure
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dot_product, and an example of this is given in a subsequent section on array

constructors.
For higher dimensions

real ,dimension (1:10,1:10) :: f£,g,h
f=f**0.5

takes the square root of every element of f.
h=f+g
adds each element of f to the corresponding element of g.
h=f*g
multiplies each element of £ by the corresponding element of g. The last state-

ment is not matrix multiplication. An intrinsic procedure matmul performs matrix
multiplication; further details are given in Appendix D.

8.6 Example 1: Rank 1 Whole Arrays in Fortran

Consider the following example, which is a solution to a problem set earlier, but is
now addressed using some of the whole array features of Fortran

program ch0801

implicit none

integer, parameter :: n = 12
real, dimension (1l:n) :: rainfall ins = 0.0
real, dimension (1l:n) :: rainfall cms = 0.0
integer :: month
print *, &
' Input the rainfall values in inches’
read *, rainfall_ ins
rainfall cms = rainfall ins*2.54
do month = 1, n
print *, ’ ', month, ' ’, rainfall_ins(month &

), ' ', rainfall_cms (month)
end do
end program ch0801

The statements
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real , dimension(l:n) :: rainfall ins=0.0

real , dimension(l:n) :: rainfall_cms=0.0

are examples of whole array initialisation. Each element of the arrays is set to 0.0.
The statement

read *, rainfall_ins
is an example of whole array i/0, where we no longer have to use a do loop to read

each element in.
Finally, we have the statement

rainfall _cms = rainfall_ins * 2.54

which is an example of whole array arithmetic and assignment.

8.7 Example 2: Rank 2 Whole Arrays in Fortran
Here is a two-dimensional example:

program ch0802

! This program reads in a grid of temperatures
! (degrees Fahrenheit) at 25 grid references

! and converts them to degrees Celsius

implicit none

integer, parameter :: n = 5

real, dimension (1l:n, 1l:n) :: fahrenheit, &
celsius

integer :: long, lat

! read in the temperatures

do lat =1, n

print *, ’ For Latitude= ', lat
do long =1, n
print *, ’ For Longitude’, long
read *, fahrenheit(lat, long)
end do
end do

! Conversion applied to all values
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celsius = 5.0/9.0* (fahrenheit-32.0)

print *, celsius

print *, fahrenheit

end program ch0802

Note the use of whole arrays in the print statements. The output does look rather
messy though, and also illustrates array element ordering.

8.8 Array Sections

Often it is necessary to access part of an array rather than the whole, and this is
possible with Fortran’s powerful array manipulation features.

8.8.1 Example 3: Rank 1 Array Sections
Consider the following:

program ch0803
implicit none
integer, dimension (-5:5) :: X

integer :: i

x(-5:-1)
x(0) =0
x(1:5) =1
do i = -5, 5
print *, * ', i, * ', x(i)
end do
end program ch0803

The statement
x(-5:-1) = -1

is working with a section of an array. It assigns the value —1 to elements x (-5)
through x (-1).
The statement

x(1:5) = 1
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is also working with an array section. It assigns the value 1 to elements x (1) through
x(5).

8.8.2 Example 4: Rank 2 Array Sections

In Chap.6 we gave an example of a table of examination marks, and this is given
again below:

Name Physics|Maths | Biology | History |English|French
Fowler L. 50 47 28 89 30 46
Barron LW| 37 67 34 65 68 98

Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

The following program reads the data in, scales column 3 by 2.5 as the Biology
marks were out of 40 (the rest are out of 100), calculates the averages for each subject
and for each person and prints out the results.

program ch0804

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (l:nrow, l:ncol) :: &
exam_results = 0.0

real, dimension (l:nrow) :: people_average = &
0.0

real, dimension (l:ncol) :: subject_average = &
0.0

integer :: r, c

do r = 1, nrow

read *, exam_results(r, l:ncol)
end do
exam_results(l:nrow, 3) = 2.5* &
exam_results (l:nrow, 3)
do r = 1, nrow
do ¢ = 1, ncol
people_average(r) = people_average(r) + &
exam_results(r, c)
end do
end do
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people_average = people_average/ncol
do ¢ =1, ncol
do r = 1, nrow
subject_average(c) = subject_average(c) + &
exam_results(r, c)
end do
end do
subject_average = subject_average/nrow
print *, ’ People averages’
print *, people_average
print *, ’ Subject averages’
print *, subject_average
end program ch0804

The statement

read *, exam_results(r,l:ncol)

uses sections to replace the implied do loop in the earlier example, takes column 3 of
the two dimensional array exam_results, multiplies it by 2.5 (as a whole array)
and overwrites the original values.

The statement

exam_results(l:nrow,3) = &
2.5 * exam_results(l:nrow,3)

uses array sections in the arithmetic and the assignment.

8.9 Array Constructors

Arrays can be given initial values in Fortran using array constructors. Some examples
are given below.

8.9.1 Example 5: Rank 1 Array Initialisation — Explicit
Values

program ch0805
implicit none
integer, parameter :: n = 12
real :: total = 0.0, average = 0.0
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real, dimension (1l:n) :: rainfall = (/ 3.1, &
2.0, 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9, &
3.1, 3.1 /)

integer month

do month = 1, n

total
end do
average
print *,

print *,

total + rainfall (month)

total/n
' Average monthly rainfall was’

average

end program ch0805

The statement

real , dimension(l:n) :: rainfall = &

(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)

provides initial values to the elements of the array rainfall.

8.9.2

Example 6: Rank 1 Array Initialisation Using

an Implied Do Loop

The next example uses a simple variant:

program ch0806

implicit none

1 us gallon = 3.7854118 litres

1 uk gallon

4.545 litres

integer, parameter :: n = 10

real, parameter :: us = 3.7854118

real, parameter :: uk = 4.545

integer i

integer, dimension (1:n) :: litre = [ (i,i=1,n &
) ]

real, dimension (1l:n) :: gallon, usgallon

gallon = litre/uk

usgallon = litre/us

print *, ' Litres Imperial USA’
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print *, ’ Gallon Gallon’
doi=1,n
print *, litre(i), * ', gallon(i), ' ', &
usgallon (i)
end do
end program ch0806

The statement

integer , dimension(l:n) :: litre=[(i,i=1,n)]

initialises the 10 elements of the 1itre array to the values 1,2,3,4,5,6,7,8,9,10
respectively.

8.9.3 Example 7: Rank 1 Arrays and the dot_product
Intrinsic

This example uses an array constructor and the intrinsic procedure dot_product.

program ch0807
implicit none
integer, dimension (1:3) :: x, y

integer :: result

x =11, 3, 51
y =102, 4, 61
result = dot_product(x, V)
print *, result
end program ch0807

and result has the value 44, which is obtained by the normal mathematical dot product
operation, 1*2 + 3%4 4 5%6.

The general form of the array constructor is [1ist of expressions] or
(/ a list of expressions /) where each expression is of the same type.

8.9.4 Initialising Rank 2 Arrays

To construct arrays of higher rank than one the intrinsic function reshape must be
used. An introduction to intrinsic functions is given in Chap. 12, and an alphabetic
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list with a full explanation of each function is given in Appendix D. To use it in its
simplest form:

matrix = reshape ( source, shape)

where source is a rank 1 array containing the values of the elements required in
the new array, matrix, and shape is a rank 1 array containing the shape of the
new array matrix.

We consider the rank 1 array b=(1,3,5,7,9,11), and we wish to store these
values in a rank 2 array a, such that a is the matrix:

17
a= 9
511
The following code extract is needed:
integer, dimension(l:6) :: b
integer, dimension(1:3, 1:2) :: a

b= (/1,3,5,7,9,11/)
a = reshape (b, (/3,2/))

Note that the elements of the source array b must be stored in the array element
order of the required array a.

8.9.5 Example 8: Initialising a Rank 2 Array

The following example illustrates the additional forms of the reshape function that
are used when the number of elements in the source array is less than the number of
elements in the destination. The complete form is

reshape (source, shape, pad, order)

pad and order are optional. See Appendix D for a complete explanation of pad
and order:

program ch0808
implicit none
integer, dimension (1:2, 1:4) :: x

I
J
=
N
\L)J
:b
@

integer, dimension (1:8) :: vy
5, 6, 7, 8 /)
integer, dimension (1:6) :: z = (/ 1, 2, 3, 4, &
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5, 6 /)
integer r, cC
print *, ’ Source array y'
print *, y
print *, ’ Source array z’
print *, z
print *, ’ Simple reshape sizes match’
x = reshape(y, (/2,4/) )
dor =1, 2
print *, (x(r,c), c=1, 4)
end do
print *, &
'’ Source 2 elements smaller pad with 0°
x = reshape(z, (/2,4/), (/0,0/) )
dor =1, 2
print *, (x(r,c), c=1, 4)
end do
print *, &
' As previous now specify order as 1*2'
x = reshape(z, (/2,4/), (/0,0/), (/1,2/) )
dor =1, 2
print *, (x(r,c), c=1, 4)
end do
print *, &
' As previous now specify order as 2*1’
x = reshape(z, (/2,4/), (/0,0/), (/2,1/) )
dor =1, 2
print *, (x(r,c), c=1, 4)
end do

end program ch0808

8.10 Miscellaneous Array Examples

The following are examples of some of the flexibility of arrays in Fortran.

8.10.1 Example 9: Rank 1 Arrays and a Stride of 2

Consider the following example:



8.10 Miscellaneous Array Examples 155

program ch0809
implicit none

integer :: i

integer, dimension (1:10) :: x = (/ (i,1i=1,10) &
/)

integer, dimension (1:5) :: odd = (/ (i,1=1,10 &
2) /)

integer, dimension (1:5) :: even

even = x(2:10:2)
print *, ' x’
print *, x
print *, ’ odd’
print *, odd
print *, ’ even’
print *, even

end program ch0809

The statement
integer , dimension(1:5) :: odd=(/(1i,1=1,10,2)/)

steps through the array 2 at a time.
The statement

even=x(2:10:2)

shows an array section where we go from elements two through ten in steps of two.
The 2:10:2 is an example of a subscript triplet in Fortran, and the first 2 is the lower
bound, the 10 is the upper bound, and the last 2 is the increment. Fortran uses the
term stride to mean the increment in a subscript triplet.

8.10.2 Example 10: Rank 1 Array and the Sum Intrinsic
Function

The following example is based on ch0805. It uses the sum intrinsic to calculate the
sum of all the values in the rainfall array.

program ch0810
implicit none
real :: total = 0.0, average = 0.0
real, dimension (12) :: rainfall = (/ 3.1, 2.0 &
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, 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9, &
3.1, 3.1 7/)

total = sum(rainfall)
average = total/1l2
print *, ‘' Average monthly rainfall was’
print *, average
end program ch0810

The statement
total = sum(rainfall)
replaces the statements below from the earlier example.
do month=1,n

total = total + rainfall (month)
enddo

In this example the sum intrinsic function adds up all of the elements of the array

rainfall.
So we have three ways of processing arrays:

e Element by element.
e Using sections.
e On a whole array basis.

The ability to use sections and whole arrays when programming is a major advance

of the element by element processing supported by Fortran 77.

8.10.3 Example 11: Rank 2 Arrays and the Sum Intrinsic

Function

This example is based on the earlier exam results program:

program ch0811

implicit none

integer, parameter :: nrow = 5
integer, parameter :: ncol = 6
real, dimension (l:nrow*ncol) :: results = (/ &

50, 47, 28, 89, 30, 46, 37, 67, 34, 65, 68, &
98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &
30, 65, 68, 78, 38, 76, 98, 65 /)

real, dimension (l:nrow, l:ncol) :: &
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exam_results = 0.0

real, dimension (l:nrow) :: people_average
0.0

real, dimension (l:ncol) :: subject_average
0.0
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= &

= &

exam_results = reshape(results, (/nrow,ncol/), &

(/0.0,0.0/7), (/2,1/) )
exam_results(l:nrow, 3) = 2.5* &
exam_results (l:nrow, 3)
subject_average = sum(exam_results, dim=1)
people_average = sum(exam_results, dim=2)
people_average = people_average/ncol
subject_average = subject_average/nrow
print *, ’ People averages’
print *, people_average
print *, ’ Subject averages’
print *, subject_average
end program ch0811

This example has several interesting array features:

e We initialise a rank 1 array with the values we want in our exam marks array. The
data are laid out in the program as they would be in an external file in rows and

columns.

e We use reshape to initialise our exam marks array. We use the fourth parameter
(/2,1/) to populate the rank 2 array with the data in row order.

8.10.4 Example 12: Masked Array Assignment

and the where Statement

We use sum with a dim of 1 to compute the sums for the subjects.
We use sum with a dim of 2 to compute the sums for the people.

Fortran has array assignment both on an element by element basis and on a whole
array basis. There is an additional form of assignment based on the concept of a

logical mask.

Consider the example of time zones given in Chap. 7. The t ime array will have
values that are both negative and positive. We can then associate the positive values
with the concept of east of the Greenwich meridian, and the negative values with the

concept of west of the Greenwich meridian e.g.:

program ch0812

implicit none
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real, dimension (-180:180) :: time = 0

integer :: degree, strip

real :: value

character (len=1), dimension (-180:180) :: &
direction = *

do degree = -180, 165, 15
value = degree/15.
do strip = 0, 14

time (degree+strip) = value
end do
end do
do degree = -180, 180
print *, degree, ' ', time(degree)
end do

where (time>0.0)
direction = 'E’
elsewhere (time<0.0)
direction = "W’
end where
print *, direction
end program ch0812

8.10.5 Notes

The arrays must be conformable, i.e., in our example time and direction are
the same shape.

The selective assignment is achieved through the where construct.

Both the where and elsewhere blocks can be executed.

The formal syntax is:

where (array logical expression)

elsewhere (array logical expression)

end where
The first array assignment is executed where t ime is positive and the second is

executed where time is negative. For further coverage of logical expressions see
Chaps. 13 and 16.
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8.11 Array Element Ordering in More Detail

Fortran compilers will store arrays in memory according to the array element ordering
scheme. Section 9.5.3.2 of the Fortran 2018 standard provides details of this. Table 8.1
summarises the information for rank 1, 2 and 3 arrays.

Table 8.1 Array element ordering in Fortran

Rank Subscript bounds Subscript list

Subscript order value

1 jlikl sl

1+ (sl —j)

2 Lk, j2:k2 s1, 82

1+ (sl —jl)
+ (52 — j2)*d1

3 L1, j2:k2, i3 — k3 s1, 52,83

1+ (sl —jb)
+ (s2 — j2)*d1
+ (3 — j3)*d2*dl

8.11.1 Example 13: Array Element Ordering

Here is a short program illustrating the above for a 2*5 array.

program ch0813
implicit none

integer :: jl1 =1
integer :: k1l = 2
integer :: j2 =1
integer :: k2 =5
integer :: sl
integer :: s2
integer :: dl
integer :: position

dl = k1 - j1 + 1
print *, ’ Row Column
do sl = j1, k1

do s2 = j2, k2

Position’

position = 1 + (sl-jl1) + (s2-j2)*dl

print 100, sl, s2, position

100 format (3x, i2, 6x, i2, 10x, 1i2)

end do
end do

end program ch0813
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and here is the output.

Row Column Position
1 1 1
1 2 3
1 3 5
1 4 7
1 5 9
2 1 2
2 2 4
2 3 6
2 4 8
2 5 10

So for rank 2 arrays the array element ordering is by column, not row.

8.12 Physical and Virtual Memory

There will be a limit to the amount of physical memory available on any computer
system. To enable problems that require more than the amount of physical memory
available to be solved, most implementations will provide access to virtual memory,
which in reality means access to a portion of a physical disk.

Access to virtual memory is commonly provided by a paging mechanism of some
description. Paging is a technique whereby fixed-sized blocks of data are swapped
between real memory and disk as required.

In order to minimise paging (and hence reduce execution time) array operations
should be performed according to the array element order.

Page sizes, past and present, include:

Sun UltraSparc — 4 Kb, 8 Kb.

DEC Alpha — 8Kb, 16 Kb, 32Kb, 64 Kb.

Intel 80 x 86 — 4 Kb.

Intel Pentium PIII — 4 Kb, 2 Mb, 4 Mb.

AMD64 — 4Kb, 2Mb, 4 Mb - legacy mode

AMD64 — 4Kb, 2Mb, 1 Gb - 64 bit mode

Intel 64 and IA-32 — 4Kb, 2Mb, 1 Gb - depending on mode.

See the references at the end of the chapter for more details.
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8.13 Type Declaration Statement Summary

It is a convenient time to introduce a summary of the syntax of type declarations.
You have already seen some of these, and we will cover the rest in later chapters.
A type declaration statement normally has three components

e atype declaration
e optional attributes
e variable list

Here are details of the type declaration.

intrinsic type specifier

type (derived type specification)
class (derived type specification)
class ( *)

The attribute specification is one of

allocatable
asynchronous
bind
dimension
external
intent
intrinsic
optional
parameter
pointer
private
protected
public
save
target
value
volatile

8.14 Summary

We can now perform operations on whole arrays and partial arrays (array sections)
without having to refer to individual elements. This shortens program development
time and greatly clarifies the meaning of programs.

Array constructors can be used to assign values to rank 1 arrays within a program
unit. The reshape function allows us to assign values to a two or higher rank array
when used in conjunction with an array constructor.
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8.15 Problems

8.1 Compile and run all the examples.

8.2 Give the rank, bounds, extent and size of the following arrays:

real , dimension(1:15) :: a
integer , dimension(1:3,0:4) :: b
real , dimension(-2:2,0:1,1:4) :: c
integer , dimension(0:2,1:5) :: d

Which two of these arrays are conformable?

8.3 Write a program to read in five rank 1 arrays, a, b, ¢, d, e and then store them
as five columns in a rank 2 array table.

8.4 Take the first part of Problem 7.5 in Chap. 7 and rewrite it using the sum intrinsic
function.
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Chapter 9 ®)
Output of Results ez

“Why, sometimes I've believed as many as six impossible things
before breakfast”

Lewis Carroll, Through the Looking-Glass and What Alice
Found There

Aims
The aims here are to introduce some of the facilities for producing neat output using
edit descriptors. There is also coverage of how to write the results to a file, rather
than to the screen.

There are examples which will illustrate the use of

The i edit descriptor for integer data
The £ edit descriptor for real data

The e edit descriptor for real data

The g edit descriptor for real data

The x edit descriptor for spaces

The a edit descriptor for character data
Repetition of edit descriptors

New lines

Output using array sections

Output using whole arrays

The open, write, and close statements.

We will also provide a brief summary of the rest of the control and data edit
descriptors, as people may see them in existing code.
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9.1 Introduction

When you have used print * afew times it becomes apparent that it is not always
as useful as it might be. The data are written out in a way which makes some sense,
but may not be especially easy to read. Real numbers are generally written out with
all their significant places, which is very often rather too many, and it is often difficult
to line up the columns for data which are notionally tabular. It is possible to be much
more precise in describing the way in which information is presented by the program.
To do this, we use format statements. Through the use of the format we can:

e Specify how many columns a number should take up.
e Specify where a decimal point should lie.

e Specify where there should be white space.

e Specify titles.

The format statement has a label associated with it; through this label, the
print statement associates the data to be written with the form in which to write
them.

9.2 Integers and the i Format or Edit Descriptor

Integer format (or edit descriptor) is reasonably straightforward, and offers clues for
formats used in describing other numbers. i3 is an integer taking three columns. The
number is right justified, a bit of jargon meaning that it is written as far to the right
as it will go, so that there are no trailing or following blanks. Consider the following
example:

9.2.1 Example 1: Twelve Times Table

program ch0901
implicit none

integer :: t
print *,
print *, ' Twelve times table’
print *, * '

do t =1, 12
print 100, t, t*12
end do
100 format (’ ’, i3, * * 12 = ', 1i3)
end program ch0901
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The first statement of interest is
print 100, t,t*12

The 100 is a statement label. There must be a format statement with this label in
the program. The variables to be written out are t and t*12.
The second statement of interest is

100 format(’ ’,1i3,’ * 12 = ',13)

Inside the brackets we have  ’ print out what occurs between the quote marks,
in this case one space.

, the comma separates items in the format statement.

i3 print out the first variable in the print statement right justified in three columns

, item separator.

© * 12 = ' print out what occurs between the quote characters.

, item separator

i3 print out the second variable (in this case an expression) right justified in three
columns.

All of the output will appear on one line.

9.2.1.1 Notes

The numbers are right justified in the field width.

If the edit descriptor has too few columns for the data we will get asterisks *
displayed.

If the number to be displayed is negative we must allow one column for the
minus sign.

9.2.2 Example 2: Integer Overflow and the i Edit Descriptor

Now consider the following example:

program ch0902
implicit none
integer :: big = 10

integer :: i

do 1 =1, 40
print 100, i, big
big = big*10
end do
100 format (' ’, i3, ’ ', 112)
end program ch0902
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This program will loop and the variable big will overflow, i.e., go beyond the
range of valid values for a 32-bit integer (2, 147, 483, 647). Does the program crash
or generate a run time error? This is the output from the NAG and Intel compilers.

o < o Ul W N

11
12

31

32

40

Is there a compiler switch to trap this kind of error?

9.3 Reals and the £ Edit Descriptor

10

100

1000

10000
100000
1000000
10000000
100000000
1000000000
1410065408
1215752192
-727379968

-2147483648
0

0

The £ edit descriptor can be seen as an extension of the integer format, but here we

have to deal with the decimal point. The general form is

e fw.d

e where w is the total width

e The . is decimal point

e d is the number of digits after the decimal point.
[ ]

as with the integer edit descriptor the number is right justified in the field width.

Let us look at some examples to illustrate the use of the £ edit descriptor.

9.3.1 Example 3: Imperial Pints and US Pints

program ch0903

implicit none
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integer :: fluid

real :: imperial_pint

real :: us_pint

print *, ' US Imperial’
print *, ' pint(s) pint(s)’

do fluid = 1, 10
imperial_pint = fluid*1.20095
us_pint = f£luid/1.20095
print 100, imperial_pint, fluid, us_pint
100 format (' ', £5.2, r, i3, r, £5.2)
end do
end program ch0903

The first two print statements are a heading for the subsequent output. Some
experimentation is normally required to get a reasonable looking table. Note that is
this example we used the £5 . 2 edit descriptor to print out both imperial_pint
variable and the us_pint variable. That is an overall width of 5 spaces with 2 digits
after the decimal point.

Note also that rounding has occurred, i.e. the real values are rounded to 2 digits
after the decimal point.

9.3.2 Example 4: Imperial Pints and Litres

program ch0904
implicit none
integer :: fluid
real :: litres

real :: pints

print *, ’ Imperial Litre(s)’
print *, ' pint(s)
do fluid = 1, 10
litres = fluid/1.75
pints = fluid*1.75
print 100, pints, fluid, litres
end do
100 format (' ', £6.2, r, i3, r, £5.2)
end program ch0904

Note that in this example we are using £6 . 2 to print out the pints variable, and
£5. 2 to print out the 1itres variable.

Note again that rounding is taking place, i.e. both variables are rounded to 2 digits
after the decimal point.
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9.3.3 Example 5: Narrow Field Widths and the £ Edit

Descriptor

Consider the following example.

program ch0905

implicit none

integer :: i

real :: rl = 9.9
real :: r2 = 9.9
real :: r3 = -9.9
real :: rd = -9.9

doi=1, 10
print 100, i, rl, r2, r3, r4d
100 format (’ *, 13, r, £7.3,
oo, £7.3, 0, £7.3)
rl = r1l/10.0
r2 = r2*10.0
r3 = r3/10.0
rd = rd*10.0
end do
end program ch0905

Here is the output.

1 9.900 9.900 -9.900
2 0.990 99.000 -0.990
3 0.099 990.000 -0.099
4 0.010  xExkxkx -0.010
5 0.001  xHxkxkx -0.001
6 0.000  ***xxkx -0.000
7 0.000  ***xxkx -0.000
8 0.000  ***xxkx -0.000
9 0.000  xHxkxkx -0.000
10 0.000  xFxkxkx -0.000

! r, £7.

-9.900
-99.000

* k ok k ok kK
*k kkkkkk
*kkkkkKk*k
kkKkkKk kK
* Kk ok k ok kK
* k ok ok kkk
* kkkk kK

*kk Kk Kk k)

3,

&

When the number is too large for the field width asterisks are printed. Note also

that space has to be allowed for the sign of the variable.
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9.3.4 Example 6: Overflow and the £ Edit Descriptor

Consider the following program:

program ch0906
implicit none
integer :: i

real :: small = 1.0

1
real :: big = 1.0
do i =1, 50
print 100, i, small, big
100 format (’ -+, i3, * r, £7.3, * ', £7.3)
small = small/10.0
big = big*10.0
end do
end program ch0906

In this program the variable small will underflow and big will overflow. The
output from the Intel compiler is:

1 1.000 1.000
2 0.100 10.000
3 0.010 100.000
4 0.001 *****%x*

39 0.000 * Kk k kK kK
40 0.000 Infini

50 0.000 Infini

When the number is too small for the format, the printout is what you would
probably expect. When the number is too large, you get asterisks. When the number
actually overflows the Intel compiler tells you that the number is too big and has
overflowed. However the program ran to completion and did not generate a run time
error.

9.4 Reals and the e Edit Descriptor

The exponential or scientific notation is useful in cases where we need to provide a
format which may encompass a wide range of values. If likely results lie in a very
wide range, we can ensure that the most significant part is given. This takes a form
such as
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el2.4

The 12 refers to the total width and the 4 to the number of significant digits.

9.4.1 Example 7: Simple e Edit Descriptor Example

Let’s look at a simple example to see what the output is like and then go over some
more about the rules that apply.

program ch0907

implicit none

integer :: i
real :: rl = 1.23456
real :: r2 = 1.23456

do i =1, 10
print 100, i, rl, r2
rl = r1/10.0
r2 = r2*10.0
end do
100 format (' r, i3, ' ', el2.4, ' ', el2.4)
end program ch0907

Here is the output

1 0.1235E+01 0.1235E+01
2 0.1235E+00 0.1235E+02
3 0.1235E-01 0.1235E+03
4 0.1235E-02 0.1235E+04
5 0.1235E-03 0.1235E+05
6 0.1235E-04 0.1235E+06
7 0.1235E-05 0.1235E+07
8 0.1235E-06 0.1235E+08
9 0.1235E-07 0.1235E+09
10 0.1235E-08 0.1235E+10

There are a number of things to note here

e all exponent format numbers are written so that the number is between 0.1 and
0.9999..., with the exponent taking care of scale shifts, this implies that the first
four significant digits are to be printed out.

e rounding is taking place

e the numbers are right justified
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There is a minimum size for an exponential format. Because of all the extra bits
and pieces it requires:

The decimal point.

The sign of the entire number.
The sign of the exponent.

The magnitude of the exponent.
The e.

The width of the number less the number of significant places should not be
less than 6. In the example given above, e12 . 4 meets this requirement. When the
exponent is in the range 0 to 99, the e will be printed as part of the number; when
the exponent is greater, the e is dropped, and its place is taken by a larger value;
however, the sign of the exponent is always given, whether it is positive or negative.
The sign of the whole number will usually only be given when it is negative. This
means that if the numbers are always positive, the rule of six given above can be
modified to a rule of five. It is safer to allow six places over, since, if the format is
insufficient, all you will get are asterisks.

The most common mistake with an e format is to make the edit descriptor too
small, so that there is insufficient room for all the padding to be printed.

9.5 Reals and the g Edit Descriptor

This edit descriptor combines both the f and e edit descriptors, depending on the
size of the number.

9.5.1 Example 8: Simple g Edit Descriptor Example

Here is a variant of the previous examples with the g edit descriptor replacing the e
edit descriptor.

program ch0908
implicit none

integer :: i
real :: rl = 1.23456
real :: r2 = 1.23456
print 100

100 format (' ', &

"1234567890123456789012345678901")
print 110
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110 format (' i3 gl2.4 gl2.4")
do i =1, 10
print 120, i, rl, r2
rl = r1l/10.0
r2 = r2*10.0
end do
120 format (' *, i3, ' ', gl2.4, ' ', gl2.4)
end program ch0908

Here is the output

1234567890123456789012345678901

i3 gl2.4 gl2.4

1 1.235 1.235

2 0.1235 12.35

3 0.1235E-01 123.5

4 0.1235E-02 1235.

5 0.1235E-03 0.1235E+05
6 0.1235E-04 0.1235E+06
7 0.1235E-05 0.1235E+07
8 0.1235E-06 0.1235E+08
9 0.1235E-07 0.1235E+09
10 0.1235E-08 0.1235E+10

9 Output of Results

Fortran provides quite a useful set of edit descriptors for real numbers. The print

* is very useful when developing programs.

9.6 Spaces

Fortran provides a variety of ways of generating spaces in a format statement and
these include using quotes (’), double quotes (”’) and the x edit descriptor.

9.6.1 Example 9: Three Ways of Generating Spaces

program ch0909
implicit none

integer :: i

doi=1, 4
print 100, i, i*i
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print 110, i, i*i
print 120, i, i*i

100 format (" ’, i2, " ', i4)
110 format (’ *, 12, ' ', 1i4)
120

format (1x, 12, 2x, 14)
end do
end program ch0909

The output is the same from each format statement.

9.7 Characters — a Format or Edit Descriptor

This is perhaps the simplest output of all. Since you will already have declared the
length of a character variable in your declarations,

character (10) :: b

when you come to write out b, the length is known — thus you need only specify
that a character string is to be output:

print 100,b
100 format(lx,a)

If you feel you need a little extra control, you can append an integer value to the a,
like 210 (a9 or al), and so on. if you do this, only the first 10 (9 or 1) characters are
written out; the remainder are ignored. Do note that 10al and a10 are not the same
thing. 10al would be used to print out the first character of ten character variables,
while a1 0 would write out the first 10 characters of a single character variable. The
general form is therefore just a, but if more control is required, this may be followed
by a positive integer.

9.7.1 Example 10: Character Output and the a Edit
Descriptor

The following program is a simple rewrite of one of the programs from Chap. 4.

program ch0910
! This program reads in and prints out

! your
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first name

implicit none

character (20) first _name
print *, '’ Type in your first name.’
print *, ’ up to 20 characters’
read *, first_name
print 100, first_name

100 format (1x, a) end program ch0910

9 Output of Results

9.7.2 Example 11: Character, Integer and Real Output
in a Format Statement

The following example shows how to mix and match character, integer and real
output in one format statement:

program ch0911

implicit none

character (len=15) firstname
integer age
real weight
character (len=1) gender
print *, ' type in your first name ’
read *, firstname
print *, ’ type in your age in years’
read *, age
print *, ’ type in your weight in kilos’
read *, weight
print *, ’ type in your gender (f/m)’
read *, gender
print *, ’ your personal details are’
print *
print 100
print 110, firstname, age, weight, gender
100 format (4x, ’'first name’, 4x, ’'age’, 1x,
'weight’, 2x, ’‘gender’)
110 format (1x, a, 2x, 13, 2x, £5.2, 2x, a)

end program ch0911

&

Take care to match up the variables with the appropriate edit descriptors. You also
need to count the number of characters and spaces when lining up the heading.
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9.8 Common Mistakes

It must be stressed that an integer can only be printed out with an i format, and a
real with an £ (or e) format. You cannot use integer variables or expressions with
£, e or g edit descriptors or real variables and expressions with i edit descriptors.
If you do, unpredictable results will follow. There are (at least) two other sorts of
errors you might make in writing out a value. You might try to write out something
which has never actually been assigned a value; this is termed an indefinite value.
You might find that the letter i is written out. In passing, note that many loaders and
link editors will preset all values to zero — i.e., unset (indefinite) values are actually
set to zero. On better systems there is generally some way of turning this facility off,
so that undefined is really indefinite. More often than not, indefinite values are the
result of mistyping rather than of never setting values. It is not uncommon to type O
for 0, or 1 for either I or 1. The other likely error is to try to print out a value greater
than the machine can calculate — out of range values. Some machines will print out
such values as R, but some will actually print out something which looks right, and
such overflow and underflow conditions can go unnoticed. Be wary.

9.9 Files in Fortran

One of the particularly powerful features of Fortran is the way it allows you to
manipulate files. Up to now, most of the discussion has centred on reading from the
keyboard and writing to the screen. It is also possible to read and write to one or
more files. This is achieved using the open, write, read and close statements.
In a later chapter we will consider reading from files but here we will concentrate on
writing.

9.9.1 The open Statement

This statement sets up a file for either reading or writing. A typical form is

open (unit=1,file='data.txt’)

The file will be known to the operating system as data . txt and can be written
to by using the unit number. This statement should come before you first read data
from or write data to to the file.

You can also use a character variable to hold the filename. This is shown in the
code segment below.
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character*60 :: filename

filename='data.txt’

open (unit=1,file=filename)
It is not possible to write to the file data . txt directly; it must be referenced

through its unit number. Within the Fortran program you write to this file using a
statement such as

write(unit=1, fmt=100) x,vy

or

write(1,100) x,vy

These two statements are equivalent.

9.9.2 The close Statement

Besides opening a file, we really ought to close it when we have finished writing to it:
close(unit=1)

In fact, on many systems it is not obligatory to open and close all your files.
Almost certainly, the terminal will not require this, since INPUT and OUTPUT units
will be there by default. At the end of the job, the system will close all your files.
Nevertheless, explicit open and close cannot hurt, and the added clarity generally
assists in understanding the program.

9.9.3 Example 12: Open and Close Usage

The following program contains all of the above statements:

program ch0912
implicit none
integer :: fluid
real :: litres
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real :: pints

open (unit=1, file='ch0912.txt")
write (unit=1, fmt=100)
do fluid = 1, 10
litres = fluid/1.75
pints = fluid*1.75
write (unit=1, fmt=110) pints, fluid, litres

end do
close (1)
100 format ('’ Pints Litres’)
110 format (' r, £7.3, * *, i3, * *, £7.3)

end program ch0912
In this example the file will be created in the directory that the program executable

runs in.
Using the following open statement

open (unit=1, file=&
c:\document\fortran\ch0912.txt’)

creates the file in the

c:\document\fortran

directory under the Windows operating system.
Using the following open statement

open (unit=1, file=&
' /home/ian/document/fortran/ch0912.txt’)

creates the file in the

/home/ian/document/fortran

directory under a Linux operating system.

9.9.4 Example 13: Timing of Writing Formatted Files

The following example looks at the amount of time spent in different sections of a
program with the main emphasis on formatted output:
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program ch0913
implicit none

integer, parameter :: n = 10000000
integer, dimension (1l:n) :: x = 0
real, dimension (1l:n) :: y = 0.0
integer :: i

real :: t, tl, t2, t3, t4, t5
character *30 :: comment

open (unit=10, file='ch0913.txt’)
call cpu_time(t)
tl = t
comment = ' Program starts
print 120, comment, tl
doi=1, n
x(1) = 1
end do
call cpu_time(t)
t2 =t - tl
comment = ’ Integer array initialised’
print 120, comment, t2
vy = real (x)
call cpu_time(t)
t3 =t - tl1l - t2
comment = ’ Real array initialised’
print 120, comment, t2
do i1 =1, n
write (10, 100) x(i)
end do
call cpu_time(t)
td =t - tl1l - t2 - t3
comment = ‘' Integer write
print 120, comment, t4
doi=1,n
write (10, 110) vy (i)
end do
call cpu_time(t)
t5 =t - tl - t2 - t3 - t4

’

comment = Real write

’

print 120, comment, t5

100 format (1x, 110)
110 format (1x, £10.0)
120 format (1x, a, 2x, £7.3)

end program ch0913

9 Output of Results
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There is a call to the built-in intrinsic cpu_time to obtain timing information.
Try this example out with your compiler. Formatted output takes up a lot of time, as
we are converting from an internal binary representation to an external

decimal form.

Program starts 0.016
Integer array initialised 0.094
Real array initialised 0.094
Integer write 2.262
Real write 8.408

9.9.5 Example 14: Timing of Writing Unformatted Files

The following program is a variant of the above but now the output is in unformatted
or binary form:

program ch0914

implicit none

integer, parameter :: n = 10000000
integer, dimension (1l:n) :: x = 0
real, dimension (1l:n) :: y = 0
integer :: i

real :: t, tl, t2, t3, t4, t5
character *30 :: comment

open (unit=10, file=’'ch0914.dat’, &
form="unformatted’)

call cpu_time(t)

tl =t

comment = ‘' Program starts ’

print 100, comment, tl

doi1=1, n
x(i) = 1

end do

call cpu_time(t)

t2 =t - tl

comment = ’ Integer assignment -’

print 100, comment, t2

vy = real (x)

call cpu_time(t)

t3 =t - tl - t2

comment = ‘' Real assignment -’
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print 100, comment, t2
write (10) x
call cpu_time(t)
td =t - tl1l - t2 - t3
comment = ’ Integer write '
print 100, comment, t4
write (10) vy
call cpu_time(t)
t5 =t - tl - t2 - t3 - t4
comment = ‘' Real write -’
print 100, comment, t5
100 format (1x, a, 2x, £7.3)
end program ch0914

Try this example out with your compiler. Unformatted is very efficient in terms
of time. It also has the benefit for real or floating point numbers of no information
loss.

Program starts 0.016
Integer assignment 0.078
Real assignment 0.078
Integer write 0.078
Real write 0.031

Note that binary or unformatted files are not necessarily portable between differ-
ent compilers and different hardware platforms. You should consult your compiler
documentation for help in this area.

9.10 Example 15: Implied Do Loops and Array Sections
for Array Output

The following program shows how to use both implied do loops and array sections
to output an array in a neat fashion:

program ch0915

implicit none

integer, parameter :: nrow = 5
integer, parameter :: ncol = 6
real, dimension (l:nrow*ncol) :: results = (/ &

50, 47, 28, 89, 30, 46, 37, 67, 34, 65, 68, &
98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &
30, 65, 68, 78, 38, 76, 98, 65 /)
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real, dimension (l:nrow, l:ncol) :: &
exam_results = 0.0

real, dimension (l:nrow) :: people_average = &
0.0

real, dimension (l:ncol) :: subject_average = &
0.0

integer :: r, c

exam_results = reshape(results, (/nrow,ncol/), &
(/0.0,0.0/7), (/2,1/7) )

exam_results(l:nrow, 3) = 2.5* &

exam_results (l:nrow, 3)
subject_average = sum(exam_results, dim=1)
people_average = sum(exam_results, dim=2)
people_average = people_average/ncol
subject_average = subject_average/nrow
do r = 1, nrow

print 100, (exam_results(r,c), c=1, ncol), &

people_average (r)

end do
print *, &

print 110, subject_average(l:ncol)
100 format (1x,6(1x,£f5.1), 7 = ', £6.2)
110 format (1x, 6(1x,£f5.1))
end program ch0915

The print 100 uses an implied do loop and the print 110 uses an array section.
Here is the output.

50.0 47.0 70.0 89.0 30.0 46.0 = 55.33
37.0 67.0 85.0 65.0 68.0 98.0 = 70.00
25.0 45.0 65.0 48.0 10.0 36.0 = 38.17
89.0 56.0 82.5 45.0 30.0 65.0 = 61.25
68.0 78.0 95.0 76.0 98.0 65.0 = 80.00
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We are using repeat factors in this example in the format statement to repeat the
use of one or more edit descriptors, e.g. 6 (1x,£5.1).
We have also added a print statement to make the output a bit more understandable.
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9.11 Example 16: Repetition and Whole Array Output

Take care when using whole arrays. Consider the following program:

program ch0916

real, dimension (10, 10) :: vy
integer :: nrows = 6
integer :: ncols = 7
integer :: i, J
integer :: k = 0
do 1 = 1, nrows
do j = 1, ncols
k=k+1
y(i, J) =k
end do
end do

write (unit=*, fmt=100) vy
100 format (1x, 10£10.4)
end program ch0916

There are several points to note with this example. Firstly, this is a whole array
reference, and so the entire contents of the array will be written; there is no scope for
fine control. Secondly, the order in which the array elements are written is according
to Fortran’s array element ordering, i.e., the first subscript varying 1 to 10 (the array
bound), with the second subscript as 1, then 1 to 10 with the second subscript as 2
and so on; the sequence is

Y(1,1)Y(2,1)Y(3,1)Y(10,1)
Y(1,2)Y(2,2)Y(3,2)Y(10,2)

Y(1,10)Y(2,10)Y(10,10)
Thirdly we have defined values for part of the array.

Finally we have used write (unit=*, fmt=100) and this will print to the
screen.

9.12 Example 17: Choosing the Decimal Symbol

Fortran provides a mechanism to choose the decimal symbol. The dc edit descriptor
sets the decimal symbol to a comma. The dp edit descriptor sets the decimal symbol
to a full stop or period.
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The following example

program ch0917
implicit none

integer :: fluid
real :: litres
real :: pints

open (unit=1, file='ch0917.txt"’)
write (unit=1, fmt=100)
do fluid = 1, 10
litres = fluid/1.75
pints = fluid*1.75
write (unit=1, fmt=110) pints, fluid, litres

end do
close (1)
100 format ('’ Pints Litres’)
110 format (dc, * *, £7.3, * *, 13, * *, £7.3)

end program ch0917

produces the following output.

Pints Litres
1,750 1 0,571
3,500 2 1,143
5,250 3 1,714
7,000 4 2,286
8,750 5 2,857
10,500 6 3,429
12,250 7 4,000
14,000 8 4,571
15,750 9 5,143
17,500 10 5,714

9.13 Example 18: Alternative Format Specification
Using a String

Here is an example of an alternate format specification using a string.

program ch0918
implicit none
integer :: t

185
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print *, ’ '
print *, ' Twelve times table’
print *, ’
do t =1, 12
print (" **, i3, *r * 12 = ', i3)’', t, &
t*12
end do
end program ch0918

9.14 Example 19: Alternative Format Specification
Using a Character Variable

Here is an example of using a character variable in a format specification.

program ch0919

implicit none

integer :: t

character *30 :: fmt_100 = &
r(rrorr, i3, o o* 12 = 7, 13)

print *, *

print *, ' Twelve times table’

print *, * '

do t =1, 12
write (unit=*, fmt=fmt_ 100) t, t*12
end do
end program ch0919

9.15 The Remaining Control and Data Edit Descriptors

Tables 9.1 and 9.2 summarise details of the control and data edit descriptors available

in Fortran.
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Table 9.1 Summary of data edit descriptors

Descriptor Description: data conversion
Aw character

B w[.m] integer to/from binary
Dwd real

DT [character literal constant][(v-list)]| derived type

E w.d[Ee] real with exponent
EN w.d[Ee] real to engineering
ES w.d[Ee] real to scientific
Fwd real with no exponent
G w.d[Ee] any intrinsic type

I w[.m] integer

Lw logical

(0] octal

Z hexadecimal

Symbol Explanation

w width of the field

number of digits in the field
number of digits after the decimal symbol
number of digits in the exponent field

< 0o a3

signed integer literal constant
interpretation depends on the user

supplied derived type i/o subroutine

Table 9.2 Text edit descriptors

Descriptor| Description: data conversion

“text’ transfer of a character literal constant to output record

“text” transfer of a character literal constant to output record

9.16 Summary

You have been introduced in this chapter to the use of format or layout descriptors
which will give you greater control over output.
The main features are:

The i format for integer variables.

The e, £ and g formats for real numbers.
The a format for characters.

The x, which allows insertion of spaces.

Output can be directed to files as well as to the terminal through the write statement.
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The write, together with the open and close statements, also introduces
the class of Fortran statements which use equated keywords, as well as positionally
dependent parameters.

The format statement and its associated layout or edit descriptor are powerful
and allow repetition of patterns of output (both explicitly and implicitly).

9.17 Problems

9.1 Rewrite the temperature conversion program which was Problem 7.3 in Chap.7
to produce neat tabular output. Pay attention to the number of significant decimal
places.

9.2 Information on car fuel consumption is usually given in miles per gallon in
Britain and the United States and in I/100 km in Europe. Just to add an extra problem
US gallons are 0.8 imperial gallons.

Prepare a table which allows conversion from either US or imperial fuel consump-
tion figures to the metric equivalent. Use the parameter statement where appropriate:

1 imperial gallon = 4.54596 litres
1 mile = 1.60934 kilometres

9.3 The two most commonly used operating systems for Fortran programming are
UNIX and DOS. It is possible to use the operating system file redirection symbols

to read from a file and write to a file, respectively. Rerun the program in Problem 1
to write to a file using the open statement. Examine the file using an editor.

9.4 Modify any of the above to write to a file rather than the screen or terminal.
9.5 What features of Fortran reveal its evolution from punched card input?

9.6 Try to create areal number greater than the maximum possible on your computer
— write it out. Try to repeat this for an integer. You may have to exercise some
ingenuity.

9.7 Check what a number too large for the output format will be printed as on your
local system — is it all asterisks?

9.8 Write a program which stores litres and corresponding pints in arrays. You
should now be able to control the output of the table (excluding headings — although
this could be done too) in a single write or print statement. If you don’t like litres and
pints, try some other conversion (sterling to US dollars, leagues to fathoms, Scots
miles to Betelgeusian pfnings). The principle remains the same.
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9.9 Fortran is an old programming language and the text formatting functionality
discussed in this chapter assumes very dumb printing devices.

The primary assumption is that we are dealing with so-called monospace fonts,
i.e., that digits, alphabetic characters, punctuation, etc., all have the same width.

If you are using a PC try using:

e Notepad
and
e Word

To open your programs and some of the files created in this chapter. What happens
to the layout?

If you are using Notepad look at the Word wrap and set Font options under the
edit menu.

What fonts are available? What happens to the layout when you choose another
font?

If you are using Word what fonts are available? What happens when you make
changes to your file and exit Word? Is it sensible to save a Fortran source file as a
Word document?
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Winnie-the-Pooh read the two notices very carefully, first from
left to right, and afterwards, in case he had missed some of it,
from right to left

A A Milne, Winnie-the-Pooh

Aims
The aims of this chapter are to introduce some of the ideas involved in reading data
into a program. In particular, using the following:

Reading from files

Reading integer data

Reading real data

Skipping columns of data in a file
Skipping lines in a file

Reading from several files consecutively
Reading using internal files

Timing of formatted and unformatted reads

10.1 Reading from Files

In the examples so far we have been reading from the keyboard using what Fortran
calls list directed input. In this chapter we will look at reading data from files where
the data is generally in tabular form.
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10.2 Example 1: Reading Integer Data

In this example we are interested in reading in people’s heights and weights in
imperial measurements (feet and inches and stones and pounds) from a file and
converting to their metric equivalent (metres and kilograms). The data is taken from
an undergraduate class of Mechanical Engineering students.

Here is the data.

6 1 13 5
5 11 11 13
6 1 13

5 7 14

5 9 10 12
5 6 13 1
5 1 10 1
5 4 8 13
5 10 10 3
5 10 11 13

The first two columns are the heights in feet and inches, and the second two
columns are the weights in stones and pounds.
Here is the program.

program chl1001

implicit none

integer, parameter :: npeople = 10

integer, dimension (1l:npeople) :: height_feet, &
height_inch, weight_stone, weight_pound

real, dimension (1l:npeople) :: weight_kg, &
height_m

integer :: i

open (unit=10, file=’'chl1001.txt’,status='0ld’)
open (unit=20, file='chl00l.out’,status='new’)

do 1 = 1, npeople

read (10, fmt=100) height_feet (i), &
height_inch(i), weight_stone (i), &
weight_pound (i)

100 format (i2, 2x, 12, 2x, 12, 2x, 12)

weight_kg (i) = (weight_stone(i)*14+ &
weight_pound(i)) /2.2

height_m(i) = (height_feet(i)*12+height_inch &
(i))*2.54/100

write (unit=20, fmt=110) height_m(i), &
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weight_kg (i)
110 format (1x, £5.2, 2x, f4.1)
end do
close (10)
close (20)
end program chl1001

Here is the output.

1.85 85.0
1.80 75.9
1.85 85.0
1.70 90.0
1.75 69.1
1.68 83.2
1.55 64.1
1.63 56.8
1.78 65.0
1.78 175.9

The first statements of interest are

open (unit=10, file=’'chl1001.txt’,status='0ld’)
open (unit=20, file='chl001l.out’,status='new’)

which links the Fortran unit number 10 with a file called ch1001 . txt, and links
the Fortran unit number 20 with a file called ch1001 . out.
The next statements of interest are

read (10, fmt=100) height_feet (i) ,height_inch(i), &
weight_stone (i) ,weight_pound (i)
100 format(i2,2x,12,2x,12,2x,12)

which reads 4 integer values from a line with integer data in columns 1-2, 5-6, 9-10
and 13-14 with 2 spaces between each value.
At the end of the program we close the files.

close (10)
close(20)

We write out the metric versions of the height and weight with the following
statement.

write(unit=20, fmt=200) height_m(i),weight_kg (i)
200 format (1lx,f5.2,2x,£f4.1)

to the file called ch1001.out.
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We recommend that when working with formatted files you use a text editor that
displays the column and line details.

Notepad under Windows has a status bar option under the View menu. Gvim
under Windows has line and column information available. Under Redhat, vim and
gedit both display line and column information. Under SuSe Linux kedit and vim
display line and column information. There should be an editor available on your
system that has this option.

10.3 Example 2: Reading Real Data

This example reads in the height and weight data created by the previous program
and calculates their BMI values. BMI stands for Body Mass Index and is calculated
as Weight/Height®

Here is the program.

program chl1002
implicit none

integer, parameter :: n = 10
real, dimension (l:n) :: h
real, dimension (1l:n) :: w
real, dimension (1l:n) :: bmi
integer :: i

open (unit=100, file=’'chl1001l.out’,status='0ld’)
doi=1, n
read (100, fmt=’(1x,f5.2, 2x, f4.1)') h(i), &
w(il)
end do
close (100)
bmi = w/ (h*h)
doi=1, n
write (unit=*, fmt='(1x,f4.1)’) bmi (i)
end do
end program chl002

The following statement
open (unit=100, file='chl1001.out’,status='0ld’)

links the Fortran unit number 100 with the file ch1001 . out.
The following statement

read (100, fmt='(1x,£5.2, 2x, f4.1)’) h(i), w(i)
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reads the height and weight data from the file. We skip the first space then read the
height from the next 5 columns in £5 .1 format. We skip two spaces and then read
the weight from the next 4 columns in £4 . 1 format.

The following statement

close(100)

closes the file.
The following statement

write(unit=*,fmt="(1x,£f4.1)’) bmi (i)

writes out the BMI values in £4 . 1 format.
Here is the output.

24.
23.
24 .
31.
22.
29.
26.
21.
20.
24.

o Ul J U1 oy B 0B

10.4 Met Office Historic Station Data

The UK Met Office makes historic station data available.
Visit

http://www.metoffice.gov.uk/public/weather/
climate-historic/#?tab=climateHistoric

to see the data. The line has been broken to fit the page width.
The data consists of

e Mean daily maximum temperature (tmax)
e Mean daily minimum temperature (tmin)

e Days of air frost (af)

e Total rainfall (rain)

e Total sunshine duration (sun)

Here is a sample of the Nairn data. Nairn is a town in Scotland on the North Sea.
The first seven lines have had to be formatted to fit the page width.
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Nairn

Missing data

there is a site change in 1998

Location before 1998 2869E 8568N 8m amsl
after 1998 2912E 8573N 23 m amsl

Estimated data is marked with a * after the value.

10 Reading in Data

(more than 2 days missing in month)

is marked by

Sunshine data taken from an automatic Kipp &
Zonen sensor marked with a #,

sunshine data taken from a

Campbell Stokes recorder.

YYyyy mm
1931 1
1931 2
1931 3
1931 4
1931 5
1931 6
1931 7
1931 8
1931 9
1931 10
1931 11
1931 12

tmax
degC

5.

6.

6.
10.
13.
15.
17.
15.
15.
12.
10.

8.

W W O o0 W i N BN J O

tmin
degC

0.
0.
1.
3.
6.

w W U1 o W O w

N O U POy R U0

otherwise
af rain
days mm
11 78.4
7 48.9
19 37.6
3 44.6
1 63.7
0 87.8
0 121.4
0 57.2
0 38.1
2 59.4
3 43.7
7 33.6

sun
hours
43.
63.
145.
110.
167.
150.
111.
127.
122.
95.
61.
36.

Ul Ul o W U WR RO

In the examples that follow we will be using this station’s data.

10.5 Example 3: Reading One Column of Data from a File

Here is the file we will be reading the rainfall values from.

1931
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931
1931

0w o Ul W N

N
= o ©

12

1

5.
6.
6.
10.
13.
15.
17.
15.
15.
12.
10.
8.
12345678901234567890123

W R O o0 W N B DNMJI O

9

2

[y
B~ W W Ul W O oW O O

5

o N WO U R oY R U d 0

3

11

w

w N O O O O

7

78.
48.
37.
44.
63.
87.
121.
57.
38.
59.
43.
33.
78901234567890123456789

4

~N S PN B 0 o0 00

6

43.
63.
145.
110.
167.
150.
111.
127.
122.
95.
61.
36.

Ul O Ul U1 L W U N W RO
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We have added two additional lines at the end to indicate the columns where the
data is. These lines are not read by the program.
Here is the program.

program chl1003
implicit none
character *20 :: file_name = &
'nairndata_01.txt’

integer, parameter :: nmonths = 12
real, dimension (l:nmonths) :: rainfall
real :: rain_sum

real :: rain_average

integer :: i

open (unit=10, file=file_name)
do i = 1, nmonths
read (unit=10, fmt=100) rainfall (i)
100 format (37x, £5.1)
end do
close (10)
rain_sum = sum(rainfall)/25.4
rain_average = rain_sum/nmonths
write (unit=*, fmt=110)
110 format (19x, ’'Yearly Monthly’, /, 19%x, &

 Sum Average'’)

write (unit=*, fmt=120) rain_sum, rain_average
120 format (’Rainfall (inches) ', £7.2, 2x, &
£7.2)

end program chl003

The data file is called nairndata_01. txt and we open the file at the start of
the program and associate the file with unit 100.

The following statements read the 12 monthly values from the file skipping the
first 37 characters.

do i=1,nmonths
read (unit=10, fmt=100) rainfall (i)
100 format(37x,£5.1)

end do

We then close the file and calculate the rainfall sums and average and print out
the results. Here is the output.
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Yearly Monthly
Sum Average
Rainfall (inches) 28.13 2.34

The format statement 110 uses a / to move to the next line, so that the headings
line up.

10.6 Example 4: Skipping Lines in a File

This program is a simple variant of the last one.
Now we are reading from the original Met Office Nairn data file, which has seven
header lines.

program chl1004
implicit none

character *20 :: file name = ’'nairndata.txt’
integer, parameter :: nmonths = 12

real, dimension (l:nmonths) :: rainfall
real :: rain_sum

real :: rain_average

integer :: i

open (unit=10, file=file_name, status='o0ld’)

doi=1, 8

read (unit=10, fmt=%*)
end do
do 1 = 1, nmonths

read (unit=10, fmt=100) rainfall (i)
100 format (37x, £5.1)
end do
close (100)
rain_sum = sum(rainfall)/25.4
rain_average = rain_sum/nmonths
write (unit=*, fmt=110)
110 format (19x, ' Yearly Monthly’, /, 19x%x, &
/7 Sum Average’)
write (unit=*, fmt=120) rain_sum, rain_average
120 format (’Rainfall (inches) ', £7.2, 2x, &
£7.2)
end program chl1004
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The key statements are

do i=1,8
read (unit=10, fmt=%*)
end do

which skips the data on these lines. Fortran reads a record at a time in this example.
The output is as before.

10.7 Example S: Reading from Several Files Consecutively

In this example we read from eight of the Met Office data files for Cardiff, Eastbourne,
Lerwick, Leuchars, Nairn, Paisley, Ross On Wye and Valley.

We skip the first seven lines, then read year, month rainfall and sunshine data,
skipping the other columns.

We then calculate rainfall and sunshine yearly totals and averages for these eight

stations.
We use a character array to hold the station file names.
Here is the program.

program chl1005
implicit none

character *20, dimension (8) :: file name = (/ &
'cardiffdata.txt ', 'eastbournedata.txt ' &
, ’'lerwickdata.txt &
"leucharsdata. txt ', 'nairndata.txt &
, ’'paisleydata.txt T, &
'rossonwyedata.txt ', ’‘valleydata.txt r&
/)

integer, parameter :: nmonths = 12

integer, dimension (l:nmonths) :: year, month

real, dimension (1:nmonths) :: rainfall, &
sunshine

real :: rain_sum

real :: rain_average

real :: sun_sum

real :: sun_average

integer :: i, J

character *80 :: fmtl = ’(3x,14,2x%,12,3x%x,4x,4x%x,&

&4x,4x,4x,3%x,£5.1,3%x,£5.1) "
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do j =1, 8
open (unit=100, file=file_name(j),status='0ld’)
doi=1, 7
read (unit=100, fmt=’(a)"’)
end do
if (j==5) then
read (unit=100, fmt='(a)’)
end if
do 1 = 1, nmonths
read (unit=100, fmt=fmtl) vyear(i), &
month (i), rainfall(i), sunshine (i)
end do
close (100)

sum(rainfall) /25.4
sum (sunshine)

rain_sum =
sun_sum =
rain_average = rain_sum/nmonths
sun_sum/nmonths

fmt='(//,"Station =

sun_average =
write (unit=*,

file_name(3j)

“,a,/)’) &

&

&

&

write (unit=*, fmt= &
" (2x,''Start ’’,id4,2x,12)") year(l), &
month (1)
write (unit=*, fmt= &
" (2x, ' "End rr,14,2x%x,12) ") year(12),
month (12)
write (unit=*, fmt=100)
100 format (19x%x, ' Yearly Monthly’, /, 19x,
/' Sum Average’)
write (unit=*, fmt=110) rain_sum, &
rain_average
110 format (’Rainfall (inches) ', £7.2, 2x,
£7.2)
write (unit=*, fmt=120) sun_sum, sun_average
120 format (’Sunshine r, £7.2, 2x%,
£7.2)
end do

end program chl005

Each time round the loop we open one of the data files.

open (unit=100,file=file_name(j),status='0ld")

Reading in Data
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We then skip the next seven lines.

do i=1,8
read (unit=100, fmt="(a) ")
end do

We then read the data.

do i=1,nmonths
read (unit=100, fmt=fmtl) &
yvear (i) ,month (i), &
rainfall (i), sunshine (i)
end do

‘We then close the file.

close(100)
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We then do the calculations and print out the sum and average data for each site.

The format statement uses // to generate a blank line.

Programs that will download the latest versions of the Met Office station data
files are available on our web site. The programs are available for both Windows and

Linux.

10.8 Example 6: Reading Using Array Sections

Consider the following output, which is the exam results data from an earlier chapter

after scaling.

50.0 47.0 70.0 89.0 30.0 46.0
37.0 67.0 85.0 65.0 68.0 098.0
25.0 45.0 65.0 48.0 10.0 36.0
89.0 56.0 82.5 45.0 30.0 65.0
68.0 78.0 95.0 76.0 98.0 65.0

A program to read this file using array sections is as follows:

program chl006
implicit none

integer, parameter :: nrow = 5
integer, parameter :: ncol = 6
real, dimension (l:nrow, l:ncol) :: &

exam_results = 0.0
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100 format (1x, 6(
110 format (1x, 6(1x,f5.1), ' = ', £6.2)
120 format (1x, 6(

10
real, dimension (l:nrow) :: people_average = &
0.0
real, dimension (l:ncol) :: subject_average = &
0.0
integer :: r, c
open (unit=100, file='chl006.txt’,status='0ld’)
do r = 1, nrow
read (unit=100, fmt=100) exam_results(r, &
1l:ncol)
people_average(r) = sum(exam_results(r,l: &
ncol))
end do
close (100)
people_average = people_average/ncol
do ¢ = 1, ncol
subject_average(c) = sum(exam_results(l:nrow &
/C))
end do
subject_average = subject_average/nrow
do r = 1, nrow
print 110, (exam_results(r,c), c=1, ncol), &

people_average (r)
end do
print *, &

print 120, subject_average(l:ncol)
1x,£5.1))

1x,£5.1))

end program chl006

Here is the output.

50.0 47.0 70.0 89.0 30.0 46.0 = 55.33
37.0 67.0 85.0 65.0 68.0 98.0 = 70.00
25.0 45.0 65.0 48.0 10.0 36.0 = 38.17
89.0 56.0 82.5 45.0 30.0 65.0 = 61.25
68.0 78.0 95.0 76.0 98.0 65.0 = 80.00

ul
w
00}
ul
o0}
[e)}
~
e}
ul
[e)}
=
[e)}
=
~
N
o))
N
o
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10.9 Example 7: Reading Using Internal Files

Sometimes external data does not have a regular structure and it is not possible to
use the standard mechanisms we have covered so far in this chapter. Fortran provides
something called internal file that allow us to solve this problem. The following
example is based on a problem encountered whilst working at the following site

http://www.shmu.sk/sk/?page=1

They have data that is in the following format

HRXAKXXXKXXXX YYYYYYYYYY

where x and y can vary between 1 and 10 digits. The key here is to read the whole
line (a maximum of 22 characters) and then scan the line for the blank character
between the x and y digits.

We then use the index intrinsic to locate the position of the blank character. We
now have enough information to be able to read the x and y integer data into the
variables nl and n2.

program chl1007
implicit none

integer :: ibl, ib2
integer :: nl, n2
character (len=22) :: buffer, buffl, buff2

! program to read a record of the form
I #XXXXXXXXXX VYYYYYYYYY
! so that integers nl = XXXXXXXXXX N2 =

! YYYYYYYYYY
! where the number of digits varies from 1 to 10

! use internal files
print *, ’‘input micael’’s numbers’
read (*, ‘(a)’) buffer
ibl = index(buffer, "’ ')
ib2 = len_trim(buffer)
buffl = buffer(2:ibl-1)
buff2 = buffer (ibl+1:ib2)
read (buffl, ’(i10)’) nl
(

read (buff2, ’(il10)’) n2
print *, 'nl = ', nl
print *, 'n2 = ', n2

end program chl1l007
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The statement

read(buffl,’ (1i10) ' )nl

reads from the string buf £1 and extracts the x number into the variable n1, and the
statement

read (buff2,’ (i10) ' )n2

reads from the string buf £2 and extracts the y number into the variable n2.

This is a very powerful feature and allows you to manage quite widely varying
external data formats in files. buf £1 and buf £2 are called internal files in Fortran
terminology.

10.10 Example 8: Timing of Reading Formatted Files

A program to read a formatted file is shown below:

program chl1008
implicit none
integer, parameter :: n = 10000000
integer, dimension (1l:n) :: x
real, dimension (1l:n) :: y
integer :: i
real :: t, tl, t2, t3
character *15 :: comment

call cpu_time(t)
tl = t
comment = ‘' Program starts ’
print 120, comment, tl
open (unit=10, file='ch0913.txt’, &
status='o0ld’)
doi=1, n
read (10, 100) x(i)
end do
call cpu_time(t)
t2 =t - tl
comment = ’ Integer read ’
print 120, comment, t2
doi=1,n
read (10, 110) y (1)
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end do
call cpu_time(t)
t3 =t - tl1l - t2
comment = ’ Real read '
print 120, comment, t3
do i =1, 10

print 130, x(i), y(i)

end do
100 format (1x, 110)
110 format (1x, £10.0)

(

(
120 format (1x, a, 2x, £7.3)
130 format (1x, 14, 2x, £10.7)

end program chl1008

Here is some sample timing.

Program starts 0.016
Integer read 2.964
Real read 4.072

1 1.0000000
2 2.0000000

9 9.0000000
10 10.0000000

10.11 Example 9: Timing of Reading Unformatted Files

The following is a program to read from an unformatted file:

program chl1009
implicit none
integer, parameter :: n = 10000000
integer, dimension (1l:n) :: x
real, dimension (l:n) :: vy
integer :: i
real :: t, tl, t2, t3
character *15 :: comment

call cpu_time(t)
tl = t
comment = ‘ Program starts ’
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print 100, comment, tl
open (unit=10, file='ch0914.dat’, &
form="unformatted’, status='0ld’)
read (10) x
call cpu_time(t)
t2 =t - tl
comment = ’ Integer read '’
print 100, comment, t2
read (10) vy
call cpu_time(t)
t3 =t - tl - t2
comment = ’ Real read '
print 100, comment, t3
do i =1, 10
print 110, x(i), y(i)
end do
100 format (1x, a, 2x, £7.3)
110 format (1x, 110, 2x, £10.6)
end program chl1009

Here is some sample timing.

Program starts 0.031
Integer read 0.016
Real read 0.031

1 1.000000
2 2.000000

9 9.000000
10 10.000000

10.12 Summary

This chapter has provided a coverage of some of the basics of reading data into a
program in Fortran. We have seen examples that have

Read integer data

Read real data

Skipped lines in a file

Skipped columns of data in a file
Read from files

Used the open and close statements
Associated unit numbers with files
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e Read using fixed format data files
e Shown the time difference between using formatted files and unformatted files
e Used internal files

The above coverage should enable you make effective use of reading data in
Fortran.

We would recommend not using edit descriptors when reading numeric data
entered via the keyboard as it is difficult to see if the data matches what the edit
descriptors expect.

10.13 Problems

10.1 Compile and run the examples in this chapter. Note that you will have to run
ch0913.f90 and ch0914.190 to create the data files that are needed by ch1008.f90 and
ch1009.f90

10.2 Write a program to read in and write out a real number using the following:

format (£7.2)

What is the largest number that you can read in and write out with this format?
What is the largest negative number that you can read in and write out with this
format? What is the smallest number, other than zero, that can be read in and written
out?

10.3 Rewrite two of the earlier programs that used read, * and print, * to use
format statements.

10.4 Write a program to read the file created by either the temperature conversion
program or the litres and pints conversion program. Make sure that the programs
ignore any header and title information. This kind of problem is very common in
programming (writing a program to read and possibly manipulate data created by
another program).

10.5 Demonstrate that input and output formats are not symmetric —i.e., what goes
in does not necessarily come out.

10.6 What happens at your computer when you enter faulty data, inappropriate for
the formats specified? We will look at how we address this problem in Chap. 18.
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Summary of I/0 Concepts ez

It is a capital mistake to theorise before one has data
Sir Arthur Conan Doyle

Aims
This chapter covers more formally some of the concepts introduced in Chaps. 9 and
10. There is a coverage of

I/0 concepts and I/O statements

Files, records and streams

Sequential, direct and stream access

Options or specifiers on the open statement
Options or specifiers on the close statement
Options or specifiers on the write statement
Options or specifiers on the read statement

11.1 I/O Concepts and Statements

Fortran input and output statements provide the means of transferring data from
external media to internal storage or from an internal file to internal storage and vice
versa.

The input/output statements are the open, close, read, write, print,
backspace, endfile, rewind, flush, wait, and inquire statements.

The inguire statement is a file inquiry statement.

The backspace, endfile, and rewind statements are file positioning state-
ments.
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Data is commonly organised in either record files or stream files. In a record type
file transfers are done a record at a time. In a stream type file transfers are done in
file storage units.

11.2 Records

A record is a sequence of values or a sequence of characters. There are three kinds
of records:

e formatted
e unformatted
e end of file

A record in Fortran is commonly called a logical record.

A formatted record is typically a sequence of printable characters. You have seen
examples in earlier chapters.

You saw examples of unformatted i/o in the previous chapters.

11.3 File Access

The three file access methods are:

e sequential
e direct
e stream

The examples so far have shown sequential access.

Direct access is a method of accessing the records of an external record file in
arbitrary order.

Stream access is a method of accessing the file storage units of an external stream
file. The properties of an external file connected for stream access depend on whether
the connection is for unformatted or formatted access.

11.4 The open Statement
An open statement initiates or modifies the connection between an external file and
a specified unit. The open statement can do a number of things including

e connect an existing file to a unit;
e create a file that is preconnected;
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e create a file and connect it to a unit;
e change certain modes of a connection between a file and a unit.

The only keyword option that can be omitted is the uni t specifier. This is assumed
to be the first parameter of the open statement.
Table 11.1 summarises the open statement options.

Table 11.1 Open statement options

unit = file-unit-number

access = sequential, direct or stream

action = read, write or readwrite
asynchronous = yes or no

blank = null or zero

decimal = comma or point

delim = apostrophe, quote or none

encoding = utf8 or default

err = statement label

file = file name

form = formatted or unformatted

iomsg = iomsg-variable

iostat = scalar-int-variable

newunit = scalar-int-variable

pad = yes or no

position = asis, rewind, append

recl = record length, positive integer

round = up, down, zero, neareset, compatible or processor defined
sign = plus, suppress or processor defined
status = old, new, scratch, replace or unknown

11.5 Data Transfer Statements

The read, write and print statements are used to transfer data to and from files.
Table 11.2 summarises the options of the data transfer statements.
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Table 11.2 Data transer statement options

unit = i0-unit

fmt = format

nml = namelist-group-name

advance = yes or no

asynchronous = yes or no

blank = null or zero

decimal = comma or point

delim = apostrophe, quote or none

end = label

eor = label

err = label

id= scalar-int-variable

iomsg = iomsg-variable

iostat = scalar-int-variable

pad = yes or no

pos = file position in file storage units

rec = record number to be read or written
round = up, down, zero, neareset, compatible or processor defined
sign = plus, suppress or processor defined
size = scalar-int-variable

11.6 The inquire Statement

Table 11.3 summarises the options on the inquire statement.

Table 11.3 Inquire statement options

unit = file-unit-number

file = file name

access = sequential, direct, stream

action = read, write, readwrite, undefined
asynchronous = yes, no

blank = zero, null

decimal = comma, point

delim = apostrophe, quote, none

direct = yes, no, unknown
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Table 11.4 (continued)
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encoding =

utf8, default

err = label

exist = true, false

form = formatted, unformatted, undefined
formatted = yes, no, unknown

id= scalar-int-expr

iomsg = iomsg-variable

iostat = scalar-int-variable

name = file name

named = scalar-logical-variable

nextrec = scalar-int-variable

number = unit number, -1 if unassigned
opened = true, false

pad = yes, no

pending = scalar-logical-variable

pos = scalar-int-variable

position = scalar-default-char-variable

read = yes, no, unknown

readwrite = yes, no, unknown

recl = scalar-int-variable

round = up, down, zero, neareset, compatible or processor defined
sequential = yes, no, unknown

sign = plus, suppress, processor defined
size = scalar-int-variable

stream = yes, no, unknown

unformatted = yes, no, unknown

write = yes, no, unknown

11.7 Error, End of Record and End of File

The set of input/output error conditions is processor dependent.

Anend-of-record condition occurs when a non-advancing input statement attempts
to transfer data from a position beyond the end of the current record, unless the file
is a stream file and the current record is at the end of the file (an end-of-file condition
occurs instead). An end-of-file condition occurs when

e anendfile record is encountered during the reading of a file connected for sequential

access,

e an attempt is made to read a record beyond the end of an internal file, or

e an attempt is made to read beyond the end of a stream file.
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An end-of-file condition may occur at the beginning of execution of an input
statement. An end-of-file condition also may occur during execution of a formatted
input statement when more than one record is required by the interaction of the input
list and the format. An end-of-file condition also may occur during execution of a
stream input statement.

11.7.1 Error Conditions and the exrr= Specifier

The set of error conditions which are detected is processor dependent. The standard
does not specify any i/o errors. Compilers will vary in the errors they detect and how
they treat them. The err= option provides one way of catching errors and taking
the appropriate action.

11.7.2 End-of-File Condition and the end= Specifier

An end of file may occur during an input transfer. The end= option provides a way
of handling the end of file in a program.

11.7.3 End-of-Record Condition and the eor= Specifier

An end of record may occur during an input transfer. The eor= option provides a
way of handling this in a program.

11.7.4 iostat= Specifier

Execution of an input/output statement containing the i ostat= specifier causes the
scalar-int-variable in the i ostat= specifier to become defined with one of a set of
values. Normally

e ( if no errors occur
e a processor dependent negative value if end-of-file occurs
e a processor dependent negative value if an end-of-record occurs

If you use iostat_inquire_internal_unit from the intrinsic mod-
uleiso_fortran_env you will get a processor-dependent positive integer value
if a unit number in an inquire statement identifies an internal file.
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When using iostat_inquire_internal_unit you will get a processor-
dependent positive integer value which is different from the above if any other error
condition occurs,

11.7.5 iomsg= Specifier

If an error, end-of-file, or end-of-record condition occurs during execution of
an input/output statement, the processor shall assign an explanatory message to
iomsg-variable. If no such condition occurs, the processor shall not change
the value of iomsg-variable.

11.8 Examples

Here are three examples using the iostat= option. Examples illustrating some of
the other options can be found throughout the rest of the book.

11.8.1 Example 1: Simple Use of the read, write, open,
close, unit Features

This example shows the use of several of the i/o features including

the write statement

the read statement

the use of unit=6 on a write statement

the use of unit=5 on a read statement
several fmt= variations

the open statement

the £i1le= option on the open statement
the iostat= option on the open statement
the close statement

program chl1101

implicit none

integer :: filestat
real :: x
character (len=20) :: which

do
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write (unit=6, fmt= &
"("data file name,or end")’)
read (unit=5, fmt='(a)’) which
if (which=='end’) exit
open (unit=1, file=which, iostat=filestat, &
status='o0ld’)
if (filestat>0) then
print *, &
'error opening file, please check’
stop
end 1if
read (unit=1, fmt=100) x
write (unit=6, fmt=110) which, x
close (unit=1)

end do
100 format (£6.0)
110 format (’'from file ', a, ' x = ', £8.2)

end program chl101

Itis common for compilers to associate units 5 and 6 with the keyboard and screen.

11.8.2 Example 2: Using iostat to Test for Errors

program chl1102

implicit none

integer :: io_stat_number = -1
integer :: i
do

print *, ‘input integer i:’

read (unit=*, fmt=100, iostat=io_stat_number &

) 1

print *, ’ iostat=', io_stat_number
if (io_stat_number==0) exit

end do

print *, i = ', i, ' read successfully’

100 format (i3)
end program chl1102



11.8 Examples

11.8.3 Example 3: Use of newunit and lentrim

This example illustrates the use of the following:

e the len_trim function

e the newunit option on the read statement to get an unused unit number

e the use of 1ostat= to test whether a file was opened correctly

e the use of the cycle control statement to go back to the start of the do and try

reading the file name again
the use of the iostat option to test if the read was successful

program chl1103
implicit none

character (len=20) :: station, file_name
integer :: i, io_stat_number, filestat, flen, &
uno
integer, parameter :: nmonths = 12
integer, dimension (1:nmonths) :: year, month
real, dimension (l:nmonths) :: rainfall, &
sunshine
real :: rain_sum
real :: rain_average
real :: sun_sum
real :: sun_average
do
print *, ’‘input weather station’
print *, ' or "end" to stop program’
read ’(a)’, station
if (station=='end’) exit

flen = len_trim(station)
file name = station(l:flen) // ’'data.txt’
open (newunit=uno, file=file_name, &
jostat=filestat, status=’'old’)
if (filestat/=0) then
print *, ’‘error opening file ’, file_name

print *, ’'Retype the file name’

cycle
end if
do 1 =1, 7
read (unit=uno, fmt=’'(a)’)
end do
do i1 = 1, nmonths
read (unit=uno, fmt=100, iostat= &
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io_stat_number) year (i), month(i), &
rainfall (i), sunshine (i)
100 format (3x, i4, 2x, 12, 27x, f4.1, 3x, &
£5.1)
if (io_stat_number/=0) then
print *, ’ error reading record ‘', &
i+ 8, &
' so following results incorrect:’
exit
end if
end do

close (unit=uno)

rain_sum = sum(rainfall)/25.4
sun_sum = sum(sunshine)
rain_average = rain_sum/nmonths
sun_average = sun_sum/nmonths

write (unit=*, fmt=110) station

110 format (/, /, 'Station = ', a, /)

write (unit=*, fmt=120) year (1), month(1l)
120 format (2x, ’Start ', 14, 2x, 12)

write (unit=*, fmt=130) year(12), month(12)
130 format (2x, ’‘End r, 14, 2x, 12)

write (unit=*, fmt=140)
140 format (19x, ’ Yearly Monthly’, /, 19x, &

’ Sum Average’)
write (unit=*, fmt=150) rain_sum, &

rain_average

150 format (’'Rainfall (inches) ', £7.2, 2x, &
£7.2)
write (unit=*, fmt=160) sun_sum, sun_average
160 format (’Sunshine ', £7.2, 2x, £7.2)
end do

end program chl103

In this program based on an earlier example in Chap. 10, we have use of the
newunit option on the open statement. A unique negative number is returned,
which cannot clash with any user specified unit number, which are always posi-
tive.We are also using the character intrinsic function len_trim and the character
operator

1

We also introduce the do end do and cycle statements. These are covered in
more detail in Chap. 13.
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11.9 Unit Numbering

Care must be taken with unit numbering as firstly they must always be positive, and
secondly many compilers have conventions that apply, for example unit 5 is often
associated with the read * statement and unit 6 is often associated with the print
* statement.

11.10 Summary

This chapter has listed most of the i/0 options available in Fortran. There are a small
number of examples that illustrate some of their use.
Later chapters provide additional examples.

11.11 Problems

The Whitby data and Cardiff data are on our web pages.
11.1 Compile and run the examples in this chapter.

11.2 With the Whitby or Cardiff data make a mistake, e.g. a non-numeric character
in the last column. Test program ch1103 . £90 to see that it picks this up.



Chapter 12 ®)
Functions Check for

I can call spirits from the vasty deep. Why so can I, or so can
any man, but will they come when you do call for them?
William Shakespeare, King Henry 1V, part 1

Aims
The aims of this chapter are:

e To consider some of the reasons for the inclusion of functions in a programming
language.

To introduce, with examples, some of the predefined functions available in Fortran.
To introduce a classification of intrinsic functions, generic, elemental, transforma-
tional.

To introduce the concept of a user defined function.

To introduce the concept of a recursive function.

To introduce the concept of user defined elemental and pure functions.

To briefly look at scope rules in Fortran for variables and functions.

To look at internal user defined functions.

12.1 Introduction

The role of functions in a programming language and in the problem-solving process
is considerable and includes:

e Allowing us to refer to an action using a meaningful name, e.g., sine(x) a very
concrete use of abstraction.
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e Providing a mechanism that allows us to break a problem down into parts, giving
us the opportunity to structure our problem solution.

e Providing us with the ability to concentrate on one part of a problem at a time and
ignore the others.

e Allowing us to avoid the replication of the same or very similar sections of code
when solving the same or a similar sub-problem which has the secondary effect
of reducing the memory requirements of the final program.

e Allowing us to build up a library of functions or modules for solving particu-
lar sub-problems, both saving considerable development time and increasing our
effectiveness and productivity.

Some of the underlying attributes of functions are:

e They take parameters or arguments.

e The parameter(s) can be an expression.

e A function will normally return a value and the value returned is normally depen-
dent on the parameter(s).

They can sometimes take arguments of a variety of types.

Most languages provide both a range of predefined functions and the facility to
define our own. We will look at the predefined functions first.

12.2 An Introduction to Predefined Functions
and Their Use

Fortran provides over a hundred intrinsic functions and subroutines. For the purposes
of this chapter a subroutine can be regarded as a variation on a function. Subroutines
are covered in more depth in a later chapter. They are used in a straightforward
way. If we take the common trigonometric functions, sine, cosine and tangent, the
appropriate values can be calculated quite simply by:

x=sin(y)
z=cos (y)
a=tan (y)

This is in rather the same way that we might say that x is a function of y, or x is
sine y. Note that the argument, y, is in radians not degrees.
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12.2.1 Example 1: Simple Function Usage

A complete example is given below:

program chl1201
implicit none

real

print *,
read *,
print *,

end program chl201

type in an angle

’

, x, ' =, sin(x)
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(in radians)’

These functions are called intrinsic functions. Table 12.1 has details of some of
the intrinsic functions available in Fortran.

Table 12.1 Some of the intrinsic functions available in Fortran

Function Action Example
int conversion to integer j=int(x)
real conversion to real x=real(j)
abs absolute value x=abs(X)
mod remaindering k=mod(i,j)
remainder when i divided by j
sqrt square root x=sqrt(y)
exp exponentiation y=exp(x)
log natural logarithm x=log(y)
log10 common logarithm x=log10(y)
sin sine x=sin(y)
cos cosine x=cos(y)
tan tangent x=tan(y)
asin arcsine y=asin(x)
acos arccosine y=acos(x)
atan arctangent y=atan(x)
atan2 arctangent(a/b) y=atan2(a,b)

A more complete list is given in Appendix D.
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12.3 Generic Functions

All but four of the intrinsic functions and procedures are generic, i.e., they can be
called with arguments of one of a number of kind types.

12.3.1 Example 2: The abs Generic Function

The following short program illustrates this with the abs intrinsic function:

program chl202
implicit none

complex :: ¢ = cmplx (1.0, 1.0)
real :: r = 10.9
integer :: i = -27

print *, abs(c)

print *, abs(r)

print *, abs (i)
end program chl202

Type this program in and run it on the system you use.

It is now possible with Fortran for the arguments to the intrinsic functions to be
arrays. It is convenient to categorise the functions into either elemental or transfor-
mational, depending on the action performed on the array elements.

12.4 FElemental Functions
These functions work with both scalar and array arguments, i.e., with arguments
that are either single or multiple valued.

12.4.1 Example 3: Elemental Function Use

Taking the earlier example with the evaluation of sine as a basis, we have:

program chl1203
implicit none
real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &
4.0, 5.0 /)
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’

print *, ’ sine of ', x, ' = ', sin(x)
end program chl203

In the above example the sine function of each element of the array x is calculated
and printed.

12.5 Transformational Functions

Transformational functions are those whose arguments are arrays, and work on these
arrays to transform them in some way.

12.5.1 Example 4: Simple Transformational Use

To highlight the difference between an element-by-element function and a transfor-
mational function consider the following examples:

program chl204
implicit none
real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &
4.0, 5.0 /)
! elemental function
print *, ’ sine of ', x, ' = ', sin(x)
! transformational function

print *, ’ sum of ', x, '’ = ', sum(x)

end program chl204

The sum function adds each element of the array and returns the sum as a scalar,
i.e., the result is single valued and not an array.

12.5.2 Example 5: Intrinsic dot_product Use
The following program uses the transformational function dot_product:

program chl205
implicit none
real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &
4.0, 5.0 /)
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print *, ' dot product of x with x is’
print *, ’ ', dot_product (x, x)
end program chl205

Try typing these examples in and running them to highlight the differences
between elemental and transformational functions.

12.6 Notes on Function Usage

You should not use variables which have the same name as the intrinsic functions;
e.g., what does sin(x) mean when you have declared sin to be a real array?

When a function has multiple arguments care must be taken to ensure that the
arguments are in the correct position and of the appropriate kind type.

You may also replace arguments for functions by expressions, e.g.,

x = log(2.0)

or

x = log(abs(y))

or

x = log(abs(y)+z/2.0)

12.7 Example 6: Easter

This example uses only one function, the mod (or modulus). It is used several times,
helping to emphasise the usefulness of a convenient, easily referenced function. The
program calculates the date of Easter for a given year. It is derived from an algorithm
by Knuth, who also gives a fuller discussion of the importance of its algorithm. He
concludes that the calculation of Easter was a key factor in keeping arithmetic alive
during the Middle Ages in Europe. Note that determination of the Eastern churches’
Easter requires a different algorithm:

program chl206
implicit none
integer :: year, metcyc, century, errorl, &

error2, day

integer :: epact, luna, temp

! a program to calculate the date of easter
print *, ’ input the year for which easter’
print *, ’ is to be calculated’
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print *, ’ enter the whole year, e.g. 1978 '
read *, year
! calculating the year in the 19 year
! metonic cycle using
variable metcyc
metcyc = mod(year, 19) + 1
if (year<=1582) then
day = (5*year)/4
epact = mod(ll*metcyc-4, 30) + 1
else
! calculating the century-century
century = (year/100) + 1
! accounting for arithmetic inaccuracies
! ignores leap
years etc.
errorl = (3*century/4) - 12
error2 = ((8*century+5)/25) - 5
! locating Sunday
day = (5*year/4) - errorl - 10
! locating the epact (full moon)
temp = ll*metcyc + 20 + error2 - errorl
epact = mod(temp, 30)
if (epact<=0) then
epact = 30 + epact
end if
if ((epact==25 .and. metcyc>11l) .or. &
epact==24) then
epact = epact + 1
end if
end if
! finding the full moon
luna = 44 - epact
if (luna<2l) then
luna = luna + 30
end if
! locating easter Sunday
luna = luna + 7 - (mod(day+luna,7))
! locating the correct month
if (luna>31) then
luna = luna - 31

print *, ’ for the year ', year

print *, ’ easter falls on April ’, luna
else

print *, ’ for the year ', year

print *, ’ easter falls on march ’, luna
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end if

end program chl206

We have introduced a new statement here, the 1£f then endif, and a variant
the if then else endif. A more complete coverage is given in the chapter
on control structures. The main point of interest is that the normal sequential flow
from top to bottom can be varied. In the following case,

if (expression) then
block of statements
endif

If the expression is true the block of statements between the 1f then and the
endi £ is executed. If the expression is false then this block is skipped, and execution
proceeds with the statements immediately after the endif.

In the following case,

if (expression) then
block 1

else
block 2

endif

if the expression is true block 1 is executed and block 2 is skipped. If the expression
is false then block 2 is executed and block 1 is skipped. Execution then proceeds
normally with the statement immediately after the endi £.

As well as noting the use of the mod generic function in this program, it is also
worth noting the structure of the decisions. They are nested, rather like the nested do
loops we met earlier.

12.8 Intrinsic Procedures

An alphabetical list of all intrinsic functions and subroutines is given in Appendix
D. This list provides the following information:

Function name.
Description.

Argument name and type.
Result type.
Classification.

Examples of use.

This appendix should be consulted for a more complete and thorough understand-
ing of intrinsic procedures and their use in Fortran.
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12.9 Supplying Your Own Functions

There are two stages here: firstly, to define the function and, secondly, to reference
or use it. Consider the calculation of the greatest common divisor of two integers.

12.9.1 Example 7: Simple User Defined Function
The following defines a function to achieve this:

module gcd_module
contains
integer function gcd(a, b)
implicit none
integer, intent (in) :: a, b

integer :: temp

if (a<b) then

temp = a
else

temp = b
end 1if

do while ((mod(a,temp)/=0) .or. (mod(b, &
temp) /=0))
temp = temp - 1
end do
gcd = temp
end function gcd

end module gcd_module
To use this function, you reference or call it with a form like:
program chl207

use gcd_module

implicit none
integer :: i, j, result

print *, ’ type in two integers’
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read *, i, J
result = gcd (i, 3)
print *, ' gcd is ', result

end program chl207

We will start by talking about the actual function and then cover the following
statements

module gcd_module
contains

end module gcd_module

later in the chapter on modules.
The first line of the function

integer function gcd(a,b)

has a number of items of interest:

e Firstly the function has a type, and in this case the function is of type integer, i.e.,
it will return an integer value.

e The function has a name, in this case gcd.

e The function takes arguments or parameters, in this case a and b.

The structure of the rest of the function is the same as that of a program, i.e., we
have declarations, followed by the executable part. This is because both a program
and a function can be regarded as a program unit in Fortran terminology. We will
look into this more fully in later chapters.

In the declaration we also have a new attribute for the integer declaration. The
two parameters a and b are of type integer, and the intent (in) attribute means
that these parameters will NOT be altered by the function. It is good programming
practice for functions not to have side effects, i.e not modify their arguments, and
do no i/o.

The value calculated is returned through the function name somewhere in the
body of the executable part of the function. In this case gcd appears on the left-hand
side of an arithmetic assignment statement at the bottom of the function. The end
of the function is signified in the same way as the end of a program:

end function gcd

We then have the program which actually uses the function gcd. In the program
the function is called or invoked with i and j as arguments. The variables are called
a and b in the function, and references to a and b in the function will use the values
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that 1 and j have respectively in the main program. We cover the area of argument
association in the next section.

Note also a new control statement, the do while enddo. In the following
case,

do while (expression)
block of statements
enddo

the block of statements between the do while and the enddo is executed whilst
the expression is true. There is a more complete coverage in Chap. 13.

We have two options here regarding compilation. Firstly, to make the function
and the program into one file, and invoke the compiler once. Secondly, to make
the function and program into separate files, and invoke the compiler twice, once
for each file. With large programs comprising one program and several functions it
is probably worthwhile to keep the component parts in different files and compile
individually, whereas if it consists of a simple program and one function then keeping
things together in one file makes sense.

12.10 An Introduction to the Scope of Variables, Local
Variables and Interface Checking

One of the major strengths of Fortran is the ability to work on parts of a problem at
a time. This is achieved by the use of program units (a main program, one or more
functions and one or more subroutines) to solve discrete sub-problems. Interaction
between them is limited and can be isolated, for example, to the arguments of the
function. Thus variables in the main program can have the same name as variables
in the function and they are completely separate variables, even though they have the
same name. Thus we have the concept of a local variable in a program unit.

In the example above 1, j, result, are local to the main program. The declara-
tion of gcd is to tell the compiler that it is an integer, and in this case it is an external
function.

a and b in the function gcd do not exist in any real sense; rather they will
be replaced by the actual variable values from the calling routine, in this case by
whatever values 1 and j have. temp is local to gcd.

A common programming error in Fortran 66 and 77 was mismatches between
actual and dummy arguments. Problems caused by this were often very subtle and
hard to find.

Fortran 90 introduced a solution to the problem via the use of modules and contains
statements. We have added

module gcd_module
contains

end module gcd_module
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around the function definition, which contains the function in a module and the
following statement in the main program

use gcd_module

provides an explicit interface (in Fortran terminology) that requires the compiler to
check at compile time that the call is correct, i.e. that there are the correct number of
parameters, they are of the correct type and in this case that the function return type
is correct. We will cover this area in greater depth in later chapters.

12.11 Recursive Functions

There is an additional form of the function header that was required when recursive
function support was introduced in Fortran 90. The Fortran 2018 standard makes
this form optional. Recursion means the breaking down of a problem into a simpler
but identical sub-problem. The concept is best explained with reference to an actual
example. Consider the evaluation of a factorial, e.g., 5!. From simple mathematics
we know that the following is true:

51=5%41
41=4*31
31=3*21
21=2*11
11=1

andthus 5! =5 %4 %3 %2 %1 or 120.

12.11.1 Example 8: Recursive Factorial Evaluation

Let us look at a program with recursive function to solve the evaluation of factorials.

module factorial_module

implicit none

contains
recursive integer function factorial (i) &
result (answer)
implicit none

integer, intent (in) :: 1
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if (i==0) then
answer = 1
else
answer = i*factorial(i-1)
end if
end function factorial
end module factorial_module

program chl1208
use factorial_module
implicit none

integer :: i, £

print *, ’ type in the number, integer only’
read *, 1
do while (i<0)
print *, ’ factorial only defined for -
print *, ’ positive integers: re-input’

read *, 1

end do
f = factorial (i)
print *, ’ answer is’, f

end program chl208

What additional information is there? Firstly, we have an additional attribute on
the function header that declares the function to be recursive. Secondly, we must
return the result in a variable, in this case answer. Let us look now at what happens
when we compile and run the whole program (both function and main program). If
we type in the number 5 the following will happen:

e The function is first invoked with argument 5. The else block is then taken and the
function is invoked again.

e The function now exists a second time with argument 4. The else block is then
taken and the function is invoked again.

e The function now exists a third time with argument 3. The else block is then taken
and the function is invoked again.

e The function now exists a fourth time with argument 2. The else block is then
taken and the function is invoked again.

e The function now exists a fifth time with argument 1. The else block is then taken
and the function is invoked again.

e The function now exists a sixth time with argument 0. The if block is executed

and answer=1. This invocation ends and we return to the previous level, with

answer=1*1.

We return to the previous invocation and now answer=2*1.

We return to the previous invocation and now answer=3*2.
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e We return to the previous invocation and now answer=4*6.
e We return to the previous invocation and now answer=5*24.

The function now terminates and we return to the main program or calling routine.
The answer 120 is the printed out.

Add aprint *, 1 statement to the function after the last declaration and type
the program in and run it. Try it out with 5 as the input value to verify the above
statements.

Recursion is a very powerful tool in programming, and remarkably simple solu-
tions to quite complex problems are possible using recursive techniques. We will
look at recursion in much more depth in the later chapters on dynamic data types,
and subroutines and modules.

12.12 Example 9: Recursive Version of ged

The following is another example of the earlier gcd function but with the algorithm
in the function replaced with an alternate recursive solution:

module gcd_module
implicit none

contains
recursive integer function gcd(i, Jj) &
result (answer)
implicit none
integer, intent (in) :: i, Jj

if (j==0) then
answer = i
else
answer = gcd(j, mod(i,3))
end if
end function gcd
end module gcd_module

program chl1209
use gcd_module
implicit none
integer :: i, j, result

print *, ’ type in two integers’
read *, 1, jJ
result = gcd(i, 3)
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print *, ' gcd is ’, result
end program chl209

Try this program out on the system you work with, look at the timing information
provided, and compare the timing with the previous example. The algorithm is a
much more efficient algorithm than in the original example, and hence should be
much faster. On one system there was a twentyfold decrease in execution time
between the two versions.

Recursion is sometimes said to be inefficient, and the following example looks at
a non-recursive version of the second algorithm.

12.13 Example 10: gcd After Removing Recursion

The following is a variant of the above, with the same algorithm, but with the recursion
removed:

module gcd_module

implicit none

contains
integer function gcd(i, 3J)
implicit none
integer, intent (inout) :: i, J
integer :: temp

do while (j/=0)
temp = mod (i, 7j)

i= 3
j = temp

end do

gcd = 1

end function gcd
end module gcd_module

program chl1210
use gcd_module
implicit none

integer :: i, j, result

print *, ’ type in two integers’
read *, i, J
result = gcd(i, 3J)
print *, ’ gcd is ', result
end program chl210
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12.14 Internal Functions

An internal function is a more restricted and hidden form of the normal function
definition.

Since the internal function is specified within a program segment, it may only
be used within that segment and cannot be referenced from any other functions or
subroutines, unlike the intrinsic or other user defined functions.

12.14.1 Example 11: Stirling’s Approximation

In this example we use Stirling’s approximation for large n,
n!=+2mnn/e)"
and a complete program to use this internal function is given below:

program chl211
implicit none

real :: result, n, r

print *, ’ type in n and r’
read *, n, r
! number of possible combinations that can ! be formed when ! r
objects are selected out of a group of n ! n!/r! (n-r)!
result = stirling(n)/(stirling(r)*stirling(n-r &
))
print *, result
print *, n, r
contains
real function stirling(x)
real, intent (in) :: x
real, parameter :: pi = 3.1415927, &
e = 2.7182828

stirling = sqgrt(2.*pi*x)*(x/e)**x
end function stirling

end program chl21l1l

The difference between this example and the earlier ones lies in the contains
statement. The function is now an integral part of the program and could not, for
example, be used elsewhere in another function. This provides us with a very powerful
way of information hiding and making the construction of larger programs more
secure and bug free.
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12.15 Pure Functions

‘We mentioned earlier that functions should not have side effects. If your functions do
have side effects and are running the code on parallel systems we have the additional
problem that it may not actually work! We would also like to be able to take advantage
of automatic parallelisation if possible. In the following example we show how to
do this using the pure prefix specification.

module gcd_module

implicit none

contains
pure integer function gcd(a, b)
implicit none
integer, intent (in) :: a, b
integer :: temp

if (a<b) then

temp = a
else

temp = b
end 1if

do while ((mod(a,temp)/=0) .or. (mod(b, &
temp) /=0))
temp = temp - 1
end do
gcd = temp
end function gcd
end module gcd_module

program chl212
use gcd_module
implicit none

integer :: i, j, result

print *, ’ type in two integers’
read *, i, J
result = gcd(i, 3J)
print *, ’ gcd is ', result
end program chl212

Subroutines can also be made pure.
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12.15.1 Pure Constraints

The following are some of the constraints on pure procedures

a dummy argument must be intent (in)

local variables may not have the save attribute

no i/o0 must be done in the procedure

any procedures referenced must be pure

you cannot have a stop statement in a pure procedure

The above information should be enough to write simple pure functions.

12.16 Elemental Functions

Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added
elemental intrinsic functions and the ability to write generic user defined functions.
Fortran 95 squared the circle and enabled us to write elemental user defined functions.
Here is an example to illustrate this.

module reciprocal_module

contains
real elemental function reciprocal (a)
implicit none

real, intent (in) :: a

reciprocal = 1.0/a
end function reciprocal
end module reciprocal_module

program chl213
use reciprocal_module
implicit none
real :: x = 10.0

real, dimension (5) :: y = [ 1.0, 2.0, 3.0, &
4.0, 5.0 1

print *, ’ reciprocal of x is ’, reciprocal (x)

print *, ’ reciprocal of y is ’, reciprocal (y)

end program chl213

Here is the output from one compiler.
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reciprocal of x is 0.1000000
reciprocal of y is 0.9999999
0.5000000 0.3333333
0.2500000 0.2000000

Hence we can call our own elemental functions with both scalar and array argu-
ments.

Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.

12.17 Resume

There are a large number of Fortran supplied functions and subroutines (intrinsic
functions) which extend the power and scope of the language. Some of these func-
tions are of generic type, and can take several different types of arguments. Others
are restricted to a particular type of argument. Appendix D should be consulted for
a fuller coverage concerning the rules that govern the use of the intrinsic functions
and procedures.

When the intrinsic functions are inadequate, it is possible to write user defined
functions. Besides expanding the scope of computation, such functions aid in prob-
lem visualisation and logical subdivision, may reduce duplication, and generally help
in avoiding programming errors.

In addition to separately defined user functions, internal functions may be
employed. These are functions which are used within a program segment.

Although the normal exit from a user defined function is through the end state-
ment, other, abnormal, exits may be defined through the return statement.

Communication with non-recursive functions is through the function name and
the function arguments. The function must contain a reference to the function name

on the left-hand side of an assignment. Results may also be returned through the
argument list.

‘We have also covered briefly the concept of scope for a variable, local variables,
and argument association. This area warrants a much fuller coverage and we will do
this after we have covered subroutines and modules.

12.18 Formal Syntax

The syntax of a function is:

{[function prefix] function_statement &
[result (result_name) ]
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[specification part]
[execution_part]

[internal sub program part]
end [function [function name]]

and prefix is:

[type specification] recursive

or

[recursive] type specification

and the function_statement is:

function function_name ([dummy argument name list])

[ ] represent optional parts to the specification.
The simple syntax for a module as we have used them in this chapter is

module module_name
end module_name

and

use module_name

in the calling routine.

12.19 Rules and Restrictions

The type of the function must only be specified once, either in the function statement
or in a type declaration.

The names must match between the function header and end function function
name statement.

If there is a result clause, that name must be used as the result variable, so all
references to the function name are recursive calls.

The function name must be used to return a result when there is no result
clause.

We will look at additional rules and restrictions in later chapters.
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12.20 Problems

12.1 Find out the action of the mod function function when one of the arguments
is negative. Write your own modulus function to return only a positive remainder.
Don’t call it mod!

12.2 Create a table which gives the sines, cosines and tangents for —1 to 91° in
1° intervals. Remember that the arguments have to be in radians. What value will
you give pi? One possibility is pi=4*atan (1.0). Pay particular attention to the
following angle ranges:

-1, 0,+1
29,30,31
44,45, 46
59,60,61
89,90,91

What do you notice about sine and cosine at 0 and 90° ? What do you notice about
the tangent of 90° ? Why do you think this is?

Use a calculator to evaluate the sine, cosine at 0 and 90°. do the same for the
tangent at 90°. Does this surprise you?

Repeat using a spreadsheet, e.g., Excel.

Are you surprised?

Repeat the Fortran program using one or more real kind types.

12.3 Write a program that will read in the lengths a and b of a right-angled triangle
and calculate the hypotenuse c. Use the Fortran sqrt intrinsic.

12.4 Write a program that will read in the lengths a and b of two sides of a triangle
and the angle between them 6 (in degrees). Calculate the length of the third side c
using the cosine rule: ¢ = a® 4+ b*> — 2abcos(6)

12.5 Write a function to convert an integer to a binary character representation. It
should take an integer argument and return a character string that is a sequence of
zeros and ones. Use the program in Chap.5 as a basis for the solution.
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Control

Summarizing: as a slow-witted human being I have a very small
head and I had better learn to live with it and to respect my
limitations and give them full credit, rather than try to ignore
them, for the latter vain effort will be punished by failure
Edsger W. Dijkstra, Structured Programming

Aims
The aims of this chapter are to introduce:

e Selection among various courses of action as part of the algorithm.
e The concepts and statements in Fortran needed to support the above:

— execution control.
— executable constructs containing blocks.
the associate construct.
the block construct.
the do construct.
the if construct.
the select case construct.
the select rank construct.
the select type construct.
— Logical expressions and logical operators.
— One or more blocks of statements.

© Springer International Publishing AG, part of Springer Nature 2018 243
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_13
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13.1 Introduction

When we look at this area it is useful to gain some historical perspective concerning
the control structures that are available in a programming language.

At the time of the development of Fortran in the 1950s there was little theoretical
work around and the control structures provided were very primitive and closely
related to the capability of the hardware.

At the time of the first standard in 1966 there was still little published work
regarding structured programming and control structures. The seminal work by Dahl,
Dijkstra and Hoare was not published until 1972.

By the time of the second standard there was a major controversy regarding
languages with poor control structures like Fortran which essentially were limited to
the goto statement. The facilities in the language had led to the development and
continued existence of major code suites that were unintelligible, and the pejorative
term spaghetti was applied to these programs. Developing an understanding of what
a program did became an almost impossible task in many cases.

Fortran missed out in 1977 on incorporating some of the more modern and intel-
ligible control structures that had emerged as being of major use in making code
easier to understand and modify.

It was not until the 1990 standard that a reasonable set of control structures had
emerged and became an accepted part of the language. The more inquisitive reader
is urged to read at least the work by Dahl, Dijkstra and Hoare to develop some
understanding of the importance of control structures and the role of structured
programming.The paper by Knuth is also highly recommended as it provides a very
balanced coverage of the controversy of earlier times over the goto statement.

13.2 Selection Among Courses of Action

In most problems you need to choose among various courses of action, e.g.,

e if overdrawn, then do not draw money out of the bank.

e if Monday, Tuesday, Wednesday, Thursday or Friday, then go to work.
e if Saturday, then go to watch Queens Park Rangers.

e if Sunday, then lie in bed for another two hours.

As most problems involve selection between two or more courses of action it is
necessary to have the concepts to support this in a programming language. Fortran
has a variety of selection mechanisms, some of which are introduced below.
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13.3 The Block If Statement

The following short example illustrates the main ideas:
wake up

check the date and time
if (Today = = Sunday) then

lie in bed for another two hours
endif

get up
. make breakfast
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If today is Sunday then the block of statements between the if and the endif
is executed. After this block has been executed the program continues with the
statements after the endi £. If today is not Sunday the program continues with the
statements after the endif immediately. This means that the statements after the

endi f are executed whether or not the expression is true. The general form is:

if (logical expression) then

block of statements

endif

The logical expression is an expression that will be either true or false; hence its

name. Some examples of logical expressions are given below:

(alpha >= 10.1)

test if alpha is greater than or equal to 10.1

(balance <= 0.0)

test if overdrawn

(( today == saturday) .or.( today == sunday))

test if today is saturday or sunday
((actual - calculated) <= 1.0e-6)

test if actual minus calculated

is less than or equal to 1.0e-6
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Table 13.1 lists the Fortran logical and relational operators.

Table 13.1 Fortran logical and relational operators

Operator Meaning Type

== Equal Relational
/= Not equal Relational
>= Greater than or equal Relational
<= Less than or equal Relational
< Less than Relational
> Greater than Relational
.AND. and Logical
.OR. or Logical
.NOT. not Logical

The first six should be self-explanatory. They enable expressions or variables to
be compared and tested. The last three enable the construction of quite complex
comparisons, involving more than one test; in the example given earlier there was a
test to see whether today was Saturday or Sunday.

Use of logical expressions and logical variables (something not mentioned so far)
is covered again in a later chapter on logical data types.

The if expression then statements endif iscalled ablock if con-
struct. There is a simple extension to this provided by the el se statement. Consider
the following example:

if (balance > 0.0) then
draw money out of the bank
else
. borrow money from a friend
endif

buy a round of drinks.
In this instance, one or other of the blocks will be executed. Then execution will
continue with the statements after the endi f statement (in this case buy a round).

There is yet another extension to the block if which allows an elsei f statement.
Consider the following example:

if (today == monday) then
elseif (today == tuesday) then

elseif (today == wednesday) then
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elseif (today == thursday) then
eléeif (today == friday) then
el;eif (today == saturday) then
eléeif (today == sunday) then
else

there has been an error.

the variable today has

taken on an illegal value.
endif

Note that as soon as one of the logical expressions is true, the rest of the test is

skipped, and execution continues with the statements after the endi £. This implies
that a construction like

if(i < 2)then

elseif (i < 1)then

else

endif
is inappropriate. If i is less than 2, the latter condition will never be tested. The
else statement has been used here to aid in trapping errors or exceptions. This is
recommended practice. A very common error in programming is to assume that the
data are in certain well-specified ranges. The program then fails when the data go

outside this range. It makes no sense to have a day other than Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday or Sunday.

13.3.1 Example 1: Quadratic Roots

A quadratic equation is:
ax> 4+ bx+c=0
This program has a simple structure. The roots of the quadratic are either real,

equal and real, or complex depending on the magnitude of the termb ** 2 - 4
* a * c. The program tests for this term being greater than or less than zero: it
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assumes that the only other case is equality to zero (from the mechanics of a computer,
floating point equality is rare, but we are safe in this instance):

program chl301
implicit none
real :: a, b, ¢, term, a2, rootl, root2

! a b and ¢ are the coefficients of the terms
I a*x**2+b*x+c

! find the roots of the quadratic, rootl and
! root2

print *, ' give the coefficients a, b and c’
read *, a, b, ¢
term = b*b - 4.*a*c
az = a*2.
! if term < 0, roots are complex
! if term = 0, roots are equal
! if term > 0, roots are real and different
if (term<0.0) then
print *, ’ roots are complex’
else if (term>0.0) then

term = sqgrt(term)

rootl = (-b+term) /a2

root2 = (-b-term)/a2

print *, ’ roots are ', rootl, ’ and ', &

root2

else

rootl = -b/a2

print *, ’ roots are equal, at ', rootl
end if

end program chl301

Given the understanding you now have about real arithmetic and finite precision
will the else block above ever be executed?

13.3.2 Example 2: Date Calculation

This next example is also straightforward. It demonstrates that, even if the conditions
on the if statement are involved, the overall structure is easy to determine. The com-
ments and the names given to variables should make the program self-explanatory.
Note the use of integer division to identify leap years:
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program chl1302
implicit none
integer :: year, n, month, day, t

! calculates day and month from year and
! day-within-year
! t is an offset to account for leap years.
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! Note that the first criteria is division by 4

! but that centuries are only
! leap years if divisible by 400
! not 100 (4 * 25) alone.

print *, ' year, followed by day within year’

read *, year, n
! checking for leap years
if ((year/4)*4==year) then

t =1
if ((year/400)*400==year) then
t =1
else if ((year/100)*100==year) then
t =0
end 1if
else
t =20
end 1if

! accounting for February
if (n>(59+t)) then
day = n + 2 - t

else
day = n

end 1f

month = (day+91)*100/3055

day = (day+91) - (month*3055)/100

month = month - 2

print *, ' calendar date is ‘', day, month,
year

end program chl1302

13.4 The Case Statement

&

The case statement provides a very clear and expressive selection mechanism
between two or more courses of action. Strictly speaking it could be constructed
from the if then else if endif statement, but with considerable loss of
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clarity. Remember that programs have to be read and understood by both humans
and compilers!

13.4.1 Example 3: Simple Calculator

program chl1303
implicit none
! Simple case statement example

integer :: i, j, k
character :: operator
do
print *, ’ type in two integers’

read *, i, J
print *, ’ type in operator’
read ’(a)’, operator

calculator: select case (operator)

case ('+4+’) calculator

k =1+ 3

print *, ’ Sum of numbers is ‘', k
case (’'-') calculator

k=1 -3

print *, ’ Difference is ', k
case (’/') calculator

k =1i/3

print *, ’ Division is ’, k

case (’'*’) calculator

k = 1i*j

print *, ’ Multiplication is ', k
case default calculator

exit

end select calculator

end do
end program chl1303

The user is prompted to type in two integers and the operation that they would
like carried out on those two integers. The case statement then ensures that the
appropriate arithmetic operation is carried out. The program terminates when the
user types in any character other than +, —, * or /.
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The case default option introduces the exit statement. This statement is used in
conjunction with the do statement. When this statement is executed control passes
to the statement immediately after the matching end do statement. In the example
above the program terminates, as there are no executable statements after the end

do.

13.4.2 Example 4: Counting Vowels, Consonants, etc.

This example is more complex, but again is quite easy to understand. The user types in
aline of text and the program produces a summary of the frequency of the characters

typed in:

program chl1304
implicit none

! Simple counting of vowels, consonants,

! digits, blanks and the rest

integer :: vowels = 0, consonants = 0,
digits = 0

integer :: blank = 0, other = 0, i

character :: letter

character (len=80) :: line

read ’(a)’, line

do i =1, 80
letter = line(i:1)

! the above extracts one character
! at position 1
select case (letter)
case ('A’, 'E', 'I', 'O', 'U', 'a’',
rir, 'o’, 'u’)

vowels = vowels + 1

&

case ('B', ’'C’, 'D’, 'F', 'G’, 'H',
‘K’, 'L’, 'M’, 'N’, 'P’, 'Q', 'R’,
“Te, VY, WS, X', 'Y, 'Z', ‘b’
rq, £, 'g’, 'h", '3, 'k’, '1",
'n’, 'p’, 'q’', 'r’', 's’', 't’', 'v’,
‘X', 'y, 'z

consonants = consonants + 1
case (’1', *2*, '3', "47, '5", 6",

'8', 1911 IOI)

o

, &

R R R R
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digits = digits + 1

case ('
blank

")

case default

other

end select

end do

print *,
print *,
print *,
print *,

print *,

= blank + 1
= other + 1
" Vowels = ', vowels
' Consonants = ', consonants
' Digits = ', digits
’ Blanks = ', blank
' Other characters = ’, other

end program chl1304

13.5 The Various Forms of the Do Statement

You have already been introduced in the chapters on arrays to the iterative form of
the do loop, i.e.,

do variable

= start, end, increment

block of statements

end do

ments:

do while

A complete coverage of this form is given in the three chapters on arrays.
There are a number of additional forms of the block do that complete our require-

(logical expression)

block of statements

enddo

do concurrent

block of statements

enddo

do

block of statements

if (logical expression) exit

end do

The first form is often called a while loop as the block of statements executes

whilst the logical expression is true, and the second form is often called a repeat until
loop as the block of statements executes until the statement is true.



13.5 The Various Forms of the Do Statement 253

Note that the while block of statements may never be executed, and the repeat
until block will always be executed at least once.

13.5.1 Example 5: Sentinel Usage

The following example shows a complete program using this construct:

program chl305

implicit none
! this program picks up the first occurrence
! of a number in a list.
! a sentinel is used, and the array is 1 more
! than the max size of the list.

integer, allocatable, dimension (:) :: a
integer :: mark
integer :: i, howmany

open (unit=1, file=’'data.txt’,status='o0ld’)
print *, ’ What number are you looking for?’
read *, mark

print *, ’ How many numbers to search?’

read *, howmany

allocate (a(l:howmany+1))

read (unit=1, fmt=*)(a(i), i=1, howmany)
i=1
a (howmany+1) = mark

do while (mark/=a(i))

i=1i+1
end do
if (i==(howmany+1)) then
print *, ’ item not in list’
else
print *, ’ item is at position ’, i
end if

end program chl1305

The repeat until construct is written in Fortran as:

do

if (logical expression) exit
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end do

There are problems in most disciplines that require a numerical solution. The two
main reasons for this are either that the problem can only be solved numerically or
that an analytic solution involves too much work. Solutions to this type of problem
often require the use of the repeat until construct. The problem will typically require
the repetition of a calculation until the answers from successive evaluations differ
by some small amount, decided generally by the nature of the problem. A program
extract to illustrate this follows:

real , parameter :: tol=1.0e-6
do
change=

if (change <= tol) exit
end do

Here the value of the tolerance is set to 1.0E-6. Note again the use of the exit
statement. The do end do block is terminated and control passes to the statement
immediately after the matching end do.

13.5.2 Cycle and Exit

These two statements are used in conjunction with the block do statement. You
have seen examples above of the use of the exit statement to terminate the block
do, and pass control to the statement immediately after the corresponding end do
statement.

The cycle statement can appear anywhere in a block do and will immediately
pass control to the start of the block do. Examples of cycle and exit are given in
the next two examples, and later chapters in the book.

13.5.3 Example 6: The Evaluation of e**x

The function etox illustrates one use of the repeat until construct. The function
evaluates ¢* This may be written as

14+ x/10+x2/214+x3/3! ...

or
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S xnfl
1 IR
+ ; . 1)!)c/n

Every succeeding term is just the previous term multiplied by x/n. At some point
the term x/n becomes very small, so that it is not sensibly different from zero, and
successive terms add little to the value. The function therefore repeats the loop until
x/n is smaller than the tolerance. The number of evaluations is not known beforehand,
since this is dependent on x:

module etox_module
implicit none

contains
real function etox(x)
implicit none

real :: term

real, intent (in) :: x

integer :: nterm

real, parameter :: tol = 1.0e-6
etox = 1.0

term = 1.

nterm = 0
do
nterm = nterm + 1
term = (x/nterm)*term
etox = etox + term
if (abs(term)<=tol) exit
end do
end function etox

end module etox_module

program chl306
use etox_module

implicit none

real, parameter :: x = 1.0
real :: vy
print *, ’ Fortran intrinsic ', exp(x)

vy = etox(x)
print *, ’ User defined etox ', y
end program chl306



256 13 Control Structures and Execution Control

The whole program compares the user defined function with the Fortran intrinsic
exp function.

13.5.4 Example 7: Wave Breaking on an Offshore Reef

This example is drawn from a situation where a wave breaks on an offshore reef or
sand bar, and then reforms in the near-shore zone before breaking again on the coast.
It is easier to observe the heights of the reformed waves reaching the coast than those
incident to the terrace edge.

Both types of loops are combined in this example. The algorithm employed here
finds the zero of a function. Essentially, it finds an interval in which the zero must lie;
the evaluations on either side are of different signs. The while loop ensures that the
evaluations are of different signs, by exploiting the knowledge that the incident wave
height must be greater than the reformed wave height (to give the lower bound). The
upper bound is found by experiment, making the interval bigger and bigger. Once the
interval is found, its mean is used as a new potential bound. The zero must lie on one
side or the other; in this fashion, the interval containing the zero becomes smaller
and smaller, until it lies within some tolerance. This approach is rather plodding and
unexciting, but is suitable for a wide range of problems

Here is the program:

program chl1307
implicit none
real :: hi, hr, hlow, high, half, x1
real :: xh, xm, d
real, parameter :: tol = 1.0e-6
! problem - find hi from expression given
! in function £
! F=A*(1.0-0.8*EXP(-0.6*C/A))-B
! The above is a Fortran 77
! statement function.
! hi is incident wave height (c)
! hr is reformed wave height (b)
! d is water depth at terrace edge (a)
print *, ' Give reformed wave height, &
&and water depth’
read *, hr, d

! for hlow - let hlow=hr
! for high - let high=hlow*2.0

! check that signs of function
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results are different

hlow = hr

high = hlow*2.0

x1 = f(hlow, hr, d4d)
xh = f(high, hr, 4)

do while ((x1*xh)>=0.0)
high = high*2.0
xh = f(high, hr, 4)
end do

do
half = (hlow+high)*0.5
xm = f(half, hr, d4d)
if ((x1*xm)<0.0) then
xh = xm
high = half
else
x1l = xm
hlow = half
end 1if
if (abs(high-hlow)<=tol)
end do

print *, ’ Incident Wave Height Lies Between’
print *, hlow, ’ and ’, high,

contains

real function f(a, b, ¢)
implicit none
real, intent (in) :: a
real, intent (in)

real, intent (in) :: c

f = a*(1.0-0.8%exp(-0.6*c/a))

end function f

end program chl1307

13.6 Do Concurrent

Here is some of the formal syntax of do loops taken from the standard.

loop-control is [ , ] do-variable

257
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scalar-int-expr,
scalar-int-expr
[ , scalar-int-expr ]

or [ , ] WHILE ( scalar-logical-expr )

or [ , ] CONCURRENT
concurrent-header

concurrent-locality
do-variable is scalar-int-variable-name
The do-variable shall be a variable of type integer.

concurrent-header is ( [ integer-type-spec :: ]
concurrent-control-list

[ , scalar-mask-expr 1 )

concurrent-control is index-name =
concurrent-limit

concurrent-limit [ : concurrent-step ]
concurrent-limit is scalar-int-expr

Here are the rules that apply to the do concurrent loop control.

e The concurrent-limit and concurrent-step expressions in the concurrent-control-
list are evaluated. These expressions may be evaluated in any order. The set of
values that a particular index-name variable assumes is determined as follows.

— The lower bound m1, the upper bound m2, and the step m3 are of type integer
with the same kind type parameter as the index-name. Their values are estab-
lished by evaluating the first concurrent-limit, the second concurrent-limit, and
the concurrent-step expressions, respectively, including, if necessary, conversion
to the kind type parameter of the index-name according to the rules for numeric
conversion (Table 10.9 from the current standard). If concurrent-step does
not appear, m3 has the value 1. The value m3 shall not be zero.

— Let the value of max be (m2 m1 4+ m3)/m3. If max O for some index-name,
the execution of the construct is complete. Otherwise, the set of values for the
index-name is m1 + (k 1) m3 where k = 1, 2, ..., max.

e The set of combinations of index-name values is the Cartesian product of the sets
defined by each triplet specification. An index-name becomes defined when this
set is evaluated.
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e The scalar-mask-expr, if any, is evaluated for each combination of index-name
values. If there is no scalar-mask-expr, it is as if it appeared with the value true.
The index-name variables may be primaries in the scalar-mask-expr.

e The set of active combinations of index-name values is the subset of all possible
combinations for which the scalar-mask-expr has the value true.

Note that the index-name variables can appear in the mask, for example

DO CONCURRENT (I=1:10, J=1:10, &
A(I) > 0.0 .AND. B(J) < 1.0)

The following example illustrates a case in which the user knows that there are no
repeated values in the index array IND. The DO CONCURRENT construct makes
it easier for the processor to generate vector gather/scatter code, unroll the loop, or
parallelize the code for this loop, potentially improving performance.

INTEGER :: A(N),IND(N)

DO CONCURRENT (I=1:M)
A(IND(I)) =1

END DO

The following code demonstrates the use of the LOCAL clause so that the X
inside the DO CONCURRENT construct is a temporary variable, and will not affect
the X outside the construct.

X = 1.0
DO CONCURRENT (I=1:10) LOCAL (X)
IF (A (I) > 0) THEN
X = SQRT (A (I))

A (I) = A (I) - X**2
END IF
B (I) =B (I) - A (I)
END DO

PRINT *, X ! Always prints 1.0.

A complete example of the do concurrent statement can be found in the
chapter on OpenMP programming. FThe examples compares the performance of four
ways of solving the same problem in Fortran using whole array syntax, a traditional
simple do loop, a do concurrent solution and a solution base on OpenMP usage.
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13.7 Summary

You have been introduced in this chapter to several control structures and these
include:

The block if.

The if then else if.

The case construct.

The block do in three forms:

The iterative door do variable=start, end, increment ..end do.
The while construct, or do while ..end do.

The repeat until construct, or do ..if then exit end do.

The cycle and exit statements, which can be used with the do statement
The do concurrent statement.

These constructs are sufficient for solving a wide class of problems. There are other
control statements available in Fortran, especially those inherited from Fortran 66 and
Fortran 77, but those covered here are the ones preferred. We will look in Chap. 35
at one more control statement, the so-called goto statement, with recommendations
as to where its use is appropriate.

13.7.1 Control Structure Formal Syntax

case
select case ( case variable )
[ case case selector
[executable construct ] ... ]
[ case default
[executable construct ]
end select
do
do [ label ]
[executable construct ]
do termination
do [ label ] [ , ] loop variable =
initial value , final value , [
increment ]
[executable construct ]
do termination
do [ label ] [ , ] while
(scalar logical expression )
[executable construct ]

do termination
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if

if ( scalar logical expression ) then
[executable construct ]

[ else if ( scalar logical expression then
[executable construct ] ... 1 ...]

[ else

[executable construct ] ...]
end 1if

13.8 Problems

13.1 Rewrite the program for the period of a pendulum. The new program should
print out the length of the pendulum and period, for pendulum lengths from O to
100 cm in steps of 0.5 cm. The program should incorporate a function for the evalu-
ation of the period.

13.2 Write a program to read an integer that must be positive.
Hint. use a do while to make the user re-enter the value.

13.3 Using functions, do the following:

Evaluate n! fromn =0ton = 10

Calculate 76!

Now calculate (x™)/n!, with x = 13.2 and n = 20.
Now do it another way.

13.4 The program ch1307 is taken from a real example. In the particular problem,
the reformed wave height was 1 m, and the water depth at the reef edge was 2m.
What was the incident wave height? Rather than using an absolute value for the
tolerance, it might be more realistic to use some value related to the reformed wave
height. These heights are unlikely to be reported to better than about 5% accuracy.
Wave energy may be taken as proportional to wave height squared for this example.
What is the reduction in wave energy as a result of breaking on the reef or bar for
this particular case.

13.5 What is the effect of using int on negative real numbers? Write a program to
demonstrate this.

13.6 How would you find the nearest integer to a real number? Now do it another
way. Write a program to illustrate both methods. Make sure you test it for negative
as well as positive values.

13.7 The function etox has been given in this chapter. The standard Fortran func-
tion exp does the same job. Do they give the same answers? Curiously the Fortran
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standard does not specify how a standard function should be evaluated, or even how
accurate it should be.

The physical world has many examples in which processes require that some
threshold be overcome before they begin operation: critical mass in nuclear reac-
tions, a given slope to be exceeded before friction is overcome, and so on. Unfor-
tunately, most of these sorts of calculations become rather complex and not really
appropriate here. The following problem tries to restrict the range of calculation,
whilst illustrating the possibilities of decision making.

13.8 If a cubic equation is expressed as
ax* +bx*+cx+d=0
and we let
A = 18abcd — 4b*d + b*c* — 4ac® — 27a°d”

We can determine the nature of the roots as follows

A > 0 : three distinct real roots

A = 0 : has a multiple root and all roots are real

A < 0:1real root and 2 non real complex conjugate roots

Incorporate this into a program, to determine the nature of the roots of a cubic
from suitable input.

13.9 The form of breaking waves on beaches is a continuum, but for convenience we
commonly recognise three major types: surging, plunging and spilling. These may be
classified empirically by reference to the wave period, T (seconds), the breaker wave
height, H,, (metres), and the beach slope, m. These three variables are combined into
a single parameter, B, where

B = Hy/(gmT?)

g is the gravitational constant (981cms~2). If B is less than 0.003, the breakers
are surging; if B is greater than 0.068, they are spilling, and between these values,
plunging breakers are observed.

(1) On the east coast of New Zealand, the normal pattern is swell waves, with wave
heights of 1 to 2m and wave periods of 10 to 15s. During storms, the wave period
is generally shorter, say 6 to 8s, and the wave heights higher, 3 to Sm. The beach
slope may be taken as about 0.1. What changes occur in breaker characteristics as a
storm builds up?

(ii) Similarly, many beaches have a concave profile. The lower beach generally
has a very low slope, say less than 1° (m = 0.018), but towards the high-tide mark,
the slope increases dramatically, to say 10° or more (m = 0.18). What changes in
wave type will be observed as the tide comes in?
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Chapter 14 ®)
Characters Geda

These metaphysics of magicians, And necromantic books are
heavenly; Lines, circles, letters and characters.
Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of this chapter are:

e To extend the ideas about characters introduced in earlier chapters.
e To demonstrate that this enables us to solve a whole new range of problems in a
satisfactory way.

14.1 Introduction

For each type in a programming language there are the following concepts:

e Values are drawn from a finite domain.
e There are a restricted number of operations defined for each type.

For the character data type the basic unit is an individual character The complete
Fortran character set is given in Sect. 4.8 in Chap. 4. This provides us with 95 printing
characters. Other characters may be available. The Wikipedia entry

http://en.wikipedia.org/wiki/Character_encoding

has quite detailed information on how complex this area actually is.
As the most common current internal representation for the character data type
uses 8 bits this should provide access to 256 characters. However, there is little

© Springer International Publishing AG, part of Springer Nature 2018 265
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agreement over the encoding of these 256 possible characters, and the best you can
normally assume is access to the ASCII character set, which is given in Chap.4.
One of the problems at the end of this chapter looks at determining what characters
one has available.

The only operations defined are concatenation (joining character strings together)
and comparison.

We will look into the area of character sets in more depth later in this chapter.

We can declare our character variables:

character :: a, string, line

Note that there is no default typing of the character variable (unlike integer and
real data types), and we can use any convenient name within the normal Fortran
conventions. In the declaration above, each character variable would have been per-
mitted to store one character. This is limiting, and, to allow character strings which
are several units long, we have to add one item of information:

character (10) :: a
character (16) :: string
character (80) :: line

This indicates that a holds 10 characters, string holds 16, and 1ine holds
80. if all the character variables in a single declaration contain the same number of
characters, we can abbreviate the declaration to

character (80) :: list, string, line

But we cannot mix both forms in the one declaration. We can now assign data to
these variables, as follows:

a='first one ’
string='a longer one’
line='the quick brown fox jumps over the lazy dog’

The delimiter apostrophe (*) or quotation mark () is needed to indicate that

this is a character string (otherwise the assignments would have looked like invalid
variable names).

14.2 Character Input

In an earlier chapter we saw how we coulduse the read * andprint * statements
to do both numeric and character input and output or I/O. When we use this form
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of the statement we have to include any characters we type within delimiters (either
the apostrophe ’ or the quotation mark “). This is a little restricting and there is a

slightly more complex form of the read statement that allows one to just type the
string on its own.

14.2.1 Example 1: The * Edit Descriptor

The following two programs illustrate the differences:

program chl1401
!
! Simple character i/o
|

character (80) :: line

read *, line
print *, line

end program chl401

This form requires enclosing the string with delimiters.

14.2.2 Example 2: The a Edit Descriptor
Consider the next form:

program chl402

!

! Simple character i/o
|

character (80) :: line

read ’(a)’, line
print *, line
end program chl1402

With this form one can just type the string in and input terminates with the carriage
return key. The additional syntax ’ (a) * where ’ (a) ’ is a character edit descriptor.
The simple examples we have used so far have used implied format specifiers and
edit descriptors. For each data type we have one or more edit descriptors to choose
from. For the character data type only the a edit descriptor is available.
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14.3 Character Operators

The first manipulator is a new operator — the concatenation operator //. With this
operator we can join two character variables to form a third, as in

character (5) :: first, second
character (10) :: third
first='three’

second='blind’

third=first//second
third=first//’'mice’

where there is a discrepancy between the created length of the concatenated string
and the declared lengths of the character strings, truncation will occur. For example,

third=first//’ blind mice’

will only append the first five characters of the string ‘blind mice’ i.e., ‘blin’, and
third will therefore contain ‘three blin’.

What would happen if we assigned a character variable of length ‘n’ a string which
was shorter than n? For example,

character (4) :: c2
c2="ab’

The remaining two characters are considered to be blank, that is, it is equivalent
to saying

c2="ab 4

However, while the strings ‘ab’ and "ab ‘are equivalent, ‘ab’ and ‘ab’ are not. In
the jargon, the character strings are always left justified, and the unset characters are
trailing blanks.

If we concatenate strings which have ‘trailing blanks’, the blanks, or spaces, are
considered to be legitimate characters, and the concatenation begins after the end of
the first string. Thus

character (4) :: c2,c3
character (8) :: jj
c2="a’

c3='"man’

jj=c2//c3
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print*, ‘the concatenation of ’,c2,’ and ’,c3,’
print*, jj

would appear as

the concatenation of a man gives

a man

at the terminal.

14.4 Character Substrings

269

is’

Sometimes we need to be able to extract parts of character variables — substrings.
The actual notation for doing this is a little strange at first, but it is very powerful. To

extract a substring we must provide two items:

e The position in the string at which the substring begins.
e The position at which it ends.

In the examples that follow we will use the following

string='share and enjoy’

Substring Characters
string(3:3 ) a
string(3:5 ) are
string(:3 ) sha
string(11l: ) enjoy

Character variables may also form arrays:

character (10) , dimension(20) :: a

sets up a character array of twenty elements, where each element contains ten char-
acters. In order to extract substrings from these array elements, we need to know
where the array reference and the substring reference are placed. The array reference

comes first, so that

do 1=1,20
first=a(i) (1:1)
end do
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places the first character of each element of the array into the variable first. The
syntax is therefore ‘position in array, followed by position within string’.
Any argument can be replaced by an integer variable or expression:

string(i:j)

14.4.1 Example 3: Stripping Blanks from a String

This offers interesting possibilities, since we can, for example, strip blanks out of a
string:

program chl1403
implicit none

character (80) :: string, strip
integer :: ipos, i, length = 80
ipos = 0
print *, ’ type in a string’
read ' (a)’, string
do i = 1, length
if (string(i:i)/=’ ') then
ipos = ipos + 1
strip(ipos:ipos) = string(i:i)
end 1if
end do

print *, string
print *, strip
end program chl1403
14.5 Character Functions
There are special functions available for use with character variables: index will
give the starting position of a string within another string.

14.5.1 Example 4: The index Character Function

If , for example, we were looking for all occurrences of the string ‘Geology’ in a file,
we could construct something like:
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program chl1404
implicit none

character (80) :: line
integer :: i
do

read ’(a)’, line

i = index(line, ’'Geology’)

if (i/=0) then
print *, &

'’ String Geology found at position ', i
print *, ’ in line ’, line
exit
end if

end do
end program chl1404

There are two things to note about this program. Firstly the index function will
only report the first occurrence of the string in the line; any later occurrences in any
particular line will go unnoticed, unless you account for them in some way. Secondly,
if the string does not occur, the result of the index function is zero, and given the
infinite loop (do enddo) the program will crash at run time with an end of file error
message. This isn’t good programming practice.

14.5.2 The lenand len_ trim Functions

The len function provides the length of a character string. This function is not
immediately useful, since you really ought to know how many characters there are in
the string. However, as later examples will show, there are some cases where it can
be useful. Remember that trailing blanks do count as part of the character string,
and contribute to the length.

14.5.3 Example 5: Using 1lenand len_trim

The following example illustrates the use of both 1en and len_trim:

program chl1405
implicit none
character (len=20) :: name
integer :: name_length
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print *, ’ type in your name’
read ’(a)’, name
! show len first

name_length = len (name)

print *, ’ name length is ‘', name_length

print *, ’ ’, name(l:name_length), &
‘<-end is here’

name_length = len_trim(name)

print *, ’ name length is ‘', name_length

print *, ’ ’, name(l:name_length), &
'<-end is here’

end program chl1405

14.6 Collating Sequence

The next group of functions need to be considered together. They revolve around
the concept of a collating sequence. In other words, each character used in Fortran
is ordered as a list and given a corresponding weight. No two weights are equal.
Although Fortran has only 63 defined characters, the machine you use will generally
have more; 95 printing characters is a typical minimum number. On this type of
machine the weights would vary from 0 to 94. There is a defined collating sequence,

the ASCII sequence, which is likely to be the default. The parts of the collat-
ing sequence which are of most interest are fairly standard throughout all collating
sequences.

In general, we are interested in the numerals (0-9), the alphabetic characters
(A-Z, a-z) and a few odds and ends like the arithmetic operators (+ —/ *), some
punctuation (. and ,) and perhaps the prime (’). As you might expect, 0-9 carry
successively higher weights (though not the weights 0 to 9), as do A to Z and a to z.
The other odds and ends are a little more problematic, but we can find out the weights
through the function ichar. This function takes a single character as argument and
returns an integer value. The ASCII weights for the alphanumerics are as follows:

0--9 48--57
A--7 65--90

One of the exercises is to determine the weights for other characters. The reverse of
this procedure is to determine the character from its weighting, which can be achieved
through the function char. char takes an integer argument and returns a single
character. Using the ASCII collating sequence, the alphabet would be generated
from



14.6 Collating Sequence 273
do 1=65,90
print*,char (i)

enddo

This idea of a weighting can then be used in four other functions:

function Action

1lle lexically less than or equal to
lge lexically greater than or equal to
lgt lexically greater than

11t lexically less than

In the sequence we have seen before, A is lexically less than B, i.e., its weight is
less. Clearly, we can use ichar and get the same result. For example,

if(lgt(’a’,’'b’)) then
is equivalent to
if(ichar(’a’) > ichar(’'b’)) then

but these functions can take character string arguments of any length. They are not
restricted to single characters.

These functions provide very powerful tools for the manipulation of characters,
and open up wide areas of non-numerical computing through Fortran. Text formatting
and word processing applications may now be tackled (conveniently ignoring the fact
that lower-case characters may not be available).

There are many problems that require the use of character variables. These range
from the ability to provide simple titles on reports, or graphical output, to the provision
of a natural language interface to one of your programs, i.e., the provision of an
English-like command language. Software Tools by Kernighan and Plauger contains
many interesting uses of characters in Fortran.

14.7 Example 6: Finding Out About the Character Set
Available

The following program prints out the characters between 32 and 127.

program chl406
implicit none

integer :: 1
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do i = 32, 62

print *, i, char(i), i + 32, char(i+32), &
i + 64, char(i+64)

end do

i =63

print *, i, char(i), 1 + 32, char(i+32), &
i+ 64, ’'del’

end program chl1406

This is the output from the Intel compiler under Windows.

32 64 @ 96 °
33 1 65 A 97 a
34 v 66 B 98 b
35 # 67 C 99 ¢
36 % 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 £
39 ¢ 71 G 103 g
40 ¢ 72 H 104 h
41 ) 73 I 105 I
42 * 74 J 106 3
43 + 75 K 107 k
44 , 76 L 108 1
45 - 77 M 109 m
46 . 78 N 110 n
47 / 79 © 111 o
48 0 80 P 112 p
49 1 81 Q 113 g
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 V 118 v
55 7 87 W 119 w
56 8 88 X 120 x
57 9 89 Y 121 y
58 : 90 7 122 z
59 ; 91 [ 123 {
60 < 92 \ 124 |
61 = 93 ] 125 }
62 > 94 * 126 ~
63 2 95 127 del

Try this program out on the system you use. Do the character sets match?
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14.8 The scan Function

The scan functions scans a string for characters from a set of characters. The syntax
is given below.

e scan(string, set) - Scans a string for any one of the characters in a set of
characters.

14.8.1 Example 7: Using the scan Function

program chl407
implicit none

character (1024) :: stringO1l

character (1) :: set = ' /

integer :: i

integer :: 1

integer :: start, end

string0l = ’'The important issue about &

&a language, is not so’

string0l = trim(stringOl) // * * // 'much &
&what features the language possesses, &
&but’

string0l = trim(string0l) // * ' // ’'the &
&features it does possess, are sufficient, &
&to’

string0l = trim(string0l1l) // ' ' // ’'support &
&the desired programming styles, in &
&the’

string0l = trim(string0l) // * ' // &

"desired application areas.’
1 = len(trim(string01))
print *, ' Length of string is = ', 1
print *, ’ String is’
print *, trim(string01)

start = 1

end = 1

print *, ’ Blanks at positions

do
i = scan(string0l (start:end), set)
start = start + 1
if (i==0) exit

write (*, 100, advance='no’) start - 1
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end do
100 format (i5)
end program chl1407

Note the use of the trim function when using the concatenation operator to
initialise the string to the text we want.

The output from one compiler is given below. The text has been wrapped to fit
the page

Length of string is = 217
String is
The important issue about a language, is not so much
what features the language possesses,
but the features it does possess, are sufficient,
to support the desired programming styles,
in the desired application areas.
Blanks at positions
4 14 20 26 28 38 41 45 48 53 58
67 71 80 91 95 99 108 111 116 125 129
141 144 152 156 164 176 184 187 191 199 211

The text in this program is used in two problems at the end of this chapter.

14.9 Summary

Characters represent a different data type to any other in Fortran, and as a consequence
there is a restricted range of operations which may be carried out on them.

A character variable has a length which must be assigned in a character declaration
Statement.

Character strings are delimited by apostrophes (*) or quotation marks (). Within
a character string, the blank is a significant character.

Character strings may be joined together (concatenated) with the // operator.

Substrings occurring within character strings may be also be manipulated.
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Table 14.1 has details of a number of functions especially for use with characters.

Table 14.1 String functions in Fortran

Function name Explanation

achar Return the character in the ASCII character set

adjustl Adjust left, remove leading blanks, add trailing
blanks

adjustr Adjust right,remove trailing blanks, insert
leading blanks

char Return the character in the processor collating
sequence

iachar As above but in the ASCII character set

index Locate one string in another

len Character length including trailing blanks

len_trim Character length without the trailing blanks

lle Lexically less than or equal to

Ige Lexically greater than or equal to

Igt Lexically greater than

11t Lexically less than

repeat Concatenate several copies of a string

scan Scans a string for anyone of the characters in
the set

trim Remove the trailing blanks

verify Verify that a set of characters contains all the
characters in a string

A detailed explanation is given in appendix D.

14.10 Problems

14.1 Suggest some circumstances where PRIME=""" might be useful. What other
alternative is there and why do you think we use that instead?

14.2 Write a program to write out the weights for the Fortran character set. Mod-
ify this program to print out the weights of the complete implementation defined
character set for your version of Fortran. Is it ASCII? if not, how does it differ?

14.3 Write a program that produces the following output.
"\#
$\%&



278 14 Characters

’ ()*

+,-./

012345

6789: ;<<
=>>?@ABCD
EFGHIJKLM
NOPQRSTUVW
XYZ[\]1"\_*ab
cdefghijklmn
opgrstuvwxyz\ {
[\I\~

We assume the ASCII character set in this example.

14.4 Modify the above program to produce the following output.

|
"\#S$
\%&’ ()
*+,-./0
123456789
: ;<>?@ABCD
EFGHIJKLMNOPQ
RSTUVWXYZ [\]"\_"
abcdefghijklmnopg
rstuvwxyz\{|\)\~

Again we assume the ASCII character set.

14.5 Modify program ch1407 to break the text into phrases, using the comma and
full stop as breaking characters. The output expected is given below.

The important issue about a language

is not so much what features the language possesses
but the features it does possess

are sufficient

to support the desired programming styles

in the desired application areas

Modify the above to break the text into words and count the frequency of occur-
rence of words by length. The output should be similar to that given below.

1 a 1
2 is so it to in
3 The not the but the are the the
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much what does

issue about areas

styles

possess support desired desired
language features language features
important possesses

sufficient

P P W 00 J o0 Ul
N PN R WWw

= o

programming application

14.6 Use the index function in order to find the location of all the strings ‘is’ in
the following data:

If a programmer is found to be indispensable, the best thing to do is to get rid of
him as quickly as possible.

14.7 Find the ‘middle’ character in the following strings. Do you include blanks as
characters? What about punctuation?

Practice is the best of all instructors. experience is a dear teacher, but fools will
learn at no other.

14.8 In English, the order of occurrence of the letters, from most frequent to least
is

’
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Use this information to examine the two files given in appendix E (one is a
translation of the other) to see if this is true for these two extracts of text. The second
text is in medieval Latin (c. 1320). Note that a fair amount of compression has been
achieved by expressing the passage in Latin rather than modern English. Does this
provide a possible model for information compression?

14.9 A very common cypher is the substitution cypher, where, for example, every
letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on. These
enciphered messages can be broken by reference to the frequency of occurrence of
the letters (given in the previous question).

Since we know that (in English) E is the most commonly occurring letter, we can
assume that the most commonly occurring letter in the enciphered message represents
an E; we then repeat the process for the next most common and so on. Of course,
these correspondences may not be exact, since the message may not be long enough
to develop the frequencies fully.

However, it may provide sufficient information to break the cypher.

The file given in appendix E contains an encoded message. Break it.

Clue — Pg +Fybdujuvef jo Tdjfodf, Jorge Luis Borges.

14.10 Write a program that counts the total number of vowels in a sentence or text.
Output the frequency of occurrence of each vowel.



Chapter 15 )
Complex ot

Make it as simple as possible, but no simpler.
Albert Einstein

Aims
The aims of this chapter are:

e To introduce the last predefined numeric data type in Fortran.
e To illustrate with examples how to use this type.

15.1 Introduction

This variable type reflects an extension of the real data type available in Fortran — the
complex data type, where we can store and manipulate complex variables. Problems
that require this data type are restricted to certain branches of mathematics, physics
and engineering. Complex numbers are defined as having a real and imaginary part,
i.e.,a = x + iy where i is the square root of —1.

They are not supported in many programming languages as a base type which
makes Fortran the language of first choice for many people.

To use this variable type we have to write the number as two parts, the real and
imaginary elements of the number, for example,

complex :: u
u=cmplx(1.0,2.0)

represents the complex number 1 + i2. Note that the complex number is enclosed
in brackets. We can do arithmetic on variables like this, and most of the intrinsic
functions such as 1og, sin, cos, etc., accept a complex data type as argument.
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All the usual rules about mixing different variable types, like reals and integers,
also apply to complex. Complex numbers are read in and written out in a similar
way to real numbers, but with the provision that, for each single complex value, two
format descriptors must be given. You may use either E or F formats (or indeed,
mix them), as long as there are enough of them. Although you use brackets around
the pairs of numbers in a program, these must not appear in any input, nor will they
appear on the output.

15.2 Example 1: Use of cmplx, aimag and conjg

There are a number of intrinsic functions to enable complex calculations to be per-
formed. The program below uses some of them:

program chl501
implicit none

complex :: z, zl, z2, z3, zbar

real :: x, vy, zmod

real :: x2 = 3.0, y2 = 4.0

real :: x3 = -2.0, y3 = -3.0

z1l = cmplx (1.0, 2.0) ! 1 +1i2

z2 = cmplx(x2, y2) ! x2 + 1 y2

z3 = cmplx(x3, y3) ! x3 + 1 y3

z = z1*%z2/2z3

x = real(z) ! real part of
! 4

y = aimag(z) ! imaginary

! part of z
zmod = abs(z) ! modulus of z
zbar = conjg(z) ! complex

! conjugate of

! Z
print 100, zl, z2, z3

100 format (3(1x,f4.1," + i ’,£f4.1,/))
print 110, z, zmod, zbar

110 format (1x, f£f4.1, ' + 1 ', f£4.1, /, 1x, &

f4.1, /, 1x, f£4.1, * + i ', £4.1)
print 120, x, vy
120 format (2(1x,£f4.1,/)) end program chl501
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15.3 Example 2: Polar Coordinate Example

The second order differential equation:

d’y dy

—— 2= 4 y=x(t

dr? a7 ®
could describe the behaviour of an electrical system, where x () is the input voltage
and y(¢) is the output voltage and dy/dt is the current. The complex ratio

y(w)

=1/(—w* +2jw+1)
x(w)

is called the frequency response of the system because it describes the relationship
between input and output for sinusoidal excitation at a frequency of w and where j
is +/( — 1) The following program reads in a value of w and evaluates the frequency
response for this value of w together with its polar form (magnitude and phase):

program chl502
implicit none

! program to calculate frequency
! response of a system
! for a given omega

! and its polar form (magnitude and phase) .

real :: omega, real_part, imag part, &
magnitude, phase
complex :: frequency response

! Input frequency omega

print *, ‘Input frequency’
read *, omega

frequency response = 1.0/cmplx(-omega*omega+ &
1.0, 2.0*omega)

real_part = real (frequency_response)

imag_part = aimag(frequency_response)

! Calculate polar coordinates
! (magnitude and phase)

magnitude = abs (frequency_response)
phase = atan2 (imag_part, real_part)
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print *, ’ at frequency ’, omega

print *, ‘response = ', real_part, ' + 1 ', &
imag_part

print *, ’‘in polar form’

print *, ’ magnitude = ’, magnitude

print *, ’ phase = ', phase

end program chl1502

15.4 Complex and Kind Type

The standard requires that there be a minimum of two kind types for real numbers
and this is also true of the complex data type. Chapter 5 must be consulted for a full
coverage of real kind types. We would therefore use something like the following to
select a complex kind type other than the default:

integer , parameter :: &
dp = selected_real_kind(15,307)
complex (dp) :: z

Chapter 21 includes a good example of how to use modules to define and use
precision throughout a program and subprogram units.

15.5 Summary

Complex is used to store and manipulate complex numbers: those with a real and
an imaginary part. There are standard functions which allow conversion between the
numerical data types — cmplx, real and int.

15.6 Problem

15.1 The program used in Chap. 13 which calculated the roots of a quadratic had to
abandon the calculation if the roots were complex. You should now be able to remedy
this, remembering that it is necessary to declare any complex variables. Instead of
raising the expression to the power 0.5 in order to take its square root, use the function
sqgrt. The formulae for the complex roots are
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b n —(b? — 4ac)
2a 2a
If you manage this to your satisfaction, try your skills on the roots of a cubic (see
the problems in Chap. 13).
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Chapter 16 )
Logical crec

A messenger yes/no semaphore her black/white keys in/out whirl
of morse hoopooe signals salvation deviously
Nathaniel Tarn, The Laurel Tree

Aims
The aims of this chapter are:

e To examine the last predefined type available in Fortran: logical.
e To introduce the concepts necessary to use logical expressions effectively:

— Logical variables.

— Logical operators.

— The hierarchy of operations.
— Truth tables.

16.1 Introduction

Often we have situations where we need on or off, true or false, yes or no switches,
and in such circumstances we can use logical type variables, e.g.,

logical :: flag
Logicals may take only two possible values, as shown in the following:

flag=.true.
or
flag=.false.
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Note the full stops, which are essential. With a little thought you can see why
they are needed. You will already have met some of the ideas associated with logical
variables from 1 f statements:

if(a == b) then
else
endif

The logical expression (a == b) returns a value true or false, which then de-
termines the route to be followed; if the quantity is true, then we execute the next
statement, else we take the other route.

Similarly, the following example is also legitimate:

logical :: answer

answer=.true.

if (answer) then
else

endif

Againthe expression 1f (answer) is evaluated; here the variable answer has
been set to . true., and therefore the statements following the then are executed.
Clearly, conventional arithmetic is inappropriate with logicals. What does 2 times
true mean? (very true?). There are a number of special operators for logicals:

e .not. which negates a logical value (i.e., changes true to false or vice versa).
e .and. logical intersection.
e .or. logical union.

To illustrate the use of these operators, consider the following program extract:

logical :: a,b,c

a=.true.

b=.not.a ! (b now has the value ’'false’)
c=a.or.b ! (¢ has the value 'true’)

c=a.and.b ! (¢ now has the value ’'false’)
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Table 16.1 shows the effect of these operators on logicals in a simple case.

Table 16.1 Simple truth table

x1 x2 .not.x1 x1.and.x2 xl.or.x2
true true false true true
true false false false true
false true true false true
false false true false false

As with arithmetic operators, there is an order of precedence associated with the
logical operators:

e .and. is carried out before
e .or. and .not.

In dealing with logicals, the operations are carried out within a given level, from
left to right. Any expressions in brackets would be dealt with first. The logical op-
erators are a lower order of precedence than the arithmetic operators, i.e., they are
carried out later. Table 16.2 shows a more complete operator hierarchy.

Table 16.2 Fortran operator

‘ Expressions within brackets
hierarchy

Exponentiation

Multiplication and division

Addition and subtraction

Relational and logical

.and.

.or. and .not

Although you can build up complicated expressions with mixtures of operators,
these are often difficult to comprehend, and it is generally more straightforward
to break ‘big’ expressions down into smaller ones whose purpose is more readily
appreciated.

Historically, logicals have not been in evidence extensively in Fortran programs,
although clearly there are occasions on which they are of considerable use. Their use
often aids significantly in making programs more modular and comprehensible. They
can be used to make a complex section of code involving several choices much more
transparent by the use of one logical function, with an appropriate name. Logicals
may be used to control output; e.g.,

logical :: debug

debug=. true.
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ié;debug)then
print *,’lots of printout’
endif
ensures that, while debugging a program you have more output then, when the pro-
gram is correct, run with debug=. false.

Note that Fortran does try to protect you while you use logical variables. You
cannot do the following:

logical :: up, down
up=down+. false.

or
logical :: a2
real , dimension(10):: omega

a2=omega (3)

The compiler will note that this is an error, and will not permit you to run the
program. This is an example of strong typing, since only a limited number of pre-
determined operations are permitted. The real, integer and complex variable
types are much more weakly typed (which helps lead to the confusion inherent in
mixing variable types in arithmetic assignments).

16.2 1/0

Since logicals may take only the values . true. and . false., the possibilities in
reading and writing logical values are clearly limited. The 1 edit descriptor or format
allows logicals to be input and output. On input, if the first nonblank characters are
either T or . T, the logical value . true. is stored in the corresponding list item; if
the first nonblank characters are F or . F, then . false. is stored. (Note therefore
that reading, say, ted and fahr in an 14 format would be acceptable.) if the first
nonblank character is not F, T, .F or . T, then an error message will be generated.
On output, the value T or F is written out, right justified, with blanks (if appropriate).
Thus,

logical :: flag
flag=.true.
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print 100, flag, .not.flag
100 format (2L3)

would produce

T F

at the terminal.

Assigning a logical variable to anything other thana . true. or . false. value
in your program will result in errors. The ’shorthand’ forms of . T, .F, F and T are
not acceptable in the program.

16.3 Summary

This chapter has introduced the 1ogical data type. A logical variable may take
one of two values, .true. or . false..

e There are special operators for manipulating logicals:

— .not.
— .and.
— .or.

e Logical operators have a lower order of precedence than any others.

16.4 Problems

16.1 Why are the full stops needed in a statement like a = .true.?
16.2 Generate a truth table like the one given in this chapter.

16.3 Write a program which will read in numerical data from the terminal, but will
flag any data which is negative, and will also turn these negative values into positive
ones.



Chapter 17 ®)
Introduction to Derived Types oo

Russell’s theory of types leads to certain complexities in the
foundations of mathematics...lts interesting features for our
purposes are that types are used to prevent certain erroneous
expressions from being used in logical and mathematical
formulae; and that a check against violation of type constraints
can be made purely by scanning the text, without any knowledge
of the value which a particular symbol might happen to have
C.A.R. Hoare, Structured Programming

Aims

The aim of this chapter is to introduce the concepts and ideas involved in using the
facilities offered in modern Fortran for the construction and use of derived or user
defined types;

defining our own types.

declaring variables to be of a user defined type.
manipulating variables of our own types.
nesting types within types.

The examples are simple and are designed to highlight the syntax. More complex
and realistic examples of the use of user defined data types are to be found in later
chapters.

17.1 Introduction

In the coverage so far we have used the intrinsic types provided by Fortran. The only
data structuring technique available has been to construct arrays of these intrinsic
types. Whilst this enables us to solve a reasonable variety of problems, it is inadequate
for many purposes. In this chapter we look at the facilities offered by Fortran for
the construction of our own types and how we manipulate data of these new, user
defined types.
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With the ability to define our own types we can now construct aggregate data
types that have components of a variety of base types. These are given a variety of
names including

e Record in the Pascal family of languages and in many older books on computing
and data structuring;

Structs in C;

Classes in C++, Java, C# and Eiffel,

Cartesian product is often used in mathematics and this is the terminology adopted
by Hoare;

Chapter 3 has details of some books for further reading:

Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming;
Wirth N., Algorithms + Data Structures = Programs;
Wirth N., Algorithms + Data Structures.

We will use the term user defined type and derived types interchangeably.
There are two stages in the process of creating and using our own data types: we
must first define the type, and then create variables of this type.

17.2 Example 1: Dates

program chl701

implicit none

type date
integer :: day = 1
integer :: month = 1
integer :: year = 2000

end type date

type (date) :: d

print *, d%day, d%month, d%year

print *, ’ type in the date, day, month, year’
read *, d%day, d%$month, d%year

print *, d%day, d%month, d%year

end program chl701


https://doi.org/10.1007/978-3-319-75502-1_3
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This complete program illustrates both the definition and use of the type. It also
shows how you can define initial values within the type definition.

17.3 Type Definition

The type date is defined to have three component parts, comprising a day, a month
and a year, all of integer type. The syntax of a type construction comprises:

type typename
data type :: component_name
etc

end type typename

Reference can then be made to this new type by the use of a single word, date,
and we have a very powerful example of the use of abstraction.

17.4 Variable Definition

This is done by

type (typename) :: variablename
and we then define a variable d to be of this new type. The next thing we do is have

a read * statement that prompts the user to type in three integer values, and the
data are then echoed straight back to the user. We use the notation

variablename%component_name

to refer to each component of the new data type.

17.4.1 Example 2: Variant of Example 1 Using Modules

The following is a variant on the above and achieves the same result with a small
amount of additional syntax.
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module date_module

type date
integer :: day = 1
integer :: month = 1
integer :: year = 2000

end type date
end module date_module
program chl702

use date_module

implicit none
type (date) :: d

print *, d%day, d%month, d%year
print *, ’ type in the date, day, month, year’
read *, d%day, $month, d%year
print *, d%day, d%month, d%year

end program chl702

The key here is that we have embedded the type declaration inside a module, and
then used the module in the main program. Modules are covered in more detail in a
later chapter.

If you are only using the type within one program unit then the first form is
satisfactory, but if you are going to use the type in several program units the second
is the required form.

We will use the second form in the examples that follow.

17.5 Example 3: Address Lists

module address_module
type address
character (len=40) :: name

character (len=60) :: street
character (len=60) :: district
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character (len=60) :: city
character (len=8) :: post_code

end type address

end module address_module

program chl703

use address_module

implicit none

integer :: n_of_address

type (address), dimension (:), &
allocatable :: addr

integer :: i

print *, ‘input number of addresses’
read *, n_of_address

allocate (addr(l:n_of_address))

open (unit=1, file=’address.txt’,6 status='0ld’)

do 1 = 1, n_of_address
read (unit=1, fmt='(a40)’) addr (i) %name
read (unit=1, fmt='(a60)’) addr(i)%street
read (unit=1, fmt=’(a60)’) addr(i)%district
read (unit=1, fmt=’'(a60)’) addr(i)%city
read (unit=1, fmt=’(a8)’) addr(i)%post_code

end do

do 1 = 1, n_of_address

print *, addr
print *, addr

(1)
(1)
print *, addr(i)%district
print *, addr (i)
(1)

print *, addr
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end do

end program chl703

In this example we define a type address which has components that one would
expect for a person’s address. We then define an array addr of this type. Thus we
are now creating arrays of our own user defined types. We index into the array in the
way we would expect from our experience with integer, real and character arrays.
The complete example is rather trivial in a sense in that the program merely reads
from one file and prints the file out to the screen. However, it highlights many of the
important ideas of the definition and use of user defined types.

17.6 Example 4: Nested User Defined Types

The following example builds on the two data types already introduced. Here we
construct nested user defined data types based on them and construct a new data type
containing them both plus additional information.

module personal_module

type address

character (len=60) :: street
character (len=60) :: district
character (len=60) :: city
character (len=8) :: post_code

end type address

type date_of_birth

integer :: day
integer :: month
integer :: year

end type date_of_birth

type personal

character (len=20) :: first_name
character (len=20) :: other_names
character (len=40) :: surname
type (date_of_birth) :: dob

character (len=1) :: gender
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type (address) :: addr
end type personal
end module personal_module
program chl704
use personal_module
implicit none

integer :: n_people
integer :: 1

type (personal), dimension (:), &
allocatable :: p

print *, ‘input number of people’
read *, n_people

allocate (p(l:n_people))

open (unit=1, file='person.txt’,status=’o0ld’)
do i = 1, n_people

1, fmt=100) p(i)%first_name, &
$other_names, p(i)%surname, &

(

i)

i)%dob%day, p(i)%dob%month, &

) $dob%year, p(i)%gender, p(i)%addr¥street, &
i)
i)

o

addr%district, p(i)%addr%city, &
%addr%$post_code

do i = 1, n_people

(*, fmt=110) p(i)%first_name, &

i) %other_names, p(i)%surname, &

p (i) %dob%day, p(i)%dob%month, &

i)%dob%year, p(i)%gender, p(i)%addr%street, &
i)%addr%district, p(i)%addr$city, &

i) %addr%post_code
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end do

100 format (a20, /, a20, /, a40, /, 12, 1x, i2, &
1x, i4, /, al, /, a60, /, a60, /, a60, /, &
as8)

110 format (a20, a20, a40, /, i2, 1x, i2, 1x, &
i4, /, al, /, a60, /, a60, /, a60, /, a8)

end program chl704

Here we have a date of birth data type (date_of_birth) based onthe date
data type from the first example, plus a slightly modified address data type, incor-
porated into a new data type comprising personal details. Note the way in which we
reference the component parts of this new, aggregate data type.

17.7 Problem

17.1 Modify the last example to include a more elegant printed name. The current
example will pad with blanks the first_ name, other_names and surname
and span 80 characters on one line, which looks rather ugly.

Add a new variable name which will comprise all three subcomponents and write
out this new variable, instead of the three subcomponents.
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An Introduction to Pointers Geda

Not to put too fine a point on it

Charles Dickens, Bleak House

Aim
The primary aim of the chapter is to introduce some of the key concepts of pointers
in Fortran.

18.1 Introduction

All of the data types introduced so far, with the exception of the allocatable array,
have been static. Even with the allocatable array a size has to be set at some stage
during program execution. The facilities provided in Fortran by the concept of a
pointer combined with those offered by a user defined type enable us to address
a completely new problem area, previously extremely difficult to solve in Fortran.
There are many problems where one genuinely does not know what requirements
there are on the size of a data structure. Linked lists allow sparse matrix problems
to be solved with minimal storage requirements, two-dimensional spatial problems
can be addressed with quad-trees and three-dimensional spatial problems can be
addressed with oct-trees. Many problems also have an irregular nature, and pointer
arrays address this problem.

First we need to cover some of the technical aspects of pointers. A pointer is a
variable that has the pointer attribute A pointer is associated with a target by allocation
or pointer assignment. A pointer becomes associated as follows:

© Springer International Publishing AG, part of Springer Nature 2018 301
1. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_18


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_18&domain=pdf

302 18 An Introduction to Pointers

e The pointer is allocated as the result of the successful execution of an allocate
statement referencing the pointer

or

e The pointer is pointer-assigned to a target that is associated or is specified with the
target attribute and, if allocatable, is currently allocated.

A pointer may have a pointer association status of associated, disassociated, or
undefined. Its association status may change during execution of a program. Unless
a pointer is initialised (explicitly or by default), it has an initial association status of
undefined. A pointer may be initialised to have an association status of disassociated.

A pointer shall neither be referenced nor defined until it is associated. A pointer
is disassociated following execution of a deallocate or nullify statement,
following pointer association with a disassociated pointer, or initially through pointer
initialisation.

Let us look at some examples to clarify these points.

18.2 Example 1: Illustrating Some Basic Pointer Concepts

With the introduction of pointers as a data type into Fortran we also have the introduc-
tion of a new assignment statement — the pointer assignment statement. Consider
the following example:

program chl1801
implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c

integer :: d

c =1

a => c

c =2

b =>c¢

d=a+b

print *, a, b, ¢, 4
end program chl1801

The following
integer , pointer :: a=>null(),b=>null()

is a declaration statement that defines a and b to be variables, with the pointer
attribute. This means we can use a and b to refer or point to integer values. We
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also use the null intrinsic to set the status of the pointers a and b to disassociated.
Using the null intrinsic means that we can test the status of a pointer variable and
avoid making a number of common pointer programming errors. Note that in this
case no space is set aside for the pointer variables a and b, i.e. a and b should not
be referenced in this state.

The second declaration defines c to be an integer, with the target attribute, i.e.,
we can use pointers to refer or point to the value of the variable c.

The last declaration defines d to be an ordinary integer variable.

In the case of the last two declarations space is set aside to hold two integers.

Let us now look at the various executable statements in the program, one at a
time:

This is an example of the normal assignment statement with which we are already
familiar. We use the variable name c in our program and whenever we use that name
we get the value of the variable c.

a => cC
This is an example of a pointer assignment statement. This means that both a and

c now refer to the same value, in this case 1. a becomes associated with the target
c. a can now be referenced.

c =2
Conventional assignment statement, and ¢ now has the value 2.
b => ¢

Second example of pointer assignment. b now points to the value that ¢ has, in
this case 2. b becomes associated with the target c. b can now be referenced.

Simple arithmetic assignment statement. The value that a points to is added to
the value that b points to and the result is assigned to d.

The last statement prints out the values of a, b, ¢ and d.

The output is
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18.3 Example 2: The associated Intrinsic Function

The associated intrinsic returns the association status of a pointer variable. Con-
sider the following example which is a simple variant on the first.

program chl1802
implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d

print *, associated(a)
print *, associated(b)

c =1

a =>c

c =2

b =>c¢
d=a+b

print *, a, b, c, d

print *, associated(a)

print *, associated(b)
end program chl1802

The output from running this program is shown below

2 4

H 3 N F o
N

and as you can see we therefore have a mechanism to test pointers to see if they are
in a valid state before use.

18.4 Example 3: Referencing Pointer Variables Before
Allocation or Pointer Assignment

Consider the following example:

program chl1803
implicit none

integer, pointer :: a => null(), b => null()
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integer, target :: c
integer :: d

print *, a
print *, b

c =1

a =>c

c =2

b =>c¢
d=a+b

print *, a, b, ¢, d
end program chl1803

Here we are actually referencing the pointers a and b, even though their status
is disassociated. Most compilers generate a run time error with this example with
the default compiler options, and the error message tends to be a little cryptic.
It is recommended that you look at the diagnostic compilation switches for you

compiler. We include some sample output below from gfortran, Intel and Nag. The
error messages are now much more meaningful.

18.4.1 gfortran

Switches are

gfortran -W -Wall -fbounds-check -pedantic-errors
-std=£2003 -Wunderflow
-0 -fbacktrace -ffpe-trap=zero,
overflow,underflow -g

The program runs to completion with no error message. Here is the output.

ch1803.out

18.4.2 Intel

Switches are
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/check:all /traceback

Here is the output.

D:\document\ fortran\newbook\examples\chl8>>
ch1803

forrtl: severe (408): fort: (7):

Attempt to use pointer A when it

is not associated with a target

Image PC Routine Line

Source
ch1803.exe 000000013F0AC598 Unknown Unknown

Unknown

ntdll.dll 0000000077096611 Unknown Unknown

Unknown

18.4.3 Nag

Switches are
-C=all -C=undefined -info -g -gline
Here is the output.

Runtime Error: chl1803.£f90, line 5:

Reference to disassociated POINTER A
Program terminated by fatal error
ch1803.f90, line 5: Error occurred in CH1803

18.5 Example 4: Pointer Allocation and Assignment

Consider the following example:

program chl1804
implicit none
integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d
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allocate (a)

a =1

c =2

b =>c¢
d=a+b

print *, a, b, ¢, d
deallocate (a)
end program chl1804

In this example we allocate a and then can do conventional assignment. If we had
not allocated a the assignment would be illegal. Try out problem 18.2 to see what
will happen with your compiler.

Our simple recommendation when using pointers is to nullify them when declaring
them and to explicitly allocate them before conventional assignment.

18.6 Memory Leak Examples

Dynamic memory brings greater versatility but requires greater responsibility.

18.6.1 Example 5: Simple Memory Leak

program chl1805

implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d

allocate (a)
allocate (b)

a = 100

b = 200

print *, a, b
c =1

a =>c

c =2

b => ¢
d=a+b

print *, a, b, ¢, d
end program chl805

What has happened to the memory allocated to a and b?



308 18 An Introduction to Pointers
18.6.2 Example 6: More Memory Leaks
Now consider the following example.

program chl1806

implicit none

integer :: allocate_status = 0
integer, parameter :: nl = 10000000
integer, parameter :: n2 = 5
integer, dimension (:), pointer :: x
integer, dimension (1:n2), target :: y
integer :: i
do

allocate (x(1l:nl), stat=allocate_status)

if (allocate_status>0) then
print *, ’ allocate failed. program ends.’
stop
end 1if
do i =1, nl
x(i) = 1
end do
do i =1, n2
print *, x (i)

end do
do i =1, n2
y(i) = i*i

X => vy ! x now points to y

! what has happened to the memory that x
! used to point to?

end do
end program chl806

Before running the above example we recommend starting up a memory moni-
toring program.

Under Microsoft Windows holding [CTRL] + [ALT] + [DEL] will bring up the
Windows Task Manager. Choose the [Performance] tab to get a screen which will



18.6 Memory Leak Examples 309

show CPU usage, PF Usage, CPU Usage History and Page File Usage History. You
will also get details of Physical and Kernel memory usage.
Under Linux type

top

in a terminal window.

In these examples we also see the recommended form of the al 1ocate statement
when working with arrays. This enables us to test if the allocation has worked and
take action accordingly. A positive value indicates an allocation error, zero indicates
OK.

The second program can require a power off on a Windows operating system with
a compiler that will remain anonymous!

18.7 Non-standard Pointer Example

Some Fortran compilers provide a non-standard 1oc intrinsic. This can be used to
print out the address of the variable passed as an argument.

18.7.1 Example 7: Using the C 1loc Function

Some Fortran compilers provide non standard access to functions supported in the
C language. This example uses the C 1oc function.

program chl1807

implicit none

integer, pointer :: a => null(), b => null()
integer, target :: c
integer :: d

allocate (a)
allocate (b)

a = 100

b = 200

print *, a, b
print *, loc(a)
print *, loc(b)
print *, loc(c)
print *, loc(d)
c =1
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a

c

b => ¢

d=a+b
print *, a, b, ¢, d
print *, loc(a)
print *, loc(b)
print *, loc(c)
print *, loc(d)

end program chl1807

Here is the output from a compiler with 1oc support.

100 200
13803552
13803600

2948080
2948084

2948080
2948080
2948080
2948084

This program clearly shows the memory leak.

18.8 Problems

18.1 Compile and run all of the example programs in this chapter with your compiler
and examine the output.

18.2 Compile and run example 4 without the allocate (a) statement. See what
happens with your compiler.
Here is the output from the Nag compiler. The first run is with the default options.

nagfor chl804p.£f90
NAG Fortran Compiler:
[NAG Fortran Compiler normal termination]

a.exe

There is no meaningful output.
The following adds the -C=all compilation option.
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nagfor chl804p.f90 -C=all

NAG Fortran Compiler:

[NAG Fortran Compiler normal termination]
a.exe

Runtime Error: chl804p.f90, line 5:
Reference to disassociated POINTER

A

Program terminated by fatal error

We now get a meaningful error message.
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A man should keep his brain attic stacked with all the furniture
he is likely to use, and the rest he can put away in the lumber
room of his library, where he can get at it if he wants.

Sir Arthur Conan Doyle, Five Orange Pips

Aims
The aims of this chapter are:

e To consider some of the reasons for the inclusion of subroutines in a programming
language.

e To introduce with a concrete example some of the concepts and ideas involved
with the definition and use of subroutines.

— Arguments or parameters.

— The intent attribute for parameters.

— The call statement.

— Scope of variables.

— Local variables and the save attribute.

— The use of parameters to report on the status of the action carried out in the
subroutine.

e Module procedures to provide interfaces.

19.1 Introduction

In the earlier chapter on functions we introduced two types of function

e Intrinsic functions - which are part of the language.
e User defined functions - by which we extend the language.
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We now introduce subroutines which collectively with functions are given the
name procedures. Procedures provide a very powerful extension to the language by:

e Providing us with the ability to break problems down into simpler more easily

solvable subproblems.

Allowing us to concentrate on one aspect of a problem at a time.

e Avoiding duplication of code.

e Hiding away messy code so that a main program is a sequence of calls to proce-
dures.

e Providing us with the ability to put together collections of procedures that solve
commonly occurring subproblems, often given the name libraries, and generally
compiled.

e Allowing us to call procedures from libraries written, tested and documented by
experts in a particular field. There is no point in reinventing the wheel!

There are a number of concepts required for the successful use of subroutines and
we met some of them in Chap. 12 when we looked at user defined functions. We will
extend the ideas introduced there of parameters and introduce the additional concept
of an interface via the use of modules. The ideas are best explained with a concrete
example.

Note that we use the terms parameters and arguments interchangeably.

19.2 Example 1: Roots of a Quadratic Equation

This example is one we met earlier that solves a quadratic equation, i.e., solves
ax’>+bx+c=0

The program to do this originally was just one program. In the example below
we break that problem down into smaller parts and make each part a subroutine. The
components are:

e Main program or driving routine.
e Interaction with user to get the coefficients of the equation.
e Solution of the quadratic.

Let us look now at how we do this with the use of subroutines:

module interact_module
contains
subroutine interact(a, b, ¢, ok)
implicit none
real, intent (out) :: a
real, intent (out) :: b
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real, intent (out) :: c
logical, intent (out) :: ok
integer :: io_status = 0

print *, &

’

read (unit=*, fmt=*, iostat=io_status)

C

if (io_status==0) then

ok = .true.
else

ok = .false.
end if

end subroutine interact
end module interact_module

module solve_module
contains
subroutine solve(e, f, g, rootl, root2,
implicit none

real, intent (in)

real, intent (in) f

real, intent (in) g

real, intent (out) :: rootl
real, intent (out) :: root2
integer, intent (inout) :: ifail

! local variables
real :: term

real :: a2

term = f*f - 4.*e*g
a2 = e*2.0
! if term < 0, roots are complex
if (term<0.0) then
ifail =1
else
term = sqgrt(term)
rootl = (-f+term) /a2
(-f-term) /a2

root2

end 1if

end subroutine solve
end module solve_module

program chl1901

use interact_module

type in the coefficients a, b and c’

a, b,

ifail)

315
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use solve_module
implicit none
! simple example of the use of a main program
! and two subroutines.
! one interacts with the user and the
! second solves a quadratic equation,
! based on the user input.

real :: p, g, r, rootl, root2
integer :: ifail = 0
logical :: ok = .true.

call interact(p, g, r, ok)

if (ok) then
call solve(p, g, r, rootl, root2, ifail)
if (ifail==1) then

print *, ’ complex roots’
print *, ’ calculation abandoned’
else
print *, ’ roots are ‘', rootl, ’ ', root2
end if
else
print *, ’ error in data input program ends’
end if

end program chl1901

19.2.1 Referencing a Subroutine

To reference a subroutine you use the call statement:
call subroutine_name (optional actual argument list)
and from the earlier example the call to subroutine interact was of the form:
call interact(p,q,r,ok)

When a subroutine returns to the calling program unit control is passed to the
statement following the call statement.
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19.2.2 Dummy Arguments or Parameters and Actual
Arguments

Procedures and their calling program units communicate through their arguments.
We often use the terms parameter and arguments interchangeably through out this
text. The subroutine statement normally contains a list of dummy arguments,
separated by commas and enclosed in brackets. The dummy arguments have a type
associated with them; for example, in subroutine solve x is of type real, but no
space is put aside for this in memory. When the subroutine is referenced e.g., call
solve(p,q,r,rootl,root2,ifail), then the dummy argument points to
the actual argument p, which is a variable in the calling program unit. The dummy
argument and the actual argument must be of the same type - in this case real.

19.2.3 The intent Attribute

It is recommended that dummy arguments have an intent attribute. In the earlier
example subroutine solve has a dummy argument e with intent (in), which
means that when the subroutine is referenced or called it is expecting e to have a value,
but its value cannot be changed inside the subroutine. This acts as an extra security
measure besides making the program easier to understand. For each parameter it may
have one of three attributes:

e intent (in), where the parameter already has a value and cannot be altered in
the called routine.

e intent (out), where the parameter does not have a value, and is given one in
the called routine.

e intent (inout), where the parameter already has a value and this is changed
in the called routine.

19.2.4 Local Variables

We saw with functions that variables could be essentially local to the function and
unavailable elsewhere. The concept of local variables also applies to subroutines. In
the example above term and a2 are both local variables to the subroutine solve.

19.2.5 Local Variables and the save Attribute

Local variables are usually created when a procedure is called and their value lost
when execution returns to the calling program unit. To make sure that a local variable
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retains its values between calls to a subprogram the save attribute can be used on
a type statement: e.g.,

integer , save :: i

means that when this statement appears in a subprogram the value of the local
variable i is saved between calls.

19.2.6 Scope of Variables

In most cases variables are only available within the program unit that defines them.
The introduction of argument lists to procedures immediately opens up the possibility
of data within one program unit becoming available in one or more other program
units.

In the main program we declare the variables p, g, r, rootl, root2, ifail
and ok.

Subroutine interact has no variables locally declared. It works on the argu-
ments a, b, ¢ and ok; which map onto p, g, r and ok from the main program, i.e.,
it works with those variables.

Subroutine solve has two locally defined variables, termand a2. It works with
the variables e, £, g, rootl, root2 and ifail, whichmapontop, q, r, rootl,
root2 and ifail from the main program.

19.2.7 Status of the Action Carried Out in the Subroutine

It is also useful to use parameters that carry information regarding the status of the
action carried out by the subroutine. With the subroutine interact we use alogical
variable ok to report on the status of the interaction with the user. In the subroutine
solve we use the status of the integer variable i fail to report on the status of the
solution of the equation.

19.2.8 Modules ‘Containing’ Procedures

At the same time as introducing procedures we have ‘contained’ them in a module and
then the main program ‘uses’ the module in order to make the procedure available.
Procedures ‘contained’ in modules are called module procedures.

With the use statement the interface to the procedure is available to the compiler
so that the types and positions of the actual and dummy arguments can be checked.
This was a major source of errors with Fortran 77.
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The use statement must be the first statement in the main program or calling unit,
also the modules must be compiled before the program or calling unit.

We will cover modules in more depth in later chapters.

There are times when an interface is mandatory in Fortran so it’s good practice
to use module procedures from the start. There are other ways of providing explicit
interfaces and we will cover them later.

19.3 Why Bother with Subroutines?

Given the increase in the complexity of the overall program to solve a relatively
straightforward problem, one must ask why bother. The answer lies in our ability to
manage the solution of larger and larger problems. We need all the help we can get
if we are to succeed in our task of developing large-scale reliable programs.

We need to be able to break our problems down into manageable subcomponents
and solve each in turn. We are now in a very good position to be able to do this.
Given a problem that requires a main program, one or more functions and one or
more subroutines we can work on each subcomponent in relative isolation, and
know that by using features like module procedures we will be able to glue all of the
components together into a stable structure at the end. We can independently compile
the main program and the modules containing the functions and subroutines and use
the linker to generate the overall executable, and then test that. Providing we keep
our interfaces the same we can alter the actual implementations of the functions and
subroutines and just recompile the changed procedures.

19.4 Summary

‘We now have the following concepts for the use of subroutines:

e Module procedures providing interfaces.

e Intent attribute for parameters.

e Dummy parameters.

e The use of the call statement to invoke a subroutine.

e The concepts of variables that are local to the called routines and are unavailable

elsewhere in the over all program.

Communication between program units via the argument list.

e The concept of parameters on the call that enable us to report back on the status
of the called routine.
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19.5 Problems

19.1 Type the program and module procedures for Example 1 into one file. Compile,
link and run providing data for complex roots to test this part of the code.

19.2 Split the main program and modules up into three separate files. Compile the
modules and then compile the main program and link the object files to create one
executable. Look at the file size of the executable and the individual object files.
What do you notice?

The development of large programs is eased considerably by the ability to compile
small program units and eradicate the compilation errors from one unit at a time.
The linker obviously also has an important role to play in the development process.

19.3 Write a subroutine to calculate new coordinates (x’, y") from (x, y) when the
axes are rotated counter clockwise through an angle of a radians using:
x'" = xcosa + ysina

y' = —xsina + ycosa

Hint:

The subroutine would look some thing like

subroutine ChangeCoordinate(x, y, a, xd, yd)

Write a main program to read in values of x, y and a and then call the subroutine
and print out the new coordinates. Use a module procedure.
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It is one thing to show a man he is in error, and another to put
him in possession of the truth

John Locke

Aims

The aims of this chapter are to extend the ideas in the earlier chapter on subroutines
and look in more depth at parameter passing, in particular using a variety of ways of
passing arrays.

20.1 More on Parameter Passing

So far we have seen scalar parameters of type real, integer and logical. We will
now look at numeric array parameters and character parameters. We need to intro-
duce some technical terminology first. Don’t panic if you don’t fully understand the
terminology as the examples should clarify things.

20.1.1 Assumed-Shape Array

An assumed-shape array is a nonpointer dummy argument array that takes its shape
from the associated actual argument array.
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20.1.2 Deferred-Shape Array

A deferred-shape array is an allocatable array or an array pointer. An allocatable
array is an array that has the allocatable attribute and a specified rank, but its bounds,
and hence shape, are determined by allocation or argument association.

20.1.3 Automatic Arrays

An automatic array is an explicit-shape array that is a local variable. Automatic
arrays are only allowed in function and subroutine subprograms, and are declared in
the specification part of the subprogram. At least one bound of an automatic array
must be a nonconstant specification expression. The bounds are determined when
the subprogram is called.

20.1.4 Allocatable Dummy Arrays

Fortran provides the ability to declare an array in the main program and allocate in
a subroutine.

20.1.5 Keyword and Optional Arguments

Fortran provides the ability to supply the actual arguments to a procedure by keyword,
and hence in any order.

To do this the name of the dummy argument is referred to as the keyword and is
specified in the actual argument list in the form

dummy-argument = actual-argument

A number of points need to be noted when using keyword and optional arguments:

e if all the actual arguments use keywords, they may appear in any order.

e When only some of the actual arguments use keywords, the first part of the list
must be positional followed by keyword arguments in any order.

e When using a mixture of positional and keyword arguments, once a keyword
argument is used all subsequent arguments must be specified by keyword.

e if an actual argument is omitted the corresponding optional dummy argument must
not be redefined or referenced, except as an argument to the present intrinsic
function.
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e if an optional dummy argument is at the end of the argument list then it can just
be omitted from the actual argument list.

e Keyword arguments are needed when an optional argument not at the end of an
argument list is omitted, unless all the remaining arguments are omitted as well.

e Keyword and optional arguments require explicit procedure interfaces, i.e., the
procedure must be internal, a module procedure or have an interface block available
in the calling program unit.

A number of the intrinsic procedures have optional arguments. Consult Appendix D
for details. We look at a complete example using optional arguments in a later chapter.

20.2 Example 1: Assumed Shape Parameter Passing

We are going to use an example based on a main program and a subroutine that
calculates the mean and standard deviation of an array of numbers. The subroutine
has the following parameters:

x - the array containing the real numbers.

n - the number of elements in the array.

mean - the mean of the numbers.

std_dev - the standard deviation of the numbers.

Consider the following program and subroutine.

module statistics_module
implicit none

contains
subroutine stats(x, n, mean, std_dev)

implicit none

integer, intent (in) :: n

real, intent (in), dimension (:) :: X
real, intent (out) :: mean
real, intent (out) std_dev
real :: variance
real :: sumxi, sumxi2

integer :: i

variance = 0.0
sumxi = 0.0
sumxi2 = 0.0
doi =1, n
sumxi = sumxi + x (i)

sumxi2 = sumxi2 + x(i)*x(1)
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end do
mean = sumxi/n
variance = (sumxi2-sumxi*sumxi/n)/(n-1)
std_dev = sqgrt(variance)
end subroutine stats
end module statistics_module

program ch2001
use statistics_module
implicit none

integer, parameter :: n = 10
real, dimension (1l:n) :: x
real, dimension (-4:5) :: vy
real, dimension (10) :: =z
real, allocatable, dimension (:) :: t
real :: m, sd
integer :: i
doi=1, n
x(1) = real(1i)
end do

call stats(x, n, m, sd)
print *, ' x’
print 100, m, sd
100 format (’ Mean r, £7.3, ' Std Dev = ', &
£7.3)
y = X
call stats(y, n, m, sd)

print *, ' vy’
print 100, m, sd
zZ = X
call stats(z, 10, m, sd)
print *, * z’
print 100, m, sd
allocate (t(n))
t = x
call stats(t, 10, m, sd)
print *, * t’
print 100, m, sd
end program ch2001

A fundamental rule in modern Fortran is that the shape of an actual array argument
and its associated dummy arguments are the same, i.e., they both must have the same
rank and the same extents in each dimension. The best way to apply this rule is to
use assumed-shape dummy array arguments as shown in the example above.
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In the subroutine we have
real , intent(in) , dimension(:) :: X

where x is an assumed-shape dummy array argument, and it will assume the shape
of the actual argument when the subroutine is called.

In two of the calls we have passed a variable n as the size of the array and
used a literal integer constant (10) in the other two cases. Both parameter passing
mechanisms work.

20.2.1 Notes

There are several restrictions when using assumed-shape arrays:

e The rank is equal to the number of colons, in this case 1.

e The lower bounds of the assumed-shape array are the specified lower bounds, if
present, and 1 otherwise. In the example above it is 1 because we haven’t specified
a lower bound.

e The upper bounds will be determined on entry to the procedure and will be whatever
values are needed to make sure that the extents along each dimension of the dummy
argument are the same as the actual argument. In this case the upper bound will
be n.

e An assumed-shape array must not be defined with the pointer or allocatable
attribute in Fortran.

e When using an assumed-shape array an interface is mandatory. In this example it is
provided by the the stats subroutine being a contained subroutine in a module,
and the use of the module in the main program.

20.3 Example 2: Character Arguments and
Assumed-Length Dummy Arguments

The types of parameters considered so far have been real, integer and logical. Char-
acter variables are slightly different because they have a length associated with them.
Consider the following program and subroutine which, given the name of a file, opens
it and reads values into the real array x:

module read_module
implicit none

contains

subroutine readin(name, x, n)
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implicit none

integer, intent (in) :: n

real, dimension (:), intent (out) :: x
character (len=*), intent (in) :: name
integer :: i

open (unit=10, file=name, status='o0ld’)
do i =1, n
read (10, *) x(i)
end do
close (unit=10)
end subroutine readin

end module read_module

program ch2002
use read_module

implicit none

real, allocatable, dimension (:) :: a
integer :: nos, 1

character (len=20) :: filename

print *, ’ Type in the name of the data file’
read ’(a)’, filename

print *, ’ Input the number of items’

read *, nos
allocate (a(l:nos))
call readin(filename, a, nos)
print *, ' data read in was’
do i = 1, nos
print *, * ', a(i)
end do
end program ch2002

20

Subroutines: 2

The main program reads the file name from the user and passes it to the subroutine
that reads in the data. The dummy argument name is of type assumed-length, and
picks up the length from the actual argument filename in the calling routine, which is
in this case 20 characters. An interface must be provided with assumed-shape dummy
arguments, and this is achieved in this case by the subroutine being in a module.
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20.4 Example 3: Rank 2 and Higher Arrays as Parameters

The following example illustrates the modern way of passing rank 2 and higher arrays
as parameters. We start with a simple rank 2 example.

module matrix_module
implicit none

contains
subroutine matrix_bits(a, b, ¢, a_t, n)

implicit none

integer, intent (in) :: n

real, dimension (:, :), intent (in) :: a, b

real, dimension (:, :), intent (out) :: c, &
a_t

integer :: i, j, k

real :: temp

! matrix multiplication c=ab
do i =1, n
do j =1, n

temp = 0.0
do k=1, n
temp = temp + a(i, k)*b(k, J)
end do
c(i, j) = temp
end do
end do

! calculate a_t transpose of a
! set a_t to be transpose matrix a
doi=1, n
do j =1, n
a_t(i, 3J)
end do
end do
end subroutine matrix bits
end module matrix _module

program ch2003
use matrix_module
implicit none
real, allocatable, dimension (:, :) :: one, &
two, three, one_t

integer :: i, n
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print *, ‘input size of matrices’
read *, n
allocate (one(l:n,1l:n))
(two(l:n,1:n))
allocate (three(l:n,1:n))
(

allocate

allocate

one_t(l:n,1:n))
doi=1,n
print *, ‘input row ’, i, ' of one’
read *, one(i, 1:n)
end do
doi=1, n
print *, ’input row ‘', i, ’ of two’
read *, two(i, 1:n)
end do
call matrix_bits(one, two, three, one_t, n)
print *, ' matrix three:’
doi=1, n
print *, three(i, 1:n)
end do
print *, ’ matrix one_t:’
doi=1,n
print *, one_t (i, 1:n)
end do
end program ch2003

The subroutine is doing a matrix multiplication and transpose. There are intrinsic
functions in Fortran called matmul and transpose that provide the same func-
tionality as the subroutine. One of the problems at the end of the chapter is to replace
the code in the subroutine with calls to the intrinsic functions.

20.4.1 Notes

The dummy array and actual array arguments look the same but there is a difference:

e The dummy array arguments a, b, ¢, a_ t are all assumed-shape arrays and take the
shape of the actual array arguments one, two, three and one__t, respectively.

e The actual array arguments one, two, three and one_t in the main program
are allocatable arrays or deferred-shape arrays. An allocatable array is an array
that has an allocatable attribute. Its bounds and shape are declared when the array
is allocated, hence deferred-shape.
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20.5 Example 4: Automatic Arrays and Median Calculation

This example looks at the calculation of the median of a set of numbers and also
illustrates the use of an automatic array.

The median is the middle value of a list, i.e., the smallest number such that at least
half the numbers in the list are no greater. If the list has an odd number of entries,
the median is the middle entry in the list after sorting the list into ascending order.
If the list has an even number of entries, the median is equal to the sum of the two
middle (after sorting) numbers divided by two. One way to determine the median
computationally is to sort the numbers and choose the item in the middle.

Wirth classifies sorting into simple and advanced, and his three simple methods
are as follows:

e Insertion sorting — The items are considered one at a time and each new item is
inserted into the appropriate position relative to the previously sorted item. If you
have ever played bridge then you have probably used this method.

e Selection sorting — First the smallest (or largest) item is chosen and is set aside
from the rest. Then the process is repeated for the next smallest item and set aside
in the next position. This process is repeated until all items are sorted.

e Exchange sorting — if two items are found to be out of order they are interchanged.
This process is repeated until no more exchanges take place.

Knuth also identifies the above three sorting methods. For more information on
sorting the Knuth and Wirth books are good starting places. Knuth is a little old
(1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses
mix assembler to code the examples whilst the Wirth book uses Modula 2, and is
therefore easier to translate into modern Fortran.

In the example below we use an exchange sort:

module statistics_module

implicit none

contains
subroutine stats(x, n, mean, std_dev, median)
implicit none

integer, intent (in) :: n

real, intent (in), dimension (:) :: X
real, intent (out) :: mean

real, intent (out) std_dev

real, intent (out) :: median

real, dimension (1:n) :: vy

real :: variance

real :: sumxi, sumxi2

sumxi = 0.0
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sumxi2 = 0.0
variance = 0.0
sumxi = sum(x)
sumxi2 = sum(x*x)

mean = sumxi/n
variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqgrt(variance)

y = X
if (mod(n,2)==0) then
median = (find(n/2)+find((n/2)+1))/2
else
median = find((n/2)+1)
end if
contains

real function find(k)

implicit none

integer, intent (in) :: k
integer :: 1, r, i, jJ
real :: tl, t2

1 =1

r =n

do while (1l<r)

tl = y(k)
i=1
j=rx
do
do while (y(i)<tl)
i=1+1
end do
do while (tl<y(3))
j=3-1
end do
if (i<=j) then
t2 = y(i)
y(i) = y(3)
y(3) = t2
i=1+1
j=3-1
end 1if

if (i>7j) exit
end do
if (j<k) then

1 =1
end if

20

Subroutines: 2
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if (k<i) then

r =3
end if
end do
find = y(k)

end function find
end subroutine stats
end module statistics_module

program ch2004
use statistics_module

implicit none

integer :: n
integer :: i
real, allocatable, dimension (:) :: X
real :: m, sd, median
integer, dimension (8) :: timing
n = 1000000
doi=1, 3
print *, = ’, n

n
allocate (x(1l:n))

call random_number (x)

x = x*1000

call date_and_time(values=timing)

print *, ' initial ’

print *, timing(6), timing(7), timing(8)
call stats(x, n, m, sd, median)

print *, ’ Mean = ', m
print *, ’ Standard deviation = ’, sd
print *, ’ Median is = ', median

call date_and_time (values=timing)
print *, timing(6), timing(7), timing(8)
n = n*10
deallocate (x)
end do
end program ch2004

Inthe subroutine stats the array y is automatic. It will be allocated automatically
when we call the subroutine. We use this array as a work array to hold the sorted
data. We then use this sorted array to determine the median.

Note the use of the sum intrinsic in this example:

sumxi=sum(x)

sumxi2=sum (x*x)
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These statements replace the do loop from the earlier example. A good optimising
compiler would not make two passes over the data with these two statements.

20.5.1 Internal Subroutines and Scope

The stats subroutine contains the £ind subroutine. The stats subroutine has
access to the following variables

e X, n, mean, std_dev, median — these are made available as they are passed
in as parameters.
e v, variance, sumxi, sumxi2 — are local to the subroutine stats.

The subroutine £ind has access to the above as it is contained within subrou-
tine stats. It also has the following local variables that are only available within
subroutine selection

e i,7,k, minimum

This program uses an algorithm developed by Hoare to determine the median.
The number of computations required to find the median is approximately 2 * n.

The limiting factor with this algorithm is the amount of installed memory. The
program will crash on systems with a failure to allocate the automatic array. This is
a drawback of automatic arrays in that there is no mechanism to handle this failure
gracefully. You would then need to use allocatable local work arrays. The drawback
here is that the programmer is then responsible for the deallocation of these arrays.
Memory leaks are then possible.

20.6 Example 5: Recursive Subroutines — Quicksort

In Chap.12 we saw an example of recursive functions. This example illustrates
the use of a recursive subroutine. In this example we use the additional form of the
subroutine header that was required when recursive procedure support was introduced
in Fortran 90. The Fortran 2018 standard makes this form optional. It uses a simple
implementation of Hoare’s Quicksort. References are given in the bibliography. We
took the algorithm from Wirth’s book for our example.

The program times the various components parts of the program

dynamic allocation of the real array

use the random_number subroutine to generate the numbers
call the sort_data subroutine to sort the data

print out the first 10 sorted elements

deallocate the array
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We also use the date_and_time intrinsic subroutine to provide the timing
details.

module sort_data_module
implicit none

contains
subroutine sort_data(raw_data, how_many)
implicit none

integer, intent (in) :: how_many
real, intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)
contains
recursive subroutine quicksort(l, r)
implicit none
integer, intent (in) :: 1, r

! local variables

integer :: i, j
real :: v, t
i=1
j =r
v = raw_data(int ((1l+r)/2))
do
do while (raw_data(i)<v)
i=1i+1
end do
do while (v<raw_data(3j))
j=3-1
end do

if (i<=j) then
t = raw_data (i)

raw_data (i) = raw_data(j)
raw_data(j) = t
i=1+1
j=3-1

end if

if (i>3j) exit
end do
if (1<j) then

call quicksort(l, 3j)
end if



334 20 Subroutines: 2

if (i<r) then
call quicksort(i, r)
end if
end subroutine quicksort
end subroutine sort_data
end module sort_data_module

program ch2005
use sort_data_module
implicit none

integer, parameter :: n = 10000000
real, allocatable, dimension (:) :: x
integer, dimension (8) :: timing
real :: tl, t2
character *30, dimension (4) :: heading = [ &
’ Allocate = T, &
’ Random number generation = ', &
' Sort = &
’ Deallocate = r]

call date_and_time (values=timing)

print *, ’ Program starts’

write (unit=*, fmt=100) timing(1:3), &
timing(5:7)

100 format (2x, i4, 2('/’',i2), ’ ', 2(i2,':"), &
i2)

tl = td()

allocate (x(n))

t2 = td()

write (unit=*, fmt=110) heading(1l), (t2-tl)
110 format (a30, £8.3)

tl = t2

|
! Random number generation
call random_number (x)

t2 = td()
write (unit=*, fmt=110) heading(2), (t2-tl)
tl = t2
!
! Sorting
call sort_data(x, n)
t2 = td()
write (unit=*, fmt=110) heading(3), (t2-tl)
print *, ’ First 10 sorted numbers are’

write (unit=%*, fmt=120) x(1:10)
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120 format (2x, el4.6)
tl = t2

! Deallocation

deallocate (x)

t2 = td()

write (unit=*, fmt=110) heading(4), (t2-tl)

call date_and_time (values=timing)

print *, ’ Program terminates’

write (unit=*, fmt=100) timing(1:3), &
timing (5:7)

contains

function td()
real :: td

call date_and_time(values=timing)
td = 60*timing(6) + timing(7) + &
real (timing(8))/1000.0
end function td
end program ch2005

20.6.1 Note — Recursive Subroutine

The actual sorting is done in the recursive subroutine QuickSort. The actual
algorithm is taken from the Wirth book. See the bibliography for a reference.

Recursion provides us with a very clean and expressive way of solving many
problems. There will be instances where it is worthwhile removing the overhead of
recursion, but the first priority is the production of a program that is correct. It is
pointless having a very efficient but incorrect solution.

We will look again at recursion and efficiency in a later chapter and see under
what criteria we can replace recursion with iteration.

20.6.2 Note — Flexible Design

The QuickSort recursive routine can be replaced with another sorting algorithm
and we can maintain the interface to sort_data. We can thus decouple the imple-
mentation of the actual sorting routine from the defined interface. We would only
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need to recompile the sort_data routine and we could relink using the already
compiled main routine.

A later chapter looks at a non recursive implementation of quicksort where we
look at some of the ways of rewriting the above program by replacing the recursive
quicksort with the non recursive version.

We call the date_and_time intrinsic subroutine to get timing information.
The first three values are the year, month and day, and 5, 6 and 7 provide the hour
minute and second. The last element of the array is milliseconds.

20.7 Example 6: Allocatable Dummy Arrays

In the examples so far allocation of arrays has taken place in the main program and
the arrays have been passed into subroutines and functions.
In this example the allocation takes place in the read_data subroutine.

module read_data_module

implicit none

contains
subroutine read_data(file_name, raw_data, &
how_many)
implicit none
character (len=*), intent (in) :: file_name
integer, intent (in) :: how_many
real, intent (out), allocatable, &
dimension (:) :: raw_data

! local variables

integer :: i

allocate (raw_data(l:how_many))
open (unit=1, file=file_name, status='old’)
do i = 1, how_many
read (unit=1, fmt=*) raw_data(i)
end do
end subroutine read_data
end module read_data_module

module sort_data_module
implicit none
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contains
subroutine sort_data(raw_data, how_many)
implicit none

integer, intent (in) :: how_many
real, intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)
contains
recursive subroutine quicksort(l, r)
implicit none
integer, intent (in) :: 1, r

! local variables

integer :: i, j
real :: v, t
i=1
j=r
v = raw_data(int((l+r)/2))
do
do while (raw_data(i)<v)
i=1i+1
end do

do while (v<raw_data(j))
j=3-1

end do

if (i<=j) then
t = raw_data(i)

raw_data (i) = raw_data(j)
raw_data(j) = t
i=1i+1
j=3-1

end if

if (i>3j) exit
end do
if (1<j) then
call quicksort(l, 3j)
end 1if
if (i<r) then
call quicksort(i, r)
end if
end subroutine quicksort
end subroutine sort_data
end module sort_data_module
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module print_data_module
implicit none

contains
subroutine print_data(raw_data, how_many)
implicit none
integer, intent (in) :: how_many
real, intent (in), dimension (:) :: raw_data
! local variables

integer :: i

open (file=’'sorted.txt’, unit=2)
do i = 1, how_many
write (unit=2, fmt=*) raw_data (i)
end do
close (2)
end subroutine print_data
end module print_data_module

program ch2006
use read_data_module
use sort_data_module
use print_data_module
implicit none

integer :: how_many

character (len=20) :: file_name

real, allocatable, dimension (:) :: raw_data
integer, dimension (8) :: timing

print *, ‘' how many data items are there?’

read *, how_many

print *, ’ what is the file name?’

read ' (a)’, file_name

call date_and_time (values=timing)

print *, ’ initial’

print *, timing(6), timing(7), timing(8)
call read_data(file_name, raw_data, how_many)
call date_and_time(values=timing)

print *, ’ allocate and read’

print *, timing(6), timing(7), timing(8)
call sort_data(raw_data, how_many)

call date_and_time(values=timing)

print *, ’ sort’

print *, timing(6), timing(7), timing(8)
call print_data(raw_data, how_many)
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call date_and_time(values=timing)

print *, ' print’

print *, timing(6), timing(7), timing(8)
print *, ’

print *, ’ data written to file sorted.txt’

end program ch2006

We now have a choice of where we do the allocation. This is more flexible than
having to do the allocation in the main program, which is effectively a more Fortran
77 style of programming.

20.8 Example 7: Elemental Subroutines

We saw an example in Chap. 12 of elemental functions. Here is an example of an
elemental subroutine.

module swap_module
implicit none

contains
elemental subroutine swap(x, V)

integer, intent (inout) :: x, Yy
integer :: temp

temp = x

X =Yy

Yy = temp

end subroutine swap
end module swap_module

program ch2007
use swap_module
implicit none
integer, dimension (10) :: a, b

integer :: i

a(i) = 1i
b(i) = i*i
end do

print *, a
print *, b
call swap(a, b)
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print *, a
print *, b

end program ch2007

The subroutine is written as if the arguments are scalar, but works with arrays!
User defined elemental procedures came in with Fortran 95.

20.9 Summary

We now have a lot of the tools to start tackling problems in a structured and modular
way, breaking problems down into manageable chunks and designing subprograms
for each of the tasks.

20.10 Problems

20.1 Below is the random number program that was used to generate the data sets
for the Quicksort example:

program ch2008

implicit none

integer :: n

integer :: i

real, allocatable, dimension (:) :: X
print *, ’ how many values ?’

read *, n
allocate (x(1:n))
call random_number (x)
x = x*1000
open (unit=10, file='random.txt’)
doi=1, n
write (10, 100) x(i)
end do
100 format (£8.3)
end program ch2008

Run the Quick_Sort program in this chapter with the data file as input. Obtain
timing details.

What percentage of the time does the program spend in each subroutine? Is it
worth trying to make the sort much more efficient given these timings?
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20.2 Try using the operating system SORT command to sort the file. What timing

figures do you get now?
Was it worth writing a program?

20.3 Consider the following program:
program ch2009

! program to test array subscript checking
! when the array is passed as an argument.

implicit none

integer, parameter :: array_size = 10
integer :: i
integer, dimension (array_size) :: a
do 1 = 1, array_size

a(i) = 1
end do

call subOl(a, array_size)

end program ch2009

subroutine sub0l(a, array_size)
implicit none

integer, intent (in) :: array_size

integer, intent (in), dimension (array_size) &
a

integer :: i

integer :: atotal = 0

integer :: rtotal =

do i = 1, array_size

rtotal = rtotal + a(i)
end do
do i = 1, array_size + 1
atotal = atotal + a(i)

end do
print *, ‘' Apparent total is ‘', atotal
print *, ’ real total is ', rtotal

end subroutine sub0l

The key thing to note is that we haven’t used a module procedure (we haven’t
provided an interface for the subroutine) and we have an error in the subroutine where
we go outside the array. Run this program. What answer do you get for the apparent
total?

Are there any compiler flags or switches which will enable you to trap this error?
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20.4 Use the intrinsic functions matmul and transpose to replace the current
Fortran 77 style code in program ch2003.
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20.12 Commercial Numerical and Statistical Subroutine
Libraries

There are two major suppliers of commercial numerical and statistical libraries:
e NAG: Numerical Algorithms Group

and
e Rogue Wave Software

They can be found at:

https://www.nag.co.uk/

and

https://www.roguewave.com/

respectively. Their libraries are written by numerical analysts, and are fully tested
and well documented. They are under constant development and available for a wide
range of hardware platforms and compilers. Parallel versions are also available. In
a later chapter we look at using a sorting routine from the Nag SMP & Multicore
library.



Chapter 21 )
Modules i

Common sense is the best distributed commodity in the world,
for every man is convinced that he is well supplied with it.
Descartes

Aims
The aims of this chapter are to look at the facilities found in Fortran provided by
modules, in particular:

e The use of a module to aid in the consistent definition of precision throughout a
program and subprograms.

The use of modules for global data.

The use of modules for derived data types.

Modules containing procedures

A module for timing programs

Public, private and protected attributes

The use statement and its extensions

21.1 Introduction

We have now covered the major executable building blocks in Fortran and they are

e The main program unit
e functions
e subroutines

© Springer International Publishing AG, part of Springer Nature 2018 343
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and these provide us with the tools to solve many problems using just a main program,
and one or more external and internal procedures. Both external and internal pro-
cedures communicate through their argument lists, whilst internal procedures have
access to data in their host program units.

We have also introduced modules. The first set of examples was in the chapter on
functions. The second set were in the chapter on derived types and the third set were
in the subroutine chapters.

We will now look at examples of modules in more detail for

Precision definition.

Global data

Modules containing procedures

Derived type definition

Simple timing information of a program

Modules provide the code organisational mechanism in Fortran and can be thought
of as the equivalent of classes in C++, Java and C#. They are one of the most important
features of modern Fortran.

21.2 Basic Module Syntax

The form of a module is

module module_name

end module module_name

and the specifications and definitions contained within it is made available in the
program units that need to access it by

use module_name

The use statement must be the first statement after the program, function or
subroutine statement.

21.3 Modules for Global Data

So far the only way that a program unit can communicate with a procedure is through
the argument list. Sometimes this is very cumbersome, especially if a number of
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procedures want access to the same data, and it means long argument lists. The
problem can be solved using modules; e.g., by defining the precision to which you
wish to work and any constants defined to that precision which may be needed by a
number of procedures.

21.4 Example 1: Modules for Precision Specification and
Constant Definition

In the chapter on arithmetic we introduced the features in Fortran that enable us to
specify the precision of real numbers.
For the real numeric kind types, we used

e sp - single precision
e dp - double precision
e gp - quad precision

and here is the Fortran code segment from the program example.

integer, parameter :: &
sp = selected_real_kind( 6, 37)

integer, parameter :: &
dp = selected_real_kind (15, 307)
integer, parameter :: &

ap = selected_real_kind (30, 291)

In this example we are going to package the above in a module, and then use the
module to enable us to choose a working precision for the program and associated
functions and subroutines. This module will be referred to in many examples in the
book.

We will also have a second module with a set of physical and mathematical
constants.

module precision_module

implicit none

integer, parameter :: sp = selected_real_kind( &
6, 37)

integer, parameter :: dp = selected_real_kind( &
15, 307)

integer, parameter :: gp = selected_real_kind( &
30, 291)

end module precision_module
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module maths_module

use precision_module, wp => dp

implicit none

real (wp), parameter :: c = 299792458.0_wp
! units m s-1

real (wp), parameter :: e = &
2.7182818284590452353602874713526624977_wp

real (wp), parameter :: g = 9.812420_wp
1 9.780 356 m s-2 at sea level on the equator
1 9.812 420 m s-2 at sea level in London

1 9.832 079 m s-2 at sea level at the poles

real (wp), parameter :: pi = &
3.141592653589793238462643383279502884_wp

end module maths_module

module subl_module
implicit none

contains
subroutine subl (radius, area, circumference)
use precision_module, wp => dp

use maths_module
implicit none

real (wp), intent (in) :: radius
real (wp), intent (out) :: area, &
circumference

area = pi*radius*radius
circumference = 2.0_wp*pi*radius

end subroutine subl

end module subl_module

21

Modules
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program ch2101

use precision_module, wp => dp
use subl_module

implicit none
real (wp) :: r, a, cC
print *, ’‘radius?’

read *, r

call subl(r, a, c)

print *, ’ for radius = ', r
print *, ' area = ', a
print *, ’ circumference = ', c

end program ch2101

In our example we have

use precision_module , wp => dp

andthewp => dpiscalleda rename-1ist in Fortran terminology. We are using
it in this example to make wp point to the dp precision in the module.

Thus we can chose the working precision of our program very easily.

The kind type parameter wp is then used with all the real type declaration e.g.,

real (wp):: r ,a,c
To make sure that all floating point calculations are performed to the working

precision specified by wp any constants such as 2.0 in subroutine Sub1 are specified
as const_wpe.g.,

2.0_wp

We set e and pi to over 33 digits as this is the number in a 128 bit real. This
ensures that all calculations are carried out accurately to the maximum precision.

21.5 Example 2: Modules for Globally Sharing Data

The following example uses a module to define a parameter and two arrays. The
module also contains three subroutines that have access to the data in the module.
The main program has the statement
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use data_module

which interfaces to the three subroutines.
Note that in this example the calls to the subroutines have no parameters. They
work with the data contained in the module.

module data_module
implicit none

integer, parameter :: n = 12

real, dimension (l:n) :: rainfall

real, dimension (1l:n) :: sorted
contains

subroutine readdata

implicit none

integer :: i
character (len=40) :: filename
print *, ’ What is the filename ?°’

read *, filename
open (unit=100, file=filename, status='old’)
doi=1, n
read (100, *) rainfall(i)
end do
end subroutine readdata

subroutine sortdata

implicit none

sorted = rainfall
call selection
contains
subroutine selection
implicit none
integer :: i, j, k

real :: minimum

doi=1, n-1
k=1
minimum = sorted(i)
do j=1+1, n
if (sorted(j)<minimum) then
k=3
minimum = sorted(k)

end if
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end do

sorted (k) = sorted(i)

sorted (i) = minimum
end do

end subroutine selection

end subroutine sortdata

subroutine printdata
implicit none
integer :: i

’

print *, ’ original data is
do i =1, n
print 100, rainfall (i)
end do
print *, ' Sorted data is
doi=1, n
print 100, sorted(i)
end do
100 format (1x, £7.1)
end subroutine printdata
end module data_module

program ch2102
use data_module

implicit none

call readdata

call sortdata

call printdata
end program ch2102

21.6 Modules for Derived Data Types

When using derived data types and passing them as arguments to procedures, both
the actual arguments and dummy arguments must be of the same type, i.e., they
must be declared with reference to the same type definition. The only way this can
be achieved is by using modules. The user defined type is declared in a module and
each program unit that requires that type uses the module.
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21.7 Example 3: Person Data Type

In this example we have a user defined type person which we wish to use in the
main program and pass arguments of this type to the subroutines read_data and
stats. In order to have the type person available to two subroutines and the
main program we have defined person in a module personal_module and
then made the module available to each program unit with the statement

use personal_module

Note that we have put both subroutines in one module.

module personal_module
implicit none

type person

real :: weight
integer :: age
character :: gender

end type person
end module personal_module
module subs_module

use personal_module

implicit none
contains

subroutine read_data(data, no)

implicit none

type (person), dimension (:), allocatable, &
intent (out) :: data

integer, intent (out) :: no

integer :: i

print *, ’‘input number of patients’

read *, no
allocate (data(l:no))

do i =1, no
print *, ‘for person ‘', 1
print *, ’‘weight ?’
read *, data(i)%sweight
print *, ’‘age ?’
read *, data(i)%age
print *, ’‘gender ?'
read *, data(i)%gender

end do

end subroutine read_data
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subroutine stats(data, no, m_a, f_a)

implicit none

type (person), dimension (:), &
intent (in) :: data

real, intent (out) :: m_a, f_a

integer, intent (in) :: no

integer :: i, no_f, no_m

m.a = 0.

f_a=10.0

no_f =0

no_m = 0

do i =1, no

if (data(i)%gender=='M’' .or. &
data (i) $gender=="m’ &
) then
m_a = m_a + data(i)%weight
no_m = no_m + 1

else if (data(i)%gender=='F’' .or. &
data (i) %gender=='f’) then
f_a = f_a + data(i)%weight
no_f = no_f + 1
end if
end do

if (no_m>0) then
m a = m_a/no_m
end 1if
if (no_£f>0) then
f_a = f_a/no_f£
end 1if
end subroutine stats
end module subs_module
program ch2103
use personal_module
use subs_module
implicit none

type (person), dimension (:), allocatable
patient

integer :: no_of_patients

real :: male_average, female_average

call read_data(patient, no_of_patients)

call stats(patient, no_of_patients, &
male_average, female_average)

print *, ’‘average male weight is ', &

351
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male_average
print *, ‘average female weight is ’, &
female_average
end program ch2103

21.8 Example 4: A Module for Simple Timing of a Program

It is a common requirement to need timing details on how long parts of a program
take. In this module we have a start_timing and end_timing subroutines
and a time_difference real function. We will be using this module in several
examples in subsequent chapters.

module timing module

implicit none

integer, dimension (8), private :: dt
real, private :: h, m, s, ms, tt
real, private :: last_tt

contains

subroutine start_timing()
implicit none

call date_and_time (values=dt)
print 100, dt(1:3), dt(5:8)
h = real(dt(5))
m = real(dt(6))
s = real(dt(7))
ms = real(dt(8))
last_tt = 60*(60*h+m) + s + ms/1000.0

100 format (1x, 14, '/', i2, '/’, i2, 1x, i2, &

rer, 12, ', 12, 1x, 13)

end subroutine start_timing

subroutine end_timing()
implicit none

call date_and_time(values=dt)
print 100, dt(1:3), dt(5:8)
100 format (1x, 14, /', i2, '/', i2, 1x, i2, &
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rer, 12, ', 12, 1x, 1i3)
end subroutine end_timing

real function time_difference()
implicit none

tt = 0.0

call date_and_time (values=dt)
h = real(dt(5))

m = real(dt(6))

s = real(dt(7))

ms = real(dt(8))

tt = 60*(60*h+m) + s + ms/1000.0
time_difference = tt - last_tt
last_tt = tt

end function time_difference

end module timing_module

21.9 private,public and protected Attributes

With the examples of modules so far every entity in a module has been accessible
to each program unit that ‘uses’ the module. By default all entities in a module have
the public attribute, but sometimes it is desirable to limit the access. If entities have
the private attribute this limits the possibility of inadvertent changes to a variable by
another program unit.

Example of using public and private attributes:

real, public : :a, b, ¢

integer, private :: i, j, k

If a variable in a module is declared to be public, its access can be partially
restricted by also giving it the protected attribute. This means that the variable can
still be seen by program units that use the module but its value cannot be changed

e.g.

integer, public, protected:: i
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21.10 The use Statement

In its simplest form the use statement is

use module_name

which then makes all the module’s public entities available to the program unit. There
may be times when only certain entities should be available to a particular program
unit. In Example 1 subroutine subl "uses’ maths_module but only needs pi and
not ¢, e and g. The use statement could therefore be

use maths_module, only: pi

There are also times when an entity in a module needs to have its name changed
when used in a program unit. For example variable g in maths_module needs to
be called gravity in subroutine subl so the use statement becomes

use maths_module, gravity=> g

We have also used this facility in example 1 where we renamed dp to wp.

21.11 Notes on Module Usage and Compilation

In the examples so far we have organised our code using one file. The file will
comprise one or more of the following program units:

e main program
e subroutine

e function

e module

Another way of organising our code is to use several files and include statements.
The next example shows a way of doing this.

21.12 Example 5: Modules and Include Statements

Here is the program source.

include ’'precision_module.f90’
include ’'maths_module.f90’
include ’'subl_module.f90’
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program ch2105

use precision_module, wp => dp
use subl_module

implicit none
real (wp) :: r, a, cC
print *, ’‘radius?’

read *, r
call subl(r, a, c)

print *, ’ for radius = ', r
print *, ' area = ', a
print *, ’ circumference = ', c

end program ch2105

and we will use both styles throughout the rest of the book.

21.13 Formal Syntax

The following is taken from the Fortran standard and describes more fully require-
ments in the interface area.

21.13.1 Interface

The interface of a procedure determines the forms of reference through which it may
be invoked. The procedures interface consists of its name, binding label, generic
identifiers, characteristics, and the names of its dummy arguments. The character-
istics and binding label of a procedure are fixed, but the remainder of the interface
may differ in differing contexts, except that for a separate module procedure body
(15.6.2.5), the dummy argument names and whether it has the NON_RECURSIVE
attribute shall be the same as in its corresponding module procedure interface body
(15.4.3.2).

An abstractinterface is a set of procedure characteristics with the dummy argument
names.
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21.13.2 Implicit and Explicit Interfaces

Within the scope of a procedure identifier, the interface of the procedure is either
explicit or implicit. The interface of an internal procedure, module procedure, or
intrinsic procedure is always explicit in such a scope.

The interface of a subroutine or a function with a separate result name is explicit
within the subprogram where the name is accessible.

21.13.3 Explicit Interface

A procedure other than a statement function shall have an explicit interface if it is
referenced and

e areference to the procedure appears

— with an argument keyword, or
— in a context that requires it to be pure,

e the procedure has a dummy argument that

— hastheallocatable,optional,pointer, target,or value attribute,
is an assumed-shape array,

is a coarray,

is polymorphic,

e the procedure has a result that

— is an array,
— is a pointer or is allocatable, or
— has a nonassumed type parameter value that is not a constant expression,

e the procedure is elemental

21.14 Summary

We have now introduced the concept of a module, another type of program unit,
probably one of the most important features of modern Fortran. We have seen in this
chapter how they can be used:

Define global data.

Define derived data types.

Contain explicit procedure interfaces.
Package together procedures.
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This is a very powerful addition to the language, especially when constructing
large programs and procedure libraries.

21.15 Problems

21.1 Write two functions, one to calculate the volume of a cylinder 712l where the
radius is r and the length is I, and the other to calculate the area of the base of the
cylinder 72

Define 7 as a parameter in a module which is used by the two functions. Now
write a main program which prompts the user for the values of r and 1, calls the two
functions and prints out the results.

21.2 Make all the real variables in the above problem have 15 significant digits and
arange of 1073%7 to 1073%7, Use a module.
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Data Structuring in Fortran oo

The good teacher is a guide who helps others to dispense with
his services.
R. S. Peters, Ethics and Education

Aims
The aims of this chapter are to look at several complete examples illustrating data
structuring in Fortran using the following

Singly linked lists
Ragged arrays

A perfectly balanced tree
A date data type

22.1 Introduction

This chapter looks at simple data structuring in Fortran using a range of examples.
We use modules throughout to define the data structures that we will be working
with. The chapter starts with a number of pointer examples.

22.2 Example 1: Singly Linked List: Reading an Unknown
Amount of Text

Conceptually a singly linked list consists of a sequence of boxes with compartments.
In the simplest case the first compartment holds a data item and the second contains
directions to the next box.

© Springer International Publishing AG, part of Springer Nature 2018 359
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In the diagram below we have a singly linked list that holds characters Jane. We
assume that the address of the start of the list is 100. We assume 4 bytes per character
(a 32 bit word) and 4 bytes per pointer.

e Element 1 is at address 100 and holds the character J and a pointer to the next
element at address 108.

e Element 2 holds the character a and a pointer to the next element at address 116.

e Element 3 holds the character n and a pointer to the next element at address 124.

e Element 4 holds the character e and does not point to anything - we use the null
pointer.

[J : 108] -> [a : 116] -> [n : 124] -> [e : null]

We can construct a data structure in Fortran to work with a singly linked list by
defining a link data type with two components, a character variable and a pointer
variable to a link data type. A complete program to do this is given below:

module link_module

type link
character (len=1l) :: x
type (link), pointer :: next => null()

end type link
end module link_module

program ch2201
use link module
implicit none

character (len=80) :: fname

integer :: io_stat_number = 0

type (link), pointer :: root, current
integer :: i = 0, n

character (len=:), allocatable :: string
print *, ' Type in the file name ?
read ’(a)’, fname

open (unit=1, file=fname, status='0ld’)

allocate (root)

! read first data item

read (unit=1, fmt=’(a)’, advance='no’, &
iostat=io_stat_number) root%x

if (io_stat_number/=-1) then
i=1i+1

allocate (root%next)
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end if

current => root

! read the rest

do while (associated(current%next))
current => current%next
read (unit=1, fmt='(a)’, advance='no’, &
iostat=io_stat_number) current%x
if (io_stat_number/=-1) then
i=1+1
allocate (current$next)
end 1if
end do

print *, i, ' characters read’

n =1
allocate (character(len=n) :: string)
i=0
current => root
do while (associated(current%next))
i=1i+1
string(i:i) = current$%$x
current => current%next
end do
print *, ‘data read was:’
print *, string

end program ch2201
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The first thing of interest is the type definition for the singly linked list. We have

module link_module

type link
character (len=1) :: c
type (link) , pointer :: next => null()

end type link
end module link module

and we call the new type 1ink. It comprises two component parts: the first holds
a character ¢, and the second holds a pointer called next to allow us to refer to

another instance of type 1ink.

We use the intrinsic null () to provide an initial value for the next pointer.

The next item of interest is the variable definition. Here we define two variables
root and current to be pointers that point to items of type 1ink. In Fortran



362 22 Data Structuring in Fortran

when we define a variable to be a pointer we also have to define what it is allowed
to point to. This is a very useful restriction on pointers, and helps make using them
more secure. The first executable statement

allocate(root)

requests that the variable root be allocated memory. The next statement reads a
character from the file. We are using a number of additional features of the read
statement, including

iostat=io_stat_number

advance='no’

and the two options combine to provide the ability to read an arbitrary number of text
from a file a character at a time. If there is data in the file we allocate root%next and
increment the character count 1. We then loop until we reach end of file. When end
of file is reached the while loop will terminate as next is null (). The statement

current => root

means that both current and root point to the same physical memory location, and
this holds a character data item and a pointer. We must do this as we have to know
where the start of the list is. This is now our responsibility, not the compilers. Without
this statement we are not able to do anything with the list except fill it up - hardly
very useful.

When end of file is reached the while loop will terminate as next is null ().
We then print out the number of characters read. We then allocate a character variable
of the correct size. The next statement

current => root

means that we are back at the start of the list, and in a position to traverse the list and
copy each character from the linked list to the word character variable.

There is thus the concept with the pointer variable current of it providing us
with a window into memory where the complete linked list is held, and we look at
one part of the list at a time. Both while loops use the intrinsic function associated
to check the association status of a pointer.

It is recommended that this program be typed in, compiled and executed. It is
surprisingly difficult to believe that it will actually read in a completely arbitrary
amount of text from a file. Seeing is believing.
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22.3 Example 2: Reading in an Arbitrary Number of Reals
Using a Linked List and Copying to an Array

In this example we will look at using a singly linked list to read in an arbitrary amount
of data and then allocating an array to copy it to for normal numeric calculations at
run time. Here is the program.

module link_module

type link
real :: x
type (link), pointer :: next => null()

end type link
end module link module

program ch2202
use link_module
implicit none

character (len=80) :: fname

integer :: io_stat_number = 0

type (link), pointer :: root, current
integer :: i = 0, n

real, allocatable, dimension (:) :: y
print *, ’ Type in the file name ? ’
read ’(a)’, fname

open (unit=1, file=fname, status='o0ld’)

allocate (root)

! read first data item

read (unit=1, fmt=*, &
iostat=io_stat_number) root%x

if (io_stat_number/=-1) then
i=1i+1
allocate (root%next)

end if

current => root

! read the rest
do while (associated(current%next))

current => current%next
read (unit=1, fmt=*, &
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iostat=io_stat_number) current%x
if (io_stat_number/=-1) then
i=1+1
allocate (current%next)
end if
end do

print *, i, ’ numbers read’

n =1

allocate (y(1l:n))

i=0

current => root

do while (associated(current%next))
i=1i+1
v(i) = current%$x

current => current®next

end do
print *, ‘data read was:’
doi=1, n

print *, y(i)
end do

end program ch2202

A casual visual comparison of the two examples shows many similarities.

Diff is a line-oriented text file comparison utility. It tries to determine the smallest
set of deletions and insertions to create one file from the other. The diff command
displays the changes made in a standard format. Given one file and the changes, the
other file can be created.

Here is the output from running this utility on these two examples.

3c3

< character (len=1) :: x
> real :: X

8c8

< program ch2201

> program ch2202

15¢c15
< character (len=:), allocatable :: string
> real, allocatable, dimension (:) :: vy

25c25
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< read (unit=1, fmt=’(a)’, advance='no’, &

> read (unit=1, fmt=*, &

37c37

< read (unit=1, fmt=’(a)’, advance='no’, &
> read (unit=1, fmt=*, &

45c45

< print *, i, ' characters read’

> print *, i, ’ numbers read’

48c48

< allocate (character(len=n) :: string)

> allocate (y(1l:n))

53c53
< string(i:i) = current%$x
> v (i) = current%x

57,58c57,61
< print *, string
< end program ch2201

do i =1, n

vV V. VvV VvV Vv
[0]
=]
(ol
ol
[e]

end program ch2202

22.4 Example 3: Ragged Arrays

Arrays in Fortran are rectangular, even when allocatable. However if you wish to set
up a lower triangular matrix that uses minimal memory Fortran provides a number of
ways of doing this. The following example achieves it using allocatable components.

module ragged_module
implicit none
type ragged
real, dimension (:), allocatable :: &
ragged_row
end type ragged
end module ragged_module
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program ch2203
use ragged_module
implicit none

Data Structuring in Fortran

integer :: i

integer, parameter :: n = 3

type (ragged), dimension (1l:n) :: lower_diag
doi=1, n

allocate (lower_diag(i)%ragged_row(l:1i))
print *, ’ type in the values for row ',

read *, lower_diag(i)%ragged_row(1l:1)
end do
doi=1, n
print *, lower_diag(i)%ragged_row(l:1i)
end do
end program ch2203

i

Within the first do loop we allocate a row at a time and each time we go around

the loop the array allocated increases in size.

22.5 Example 4: Ragged Arrays and Variable Sized Data

Sets

The previous example showed how to use allocatable components in a derived type

to achieve ragged arrays.

In this example we are going to use data from the UK Met Office. Here is the

current web address.

https://www.metoffice.gov.uk/public/weather/

climate-historic/#?tab=climateHistoric

In this example both the number of stations and the number of data items for each
station is read in at run time and allocated accordingly. Notice that O is valid as the

number of data items for a station.

module ragged_module
type ragged

real, allocatable, dimension (:) :: rainfall

end type ragged
end module ragged_module
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program ch2204
use ragged_module
implicit none

integer :: i

integer :: nr

integer, allocatable, dimension (:) :: nc

type (ragged), allocatable, dimension (:) :: &
station

print *, ’ enter number of stations’

read *, nr
allocate (station(l:nr))
allocate (nc(l:nr))
do i =1, nr
print *, ’ enter the number of data values ' &
, 'for station ', 1
read *, nc(i)

allocate (station(i)%rainfall(l:nc(i)))

if (nc(i)==0) then
cycle

end if

print *, ' Type in the values for station ', &
i

read *, station(i)%rainfall(l:nc(i))

end do
print *, '’ Row N Data’
do 1 =1, nr
print 100, i, nc(i), station(i)%rainfall(l: &
nc(i))
100 format (3x, 13, 2x, 13, 2x, 12(1x,f6.2))
end do

end program ch2204

Here is the input data file. It is the first 6 years rainfall data from the Met Office
Cwmystwyth site.

o O O o

144.
112.
77.
130.
66.

w 3 NN U1
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66.
141.
149.
134.

© Ul B

117.
72.
56.

236.

218.
69.
85.

204.

10

106.

159.

126.

121.
62.

154.

165.

139.

234.
19.

12
83.
38.
67.
76.
90.
83.

177.

180.
66.

171.

174.

334.

BN 9 O N 0o

<N b O O W W oYV TN

o Ul W O Ul O Ul i W U

Here is the output.

enter number of stations

enter the number of data values for station
enter the number of data values for station
enter the number of data values for station

Type in the values for station 3
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enter the number of data values for station 4
Type in the values for station 4
enter the number of data values for station 5
Type in the values for station 5
enter the number of data values for station 6

Type in the values for station 6

Row N Data
1 0
2 0
3 9 144.80 112.50 77.20 130.70 66.30

66.10 141.10 149.50 134.80
4 8 117.80 72.80 56.70 236.20 218.00
69.70 85.20 204.40
5 10 106.20 159.70 126.90 121.60 62.90
154.30 165.00 139.00 234.40 19.70
6 12 83.10 38.50 67.30 76.40 90.40
83.50 177.00 180.50 66.00 171.90
174.50 334.80

22.6 Example 5: Perfectly Balanced Tree

Let us now look at a more complex example that builds a perfectly balanced tree and
prints it out. A loose definition of a perfectly balanced tree is one that has minimum
depth for n nodes. More accurately a tree is perfectly balanced if for each node the
number of nodes in its left and right subtrees differ by at most 1:

module tree_node_module
implicit none

type tree_node
integer :: number
type (tree_node), pointer :: left => null(), &
right => null/()
end type tree_node

end module tree_node_module

module tree_module
implicit none

contains
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recursive function tree(n)
use tree_node_module
implicit none
integer, intent (in) :: n
type
type
integer :: 1, r, x

(tree_node), pointer

(tree_node), pointer

if (n==0) then
print *, ’ terminate tree’
nullify (answer)
else
1 =n/2
r=n-1-1
print *, 1, r, n
print *, ’ next item’

read *, x

allocate (new_node)
new_node%number = x
print *, ’ left branch’

new_node%left => tree(l)

print *, ’ right branch’
new_node%right => tree(r)
answer => new_node

end if

print *, ’ function tree ends’

end function tree

end module tree_module

module print_tree_module

implicit none

contains

recursive subroutine print_tree(t,

use tree_node_module

implicit none

type (tree_node), pointer :: t
integer :: i

integer :: h

if (associated(t)) then

call print_tree(t%left, h+1l)
doi=1,h

result

22 Data Structuring in Fortran

(answer)

answer

new_node

h)
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write (unit=*, fmt=100, advance='no’)
end do
print *, $number
call print_tree(t%right, h+l)
end if
100 format (' ')

end subroutine print_tree

end module print_tree_module

program ch2205

! construction of a perfectly balanced tree
use tree_node_module
use tree_module
use print_tree_module

implicit none

type (tree_node), pointer :: root
integer :: n_of_items
print *, ’‘enter number of items’

read *, n_of_items

root => tree(n_of_items)

call print_tree(root, 0)
end program ch2205

There are a number of very important concepts contained in this example and they
include:

e The use of a module to define a type. For user defined data types we must create
a module to define the data type if we want it to be available in more than one
program unit .

e The use of a function that returns a pointer as a result.

e As the function returns a pointer we must determine the allocation status
before the function terminates. This means that in the above case we use the
nullify(result) statement. The other option is to target the pointer.

e The use of associated to determine if the node of the tree is terminated or
points to another node.

Type the program in and compile, link and run it. Note that the tree only has the
minimal depth necessary to store all of the items. Experiment with the number of
items and watch the tree change its depth to match the number of items.
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22.7 Example 6: Date Class

The following is a complete manual rewrite of Skip Noble and Alan Millers date
module. Here are two urls for Alan Miller’s Fortran 90 version of the code. The
original Skip Noble Fortran 77 version is in Chap. 38.

http://jblevins.org/mirror/amiller/
http://jblevins.org/mirror/amiller/datesub.£90

Here are some details about the function and subroutine naming conversion.

Skip Noble Alan Miller

Fortran 77 Fortran 90 Current implementation

IDAY iday date_to_day_in_year

IZLR izlr date_to_weekday number

CALEND calend yvear_and_day_to_date

CDATE cdate julian_to_date

NDAYS ndays ndays

DAYSUB daysub julian_to_date_and_week_and_day
JD jd calendar_to_julian

The original worked with the built-in Fortran intrinsic data types, i.e. year,
month and day were plain integer data types. It has been rewritten to work with a
derived date data type.

We have also added a function to print dates out in a variety of formats. This
is based on a subroutine called date_stamp from the original code. The first key
code segment is

type, public :: date
private
integer :: day
integer :: month
integer :: year

end type date

where the date data type is public but its components are private. This means that
access to the components must be done via subroutines and functions within the
date_module module. The next key segment is

character (9) :: day(0:6) = &
(/ ’Sunday ', 'Monday ', 'Tuesday ', &
'Wednesday'’, ’'Thursday ', 'Friday T, &

'Saturday ' /)
character (9) :: month(1:12) = &


https://doi.org/10.1007/978-3-319-75502-1_38
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(/ '"January ', 'February ', ’'March T, &
‘April ', 'May ', "June T, &
"July ', '"August ', 'September’, &
'October ’, ’'November ', ’'December ' /)

which declares the variable day to be an array of characters of length 9. They are
initialised with the names of the days. The variable day is declared in the module
and is available to all contained functions and subroutines.

The variable month is an array of characters of length 9 and is initialised to the
names of the months. The variable month is declared in the module and is available
to all contained functions and subroutines. The next key code segment is

public :: &
calendar_to_julian, &
date_, &
date_to_day_in_year, &
date_to_weekday_number, &
get_day, &
get_month, &
get_year, &
julian_to_date, &
julian_to_date_and_week_ and_day, &
ndays, &
print_date, &
vear_and_day_to_date

where we explicitly make the listed subroutines and functions public, as the code
segment from the top of the module,

We have to provide a user defined constructor when the components of the derived
type are private. This is given below:

function date_ (dd,mm,yyyy) result (x)
implicit none
type (date) :: x
integer, intent (in) :: dd, mm, yyyy
x = date(dd, mm, yyyy)

end function date_

This in turn calls the built-in constructor date. As the date_ function is now

an executable statement we cannot initialise in a declaration, i.e. the following is not
allowed.

type (date) :: datel_(11,2,1952)
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We also provide three additional procedures to access the components of the date
class:

get_day
get_month
get_year

This is common programming practice in object oriented and object based pro-
gramming.

The print_date function also has examples of internal write statements. These
are

write(print_date(1:2),’ (12)’)x%day
write(print_date(4:5), ' (12)’)x%month
write(print_date(7:10) , ' (i4)') x%year
write (print_date (pos:pos+1l) , ' (12)’) x%day
write(print_date(pos:pos+3) , ' (i4)’) x%year

where we construct the elements of the character variable from the integer values of
the x%day, x$month and x%year data.

module date_module
implicit none

private

type, public :: date
private
integer :: day
integer :: month
integer :: year

end type date

character (9) :: day(0:6) = (/ ’'Sunday &
'Monday ', 'Tuesday ', ’'Wednesday’,6 &
'Thursday ', 'Friday ', ’'Saturday ‘' /)

character (9) :: month(1:12) = (/ ’'January ', &
'February ', ’'March ', 'April T, &
'May 7, 'June ’, 'July T, &
'August ', 'September’, ’‘October ', &
'November ‘', ’'December ' /)

public :: calendar_to_julian, date_, &

date_to_day_in_vyear, date_to_weekday_ number, &
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get_day, get_month, get_vyear, &
julian_to_date, &
julian_to_date_and_week and_day, ndays, &
print_date, year_and_day_to_date

contains

function calendar_to_julian(x) result (ival)
implicit none
integer :: ival
type (date), intent (in) :: x

ival = x%day - 32075 + 1461* (x%year+4800+ (x% &
month-14)/12)/4 + 367* (x%month-2- ( (x%month &
-14)/12)*12) /12 - 3*((x%year+4900+ (x%month &
-14)/12)/100) /4
end function calendar_to_julian

function date_ (dd, mm, yyyy) result (x)
implicit none
type (date) :: x
integer, intent (in) :: dd, mm, yyyy

x = date(dd, mm, yyvyy)
end function date_

! functions

Iovizle" date_to_day_in_year

! and

! "iday" date_to_weekday number

! are taken from remark on
! algorithm 398, by j. douglas robertson,
! cacm 15(10):918.

function date_to_day_in_year (x)
implicit none
integer :: date_to_day_in_year
type (date), intent (in) :: x
intrinsic modulo

date_to_day_in_year = 3055* (x%3month+2) /100 - &
(x$month+10) /13*2 - 91 + (1-(modulo (x%year &
4)+3) /4+ (modulo (x%year,100)+99) /100-( &
modulo (x%$year,400)+399) /400) * (x¥month+10) / &
13 + x%day



376 22 Data Structuring in Fortran
end function date_to_day_ in_year

function date_to_weekday number (x)
implicit none
integer :: date_to_weekday_number
type (date), intent (in) :: x
intrinsic modulo

date_to_weekday_number = modulo( (13*( &
xgmonth+10- (x%month+10) /13*12)-1) /5+x%day+ &
77+5*% (x$year+ (x¥month-14) /12- (x%year+ &
(x$month-14) /12)/100*100) /4+ (x%year+ (x% &
month-14)/12) /400- (x%year+ (x%month- &
14)/12)/100*2, 7)
end function date_to_weekday_number

function get_day (x)
implicit none
integer :: get_day
type (date), intent (in) :: x

get_day = x%day
end function get_day

function get_month (x)
implicit none
integer :: get_month
type (date), intent (in) :: x

get_month = x%$month
end function get_month

function get_year (x)
implicit none
integer :: get_year
type (date), intent (in) :: x

get_vyear = x%year
end function get_year

! cdate - julian_to_date

! see cacm 1968 11(10) :657,

! letter to the editor by fliegel and van
! flandern.
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function julian_to_date(julian) result (x)
implicit none
integer, intent (in) :: julian
integer :: 1, n
type (date) :: x

julian + 68569

= 4*1/146097

=1 - (146097*n+3) /4

x%year = 4000* (1+1)/1461001

1 =1 - 146l1*x%year/4 + 31
x$month = 80*1/2447

x%day = 1 - 2447*x%month/80

1 = x%month/11

x%month = x%month + 2 - 12*1
x%year = 100*(n-49) + x%year + 1

=B

end function julian_to_date

subroutine julian_to_date_and_week_and_day (jd,

x, wd, ddd)

implicit none

integer, intent (out) :: ddd, wd
integer, intent (in) :: jd

type (date), intent (out) :: x

x = julian_to_date(jd)
wd = date_to_weekday_ number (x)
ddd = date_to_day_in_year (x)
end subroutine julian_to_date_and_week_ and_day

function ndays (datel, date2)

implicit none

integer :: ndays
type (date), intent (in) :: datel, date2
ndays = calendar_to_julian(datel) - &

calendar_to_julian (date2)

end function ndays

function print_date(x, day_names, &
short_month_name, digits)
implicit none
type (date), intent (in) :: x
logical, optional, intent (in) :: day_names,

&

&

377
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short_month_name, digits

character (40) :: print_date
integer :: pos
logical :: want_day, want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

o

print_date =
if (present (day_names)) then
want_day = day_names
end if
if (present (short_month_name)) then
want_short_month_name = short_month_name
end if
if (present(digits)) then
want_digits = digits
end if
if (want_digits) then

write (print_date(1:2), ’(i2)') x%day

print_date(3:3) = '/’

write (print_date(4:5), ’(i2)') x%month

print_date(6:6) = '/’

write (print_date(7:10), ’(i4)') x%year
else

if (want_day) then
pos = date_to_weekday number (x)
print_date = trim(day(pos)) // ' '

pos = len_trim(print_date) + 2
else
pos =1
print_date = *
end if
write (print_date(pos:pos+1l), ' (i2)') &
x%day
if (want_short_month_name) then
print_date(pos+3:pos+5) = month (x%month) &
(1:3)
pos = pos + 7
else
print_date(pos+3:) = month (x%month)

pos = len_trim(print_date) + 2
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end if
write (print_date(pos:pos+3), ’'(i4)’') &
x$year

end 1if

return

end function print_date

! calend - year_and_day_to_date
! see acm algorithm 398,

! tableless date conversion, by
! dick stone, cacm 13(10):621.

function year_and_day_to_date(year, day) &
result (x)

implicit none

type (date) :: x
integer, intent (in) :: day, year
integer :: t

intrinsic modulo

x%year = year

t =0

if (modulo(year,4)==0) then
t =1

end if

if (modulo(year,400)/=0 .and. &
modulo (year,100)==0) then
t =0

end 1if

x%day = day

if (day>59+t) then
x%day = x%day + 2 - t

end if
x%month = ((x%day+91)*100) /3055
x%day = (x%day+91) - (x%month*3055)/100

x$month = x%month - 2

if (x%month>=1 .and. x%month<=12) then
return

end 1if

write (unit=*, fmt=’(a,ill,a)’) ’'S$Syear_and_d&
&ay_to_date: day of the year input &
&=', day, ' 1is out of range.’

end function year_and_day_to_date
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end module date_module

program ch2206
use date_module, only: calendar_to_julian, &
date, date_, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_year, julian_to_date_and week_and_day, &
ndays, print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy
integer :: val(8)

intrinsic date_and_time

type (date) :: datel, date2, x

call date_and_time (values=val)
yyyy = val(l)
mm = 10
do i = 31, 26, -1
x = date_ (i, mm, yyvyy)

if (date_to_weekday_ number (x)==0) then
print *, ‘Turn clocks back to EST on: ', &
i, ' October ’, get_year (x)
exit
end if
end do

call date_and_time (values=val)
yyyy = val(l)
mm = 4
do i1 =1, 8
x = date_(i, mm, yyyy)

if (date_to_weekday_ number (x)==0) then
print *, ‘Turn clocks ahead to DST on: ', &
i, ' April ', get_year (x)
exit
end if
end do

call date_and_time (values=val)

yyyy = val(l)

mm = 12

dd = 31

x = date_(dd, mm, yyyy)

if (date_to_day_in_year (x)==366) then
print *, get_year(x), ’' is a leap year’
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else
print *, get_year(x), ' is not a leap year’
end if
x = date_(1, 1, 1970)
call julian_to_date_and_week_and_day &
(calendar_to_julian(x), x, wd, ddd)
if (get_year(x)/=1970 .or. get_month(x)/=1 &
.or. get_day(x)/=1 .or. wd/=4 .or. ddd/=1) &
then
print *, &
'julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ', get_year(x), &
get_month(x), get_day(x), wd, ddd
stop
end 1f

datel = date_ (22, 5, 1984)
date2 = date_(22, 5, 1983)
ndiff = ndays(datel, date2)
vyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then
print *, ’‘ndays failed; ndiff = ', ndiff
else
if (get_month(x)/=1 .and. get_day(x)/=1) &
then
print *, ’‘year_and_day_to_date failed’

print *, ' mma, dda = ‘', get_month(x), &
get_day (x)
else
print *, ’ calendar_to_julian OK’
print *, ' date_ OK’
print *, ' date_to_day_in_year OK’
print *, ’ date_to_weekday_number OK’
print *, ’ get_day OK’
print *, ’ get_month OK’
print *, ’ get_year OK’

print *, &
' julian_to_date_and_week_and_day OK’

print *, ’ ndays OK’
print *, ’ year_and_day_to_date OK’
end if

end if
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x = date_ (11, 2, 1952)

print *, ’ print_date test’

print *, ’ Single parameter &
print_date (x)

print *, &
’ day_names=false short_month name=false ', &
print_date(x, day_names=.false., &
short_month_name=.false.)

print *, &
' day_names=true short_month_name=false ', &
print_date(x, day_names=.true., &
short_month_name=.false.)

print *, &
' day_names=false short_month_name=true ', &

print_date(x, day_names=.false., &
short_month_name=.true.)

print *, &
’ day_names=true short_month_name=true ', &
print_date(x, day_names=.true., &
short_month_name=.true.)

print *, ’ digits=true &
print_date(x, digits=.true.)

print *, ’ Test out a month’

yyyy = 1970
do dd = 1, 31
x = year_and_day_ to_date(yyyy, dd)
print *, print_date(x, day_ names=.false., &
short_month_name=.true.)
end do

end program ch2206
There are wrap problems with some of the lengthier arithmetic expressions. The
version on the web site is obviously correct.

We also have an alternate form of array declaration in this program, which is given
below. It is common in Fortran 77 style code:

integer :: val(8)
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One improvement would be additional code to test the validity of dates. This would
be called from within our constructor date_. This would mean that we could never
have an invalid date when using the date_module. This is left as a programming
exercise.

22.7.1 Notes: DST in the USA

The above program is no longer correct. Beginning in 2007, Daylight Saving Time
was brought forward by 3 or 4 weeks in Spring and extended by one week in the
Fall. Daylight Saving Time begins for most of the United States at 2 a.m. on the
second Sunday of March. Time reverts to standard time at 2 a.m. on the first Sunday
in November.

22.8 Example 7: Date Data Type with USA and ISO
Support

The date derived type in this chapter handles conventional UK or world data types.
To handle USA and ISO date formats we have added an extra component to this
derived type. Here is the updated type.

type, public :: date
private

integer :: day

integer :: month

integer :: year

integer :: date_type = 1

end type date

When we use the default constructor we set the date_type to 1. An integer
variable is often used in a problem like this. In the date_iso constructor we set
date_type to 3 and in the date_us constructor set set date_type to 2.

The only other method we have to alter is the print_date method. In this
method we have an 1f then else construct to choose how to print the date,
based on the date type.

We have solved the problem of how to handle a variety of date formats in a simple,
non object oriented fashion. First we have the date module.

module date_module

implicit none

private
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type, public date
private
integer day
integer month
integer yvear
integer :: date_type =1

end type date

character (9) day(0:6) = (/ ’'Sunday ', &
'Monday ', 'Tuesday ', ’‘Wednesday’', &
'Thursday ', 'Friday ', 'Saturday ' /)

character (9) month(1:12) = (/ ’'January ', &
'February ', 'March ', 'April r,&
'May ', "June r, "July r, &
'August ', 'September’, ’‘October ', &
'November ', ’'December ’ /)

public calendar_to_julian, date_, date_iso, &
date_us, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_vyear, julian_to_date, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day to_date

contains
function date_(dd, mm, yyyy) result (x)

implicit none

type (date) X

integer, intent (in) dd, mm, vyyyy
integer dt = 1

x = date(dd, mm, yyyy, dt)

end function date_

function date_iso(yyyy, mm, dd) result (x)

implicit none

type (date) X

integer, intent (in) dd, mm, yyvyy
integer dt = 3

x = date(dd, mm, yyyy, dt)

end function date_iso
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function date_us (mm, dd, yyyy) result (x)
implicit none

type (date) :: x
integer, intent (in) :: dd, mm, yyyy
integer :: dt = 2

x = date(dd, mm, yyyy, dt)
end function date_us

include ’‘date_module_include_code.f90"

function print_date(x, day_names, &
short_month_name, digits)
implicit none
type (date), intent (in) :: x
logical, optional, intent (in) :: day_names, &
short_month_name, digits

character (30) :: print_date
integer :: pos
logical :: want_day, want_short_month_name, &

want_digits
integer :: 1, t
intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

print_date = *
if (present(day_names)) then
want_day = day_names
end if
if (present (short_month_name)) then
want_short_month_name = short_month_name
end if
if (present(digits)) then
want_digits = digits
end if

! Start of code dependent on date_type
! day month year

if (x%date_type==1) then
if (want_digits) then
write (print_date(1:2), ' (i2)’) x%day
print_date(3:3) = "/’
write (print_date(4:5), ’(i2)') x%month

print_date(6:6) = '/’
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write (print_date(7:10), ’(i4d)’') x%year
else
if (want_day) then
pos = date_to_weekday_ number (x)
print_date = trim(day(pos)) // ' '

pos = len_trim(print_date) + 2
else
pos = 1
print_date = *
end 1if
write (print_date(pos:pos+1l), ’'(i2)’) &
x%day

if (want_short_month_name) then
print_date (pos+3:pos+5) &
= month (x%month) (1:3)
pos = pos + 7

else
print_date(pos+3:) = month (x%$month)
pos = len_trim(print_date) + 2

end 1if

write (print_date(pos:pos+3), ‘' (i4)’) &
x%year

end if
else if (x%date_type==2) then

! month day year
if (want_digits) then

write (print_date(1:2), ’(i2)') x%month
print_date(3:3) = "/’
write (print_date(4:5), ' (i2)’) x%day
print_date(6:6) = "/’
write (print_date(7:10), ’(i4d)’) x%year
else
pos =1
if (want_short_month_name) then
print_date(pos:pos+2) = month (x%month) &
(1:3)
pos = pos + 4
else
print_date(pos:) = month (x%$month)
pos = len_trim(print_date) + 2
end if

if (want_day) then
t = date_to_weekday_ number (x)
1 = len_trim(day(t))
print_date(pos:pos+l) = trim(day(t)) &
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/7
pos = len_trim(print_date) + 2
end if
write (print_date(pos:pos+1l), ‘' (i2)’') &
x%day

pos = pos + 3

write (print_date(pos:pos+3), ’'(i4)’) &
x%year
end if
else if (x%date_type==3) then

! yvear month day
if (want_digits) then

write (print_date(1:4), ' (i4)’') x%year

print_date(5:5) = "/’

write (print_date(6:7), ’(i2)') x%month

print_date(8:8) = "/’

write (print_date(9:10), ’(i2)') x%day
else

pos = 1

write (print_date(pos:pos+3), ’'(i4)’) &

x%year

pos = pos + 5
if (want_short_month_name) then

print_date (pos:pos+2) = month (x%month) &
(1:3)
pos = pos + 4
else
print_date(pos:) = month (x%$month)

pos = len_trim(print_date) + 2
end if
if (want_day) then
t = date_to_weekday number (x)
1 = len_trim(day(t))

print_date(pos:pos+l) = trim(day(t))
pos = pos + 1 + 1
end 1if
write (print_date(pos:pos+1l), ' (i2)’') &
x%day
end 1if
end 1if
return

end function print_date

end module date_module
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Note that we have put the common executable code from the earlier date module
into an include file.

include ’'date_module_include_code.f90"

Next we have the program that uses the module.

include ’'ch2207_date_module.f90’

program ch2207
use date_module, only: calendar_to_julian, &
date, date_, date_iso, date_us, &
date_to_day_in_year, date_to_weekday_number, &
get_day, get_month, get_vyear, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day_to_date

implicit none

integer :: i

integer, parameter :: n = 3

type (date), dimension (1l:n) :: x
x (1) = date_ (11, 2, 1952)

x(2) = date_us (2, 11, 1952)

x(3) = date_iso (1952, 2, 11)

doi=1, 3
print *, print_date(x(i))
end do
end program ch2207
Note that we used the alternate syntax of using the

include ’'ch2207_date_module.f90’

statement in this example.

22.9 Bibliography

Chapter 2 provided details of some books that address data structuring, but mainly
from an historical viewpoint.
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22.9 Bibliography 389

We provide a small number of references to books that look at data structuring
more generally.

Schneider G.M., Bruell S.C., Advanced Programming and Problem Solving with
Pascal, Wiley, 1981.

e The book is aimed at computer science students and follows the curriculum guide-
lines laid down in Communications of the ACM, August 1985, Course CS2. The
book is very good for the complete beginner as the examples are very clearly laid
out and well explained. There is a coverage of data structures, abstract data types
and their implementation, algorithms for sorting and searching, the principles of
software development as they relate to the specification, design, implementation
and verification of programs in an orderly and disciplined fashion — their words.

Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley. ISBN 0-
201-53351-0.

e The Modula 3 algorithms are relatively easy to translate into Fortran.

22.10 Problems

22.1 Compile and run the examples in this chapter with your compiler.

22.2 Using ch2202.f90 as a starting point rewrite it to work with a file of integer
data. You may find the diff output useful here.

22.3 Modify the ragged array example that processes a lower triangular matrix to
work with an upper triangular matrix.

22.4 Using the balanced tree example as a basis and modify it to work with a
character array rather than an integer. The routine that prints the tree will also have
to be modified to reflect this.

22.5 Modify the Date program to account for the current DST in the USA.

22.6 Modify ch2204 to calculate and print the average rainfall for each station.



Chapter 23 )
An Introduction to Algorithms oo
and the Big O Notation

Errors using inadequate data are much less than those using no
data at all.
Charles Babbage

Aims

The aims of this chapter are to provide an introduction to algorithms and their be-

haviour. In Computer Science this is normally done using the so called big O notation.
We will cover briefly a small set of behaviour types including

Order O(1)
Order O(n)
Order O (log n)
Order O (n log n)

23.1 Introduction

A method for dealing with approximations was introduced by Bachman in 1892 in
his work Analytische Zahlen Theorie. This is the big O notation.

The big O notation is used to classify algorithms by how they perform depending
on the size of the input data set they are working on. This typically means looking
at both their space and time behaviour.

A more detailed and mathematical coverage can be found in Knuth’s Fundamental
Algorithms.

Chapter one of this book looks at the basic concepts and mathematical prelim-
inaries required for analysing algorithms, and is around 120 pages. Well worth a
read.

© Springer International Publishing AG, part of Springer Nature 2018 391
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_23
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23.2 Basic Background

Table 23.1 summarises some of the details regarding commonly occurring types of
problem.

Table 23.1 Big O notation and complexity

Notation Name
O(1) Constant
O(n) Linear
O(log n) Logarithmic
O(nlogn) = O(log n!) Linearithmic,
loglinear,
quasilinear
O(log log n) Double logarithmic
O(nlog* n) n log-star n
0(n?) Quadratic
On)0<c<1 Fractional power
On)ce>1 Polynomial
or algebraic
O™ c>1 Exponential
O(n!) Factorial

23.3 Brief Explanation

e O (1) Determining if a number is even or odd; using a constant-size lookup table

e O(log log n) Finding an item using interpolation search in a sorted array of
uniformly distributed values.

e O(log n) Finding an item in a sorted array with a binary search or a balanced
search tree as well as all operations in a Binomial heap.

e O(n°) 0 < ¢ < 1 Searching in a kd-tree

e O(n) Finding an item in an unsorted list or a malformed tree (worst case) or in an
unsorted array; Adding two n-bit integers by ripple carry.

e O(nlog™ n) Performing triangulation of a simple polygon using Seidel’s algorith-
m.

e O(n log n) Performing a Fast Fourier transform; heapsort, quicksort (best and
average case), or merge sort.

e O(n?) Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst
case or naive implementation), Shell sort, quicksort (worst case), selection sort or
insertion sort.

e O(n° c > 1 Tree-adjoining grammar parsing; maximum matching for bipartite
graphs.
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e O(c") c > 1 Finding the (exact) solution to the travelling salesman problem using
dynamic programming; determining if two logical statements are equivalent using
brute-force search.

e O (n!) Solving the traveling salesman problem via brute-force search; generating
all unrestricted permutations of a poset; finding the determinant with expansion
by minors.

23.4 Example 1: Order Calculations

This program calculates values for 4 of the above functions, for n from 1 to 10°.

include ’‘precision_module.f90’
program ch2301

use precision_module, wp => dp
implicit none

integer, parameter :: nn = 10
integer :: n
integer, dimension (nn) :: nvalues = [ 1, 10, &

100, 1000, 10000, 100000, 1000000, 10000000, &
100000000, 1000000000 1]

integer :: 1

character *80 heading

heading = ' 1 n 0(1) O(n)’
heading = trim(heading) // &
’ O(n*n) O(log n) O(n log n)’
print *, heading
print *, *
do i =1, nn
n = nvalues (i)
print 100, i, n, order_1(), order_n(n), &
order_n_squared(n), order_log n(n), &
order_n_log_n(n)
100 format (1x, i2, 2x, i10, 2x, i4, 2x, il0, &
2x, el2.4, 2x, £7.2, 2x, el2.4)
end do

contains
integer function order_1()

order_1 =1
end function order_1

integer function order_n(n)
integer, intent (in) :: n

order n = n
end function order_n
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function order_n_squared(n)

use precision_module, wp => dp
integer, intent (in) :: n
real (wp) :: order_n_squared

order_n_squared = dble(n)*dble(n)
end function order_n_squared

real function order_log_n(n)
integer, intent (in) :: n

order_log n = log(real(n))
end function order_log_n

real function order_n_log_n(n)
integer, intent (in) :: n

order_n_log n = n*log(real(n))
end function order_n_log_n

end program ch2301

Here is the output from running the program.

i n o(1) O (n) O(n*n) O(log n) O(n log n)
1 1 1 1 0.1000E+01 0.00 0.0000E+00
2 10 1 10 0.1000E+03 2.30 0.2303E+02
3 100 1 100 0.1000E+05 4.61 0.4605E+03
4 1000 1 1000 0.1000E+07 6.91 0.6908E+04
5 10000 1 10000 0.1000E+09 9.21 0.9210E+05
6 100000 1 100000 0.1000E+11 11.51 0.1151E+07
7 1000000 1 1000000 0.1000E+13 13.82 0.1382E+08
8 10000000 1 10000000 0.1000E+15 16.12 0.1612E+09
9 100000000 1 100000000 0.1000E+17 18.42 0.1842E+10
10 1000000000 1 1000000000 0.1000E+19 20.72 0.2072E+11

23.5 Sorting

In the book we use two sorting algorithms

e Quicksort
e Insertion sort

Table 23.2 looks at their behaviour.
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Table 23.2 Quicksort and insertion sort comparison

Algorithm Data structure | Time Worst case
complexity auxiliary
Space
complexity
Best Average Worst Worst
Quicksort Array O(nlog(n)) | Omlog(n)) 0(n2) O(n)
Insertion sort | Array Oo(n) 0(n?) 0(n?) o)

23.6 Basic Array and Linked List Performance

Table 23.3 summarises the array and linked list performance.

Table 23.3 Array and linked list performance

Data Time Space

structure| com- com-
plexity plexity
Average Worst Worst
Index |Search |Insert |Delete |Index |Search |Insert | Delete

Basic o) o) |- - o) omn) |- - 0(n)

array

Dynamic O(1) O(n) O(n) O(n) o(1) O(n) O(n) O(n) O(n)
array
Singly- | O(n) O(n) o(1) o(1) O(n) O(n) o(1) o(1) O(n)
linked
list

23.7 Bibliography

The earliest books that we have used in this area are those by Donald Knuth, and
details are given below in chronological order.

Volume 1, Fundamental Algorithms, first edition, 1968, xxi+634pp, ISBN 0-201-
03801-3.
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396 23 An Introduction to Algorithms and the Big O Notation
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e Knuth uses the Mix assembly language (an artificial language) and this limits the
accessibility of the books.

e However within the Computer Science community they are generally regarded as
the first and most comprehensive treatment of its subject.

For something more accessible, Sedgewick has written several programming lan-
guage versions of a book on algorithms. He was a student of Knuth’s.

The earliest used Pascal, and later editions have used C, C++ and Modula 2 and
Modula 3.

Sedgewick, Robert (1992). Algorithms in C++, Addison-Wesley. ISBN 0-201-
51059-6.

Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley. ISBN 0-
201-53351-0.

e The Modula 3 algorithms are relatively easy to translate into Fortran.
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Operator Overloading st

All the persons in this book are real and none is fictitious even in
part.
Flann O’Brien, The Hard Life

Aims
The aims of this chapter are to look at operator overloading in Fortran.

24.1 Introduction

In programming operator overloading can be regarded as a way of achieving poly-
morphism in that operators (e.g. +, —, *, / or =) can have different implementations
depending on the types of their arguments.

In some programming languages overloading is defined by the language. In For-
tran for example, the addition + operator invokes quite different code when used with
integer, real or complex types.

Some languages allow the programmer to implement support for user defined
types. Fortran introduced support for operator and assignment overloading in the
1990 standard.

24.2 Other Languages

Operator overloading is not new and several languages offer support for the feature
including:

© Springer International Publishing AG, part of Springer Nature 2018 397
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Algol 68 - 1968

Ada - Ada 83

C++ - First standard, 1998
Eiffel - 1986

Ci# - 2001

Java, however does not.

24  Operator Overloading

24.3 Example 1: Overloading the Addition (+) Operator

The following example overloads the addition operator.

module t_position
implicit none
type position

integer :: X
integer :: vy
integer :: z

end type position
interface operator (+)

module procedure new_position
end interface operator (+)

contains

function new_position(a, b)

type (position), intent (in) :: a,
type (position) :: new_position
new_position%x = a%$x + b%x

new_position%y = a%y + b%y
new_position%z = a%z + b%z
end function new_position
end module t_position

program ch2401
use t_position
implicit none

type (position) :: a, b, c
a%x = 10
a%sy = 10
a%z = 10
b%x = 20

b
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by = 20
b%z = 20
c=a+b
print *, a
print *, b
print *, c

end program ch2401

We have extended the meaning of the addition operator so that we can write simple
expressions in Fortran based on it and have our new position calculated using a user
supplied function that actually implements the calculation of the new position.

24.4 Problem

24.1 Compile and run this example. Overload the subtraction operator as well.
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General notions are generally wrong.
Letter to Mr. Wortley Montegu, 28th March 1710.

Aims

This chapter looks at some examples that implement generic programming in Fortran.

25.1 Introduction

Fortran 77 had several generic functions, e.g. the sine function could be called with
arguments of type real, double precision or complex. Fortran 90 extended the idea
so that a programmer could write their own generic functions or subroutines. For
example we can now write a sort routine which works with arguments of a variety
of types, e.g. integer, real etc.

25.2 Generic Programming and Other Languages

Generic programming has a wider meaning in computer science and effectively is
a style of computer programming in which an algorithm is written once, but can be
made to work with a variety of types.

This style of programming is provided in several programming languages and in
a variety of ways.

Languages that support generics include
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Ada
C#
Eiffel
Java
C++

To quote the generic programming pioneer Alexander Stepanov;

... Generic programming is about abstracting and classifying algorithms and data structures.
It gets its inspiration from Knuth and not from type theory. Its goal is the incremental
construction of systematic catalogs of useful, efficient and abstract algorithms and data
structures. Such an undertaking is still a dream.

and quoting Bjarne Stroustrup:

... lift algorithms and data structures from concrete examples to their most general and
abstract form.

We’ll look at a concrete example in Fortran next.

25.3 Example 1: Sorting Reals and Integers

In Chap. 20 Example 5 had a module called sort_data_module that contained a
sort_data subroutine. The sort_data subroutine in turn contained an internal
quicksort subroutine that did the actual sorting.

Here is the start of the sort__data subroutine.

subroutine sort_data(raw_data, how_many)
implicit none
integer, intent (in) :: how_many
real, intent (inout), dimension (:) :: raw_data

and we called this subroutine as shown below from the main program.
call sort_data(x,n)

The subroutine worked with an array of default real type. We will use the module
sort_data_module and subroutine sort_data as the basis of a module that
will work with arrays of four integer types and three real types.

The first thing we need are modules that defines kind type parameters for the three
real types and four integer types.

These two modules are shown below.

module precision_module
implicit none
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integer, parameter sp = selected_real_kind( &
6, 37)
integer, parameter dp = selected_real_kind( &
15, 307)
integer, parameter ap = selected_real_kind( &
30, 291)

end module precision_module

module integer_kind_module

implicit none

integer, parameter i8 = selected_int_kind(2 &
)

integer, parameter il6 = selected_int_kind( &
4)

integer, parameter 132 = selected_int_kind( &
9)

integer, parameter 164 = selected_int_kind( &
15)

end module integer_kind_module

‘We can now use these modules in the new module sort_data_module and

main program.

We must use an interface to link the common calling name (sort_data) to the

specific subroutines that handle each specific type.

Here is the interface block from the module sort_data_module.

interface sort_data

module
module
module
module
module
module
module

procedure
procedure
procedure
procedure
procedure
procedure
procedure

sort_real_sp
sort_real_dp
sort_real_qgp
sort_integer_8
sort_integer_16
sort_integer_32
sort_integer_ 64

end interface sort_data

In the original subroutine in Chap.20 we had a call

call sort_date(raw_data, how_many)

and the subroutine sort_data had two arguments or parameters, a real array, and
an integer for the size.

So the call is still the same, but now we can call the sort_data subroutine with
an array of any of the four integer types or three real types.
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The compiler will then look at the type, kind and ranks of the parameters in the
call to the sort_data subroutine and call the appropriate module procedure.

Here is the new module sort_data_module.

module sort_data_module

use precision_module

use integer_kind_module

interface sort_data
module procedure sort_real_sp
module procedure sort_real_dp
module procedure sort_real_gp
module procedure sort_integer_ 8
module procedure sort_integer_16
module procedure sort_integer_32
module procedure sort_integer_64

end interface sort_data

contains

subroutine sort_real_sp(raw_data, how_many)
use precision_module
implicit none
integer, intent (in) :: how_many
real (sp), intent (inout), dimension (:)
raw_data

call quicksort(l, how_many)
contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, j
real (sp) :: v, t

include ’'quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_real_sp
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subroutine sort_real_dp(raw_data, how_many)
use precision_module
implicit none

integer, intent (in) :: how_many
real (dp), intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, j
real (dp) :: v, t

include ’'quicksort_include_code.f90’

end subroutine quicksort
end subroutine sort_real_dp

subroutine sort_real_gp(raw_data, how_many)
use precision_module
implicit none

integer, intent (in) :: how_many
real (gp), intent (inout), dimension (:) :: &
raw_data

call quicksort(l, how_many)

contains
recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, jJ
real (gp) :: v, t

include ’'quicksort_include_code.f90"

end subroutine quicksort
end subroutine sort_real_qgp
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subroutine sort_integer_8 (raw_data, how_many)
use integer_kind_module

implicit none

integer, intent (in) :: how_many
integer (i8), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, j
integer (i8) :: v, t

include ’'quicksort_include_code.f90’

end subroutine quicksort
end subroutine sort_integer_ 8

subroutine sort_integer_16 (raw_data, how_many)
use integer_kind_module
implicit none
integer, intent (in) :: how_many
integer (i116), intent (inout), &

dimension (:) :: raw_data
call quicksort(l, how_many)
contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: 1, r
integer :: i, j
integer (il16) :: v, t

include ’'quicksort_include_code.f90"

end subroutine quicksort

end subroutine sort_integer_16

subroutine sort_integer_32 (raw_data, how_many)
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use integer_kind_module
implicit none

integer, intent (in) :: how_many
integer (i32), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains

recursive subroutine quicksort(l, r)
implicit none

integer, intent (in) :: 1, r
integer :: i, j
integer (i32) :: v, t

include ’'quicksort_include_code.f90’

end subroutine quicksort
end subroutine sort_integer_32

subroutine sort_integer_64 (raw_data, how_many)
use integer_kind_module
implicit none

integer, intent (in) :: how_many
integer (i164), intent (inout), &
dimension (:) :: raw_data

call quicksort(l, how_many)

contains

recursive subroutine quicksort(l, r)
implicit none

integer, intent (in) :: 1, r
integer :: i, jJ
integer (i64) :: v, t

include ’'quicksort_include_code.f90’
end subroutine quicksort
end subroutine sort_integer_64

end module sort_data_module
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In this module we have implementations for each of the module procedures listed

in the interface block.
Here is the include file,

1
r
raw_data (int ((1l+r)/2))

do
do while

i+ 1

(raw_data (i) <v)

i =
end do
do while
j =73
end do
if
t
raw_data (i)

(v<raw_data(j))
-1

then
raw_data (1)

(i<=3)

raw_data(j)
t

raw_data (J)

=1+ 1
j -1

i
]
end 1if
if (i>5)
end do
if (1<3)
call quicksort(1l,
end if
if

exit

then
3)

then
call quicksort (i,

(i<r)
r)
end if

which is used in each of the seven subroutines and is effectively a common algorithm

between all seven subroutines.
Here is the main program to test the generic sort module.

include ’'integer_kind_module.f90’
include ’'precision_module.f90’
include ’'sort_data_module.f90’
program ch2501

use precision_module
use integer_kind_module
use sort_data_module
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implicit none

integer, parameter :: n = 1000000

real (sp), allocatable, dimension (:) :: x
integer (i32), allocatable, dimension (:) :: vy
integer :: allocate_status

allocate_status = 0

print *, ’ Program starts’
allocate (x(1l:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed.’
print *, ’ Program terminates’
stop 10

end if

print *, ’ Real allocate complete’

call random_number (x)
print *, ’ Real array initialised’
call sort_data(x, n)
print *, ’ Real sort ended’
print *, ’ First 10 reals’
write (unit=%*, fmt=100) x(1:10)
100 format (5(2x,el4d.6))
allocate (y(l1l:n), stat=allocate_status)
if (allocate_status/=0) then

print *, ’ Allocate failed.’
print *, ’ Program terminates’
stop 10

end 1if

y = int(x*1000000)

deallocate (x)

print *, ' Integer array initialised’

call sort_data(y, n)

print *, ’ Sort ended’

print *, ’ First 10 integers’

write (unit=*, fmt=110) y(1:10)
110 format (5(2x,110))

deallocate (y)

print *, ’ Deallocate’

print *, ’ Program terminates’

end program ch2501
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This is obviously a very significant facility to have in a programming language.
Have a look at the following two examples which show the code for a generic
quicksort in C++ and C#.

25.3.1 Generic Quicksort in C++

Here is the C++ program.

template <class Type>
void swap (Type arrayl[],int i, int Jj)
{
Type tmp=array[il];
arrayl[il=array[j];
array[jl=tmp;

template <class Type>
void quicksort( Type arrayl[], int 1, int r)
{
int i=1;
int j=r;
Type v=arrayl[int((l+r)/2)1;
for (;;)
{
while (array[i] < v) i=i+1;
while (v < arrayl[3j]) j=j-1;
if (i<=7)
{ swap(array,i,j); i=i+1 ; j=j-1; }
if (i>j) goto ended ;
}
ended: ;
if (1<j) quicksort(array,1l,3j);

if (i<r) quicksort(array,i,r);

template <class Type>
void print (Type arrayl[],int size)
{
cout << " [ " ;
for (int ix=0;ix<size; ++ix)
cout << array[ix] << " ";

cout << "] \n";
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#include <iostream>

using namespace std;

int main()

{
double dal] =
{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5};
int ial] = {1,10,2,9,3,8,4,7,6,5};

int size=sizeof (da)/sizeof (double) ;

cout << " Quicksort of double array is \n";
quicksort(da,0,size-1);

print (da,size);

size=sizeof (ia)/sizeof (int) ;

cout << " Quicksort of integer array is \n";
quicksort(ia,0,size-1);

print (ia,size);

return(0) ;

25.3.2 Generic Quicksort in C#

Here is the C# version.

using System;
public static class generic

{

public static void
swap< Type > (Typel[] array,int i, int jJj)
{
Type tmp=arrayl[il];
arrayl[il=arrayl[j]l;
array[j]l=tmp;

public static void
quicksort< Type > ( Typel] array, int 1, int r)
where Type : IComparable< Type >

int i=1;
int j=r;

Type v=arrayl[ (int) ((1+x)/2)1];

411
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for (;;)
{
while (arrayl[i].CompareTo( v) < 0 ) i=i+1;
while (v.CompareTo(arrayl[j]) < 0) j=j-1;
if (i<=3)
{ swap(array,i,j); i=i+1 ; j=j-1; }
if (i>j) goto ended ;
}
ended: ;
if (1<j) quicksort(array,1l,3j);

if (i<r) quicksort(array,i,r);

public static void
print< Type > (Typel[] array,int size)
{
int i;
int 1;
l=array.Length;
for (i=0;i<l;i++)

Console.WriteLine (array[i]);

public static int Main()
{
double[] da
{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5};
{1,10,2,9,3,8,4,7,6,5};

int[] ia
int size;
size=da.Length;
Console.WriteLine("Original array");
print (da,size) ;
quicksort(da,0,size-1);
Console.WriteLine("Sorted array");
print (da, size) ;

size=ia.Length;
Console.WriteLine("Original array");
print (ia,size);
quicksort(ia,0,size-1);
Console.WriteLine("Sorted array");
print (ia,size);

return(0) ;
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In C++ and C# we only have one version of the sort procedure and the compiler
generates the code for us for each type of array we call the procedure with, which
we have to actually write in Fortran.

25.4 Example 2: Generic Statistics Module

In this example we extend the statistics module from Chap. 20 (Example 4) to work
with all three real kind types.
Here is the statistics module.

module statistics_module
use precision_module

interface calculate_statistics
module procedure calculate_sp
module procedure calculate_dp
module procedure calculate_gp

end interface calculate_statistics

contains
subroutine calculate_sp(x, n, mean, std_dev, &

median)

implicit none

integer, intent (in) :: n

real (sp), intent (in), dimension (:) :: X
real (sp), intent (out) :: mean

real (sp), intent (out) :: std_dev
real (sp), intent (out) :: median

real (sp), dimension (l:n) :: vy

real (sp) variance

real (sp) sumxi, sumxi2

sumxi = 0.0

sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqgrt(variance)

Yy = X
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if (mod(n,2)==0) then
median =
else
median = find((n/2)+1)
end if
contains
function find (k)
implicit none
real (sp) find
integer, intent (in)
integer 1, r, i, 3
real (sp) tl, t2
include

end function find

end subroutine calculate_sp

25

(find(n/2)+find((n/2)+1)) /2

'statistics_module_include_code.f90"’

subroutine calculate_dp(x, n, mean, std_dev, &
median)
implicit none
integer, intent (in) n
real (dp), intent (in), dimension (:) x
real (dp), intent (out) mean
real (dp), intent (out) std_dev
real (dp), intent (out) median
real (dp), dimension (1:n) v
real (dp) variance
real (dp) sumxi, sumxi?2
sumxi = 0.0
sumxi2 = 0.0
variance = 0.0
sumxi = sum(x)
sumxi2 = sum(x*x)
mean = sumxi/n
variance = (sumxi2-sumxi*sumxi/n)/(n-1)
std_dev = sqgrt(variance)
y = X
if (mod(n,2)==0) then
median = (find(n/2)+find((n/2)+1))/2
else
median = find((n/2)+1)

end if

Generic Programming
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contains
function find (k)
implicit none

real (dp) find

integer, intent (in)

integer :: 1, r, 1,

real (dp) :: tl, t2
include

end function find

Example 2: Generic Statistics Module

3

end subroutine calculate_dp

subroutine calculate_gp(x, n, mean,
median)
implicit none
integer, intent (in) n
real (gp), intent (in), dimension
real (gp), intent (out) mean
real (gp), intent (out) std_dev
real (gp), intent (out) median
real (gp), dimension (l:n) :: vy
real (ap) variance
real (gp) sumxi, sumxi?2
sumxi = 0.0
sumxi2 = 0.0
variance = 0.0
sumxi = sum(x)
sumxi2 = sum(x*x)

mean = sumxi/n

variance =

std_dev = sqgrt(variance)

y = X
if (mod(n,2)==0)

median =
else

median = find((n/2)+1)

end 1if
contains
function find (k)

implicit none

then
(find(n/2)+find((n/2)+1)) /2

real (gp) find

integer, intent (in)
integer :: 1, r, i,
real (gp) :: tl, t2

include

3

'statistics_module_include_code.f90"’

std_dev,

(:) :: x

(sumxi2-sumxi*sumxi/n)/ (n-1)

‘statistics_module_include_code.£f90’

&

415
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end function find

end subroutine calculate_gp

end module statistics_module

Here is the common include file.

1 =1
r =n
do while (1l<r)
tl = y(k)
i=1
j=r
do
do while (y(i)<tl)
i=1i+1
end do
do while (tl<y(3))
j=3-1
end do
if (i<=j) then
t2 = y(i)
y(i) = y(3)
y(3) = t2
i=1i+1
j=3-1
end if
if (i>3j) exit
end do
if (j<k) then
1 =1
end if
if (k<i) then
r =]
end if
end do

find = y(k)

Generic Programming
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Here is the main program to test the statistics module.

include ’'precision_module.f90’
include ’‘statistics_module.£f90’
include ’'timing module.f90’

program ch2502
use precision_module
use statistics_module

use timing_module

implicit none

integer :: n
real (sp), allocatable, dimension (:) :: x
real (sp) x_m, x_sd, x_median
real (dp), allocatable, dimension (:) :: vy
real (dp) —m, y_sd, y_median
real (gp), allocatable, dimension (:) :: z
real (gp) :: z_m, z_sd, z_median
character *20, dimension (3) :: heading = [ &
' Allocate ', ' Random r, &
' Statistics ‘]

call start_timing()
n = 50000000
print *, "' n = ', n

print *, ’ Single precision’

allocate (x(1:n))
print 100, heading(l), time_difference()
100 format (a20, 2x, £8.3)
call random_number (xX)
print 100, heading(2), time_difference()
call calculate_statistics(x, n, x m, x_sd, &
x_median)
print 100, heading(3), time_difference()
write (unit=*, fmt=110) x_m

110 format ('’ Mean = ', £10.6)
write (unit=*, fmt=120) x_sd
120 format (’ Standard deviation = ‘', £10.6)

write (unit=*, fmt=130) x_median
130 format ('’ Median = ', £10.6)
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deallocate (x)
print *, ' Double precision’
allocate (y(l:n))
print 100, heading(l), time_difference()
call random_number (y)
print 100, heading(2), time_difference()
call calculate_statistics(y, n, y.m, y_sd, &
y_median)

print 100, heading(3), time_difference()
write (unit=*, fmt=110) y_m

write (unit=*, fmt=120) y_sd

write (unit=*, fmt=130) y_median
deallocate (y)

print *, ’ Quad precision’

allocate (z(1l:n))

print 100, heading(l), time_difference()

call random_number (z)

print 100, heading(2), time_difference()

call calculate_statistics(z, n, z_m, z_sd, &
z_median)

print 100, heading(3), time_difference()

write (unit=*, fmt=110) z_m

write (unit=*, fmt=120) z_sd

write (unit=*, fmt=130) z_median

deallocate (z)

end program ch2502

Generic Programming

Here are some results for the gfortran, Intel, Nag and Oracle compilers (Table 25.1).
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Table 25.1 ch2502 results
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Compiler gfortran Intel Nag Oracle

n = 50,000,000 Average time
Single precision

Allocate 0.000 0.000 0.000 0.000 0.000
Random 0.484 0.469 0.484 1.230 0.667
Statistics 1.312 0.766 1.031 0.773 0.971
Total time 1.796 1.235 1.515 2.003 1.637
Mean 0.335544| 0.335544| 0.335544| 0.335544

Standard deviation 0.465684| 0.442725| 0.442758| 0.442686

Median 0.500006| 0.499965| 0.500044| 0.499957

Double precision

Allocate 0.020 0.016 0.016 0.000 0.013
Random 1.105 0.859 0.359 1.312 0.909
Statistics 1.520 0.953 1.172 1.055 1.175
Total time 2.645 1.828 1.547 2.367 2.097
Mean 0.500017| 0.499931| 0.499984| 0.499984

Standard deviation 0.288686| 0.288691| 0.288699| 0.288695

Median 0.500011| 0.499889| 0.499935| 0.500012

Quad precision

Allocate 0.027 0.031 0.031 0.004 0.023
Random 6.363 2.500 0.734 2.395 2.998
Statistics 7.766 6.453 4.109 10.840 7.292
Total time 14.156 8.984 4.874 13.239 10.313
Mean 0.500019| 0.499995| 0.500030| 0.500084

Standard deviation 0.288659| 0.288660| 0.288662| 0.288688

Median 0.500041| 0.499994| 0.500065, 0.500125

25.5 Problems

25.1 Write a generic swap routine, that swaps two rank 1 integer arrays and two

rank 1 real arrays.

25.2 Using Example 2 from Chap.22 as a starting point convert it to a generic
variant which handles files of integer data type and real data type.
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Chapter 26 ®)
Mathematical and Numerical Examples e

You look at science (or at least talk of it) as some sort of
demoralising invention of man, something apart from real life,
and which must be cautiously guarded and kept separate from
everyday existence. But science and everyday life cannot and
should not be separated. Science, for me, gives a partial
explanation for life. In so far as it goes, it is based on fact,
experience and experiment.

Rosalind Franklin.

Aims
The aims of this chapter are to look at several mathematical and numeric examples
in Fortran.

Using linked lists for sparse matrix problems.

The solution of a system of ordinary differential equations using the Runge—Kutta—
Merson method, with the use of a procedure as a parameter, and the use of work
arrays.

The use of optional and keyword arguments

Diagonal extraction of a matrix.

The solution of a system of linear simultaneous equations using Gaussian Elimi-
nation

An elemental e**x function

Examples of the relative and absolute errors involved in subtraction with 32 and
64 bit precision

© Springer International Publishing AG, part of Springer Nature 2018 421
1. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_26
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26.1 Introduction

This chapter looks at a small number of mathematical and numeric examples in
Fortran.

26.2 Example 1: Using Linked Lists for Sparse Matrix
Problems

A matrix is said to be sparse if many of its elements are zero. Mathematical models
in areas such as management science, power systems analysis, circuit theory and
structural analysis consist of very large sparse systems of linear equations. It is not
possible to solve these systems with classical methods because the sparsity would be
lost and the eventual system would become too large to solve. Many of these systems
consist of tens of thousands, hundreds of thousands and millions of equations. As
computer systems become ever more powerful with massive amounts of memory
the solution of even larger problems becomes feasible.

Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K.,
looks at direct methods for solving sparse systems of linear equations.

Sparse matrix techniques lend themselves to the use of dynamic data structures in
Fortran. Only the nonzero elements of a sparse matrix need be stored, together with
their positions in the matrix. Other information also needs to be stored so that row or
column manipulation can be performed without repeated scanning of a potentially
very large data structure. Sparse methods may involve introducing some new nonzero
elements, and a way is needed of inserting them into the data structure. This is where
the Fortran pointer construct can be used. The sparse matrix can be implemented
using a linked list to which entries can be easily added and from which they can be
easily deleted.

As a simple introduction, consider the storage of sparse vectors. What we learn
here can easily be applied to sparse matrices, which can be thought of as sets of
sparse vectors.

26.2.1 Inner Product of Two Sparse Vectors

Assume that we have two sparse vectors x and y for example

=
I
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and we wish to calculate the inner product

n
xly= inyi

i=1

There are a number of approaches to doing this and the one we use in the program
below stores them as two linked lists. Only the nonzero elements are stored (together
with their indices):

x data file y data file
3 1 1 2
5 3 3 3
4 6 2 5
1 6

Here is the program.

module sparse_vector_module
implicit none
type sparse_vector
integer :: index
real :: value
type (sparse_vector), pointer :: next => &
null ()
end type sparse_vector
end module sparse_vector_module

module read_data_module
implicit none
contains
subroutine read_data(filename, root_z, ifail)

use sparse_vector_module

implicit none
type (sparse_vector), pointer, &

intent (inout) :: root_=z
character (len=*), intent (inout) :: &
filename

integer, intent (inout) :: ifail
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integer :: io_status
type (sparse_vector), pointer :: current_z
ifail = 0

! open file for reading data and read 1lst
! entry

open (unit=1, file=filename, status=’'o0ld’, &
iostat=io_status)

if (io_status/=0) then
ifail =1
return

end if

allocate (root_z)

read (unit=1, fmt=*, iostat=io_status) &
root_z%value, root_z%index

if (io_status/=0) then
ifail = 2
return

end if

! read data from file until eof

current_z => root_z
allocate (current_z%$next)
do while (associated(current_z%next))
current_z => current_z%next
read (unit=1, fmt=*, iostat=io_status) &
current_z%value, current_z$%$index
if (io_status==0) then
allocate (current_z%next)
cycle
else if (io_status>0) then
ifail = 3
end if
end do
close (unit=1)

return

end subroutine read_data

end module read_data_module
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program ch2601

! this program reads the non-zero elements of
! two sparse vectors x and y together with

! their indices, and stores them in two

! 1linked lists. using these linked lists it

! then calculates and prints out the inner

! product. it also prints the values.

use sparse_vector_module
use read_data_module

implicit none
character (len=30) :: filename

type (sparse_vector), pointer :: root_x, &
current_x, root_y, current_y

real :: inner_prod = 0.0

integer :: ifail = 0

! ask for name of file containing vector x

! non-zero values and indices

print *, ‘input file name for vector x’

read ’(a)’, filename

! read vector x non-zero elements and indices
! into a linked list

call read_data(filename, root_x, ifail)

if (ifail==1) then

print *, ’‘error opening file ', filename
stop 10
else if (ifail==2) then

print *, &
"error reading from beginning of file ', &
filename
stop 20
else if (ifail==3) then
print *, ‘error reading from file ', &
filename
stop 30
end 1if
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! ask for name of file containing vector y
! non-zero values and indices

print *, ’‘input file name for vector vy’
read ’(a)’, filename

! read vector y non-zero elements and indices
! into a linked list

call read_data(filename, root_y, ifail)

if (ifail==1) then
print *, ‘error opening file ’, filename
stop 40

else if (ifail==2) then
print *, &
‘error reading from beginning of file ', &
filename
stop 50
else if (ifail==3) then
print *, ’‘error reading from file ', &
filename
stop 60
end if

! data has now been read and stored in 2 linked
! lists. start at the beginning of x linked list
! and y linked list and compare indices

! in order to perform inner product

current_x => root_x
current_y => root_y
do while (associated(current_x%next))
do while (associated(current_y%next) .and. &
current_y%index<current_x%index)

! move through y list

current_y => current_y%next
end do

! at this point
! current_y%index >= current_x%$index

! or 2nd list is exhausted

if (current_y%index==current_x%index) then
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inner_prod = inner_prod + current_x%value* &
current_y%value
end if
current_x => current_x%next
end do

! print non-zero values of vector x and indices

print *, &
‘non-zero values of vector x and indices:’
current_x => root_x
do while (associated(current_x%$next))
print *, current_x%value, current_x%$index
current_x => current_x%next
end do

! print non-zero values of vector y and indices

print *, &
'non-zero values of vector y and indices:’
current_y => root_y
do while (associated(current_y%next))
print *, current_y%value, current_y%index
current_y => current_y%next
end do

! print out inner product

print *, &
‘inner product of two sparse vectors is :’', &

inner_prod

end program ch2601

26.3 Example 2: Solving a System of First-Order Ordinary
Differential Equations Using Runge-Kutta—Merson

Simulation and mathematical modelling of a wide range of physical processes often
leads to a system of ordinary differential equations to be solved. Such equations also
occur when approximate techniques are applied to more complex problems. We will
restrict ourselves to a class of ordinary differential equations called initial value
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problems. These are systems for which all conditions are given at the same value of
the independent variable. We will further restrict ourselves to first-order initial value
problems of the form:

dy
7 = 1
R Sy, n)
dy,
e N
r fa(y, 1)
dyy
= fn(y, 1t
o Ju(y, 1)
or
y=f(y.1 (26.1)
with initial conditions
(0) = y0
where
i fi y1(to)
y= f= Yo=
Yn Jn Yut (0)

If we have a system of ordinary differential equations of higher order then they
can be reformulated to a system of order one. See the NAG library documentation
for solving ordinary differential equations.

One well-known class of methods for solving initial value ordinary differential
equations is Runge-Kutta. In this example we have coded the Runge-Kutta-Merson
algorithm, which is a fourth-order method and solves (26.1) from a pointz = a to a
point t = b.

It starts with a step length 7 = (b — a)/100 and includes a local error control
strategy such that the solution at ¢ 4 A is accepted if:

lerror estimate| < user defined tolerance

If this isn’t satisfied the step length /4 is halved and the solution attempt is repeated
until the above is satisfied or the step length is too small and the problem is left
unsolved. If the error criterion is satisfied the algorithm progresses with a suitable
step length solving the equations at intermediate points until the end point b is
reached. For a full discussion of the algorithm and the error control mechanism used
see Numerical Methods in Practice by Tim Hopkins and Chris Phillips.
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Here is a module containing the subroutine runge_kutta_merson.

module rkm_module
use precision_module, wp => dp
implicit none

contains
subroutine runge_kutta_merson(y, fun, ifail, &
n, a, b, tol)

! runge-kutta-merson method for the solution
! of a system of n 1st order initial value

! ordinary differential equations.

! the routine tries to integrate from

! t=a to t=b with initial conditions in v,

! subject to the condition that the

! absolute error estimate <= tol. the step

! length is adjusted automatically to meet

! this condition.

! if the routine is successful it returns with
! ifail = 0, t=b and the solution in y.

implicit none

! define arguments

real (wp), intent (inout), dimension (:) :: &
Yy

real (wp), intent (in) :: a, b, tol

integer, intent (in) :: n

integer, intent (out) :: ifail

interface

subroutine fun(t, y, £, n)
use precision_module, wp => dp
implicit none

real (wp), intent (in), dimension (:) :: &
Yy

real (wp), intent (out), &
dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun
end interface
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local variables

real (wp), dimension (l:size(y)) :: sl, s2, &
s3, s4, s5, new_y 1, new y_2, error

real (wp) :: t, h, h2, h3, h6, h8, &
factor = 1.e-2_wp

real (wp) :: smallest_step = l.e-6_wp, &
max_error

integer :: no_of_steps = 0

ifail = 0

check input parameters

if (n<=0 .or. a==b .or. tol<=0.0) then
ifail = 1
return

end if

initialize t to be start of interval and
h to be 1/100 of interval

t =a
h = (b-a)/100.0_wp

##### beginning of
##### repeat loop

h2 = h/2.0_wp
h3 = h/3.0_wp
h6 = h/6.0_wp
h8 h/8.0_wp

calculate sl1,s2,s3,s84,s5
sl=f(t,y)

call fun(t, vy, sl, n)
new vy 1 =y + h3*sl

s2 = f£(t+h/3,y+h/3*s1)

call fun(t+h3, new y_1, s2, n)
new_ vy 1 =y + h6*sl + h6*s2
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! s3=f(t+h/3,y+h/6*sl+h/6*s2)

call fun(t+h3, new 1, s3, n)

new_v_1 = vy + h8*(s2+3.0_wp*s3)
! s4=f (t+h/2,y+h/8* (s2+3*s3))

call fun(t+h2, new_vy_1, s4, n)
new. v 1 =y + h2*(s1-3.0_wp*s3+4.0_wp*s4)

! s5=f (t+h,y+h/2* (s1-3*s3+4*s4))
call fun(t+h, new_y_1, s5, n)
! calculate values at t+h

new vy 1 =y + h6*(sl+4.0_wp*sd+s5)

new. v 2 =y + h2*(sl1-3.0_wp*s3+4.0_wp*s4)
! calculate error estimate

error = abs(0.2_wp*(new_y_l-new_y_2))
max_error = maxval (error)

if (max_error>tol) then
! halve step length and try again

if (abs (h2)<smallest_step) then
ifail = 2
return
end if
h = h2
else

! accepted approximation so overwrite
! v with yv_new_ 1, and t with t+h

A% new_y_1

t =t + h
! can next step be doubled?
if (max_error*factor<tol) then

h = h*2.0_wp
end if
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! does next step go beyond interval end b,
! if so set h = b-t

if (t+h>b) then
h=Db-¢t
end if
no_of_steps = no_of_steps + 1
end if
if (t>=b) exit

! ##### end of
! ##### repeat loop

end do
end subroutine runge_kutta_merson
end module rkm_module

Consider trying to solve the following system of first-order ordinary differential
equations:

Yy = tan y;
. —0.032tany;  0.02y,
2= Y2 ~ cos Y3
_0.032
Y3 =— y22

over an interval = 0.0 to ¢ = 8.0 with initial conditions
yl=0y2=05 y3=mxn/5
The user supplied subroutine, packaged as a module procedure, is:

module funl_ module
implicit none
contains
subroutine funl(t, y, £, n)
use precision_module, wp => dp
implicit none

real (wp), intent (in), dimension (:) :: y
real (wp), intent (out), dimension (:) :: f
real (wp), intent (in) :: t

integer, intent (in) :: n

f(1) = tan(y(3))
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f(2) = -0.032_wp*f(1l)/y(2) - &
0.02_wp*y(2)/cos(y(3))
£(3) = -0.032_wp/(y(2)*y(2))

end subroutine funl
end module funl_module

and the main program to solve this system of ordinary differential equations is

include ’'precision_module.f90’
include ’'ch2602_rkm module.f90"’
include ’'ch2602_funl_module.f90’

program ch2602
use precision_module, wp => dp
use rkm_module
use funl_module

implicit none

real (wp), dimension (:), allocatable :: y
real (wp) :: a, b, tol

integer :: n, ifail, all_stat

print *, ‘input no of equations’

read *, n

! allocate space for y - checking to see that it
! allocates properly

allocate (y(l:n), stat=all_stat)
if (all_stat/=0) then

print *, ’ not enough memory’
print *, ’ array y is not allocated’
stop

end if

print *, &
' input start and end of interval over’
print *, ’ which equations to be solved’
read *, a, b
print *, ‘input initial conditions’
read *, y(l:n)
print *, ’‘input tolerance’
read *, tol
print 100, a

100 format ('at t= ', £5.2, &

initial conditions are :’)

print 110, y(1l:n)
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110 format (4(£f5.2,2x%))
call runge_kutta_merson(y, funl, ifail, n, a, &

b, tol)
if (ifail/=0) then
print *, ’‘integration stopped with ifail = ' &
, ifail
else
print 120, b
120 format (’at t= ', £5.2, ’ solution is:’)

print 110, y(1l:n)
end if

end program ch2602

The user is prompted for the number of equations, which is 3, the start and end of
the interval over which the equations are to be solved (0.0, 8.0), the initial conditions
(0.0, 0.5, /5), and tolerance (1.0E-6).

26.3.1 Note: Alternative Form of the Allocate Statement

In the main program ch2602 we have defined y to be a deferred-shape array,
allocating it space after the variable n is read in. In order to make sure that enough
memory is available to allocate space to array vy the allocate statement is used as
follows:

allocate(y(1l:n),stat=all_stat)

If the allocation is successful variable all_stat returns zero; otherwise it is
given a processor dependent positive value. We have included code to check for this
and the program stops if all_stat is not zero.

26.3.2 Note: Automatic Arrays

The subroutine runge_kutta_merson needs a number of local rank 1 arrays
s1, s2, s3, s4 and s5 for workspace, their shape and size being the same as the
dummy argument y. Fortran supplies automatic arrays for this purpose and can be
declared as

real (wp), dimension (l:size(y)) :: &
sl, s2, s3, s4, s5
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The size of automatic arrays can depend on the size of actual arrays: in our
example they are the same shape and size as the dummy array y. Automatic arrays
are created when the procedure is called and destroyed when control passes back to
the calling program unit. They may have different shapes and sizes with different
calls to the procedure, and because of this automatic arrays cannot be saved or
initialised.

A word of warning should be given at this point. If there isn’t enough memory
available when an automatic array needs to be created problems will occur. Unlike
allocatable arrays there is no way of testing to see if an automatic array has been
created successfully. The general feeling is that even though they are nice, automatic
arrays should be used with care and perhaps shouldn’t be used in production code!

26.3.3 Note: Subroutine as a Dummy Procedure Argument:

In order to make the use of subroutine runge_kutta_merson as general as
possible the user can choose the name of the subroutine in which the actual sys-
tem of equations to be solved is defined. In this case we have chosen funl as the
name of the subroutine, which is then used as an actual argument when calling
runge_kutta_merson from the main program e.g.

call runge_kutta_merson(y, funl,ifail,n,a,b,tol)

An explicit interface for subroutine funl is provided by it being contained in a
module.

The equivalent dummy subroutine argument is fun and this needs an explicit
interface in the subroutine runge_kutta_merson.

26.3.4 Note: Compilation When Using Modules
When compiling this program and the modules they must be done in the correct
order:

e precision_module
e rkm_module
e funl module

and then

e malin program.
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26.3.5 Keyword and Optional Argument Variation

In modern Fortran arguments to procedures can be optional, and can be supplied
by keyword. To illustrate this we will use the previous example. The definition of
subroutine runge_kutta_merson and its dummy arguments is:

subroutine runge_kutta_merson(y, fun,ifail,n,a,b,tol)

where a is the initial point, b is the end point at which the solution is required, tol
is the accuracy to which the solution is required and n is the number of equations.
The subroutine can be called as follows:

call runge_kutta_merson( y , funl , ifail , a=0.0 ,&
b=8.0 , tol=1.0E-6 , n=3)

where the dummy arguments a, b, tol and n are now being used as keywords. The
use of keyword arguments makes the code easier to read and decreases the need to
remember their precise position in the argument list.

Also with Fortran comes the ability to specify that an argument is optional. This
is very useful when designing procedures for use by a range of programmers. Inside
a procedure defaults can be set for the optional arguments providing an easy-to-use
interface, while at the same time allowing sophisticated users a more comprehensive
one.

The optional attribute is needed to declare a dummy argument to be optional.
In the subroutine runge_kutta_merson the dummy argument tol could be
declared to be optional (although internally in the subroutine the code would have
to be changed to allow for this), e.g.,

subroutine runge_kutta_merson(y, fun,ifail,n,a,b, tol)
use precision_module , wp => dp
real (wp) , intent(inout), optional :: tol

and because it is at the end of the dummy argument list, calling the subroutine
with a positional argument list, tol can be omitted, e.g.,

call runge_kutta_merson(y, funl,ifail,n,a,b)

The code of the subroutine will need to be changed to check to see if the argument
tol is supplied, the intrinsic function present being available for this purpose.
Sample code is given below:

subroutine runge_kutta_merson(y, fun,ifail,n,a,b,tol)
use precision_module , wp => dp
! code left out
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real (wp) , intent(in) , optional :: tol
real (wp) :: internal_tol = 1.0e-3_wp
if (present(tol)) then
internal_ tol=tol
print*,'tol = ’, internal_tol,’ is supplied’
else
print*,"tol isn’t supplied, default tolerance = "
print *,internal_tol,’ is used’
endif
! code left out but all references to tol
! would have to be changed to internal_tol

end subroutine runge_kutta_merson

26.4 Example 3: A Subroutine to Extract the Diagonal
Elements of a Matrix

A common task mathematically is to extract the diagonal elements of a matrix. For
example if
21 6 7
A=|9 3 2
4 1 8

the diagonal elements are (21, 3, 8).

This can be thought of as extracting an array section, but the intrinsic function
pack is needed. In its simplest form pack (array, vector) packs an array,
array, into arank 1 array, vector, according to array’s array element order.

Below is a complete program to demonstrate this:

module md_module
implicit none

contains
subroutine matrix_diagonal (a, diag, n)
implicit none

real, intent (in), dimension (:, :) :: a

real, intent (out), dimension (:) :: diag

integer, intent (in) :: n

real, dimension (l:size(a,l)*size(a,l)) :: &
temp

! subroutine to extract the diagonal
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! elements of an n * n matrix A

temp = pack(a, .true.)
diag = temp(l:n*n:n+1)
end subroutine matrix_diagonal
end module md_module

program ch2603
! program reads the n * n matrix from a file
use md_module

implicit none

integer :: i, n

real, allocatable, dimension (:, :) :: a
real, allocatable, dimension (:) :: adiag
character (len=20) :: filename

print *, ‘input name of data file’

read ’(a)’, filename

open (unit=1, file=filename, status='0ld’)
read (1, *) n
allocate (a(l:n,1:n), adiag(l:n))
doi=1, n
read (1, *) a(i, 1l:n)
end do
call matrix_diagonal (a, adiag, n)
print *, ’ diagonal elements of a are:’
print *, adiag
end program ch2603

26.5 Example 4: The Solution of Linear Equations
Using Gaussian Elimination

At this stage we have introduced many of the concepts needed to write numerical
code, and have included a popular algorithm, Gaussian Elimination, together with
a main program which uses it and a module to bring together many of the features
covered so far.

Finding the solution of a system of linear equations is very common in scien-
tific and engineering problems, either as a direct physical problem or indirectly, for
example, as the result of using finite difference methods to solve a partial differential
equation. We will restrict ourselves to the case where the number of equations and
the number of unknowns are the same. The problem can be defined as:



26.5 Example 4: The Solution of Linear Equations Using Gaussian Elimination 439
anxy +apxz + ...+ ax, = b

anxy + apxs + ... + ayx, = by

an1 X1 + apxs + ... + appx, = by

or
ay ap ... ai, X by
a; axn ... ay x| | b (26.2)
dpl Ap2 ... App Xn bn

which can be written as:

Ax =b
where A is the n x n coefficient matrix, b is the right-hand-side vector and x is the
vector of unknowns. We will also restrict ourselves to the case where A is a general
real matrix.

Note that there is a unique solution to (26.2) if the inverse, A~ of the coefficient
matrix A, exists. However, the system should never be solved by finding A~! and then
solving A~'b = x because of the problems of rounding error and the computational
costs.

A well-known method for solving (26.2) is Gaussian Elimination, where multiples
of equations are subtracted from others so that the coefficients below the diagonal
become zero, producing a system of the form:

* * *

ay, ajy ... axyy, X b}
* * *

0 a3, ... a3, x| _ | b3
* k

0 0 0 a;, Xn b

where A has been transformed into an upper triangular matrix. By a process of
backward substitution the values of x drop out.

The subroutine gaussian_elimination implements the Gaussian Elimina-
tion algorithm with partial pivoting, which ensure that the multipliers are less than
1 in magnitude, by interchanging rows if necessary. This is to try and prevent the
buildup of errors.

This implementation is based on two LINPACK routines SGEFA and SGESL and
a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in their
book Numerical Methods in Practice.

When the subroutine gaussian_elimination is called on exit both a and
b are overwritten. Mathematically Gaussian Elimination is described as working on
rows, and using partial pivoting row interchanges may be necessary. Due to Fortran’s
row element ordering, to implement this algorithm efficiently it works on columns
rather than rows by interchanging elements within a column if necessary.
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include ’'precision_module.f90’

module ge_module
use precision_module, wp => dp
implicit none

contains
subroutine gaussian_elimination(a, n, b, x, &

singular)

! routine to solve a system ax=b

! using gaussian elimination

! with partial pivoting

! the code is based on the linpack routines
! sgefa and sgesl

! and operates on columns rather than rows!

implicit none

! matrix a and vector b are over-written

! arguments
integer, intent (in) :: n
real (wp), intent (inout) :: a(:, :), b(:)
real (wp), intent (out) :: x(:)
logical, intent (out) :: singular

! local variables

integer :: i, j, k, pivot_row
real (wp) :: pivot, sum, element
real (wp), parameter :: eps = 1l.e-13_wp

! work through the matrix column by column

do k=1, n -1

! find largest element in column k for pivot

pivot_row = maxval (maxloc(abs(a(k:n,k)))) &

+ k -1

! test to see if a is singular
! if so return to main program



26.5 Example 4: The Solution of Linear Equations Using Gaussian Elimination

if (abs(a(pivot_row,k))<=eps) then

singular = .true.
return
else
singular = .false.
end if

! exchange elements in column k if largest
! is

! not on the diagonal

if (pivot_row/=k) then
element = a(pivot_row, k)
a(pivot_row, k) = a(k, k)
a(k, k) = element

element = b(pivot_row)

b(pivot_row) = b(k)
b(k) = element
end 1if

! compute multipliers

! elements of column k below diagonal
! are set to these multipliers for use
! in elimination later on

a(k+l:n, k) = a(k+l:n, k)/a(k, k)

! row elimination performed by columns for
! efficiency

doj=k+1, n
pivot = a(pivot_row, j)

if (pivot_row/=k) then

! swap if pivot row is not k

a(pivot_row, j) = a(k, 3J)
a(k, j) = pivot

end if

a(k+l:n, j) = a(k+l:n, j) - &

pivot*a(k+l:n, k)
end do

! apply same operations to b

441
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b(k+1l:n) = b(k+1l:n) - a(k+l:n, k)*b(k)
end do

! backward substitution

doi=mn, 1, -1
sum = 0.0
do j=1+1, n
sum = sum + a(i, J)*x(3J)
end do
x(1) = (b(i)-sum)/a(i, 1)
end do
end subroutine gaussian_elimination
end module ge_module

program ch2604
use ge_module
implicit none

integer :: i, n

real (wp), allocatable :: a(:, :), b(:), x(:)
logical :: singular

print *, ‘number of equations?’

read *, n
allocate (a(l:n,l:n), b(l:n), x(1l:n))
do i1 =1, n
print *, ’‘input elements of row ', i, &
" of a’
read *, a(i, 1:n)
print *, ’‘input element ’, i, '’ of b’
read *, b(i)
end do
call gaussian_elimination(a, n, b, x, &
singular)
if (singular) then
print *, ’‘matrix is singular’
else
print *, ’‘solution x:’
print *, x(1l:n)
end 1f
end program ch2604
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26.5.1 Notes

26.5.1.1 Module for Precision Selection
We use the module precision_module from Chap.21 and choose a working
precision wp which maps to dp or double precision, to specify the floating point

precision to which we wish to work. This module is then used by the main program
and the subroutine, and wp is used with all the real type definitions and any constants,

e.g.

real (wp), parameter :: eps=1.E-13_wp

26.5.1.2 Deferred-Shape Arrays
In the main program matrix a and vectors b and x are declared as deferred-shape

arrays, by specifying their rank only and using the allocatable attribute . Their shape
is determined at run time when the variable n is read in and then the statement

allocate(a(l:n,1:n), b(l:n), x(1l:n))

is used.

26.5.1.3 Intrinsic Functions maxval and maxloc

In the context of subroutine gaussian_elimination we have used:

maxval ( maxloc (abs (a ( k:n,k ) ) ) ) + k - 1

Breaking this down,

maxloc ( abs ( a (k:n,k) ) )
takes the rank 1 array
(la(k, k)|, latk + 1, k)], ...la(n, k)]) (26.3)

where |a(k, k)| = abs(a(k, k)) and of length n — k + 1. It returns the position of the
largest element as a rank 1 array of size one, e.g. 1.

Applying maxval to thisrank 1 array 1 returns 1 as a scalar, 1 being the position
of the largest element of array (1).
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What we actually want is the position of the largest element of (26.3), but in the
kth column of matrix a. We therefore have to add k-1 to 1 to give the actual position
in column k of a.

26.6 Example 5: Allocatable Function Results

A function may return an array, and in this example the array allocation takes place
in the function.

module running_average_module

implicit none

contains
function running_average(r, how_many) &
result (rarray)
integer, intent (in) :: how_many

real, intent (in), allocatable, &

dimension (:) :: r
real, allocatable, dimension (:) :: rarray
integer :: i
real :: sum = 0.0

allocate (rarray(l:how_many))
do 1 = 1, how_many
sum = sum + r (i)
rarray (i) = sum/i
end do
end function running_average
end module running average_module
module read_data_module

implicit none

contains
subroutine read_data(file_name, raw_data, &
how_many)
implicit none
character (len=*), intent (in) :: file_name
integer, intent (in) :: how_many
real, intent (out), allocatable, &
dimension (:) :: raw_data
integer :: i
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allocate (raw_data(l:how_many))

open (unit=1, file=file_name, status='old’)

do 1 = 1, how_many
read (unit=1, fmt=*) raw_data(i)
end do

end subroutine read_data
end module read_data_module
program ch2605

use running_ average_module

use read_data_module
implicit none

integer :: how_many

character (len=20) :: file_name

real, allocatable, dimension (:) :: raw_data
real, allocatable, dimension (:) :: ra
integer :: 1

print *, ’ how many data items are there?’

read *, how_many
print *, ' what is the file name?’
read ’(a)’, file_name

call read_data(file_name, raw_data, how_many)

allocate (ra(l:how_many))

ra = running_average (raw_data, how_many)
do i = 1, how_many

print *, raw_data(i), ' ‘', ra(i)
end do

end program ch2605

This facility was introduced in Fortran 95.

26.7 Example 6: Elemental e**x Function

445

The following is an elemental version of the etox function covered in an earlier

chapter.

module etox_module

implicit none

contains
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elemental real function etox(x)
implicit none

real, intent (in) :: x

real :: term

integer :: nterm

real, parameter :: tol = 1.0e-6
etox = 1.0

term = 1.

nterm = 0
do
nterm = nterm + 1
term = (x/nterm)*term
etox = etox + term
if (term<=tol) exit
end do
end function etox
end module etox_module
program ch2606
use etox_module
implicit none

integer :: i
real :: x
real, dimension (10) :: vy
x =1.0
do i =1, 10
y(i) = 1
end do

print *, vy
x = etox(x)
print *, x
y = etox(y)
print *, vy

end program ch2606

Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.
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26.8 Example 7: Absolute and Relative Errors Involved in

Subtraction Using 32 bit Reals

It should be apparent by now that floating point arithmetic is by its very nature
inexact. Knuth and others identify the concept of significant digits or relative error
as a useful measure. As a general rule the operations of multiplication and division
do not magnify the relative error by very much, but floating point subtraction does.

In the next two examples we look at the the relative error involved with subtraction.
In the first example we use 32 bit reals, our sp kind type from our precision module.

Here is the program source.
include ’'precision_module.f90’
program ch2607

use precision_module, wp => sp

implicit none

integer :: i
integer, parameter n =4
real (wp), dimension (n) :: x1 = [ 1.1_wp, &
1.01_wp, 1.001_wp, 1.0001_wp ]
real (wp), dimension (n) :: x2 = [ 1.2_wp, &
1.02_wp, 1.002_wp, 1.0002_wp ]
real (wp), dimension (n) :: x3 = [ 0.1_wp, &
0.01_wp, 0.001_wp, 0.0001_wp ]
real (wp), dimension (n) rel_error = 0.0_wp
real (wp), dimension (n) abs_error = 0.0_wp
real (wp) :: z
character (len=11), dimension (n) :: heading_1 &
= [ 'l in 10 ‘, '1 in 100 &
1 in 1,000 ’, '1 in 10,000’ ]
character (len=6), dimension (n) :: heading_ 2 &
= [ '1.1 r, '1.012 r, r1.001 +, r1.0001"
character (len=15), dimension (2) :: heading_3 &
= [ ’'Absolute error ', ’'Relative error ' ]
doi=1, n
z = x2(1) - x1(1)
abs_error (i) = abs(z-x3(1))
rel error (i) = abs_error(i)/x3 (1)
print *, ’ ', heading_1(i), "’

heading_2 (i)
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print *, ’ Calculated = r,oz, ! T, &
heading_3(1), abs_error(i)
print *, ’ Expected = r, x3(1), &
’ ', heading_3(2), rel_error(i)
end do

end program ch2607

Here is sample output from the Nag compiler.

1 in 10 1.1

Calculated = 0.1000000 Absolute error 2.2351742E-08
Expected = 0.1000000 Relative error 2.2351742E-07

1 in 100 1.01

Calculated = 9.9999905E-03 Absolute error 9.3132257E-09
Expected = 9.9999998E-03 Relative error 9.3132257E-07
1 in 1,000 1.001

Calculated = 9.9992752E-04 Absolute error 7.2526745E-08
Expected = 1.0000000E-03 Relative error 7.2526745E-05
1 in 10,000 1.0001

Calculated = 1.0001659E-04 Absolute error 1.6596459E-08
Expected = 9.9999997E-05 Relative error 1.6596459E-04

26.9 Example 8: Absolute and Relative Errors Involved in
Subtraction Using 64 bit Reals

Here is the program source.

include ’'precision_module.f90’
program ch2608
use precision_module, wp => dp

implicit none

integer :: i
integer, parameter :: n = 5
real (wp), dimension (n) :: x1 = [ &

1.000000001_wp, 1.0000000001_wp, &
1.00000000001_wp, 1.000000000001_wp, &
1.0000000000001_wp 1]

real (wp), dimension (n) :: x2 = [ &
1.000000002_wp, 1.0000000002_wp, &
1.00000000002_wp, 1.000000000002_wp, &
1.0000000000002_wp 1]
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real (wp), dimension (n) :: x3 = [ &
0.000000001_wp, 0.0000000001_wp, &
0.00000000001_wp, 0.000000000001_wp, &
0.0000000000001_wp ]

o

real (wp), dimension (n) :: rel_error =
real (wp), dimension (n) :: abs_error

.0_wp
.0_wp

1
o

real (wp) :: z

character (len=23), dimension (n) :: heading 1 &
= [ 'l in 1,000,000,000", &
'l in 10,000,000,000", &
'l in 100,000,000,000", &
'l in 1,000,000,000,000", &
‘1l in 10,000,000,000,000" ]

Il
I’y

character *15, dimension (n) :: heading_2
#1.000000001 ©, ’1.0000000001 T, &
©1.00000000001 *, "1.000000000001 ', &
#1.0000000000001" 1]

character *15, dimension (2) :: heading 3 = [ &
'Absolute error ’, ’'Relative error '’ ]

doi =1, n
z = x2(1) - x1(1)
abs_error (i) = abs(z-x3 (1))
rel _error (i) = abs_error(i)/x3 (1)
print *, heading_1(i), ’ ', heading 2 (1)
print *, ’ Calculated = A 3
heading_3(1), abs_error (i)
print *, ’ Expected = f, x3(1), &
' ', heading_3(2), rel_error (i)
end do

end program ch2608
Here is sample output from the Nag compiler.

1 in 1,000,000,000 1.000000001
Calculated = 9.9999986069576607E-10

Absolute error 1.3930423398822253E-16
Expected = 1.0000000000000001E-09

Relative error 1.3930423398822253E-07
1 in 10,000,000,000 1.0000000001
Calculated = 1.0000000827403710E-10

Absolute error 8.2740370962658176E-18
Expected = 1.0000000000000000E-10

Relative error 8.2740370962658176E-08
1 in 100,000,000,000 1.00000000001
Calculated = 1.0000000827403710E-11
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Absolute error 8.2740371059593404E-19
Expected = 9.9999999999999994E-12

Relative error 8.2740371059593408E-08
1 in 1,000,000,000,000 1.000000000001
Calculated = 9.9986685597741598E-13

Absolute error 1.3314402258399958E-16
Expected = 9.9999999999999998E-13

Relative error 1.3314402258399958E-04
1 in 10,000,000,000,000 1.0000000000001
Calculated = 1.0014211682118912E-13

Absolute error 1.4211682118911691E-16
Expected = 1.0000000000000000E-13

Relative error 1.4211682118911691E-03

26.10 Problems

26.1 Compile and run the sparse matrix example with the data provided.
26.2 Compile and run the Runge Kutta Merson example with the data provided.

26.3 Compile and run the Gaussian Elimination example with the following data.

3316 72
A=[-24 —10 -57
-8 -4 -17

-359
b=\ 281
85

and the solution is

26.4 Edit the Runge Kutta Merson subroutine so that tol is an optional argument.
Compile and run the new code for the same set of ODE’s but don’t provide tol in
the main program’s call to the subroutine. Next provide tol with a value 1.0e-4.
What results do you get?
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Chapter 27
Parameterised Derived Types (PDTs) oo
in Fortran

Aims
The aims of this chapter are to look at some additional data structuring examples in
Fortran that use parameterised derived types - PDTs.

27.1 Introduction

Parameterised derived types were introduced in the Fortran 2003 standard. They
allow the kind, length, or shape of a derived type’s components to be chosen when
the derived type is used.

This feature was only available in two compilers (Cray and IBM) at the time
of the second edition. Support for this feature is now available in three additional
compilers. At the time of writing they were available in the following compilers:

Cray
IBM
Intel
Nag (partial)
PGI

Consult our Compiler Support for the Fortran 2003 and 2008 Standards document

https://www. fortranplus.co.uk/

fortran-information/

for up to date information.

A parameterised derived type can have the kind, length and shape of a derived type
chosen at run time. All type parameters are of type integer and have akind, len
or dim attribute. A kind type parameter may be used in constant and specification
expressions. A length type parameter may only be used in a specification expression,
e.g. array declarations.
© Springer International Publishing AG, part of Springer Nature 2018 453

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_27
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We have a small number of examples to illustrate their use.

27.2 Example 1: Linked List Parameterised by Real Kind

Here is the link module.

module link_module
use precision_module
type link(real_kind)

integer, kind :: real_kind
real (kind=real_kind) :: n
type (link(real_kind)), pointer :: next

end type link
end module link module

Here is the complete program.

include ’'precision_module.f90’
include ’'ch2701_1link module.f90’

program ch2701
use precision_module
use link_module

implicit none

integer, parameter :: wp = dp

type (link(real_kind=wp)), pointer :: root, &
current

integer :: 1 =0

integer :: error = 0

integer :: io_stat_number = 0

real (wp), allocatable, dimension (:) :: x

allocate (root)

print *, ' type in some numbers’

read (unit=*, fmt=*, ilostat=io_stat_number) &
root%n

if (io_stat_number>0) then
error = error + 1

else if (io_stat_number<0) then
nullify (root%next)

else

i=1+1
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allocate (root%next)
end if
current => root
do while (associated(current%next))
current => current%next
read (unit=*, fmt=*, iostat=io_stat_number) &
current%n
if (io_stat_number>0) then
error = error + 1
else if (io_stat_number<0) then
nullify (current%next)
else
i=1+1

allocate (current%next)

end 1f
end do
print *, i, ’ items read’
print *, error, ’ items in error’

allocate (x(1:1))
i=1
current => root
do while (associated(current%next))
x (1) = current%n
i=1+1
print *, current%n
current => current%next
end do
print *, x

end program ch2701

Let us look at the 1ink_module in more depth.

type link(real_kind)

integer, kind :: real_kind
real (kind=real_kind) :: n
type (link(real_kind)), pointer :: next

end type link

The key is in the type declaration for 1 ink where the 1 ink type takes a parameter
real_kind.

We then can reference this parameter within the 1 ink kind type definition. Thus
the declarations for n and next are parameterised by real_kind.

In the main program we have
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integer, parameter :: wp = dp
type (link(real_kind=wp)), pointer :: root, &
current

and the type declarations for root and current are parameterised by wp, where
wp = dp.

This means that we write one type definition for the 1ink type that will work
with any supported real kind type.

Without parameterised derived type support we would have to write separate kind
type definitions for each supported real kind.

27.3 Example 2: Ragged Array Parameterised by Real
Kind Type

Here is the ragged module.

module ragged_module
use precision_module
implicit none
type ragged(real_kind)

integer, kind :: real_kind
real (real_kind), dimension (:), &
allocatable :: ragged_row

end type ragged
end module ragged_module

Here is the complete program.

include ’'precision_module.f90’
include ’'ch2702_ragged_module.f90"

program ch2702
use precision_module

use ragged_module
implicit none

integer, parameter :: wp = Sp

integer :: i

integer, parameter :: n = 3

type (ragged(wp)), dimension (l:n) :: &

lower_diag
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doi=1,n
allocate (lower_diag(i)%ragged_row(l:1i))
print *, ’ type in the values for row ', i
read *, lower_diag(i)%ragged_row(1l:1)

end do

doi=1,n
print *, lower_diag(i)%ragged_row(1l:1i)

end do

end program ch2702

Let us look at the ragged_module in more depth.

module ragged_module
use precision_module
implicit none
type ragged(real_kind)

integer, kind :: real_kind
real (real_kind), dimension (:), &
allocatable :: ragged_row

end type ragged
end module ragged_module

The key is in the type declaration for the ragged type.
We have

type ragged(real_kind)

so the kind definition is parameterised by real_kind.
The ragged_row array declaration is parameterised by real_kind.
In the main program we have

type (ragged(wp)), dimension (1l:n) :: &
lower_diag

so that the lower_diag declaration is parameterised by wp, where wp = sp.

So we have one declaration for the ragged type and can use this type with any
supported real kind type.

27.4 Example 3: Specifying 1en in a PDT

In this example we use both the kind attribute and the 1en attribute in the type
specification.
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Here is the matrix module.

module pdt_matrix_module

use precision_module

implicit none

type pdt_matrix(k, row, col)

integer, kind :: k
integer, len :: row, col
real (kind=k), dimension (row, col) :: m

end type pdt_matrix
interface scale_matrix
module procedure scale_matrix_sp
module procedure scale_matrix_ dp
end interface scale_matrix

contains

subroutine scale_matrix_sp(a, scale)

type (pdt_matrix(sp,*,*)), intent (inout) :: &
a

real (sp) :: scale

asm = a%m + scale

end subroutine scale_matrix_sp

subroutine scale_matrix dp(a, scale)

type (pdt_matrix(dp,*,*)), intent (inout) :: &
a

real (dp) :: scale

a%$m = a%m + scale

end subroutine scale_matrix_dp
end module pdt_matrix_module

Here is the complete program.

include ’'precision_module.f90’
include ’'ch2703_matrix module.f90’

program ch2703
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use precision_module

use pdt_matrix_module

implicit none

real (sp) :: scs

real (dp) :: scd

integer, parameter :: nr = 2, nc = 3
integer :: i

type (pdt_matrix(sp,nr,nc)) :: as
type (pdt_matrix(dp,nr,nc)) :: ad

! single precision

do i =1, nr
print *, ’‘input row ‘', i, ' of sp matrix’
read *, as%m(i, 1l:nc)
end do
print *, ‘input sp scaling factor’
read *, scs
call scale_matrix(as, scs)
print *, ’‘updated matrix:’
do i =1, nr
print 100, as%m(i, 1:nc)
100 format (10(£f6.2,2x%))
end do
!
! double precision
!
do i =1, nr
print *, ’‘input row ‘', 1, ' of dp matrix’
read *, ad%m(i, 1l:nc)
end do
print *, ’input dp scaling factor’
read *, scd
call scale_matrix(ad, scd)
print *, ’‘updated matrix:’
do i =1, nr
print 110, ad%$m(i, 1l:nc)
110 format (10(el2.5,2x))
end do

end program ch2703
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27.5 Problems

27.1 Modify example 1 to read the data from a file.

27.2 Rewrite the tree derived type in Chap.22 as a parameterised derived type to
work with an integer of any type. Test it out.
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Aims
The aims of this chapter are to look at object oriented programming in Fortran.

28.1 Introduction

This chapter looks at object oriented programming in Fortran. The chapter on pro-
gramming languages covers the topic in a broader context.

28.2 Brief Review of the History of Object Oriented
Programming

Object oriented programming is not new. One of the first languages to offer support
was Simula 67, a language designed for discrete event simulation by Ole Johan Dahl,
Bjorn Myhrhaug and Kristen Nygaard whilst working at the Norwegian Computing
Centre in Oslo in the 1960’s.

One of the next major developments was in the 1970’s at the Xerox Palo Alto
Research Centre Learning Research Group who began working on a vision of the
ways different people might effectively use computing power. One of the outcomes
of their work was the Smalltalk 80 system. Objects are at the core of the Smalltalk
80 system.
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The 1980’s and 1990’s saw a number of object oriented programming languages
emerge. They include

Eiffel. Bertrand Meyer, Eiffel Software.

C++ from C with classes. Bjarne Stroustrup at Bell Labs.
Oberon 2. Niklaus Wirth at ETH in Zurich.

Java. James Gosling, originally Sun, now Oracle.

C# is a recent Microsoft addition to the list.

Object-oriented programming is effectively a programming methodology or
paradigm using objects (data structures made up of data and methods). We will
use the concept of a shape class in our explanation and examples. The Simula Begin
book starts with shapes, and it is often used in introductions to object oriented pro-
gramming in other languages.

Some of the key concepts are

e encapsulation or information hiding - the implementation of the data is hidden
inside an object and clients or users of the data only have access to an abstract
view of it. Methods are used to access and manipulate the data. For example a
shape class may have an x and y position, and methods exist to get and set the
positions and draw and move the shape.

e data abstraction - if we have an abstract shape data type we can create multiple
variables of that type.

e inheritance - an existing abstract data type can be extended. It will inherit the data
and methods from the base type and add additional data and methods. A key to
inheritance is that the extended type is compatible with the base type. Anything
that works with objects or variables of the base type also works with objects of
the extended type. A circle would have a radius in addition to an x and y position,
a rectangle would have a width and height.

e dynamic binding - if we have a base shape class and derive circles and rectangles
from it dynamic binding ensures that the correct method to calculate the area is
called at run time.

e polymorphism - variables can therefore be polymorphic. Using the shape example
we can therefore create an array of shapes, one may be a shape, one may be a
circle and another may be a rectangle.

Extensible abstract data types with dynamically bound methods are often called
classes. This is the terminology we will use in what follows.

28.3 Background Technical Material

We need to look more formally at a number of concepts so that we can actually do
object oriented programming in Fortran. The following sections cover some of the
introductory material we need, and are taken from the standard.
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28.3.1 The Concept of Type

Fortran provides an abstract means whereby data can be categorized without relying
on a particular physical representation. This abstract means is the concept of type.
A type has a name, a set of valid values, a means to denote such values (constants),
and a set of operations to manipulate the values.

28.3.2 Type Classification

A type is either an intrinsic type or a derived type. This document defines five
intrinsic types: integer, real, complex, character, and logical. A derived type is one
that is defined by a derived-type definition (7.5.2) or by an intrinsic module. It shall
be used only where it is accessible (7.5.2.2). An intrinsic type is always accessible.

28.3.3 Set of Values

For each type, there is a set of valid values. The sets of valid values for integer,
character, and real are processor dependent. The set of valid values for complex
consists of the set of all the combinations of the values of the real and imaginary
parts. The set of valid values for a derived type is as defined in 7.5.8.

28.3.4 Type

A type type specifier is used to declare entities that are assumed-type, or of an
intrinsic or derived type.

An entity that is declared using the TYPE(*) type specifier is assumed-type and
is an unlimited polymorphic entity. It is not declared to have a type, and is not
considered to have the same declared type as any other entity, including another
unlimited polymorphic entity. Its dynamic type and type parameters are assumed
from its effective argument.

28.3.5 Class

The CLASS type specifier is used to declare polymorphic entities. A polymorphic
entity is a data entity that is able to be of differing dynamic types during program
execution.
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The declared type of a polymorphic entity is the specified type if the CLASS type
specifier contains a type name.

An entity declared with the CLASS(*) specifier is an unlimited polymorphic
entity. It is not declared to have a type, and is not considered to have the same
declared type as any other entity, including another unlimited polymorphic entity.

28.3.6 Attributes

The additional attributes that may appear in the attribute specification of a type
declaration statement further specify the nature of the entities being declared or
specify restrictions on their use in the program.

28.3.6.1 Accessibility Attribute

The accessibility attribute specifies the accessibility of an entity via a particular
identifier. The following is taken from Sect. 8.5.2 of the Fortran 2018 standard.

e access-spec is public or private
e An access-spec shall appear only in the specification-part of a module.

Identifiers that are specified in a module or accessible in that module by use
association have either the public or private attribute. Identifiers for which an
access-spec is not explicitly specified in that module have the default accessibility
attribute for that module. The default accessibility attribute for a module is public
unless it has been changed by a private statement. Only identifiers that have the
public attribute in that module are available to be accessed from that module by
use association.

28.3.7 Passed Object Dummy Arguments

Section 3.107 of the Fortran 2018 standard introduces the concept of passed object
dummy argument. Here is an extract from the standard:

e A passed-object dummy argument is a distinguished dummy argument of a pro-
cedure pointer component or type-bound procedure (7.5.5). It affects procedure
overriding (7.5.7.3) and argument association (15.5.2.2).

e IfNOPASS is specified, the procedure pointer component or type-bound procedure
has no passed-object dummy argument.

e If neither PASS nor NOPASS is specified or PASS is specified without arg-name,
the first dummy argument of a procedure pointer component or type-bound pro-
cedure is its passed-object dummy argument.
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e If PASS (arg-name) is specified, the dummy argument named arg-name is the
passed-object dummy argument of the procedure pointer component or named
type-bound procedure.

e Constraint C761 The passed-object dummy argument shall be a scalar, nonpointer,
nonallocatable dummy data object with the same declared type as the type being
defined; all of its length type parameters shall be assumed,; it shall be polymorphic
(7.3.2.3) if and only if the type being defined is extensible (7.5.7). It shall not have
the VALUE attribute.

The key here is that we are going to use the pass and nopass attributes with
type bound procedures - a component of object oriented programming in Fortran.

28.3.8 Derived Types and Structure Constructors

A derived type is a type that is not defined by the language but requires a type
definition to declare its components. A scalar object of such a derived type is called a
structure. Assignment of structures is defined intrinsically, but there are no intrinsic
operations for structures. For each derived type, a structure constructor is available
to provide values.

A derived-type definition implicitly defines a corresponding structure constructor
that allows construction of values of that derived type.

28.3.9 Structure Constructors and Generic Names

A generic name may be the same as a type name. This can be used to emulate user-
defined structure constructors for that type, even if the type has private components.
The following example is taken from the standard to illustrate this.

module mytype_module
type mytype
private
complex value
logical exact
end type
interface mytype
module procedure int_to_mytype
end interface

! Operator definitions etc.

contains
type (mytype) function int_to_mytype (i)
integer, intent (in) :: i

int_to_mytype%value = i
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int_to_mytype%exact = .true.
end function
! Procedures to support operators etc.

end

28.3.10 Assignment

Execution of an assignment statement causes a variable to become defined or rede-
fined. Simplistically

variable = expression

28.3.11 Intrinsic Assignment Statement

An intrinsic assignment statement is an assignment statement that is not a defined
assignment statement (10.2.1.4). In an intrinsic assignment statement,

e if the variable is polymorphic it shall be allocatable and not a coarray,

e if expr is an array then the variable shall also be an array,

e the variable and expr shall be conformable unless the variable is an allocatable
array that has the same rank as expr and is not a coarray,

e if the variable is polymorphic it shall be type compatible with expr; otherwise the
declared types of the variable and expr shall conform as specified in Table 10.8 of
the standard,

o if the variable is of type character and of ISO 10646, ASCII, or default character
kind, expr shall be of ISO 10646, ASCII, or default character kind,

e otherwise if the variable is of type character expr shall have the same kind type
parameter,

e if the variable is of derived type each kind type parameter of the variable shall
have the same value as the corresponding kind type parameter of expr, and

e if the variable is of derived type each length type parameter of the variable shall
have the same value as the corresponding type parameter of expr unless the variable
is allocatable, is not a coarray, and its corresponding type parameter is deferred.

28.3.12 Defined Assignment Statement

A defined assignment statement is an assignment statement that is defined by a
subroutine and a generic interface that specifies ASSIGNMENT (=).
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28.3.13 Polymorphic Variables

Here are some of the technical definitions regarding polymorphic taken from the
standard.

e polymorphic - polymorphic data entity able to be of differing dynamic types during
program execution (7.3.2.3)

e unlimited polymorphic - able to have any dynamic type during program execution
(7.3.2.3)

A polymorphic variable must be a pointer or allocatable variable. We will use
allocatable variables to achieve polymorphism in our examples.

28.3.14 Executable Constructs Containing Blocks

The following are executable constructs that contain blocks:

associate construct
case construct

do construct

if construct

select type construct

We will look at the associate construct and select type construct next.

28.3.15 The associate Construct

The associate construct associates named entities with expressions or variables
during the execution of its block. These named construct entities are associating
entities. The names are associate names.

The following example illustrates an association with a derived-type variable.

associate ( xc => ax%b(i,i)%c )
xc%dv = xc%dv + product (xc%ev(l:n))
end associate

28.3.16 The select type Construct

The select type construct selects for execution at most one of its constituent

blocks. The selection is based on the dynamic type of an expression. A name is

associated with the expression, in the same way as for the associate construct.
Quite a lot to take in! Let’s illustrate the use of the above in some actual examples.
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28.4 Example 1: The Basic Shape Class

The code for the base shape class is given below.

e shape class data: integer variables x and y for the position.
e shape class methods: get and set for the x and y values, and moveto and
draw.

We have used an include statement in the examples that follow to reduce code
duplication. In this example we have used the default accessibility for the data and
methods in the shape_module.

module shape_module

type shape_type

integer :: x_ = 0
integer :: y_ =0
contains

procedure, pass (this) get_x
procedure, pass (this) get_y
procedure, pass (this) set_x
procedure, pass (this) :: set_y
procedure, pass (this) moveto
procedure, pass (this) draw

end type shape_type

contains

include ’‘shape_module_include_code.f90"

end module shape_module

Here is the code in the include file.

I'start shape_module_common_code
integer function get_x(this)
implicit none
class (shape_type), intent (in) :: this

get_x = this%x_
end function get_x
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integer function get_y(this)
implicit none
class (shape_type), intent (in) :: this

get_y = this%y_
end function get_y

subroutine set_x(this, x)
implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: x
this%$x_ = x

end subroutine set_x

subroutine set_y(this, vy)
implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: y
this%y =1y

end subroutine set_y

subroutine moveto(this, newx, newy)
implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: newx

integer, intent (in) :: newy

this%$x_ = newx

this%y_ = newy

end subroutine moveto

subroutine draw(this)
implicit none

class (shape_type), intent (in) :: this
print *, ' x = ', this%x_
print *, * y = ', this%y_

end subroutine draw

!end shape_module_common_code
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28.4.1 Key Points

Some of the key concepts are:

e We use a module as the organisational unit for the class.

e Weuse type and end type to contain the data and the procedures - called type
bound procedures in Fortran terminology.

e The data in the base class is an x and y position.

e The type bound methods within the class are

— get_xand set_x
— get_yand set_y
— draw

— moveto

e We have used the default accessibility for the data and methods in the type.

Let us look at the code in stages.

module shape_module

The module is called shape_module
type shape_type

The type is called shape_type

integer :: x_ = 0

integer :: y_ =0

The data associated with the shape type are integer variables that are the x and y
coordinates of the shape. We initialise to zero.

contains

The type also contains procedures or methods.

procedure, pass(this) get_x
procedure, pass(this) get_y
procedure, pass(this) :: set_x
procedure, pass(this) set_vy
procedure, pass(this) :: moveto
procedure, pass(this) draw
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These are called type bound procedures in Fortran terminology. It is common
in object oriented programming to have get and set methods for each of the data
components of the type or object. We also have a moveto and draw method.

Each of these methods has the pass attribute. When a type bound procedure
is called or invoked the object through which is invoked is normally passed as a
hidden parameter. We have used the pass attribute to explicitly confirm the default
behaviour of passing the invoking object as the first parameter. We have also followed
the convention in object oriented programming of using the word this to refer to
the current object.

end type shape_type

This is the end of the type definition.

contains

The module then contains the actual implementation of the type bound procedures.
We will look at a couple of these.

integer function get_x(this)
implicit none
class (shape_type), intent (in) :: this
get_x = this%x_
end function get_x

As we stated earlier it is common in object oriented programming to have get and
set methods for each data item in an object. This function implements the get_x
method. The first argument is the current object, referred to as this. We then have
the type declaration for this parameter. We declare the variable using class rather
than type as we want the variable to be polymorphic. The rest of the function is self
explanatory.

subroutine set_x(this, x)

implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: X
this%$x_ = x

end subroutine set_x

The set_x procedure is a subroutine. It takes two parameters, the current object
and the new x value. Again we use the class declaration mechanism as we want the
variable to be polymorphic.

Here is a program to test the above shape module out.
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include ’'ch2801_shape_module.f90"
program ch2801

use shape_module
implicit none

type (shape_type) :: sl = shape_type (10, 20)
integer :: x1 = 100

integer :: yl = 200

print *, ’ get

print *, sl%get_x(), ' ', sl%get_y()

print *, ' draw ’

call sl%draw/()
print *, ’ moveto ’
call sl%moveto(xl, yl)

print *, ’ draw ’
call sl%draw/()
print *, ’ set '

call sl%set_x(99)
call sl%set_v(99)
print *, ’ draw’
call sl%draw()

end program ch2801

The first statement of interest is the use statement, where we make available the
shape_module to the test program. The next statement of interest is

type (shape_type) :: sl = shape_type(1l0,20)

We then have a type declaration for the variable s1. We also have the use of what
Fortran calls a structure constructor shape_ type to provide initial values to the x
and y positions. The term constructor is used in other object oriented programming
languages, e.g. C++, Java, C#. It has the same name as the type or class and is created
automatically for us by the compiler in this example.

The

print *, sl%get_x(), ' ', sl%get_y()

statement prints out the x andy values for the object s1. We use the standard %
notation that we used in derived types, to separate the components of the derived
types. If one looks at the implementation of the get_x function and examines the
first line, repeated below

integer function get_x(this)
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how we refer to the current object, s1, through the syntax s1%get_x (). The
following call:

call sl%draw/()

shows how to invoke the draw method for the s1 object, using the s1%draw ()
syntax. The first line of the draw subroutine

subroutine draw(this)

shows how the current object is passed as the first argument.

28.4.2 Notes

In this example we have accepted the default Fortran accessibility behaviour. This
means that we can use the compiler provided structure constructor shape_type ()

type (shape_type) :: sl = shape_type(1l0,20)

in the type declaration to provide initial values, as they are public by default. Direct
access to the data is often not a good idea, as it is possible to makes changes to the
data anywhere in the program. The next example makes the data private.

28.5 Example 2: Base Class with Private Data

Here is the modified base class.

module shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) get_x
procedure, pass (this) get_y
procedure, pass (this) set_x
procedure, pass (this) set_y
procedure, pass (this) :: moveto
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procedure, pass (this) :: draw
end type shape_type
contains
include ’‘shape_module_include_code.f90’
end module shape_module

Here is the diff output between the two shape modules.

5,6c5,6

< integer :: x_ =0

< integer :: y_ =0

> integer, private :: x_ = 0
> integer, private :: y_ =0

This example will now not compile as the default compiler provided structure
constructor does not have access to the private data.

The test program is the same as in the first example.

Here is the output from trying to compile this example.

Error: ch2802.f90, line 4:

Constructor for type SHAPE_TYPE has value
for PRIVATE component X_

Errors in declarations,

no further processing for CH2802

[NAG Fortran Compiler error termination, 1 error]

Not all compilers diagnose this problem. Test yours to see if you get an error
message!

An earlier solution to this type of problem can be found in the date class in
Chap. 22, where we provide our own structure constructor date_ (). Most object
oriented programming languages provide the ability to use the same name as a class
as a constructor name even if the data is private. Modern Fortran provides another
solution to this problem. In the example below we will provide our own structure
constructor inside an interface.
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28.6 Example 3: Using an Interface to Use the Class Name
for the Structure Constructor

Here is the modified base class.

module shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) get_x
procedure, pass (this) get_y
procedure, pass (this) set_x
procedure, pass (this) set_vy
procedure, pass (this) moveto
procedure, pass (this) draw

end type shape_type

interface shape_type
module procedure shape_type_constructor
end interface shape_type

contains
type (shape_type) function &

shape_type_constructor (x, vy)

implicit none

integer, intent (in) :: x
integer, intent (in) :: vy
shape_type_constructor%x_ = x
shape_type_constructor%y =y

end function shape_type_constructor
include ‘shape_module_include_code.f90’
end module shape_module

Here is the diff output between the second and third shape modules.
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18al19,22
> interface shape_type
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> module procedure shape_type_constructor

> end interface shape_type
>
19a24,33
>

type (shape_type)
shape_type_constructor (x,
implicit none
intent

integer, (in) :: x

intent (in) :: y
shape_type_constructor®x_

>
>

>

>

> integer,
>

>

> shape_type_constructor$y_
>

function &

Y)

X

Y

end function shape_type_constructor

The key statements are

interface shape_type

module procedure shape_type_constructor

end interface

which enables us to map a call or reference to shape_type (our structure con-
structor name) to our implementation of shape_type_constructor. Here is
the implementation of this structure constructor.

type (shape_type) function &
shape_type_constructor (x,vy)
implicit none

(in) :: x

integer, intent

integer, intent (in) :: y
shape_type_constructor%x_ =

shape_type_constructordy_ =

X

Y

end function shape_type_constructor

The function is called shape_type_constructor hence we use this name
to initialise the components of the type, and the function returns a value of type

shape_type.

Here is the program to test the above out.

include

program ch2803

'ch2803_shape_module.f90’



28.6 Example 3: Using an Interface to Use the Class Name ... 477

use shape_module
implicit none

type (shape_type) :: sl
integer :: x1 = 100
integer :: yl = 200

sl = shape_type (10, 20)

print *, ' get
print *, sl%get_x(), ' ', sl%get_y()
print *, ' draw '’

call sl%draw()
print *, ’ moveto '
call sl%moveto(xl, y1)
print *, ' draw ’
call sl%draw()
print *, ’ set
call sl%set_x(99)
call sl%set_v(99)
print *, ' draw’
call sl%draw()

end program ch2803

Note that in this example we cannot initialise s1 at definition time using our own
(user defined) structure constructor. This must now be done within the execution part
of the program. This is a Fortran restriction, and makes it consistent with the rest of
the language.

These examples illustrate some of the basics of object oriented programming in
Fortran. To summarise

e the data in our class is private;

e access to the data is via get and set methods;

e the data and methods are within the derived type definition - the methods are called
type bound procedures in Fortran terminology;

e we can use interfaces to provide user defined structure constructors, which have the
same name as the class - this is a common practice in object oriented programming;

e we have used class to declare the variables within the type bound methods. We
need to use class when we want to use polymorphic variables in Fortran.

28.6.1 Public and Private Accessibility

We have only made the internal data in the class private in the above example. There
will be cases where some of the methods are only used within the class, in which
case they can be made private.
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28.7 Example 4: Simple Inheritance

In this example we look at inheritance. We use the same base shape class and derive
two classes from it - circle and rectangle.

A circle has a radius. This is the additional data component of the derived class.
We also have get and set methods.

A rectangle has a width and height. These are the additional data components of
the derived rectangle class. We also have get and set methods.

28.7.1 Base Shape Class

The base shape class is as in the previous example.

28.7.2 Circle - Derived Type 1

Here is the code.

module circle_module

use shape_module

type, extends (shape_type) :: circle_type
integer, private :: radius_

contains
procedure, pass (this) :: get_radius
procedure, pass (this) :: set_radius
procedure, pass (this) :: draw => &

draw_circle
end type circle_type
interface circle_type
module procedure circle_type_constructor

end interface circle_type

contains
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type (circle_type) function &
circle_type_constructor(x, y, radius)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
integer, intent (in) :: radius

call circle_type_constructor%set_x(x)
call circle_type_constructor%set_v(y)

circle_type_constructor$radius_ = radius

end function circle_type_constructor

integer function get_radius(this)
implicit none

class (circle_type), intent (in) :: this

get_radius = this%radius_
end function get_radius

subroutine set_radius(this, radius)
implicit none

class (circle_type), intent (inout)
integer, intent (in) :: radius
this%$radius_ = radius

end subroutine set_radius

subroutine draw_circle(this)
implicit none

class (circle_type), intent (in) :: this
print *, ’ x = ‘, this%get_x()

print *, * y = ', this%get_y()

print *, ’ radius = ’, this%radius_

end subroutine draw_circle

end module circle_module

Let us look more closely at the statements within this class. Firstly we have

module circle_module

which introduces our circle module. We then

use shape_module

479
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within this module to make available the shape class. The next statement

type , extends (shape_type) :: circle_type
is the key statement in inheritance. What this statement says is base our new

circle_type onthe base shape_type. Itis an extension of the shape_type.
We then have the additional data in our circle_type

integer , private :: radius_

and the following additional type bound procedures.

procedure , pass(this) :: get_radius
procedure , pass(this) :: set_radius
procedure , pass(this) :: draw => draw_circle

and we have the simple get and set methods for the radius, and a type specific draw
method for our circle_type. It is this method that will be called when drawing
with a circle, rather than the draw method in the base shape_type.

We then have an interface to provide us with our own user defined structure
constructor for our circle_type.

interface circle_type
module procedure circle_type_constructor
end interface

As has been stated earlier it is common practice in object oriented programming
to use the same name as the type for constructors.
We then have the implementation of the constructor.

type (circle_type) function &
circle_type_constructor (x,y,radius)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
integer, intent (in) :: radius

call circle_type_constructor%set_x(x)

call circle_type_constructor%set_vy(y)

circle_type_constructor%$radius_=radius
end function circle_type_constructor

Note that we use the set_x and set_y methods to provide initial values to the
x and y values. They are private in the base class so we need to use these methods.
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We can directly initialise the radius as this is a data component of this class, and
we have access to it.

We next have the get and set methods for the radius.

Finally we have the implementation for the draw circle method.

subroutine draw_circle(this)

implicit none

class (circle_type), intent(in) :: this
print *,’ x = ' , this%get_x()

print *,’ y = ' , this%get_vy ()

print *,’ radius = ' , this%radius_

end subroutine draw_circle

Notice again that we use the get_x and get_y methods to access the x andy
private data from the base shape class.

28.7.3 Rectangle - Derived Type 2

Here is the code for the second derived type.

module rectangle_module

use shape_module

type, extends (shape_type) :: rectangle_type
integer, private :: width_
integer, private :: height_

contains

procedure, pass (this) get_width
procedure, pass (this) set_width
procedure, pass (this) get_height
procedure, pass (this) set_height
procedure, pass (this) draw => &

draw_rectangle

end type rectangle_type

interface rectangle_type
module procedure rectangle_type_constructor
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end interface rectangle_type

contains

type (rectangle_type) function &
rectangle_type_constructor(x, y, width, &
height)
implicit none

integer, intent (in) x
integer, intent (in) v
integer, intent (in) width
integer, intent (in) height

call rectangle_type_constructor%set_x(x)

call rectangle_type_constructor$set_vy(y)

rectangle_type_constructor%width_ = width

rectangle_type_constructor%height_ = height
end function rectangle_type_constructor

integer function get_width(this)
implicit none

class (rectangle_type), intent (in) :: this

get_width = this%width_
end function get_width

subroutine set_width(this, width)

implicit none

class (rectangle_type), intent (inout) :: &
this
integer, intent (in) :: width

this%width_ = width
end subroutine set_width

integer function get_height (this)
implicit none
class (rectangle_type), intent (in) :: this

get_height = this%height_
end function get_height

subroutine set_height(this, height)
implicit none

class (rectangle_type), intent (inout) :: &
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this
integer, intent (in) :: height
this%height_ = height

end subroutine set_height

subroutine draw_rectangle (this)
implicit none

class (rectangle_type), intent (in) :: this
print *, ’ x = ’, this%get_x()

print *, vy = ', this%get_y()

print *, ’ width = ’, this%width_

print *, ’ height = ', this%height_

end subroutine draw_rectangle
end module rectangle_module

The code is obviously very similar to that of the first derived type.

28.7.4 Simple Inheritance Test Program

Here is a test program that illustrates the use of the shape type, circle type and
rectangle type.

include ’'ch2803_shape_module.f90’
include 'ch2804_circle_module.£f90’
include ’'ch2804_rectangle_module.f90"
program ch2804

use shape_module

use circle_module

use rectangle_module

implicit none

type (shape_type) :: vs
type (circle_type) :: vc
type (rectangle_type) :: vr
vs = shape_type (10, 20)

vc = circle_type (100, 200, 300)
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vr = rectangle_type (1000, 2000, 3000, 4000)

print *, ’ get

print *, ’ shape ', vs%get_x(), ' ', &
vs%get_v ()

print *, ’ circle ', vecgsget_x(), ' ', &
vcesget_v (), ’‘radius = ', vcsget_radius ()

print *, ' rectangle ', vr%get_x(), ' ', &
vrget_vy (), ‘width = ', vr%get_width(), &
'height ', vr%get_height ()

print *, ' draw '’

call vs%draw()
call vc%draw()
call vr%draw()
print *, ' set
call vs%set_x(19)
call vs%set_y(19)
call vc$set_x(199)
call vc%set_y(199)
call vec%$set_radius (199)
call vr%set_x(1999)
call vr%set_vy(1999)
call vr%set_width(1999)
call vr%$set_height (1999)
print *, ' draw ’
call vs%draw/()
call vc%draw()
call vr%draw ()
end program ch2804

The first statements of note are

use shape_module
use circle_module

use rectangle_module

which make available the shape, circle and rectangle types within the program. The
following statements

type (shape_type) R4S
type (circle_type) 1 ve
type (rectangle_type) :: vr

declare vs, vc and vr to be of type shape, circle and rectangle respectively. The
following three statements
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Vs shape_type (10,20)
vc = circle_type(100,200,300)

rectangle_type(1000,2000,3000,4000)

A\ e

call the three user defined structure constructor functions.
We then use the get functions to print out the values of the private data in each
object.

print *,’ shape ', vs%get_x(),&

", vs%sget_y ()
print *,’ circle ", vcsget_x (), &

1, veksget_y(),’ radius = ’,vc%get_radius()
print *,’ rectangle ', vr%get_x(),&

o1 ,vrgget_y(),’ width = ’,vr%get_width(),"’

height ’,vr%get_height ()
We then call the draw method for each type.

call vs%draw ()
call vc%draw()
call vr%draw/()

and the appropriate draw method is called for each type. We finally call the set
functions for each variable and repeat the calls to the draw methods.

The draw methods in the derived types override the draw method in the base shape
class.

28.8 Example 5: Polymorphism and Dynamic Binding

An inheritance hierarchy can provide considerable flexibility in our ability to manip-
ulate objects, whilst still taking advantage of static or compile time type checking.
If we combine inheritance with polymorphism and dynamic binding we have a very
powerful programming tool. We will illustrate this with a concrete example.

28.8.1 Base Shape Class

This is our base class. A polymorphic variable is a variable whose data type may vary
at run time. It must be a pointer or allocatable variable, and it must be declared using
the class keyword. Our original base class declared variables using the class
keyword from the beginning as we always intended to design a class that could be
polymorphic.
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We have had to make one change to the previous one. To make the polymorphism
work we have had to provide our own assignment operator. So we have

interface assignment (=)
module procedure generic_shape_assign
end interface

which means that our implementation of generic_shape_assign will
replace the intrinsic assignment. Here is the actual implementation.

subroutine generic_shape_assign(lhs, rhs)
implicit none
class (shape_type), intent (out), &
allocatable :: lhs
class (shape_type), intent (in) :: rhs
allocate (lhs,source=rhs)
end subroutine generic_shape_assign

In an assignment we obviously have
left_hand_side = right_hand_side

and in our code we have variables 1hs and rhs to clarify what is happening. We
also have an enhanced form of allocation statement:

allocate (lhs, source=rhs)

and the key is that the left hand side variable is allocated with the values and type of
the right hand side variable. Here is the complete code.

module shape_module

type shape_type

integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) get_x
procedure, pass (this) get_y
procedure, pass (this) set_x
procedure, pass (this) set_vy
procedure, pass (this) moveto
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procedure, pass (this) :: draw

end type shape_type

interface shape_type
module procedure shape_type_constructor

end interface shape_type

interface assignment (=)
module procedure generic_shape_assign

end interface assignment (=)

contains

type (shape_type) function &
shape_type_constructor (x, vy)
implicit none

integer, intent (in) :: x
integer, intent (in) :: vy
shape_type_constructor%$x_ = x
shape_type_constructor%y =y

end function shape_type_constructor
include ’‘shape_module_include_code.f90’
subroutine generic_shape_assign(lhs, rhs)
implicit none
class (shape_type), intent (out), &
allocatable :: 1lhs

class (shape_type), intent (in) :: rhs

allocate (lhs, source=rhs)

end subroutine generic_shape_assign

end module shape_module

28.8.2 Circle - Derived Type 1

The circle code is the same as before.
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28.8.3 Rectangle - Derived Type 2

The rectangle code is as before.

28.8.4 Shape Wrapper Module

As was stated earlier a polymorphic variable must be a pointer or allocatable variable.
We have chosen to go the allocatable route. The following is a wrapper routine to
allow us to have a derived type whose types can be polymorphic.

module shape_wrapper_module
use shape_module
use circle_module
use rectangle_module
type shape_wrapper

class (shape_type), allocatable :: x
end type shape_wrapper
end module shape_wrapper_module

So now x can be of shape_type or of any type derived from shape_type.
Don’t panic if this isn’t clear at the moment, the complete program should help out!

28.8.5 Display Subroutine

This is the key subroutine in this example. We can pass into this routine an array of
type shape_wrapper. In the code so far we have variables of type

e shape_type
e circle_type
e rectangle_type

and we are passing in an array of elements and each element can be of any of these
types, i.e. the shape_array is polymorphic.
The next statement of interest is

call shape_array (i) %x%draw()

and at run time the correct draw method will be called. This is called dynamic
binding. Here is the complete code.
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module display _module
contains

subroutine display (n_shapes, shape_array)
use shape_wrapper_module
implicit none
integer, intent (in) :: n_shapes
type (shape_wrapper), dimension (n_shapes) &
shape_array

integer :: i

do i = 1, n_shapes
call shape_array (i) $x%draw()
end do

end subroutine display

end module display _module

28.8.6 Test Program for Polymorphism and Dynamic Binding

We now have the complete program that illustrates polymorphism and dynamic
binding in action.

include ’'ch2805_shape_module.f90’

include ’'ch2804_circle_module.f90’
include ’'ch2804_rectangle_module.f90"
include ’'ch2805_shape_wrapper_module.f90’
include ’'ch2805_display module.f90’

program ch2805
use shape_module
use circle_module
use rectangle_module
use shape_wrapper_module
use display_module

implicit none

integer, parameter :: n = 6
integer :: i
type (shape_wrapper), dimension (n) :: s

s(1)%x = shape_type (10, 20)
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s(2)%x = circle_type (100, 200, 300)

s(3)%x = rectangle_type (1000, 2000, 3000, &
4000)

s(4)%x = s(1)%x

s(5)%x = s(2)%x

s(6)%x = s(3)%x

print *, ' calling display subroutine’

call display(n, s)

print *, ’ select type with get methods’

doi=1, n

select type (t=>s(i)%x)
class is (shape_type)

print *, ' x = ', t%get_ x(), 'y ="', &
t¥get_y ()
class is (circle_type)
print *, ' x = ', t%get_x(), 'y ="', &
t¥get_y ()
print *, ’ radius = ', t%get_radius()
class is (rectangle_type)
print *, * x = ', t&%get_x(), 'y ="', &
t¥get_y ()
print *, ’ height = ’, t%get_height()
print *, ’ width = ', t%get_width()

class default
print *, ’ do nothing’
end select
end do
print *, ' select type with set methods’
doi=1,n
select type (t=>s(i)%x)
class is (shape_type)
call t%set_x(19)
call t%set_y(19)
class is (circle_type)
call t%set_x(199)
call t%set_v(199)
call t%set_radius(199)
class is (rectangle_type)
call t%set_x(1999)
call t%set_vy(1999)
call t%set_height(1999)
call t%set_width(1999)
class default
print *, ’ do nothing’
end select
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end do
print *, ' calling display subroutine’
call display(n, s)

end program ch2805

Let us look at the key statements in more detail.
type (shape_wrapper), dimension (n) :: s

This is the key declaration statement. s will be our polymorphic array. The fol-
lowing six assignment statements

s(l) %$x = shape_type(10,20)

s(2) %$x = circle_type(100,200,300)

s(3) %x = rectangle_type(1000,2000,3000,4000)
s(4) %x = s(1)%x

s(5) %x = s(2)%x

s(6) %$x = s(3)%x

will call our own assignment subroutine to do the assignment. The allocation is
hidden in the implementation. We then have

call display(n,s)

which calls the display subroutine. The compiler at run time works out which draw
method to call depending of the type of the elements in the shape_wrapper array.

Imagine now adding another shape type, let us say a triangle. We need to do the
following

inherit from the base shape type

add the additional data to define a triangle

add the appropriate get and set methods

add a draw triangle method

add a use statement to the shape_wrapper_module
add a use statement to the main program

and we now can work with the new triangle shape type. The display subroutine is
unchanged! We can repeat the above steps for any additional shape type we want.
Polymorphism and dynamic binding thus shorten our development and maintenance
time, as it reduces the amount of code we need to write and test.

We then have an example of the use of the select type statement. The com-
piler determines the type of the elements in the array and then executes the matching
block.



492 28 Introduction to Object Oriented Programming

do i=1,n
select type ( t=>s(i) %x )
class is (shape_type)

print *,’ x = r, t¥get_x(),’ v = ', tsget_y()
class is (circle_type)
print *,’ x = ", t%get_x(),’ v = ',t%get_vy ()
print *,’ radius = ", t%get_radius ()
class is (rectangle_type)
print *,’ x = ", t%get_x(),’ vy = ', t%get_y()
print *,’ height = r, t%get_height ()
print *,’ width = ", t%get_width()

class default
print *,’ do nothing’
end select
end do

Now imagine adding support for the new triangle type. Anywhere we have select
type constructs we have to add support for our new triangle shape. There is obviously
more work involved when we use the select type construct in our polymorphic
code. However some problems will be amenable to polymorphism and dynamic
binding, others will require the explicit use of select type statements. This
example illustrates the use of both.

28.9 Fortran 2008 and Polymorphic Intrinsic Assignment

The previous example works with Fortran 2003 conformant compilers. This example
illustrates a simple variant that will work if your compiler supports a feature from
the 2008 standard - polymorphic intrinsic assignment. In this case we do not need to
provide a user defined assignment subroutine.

Here is the modified shape module.

module shape_module

type shape_type

integer, private :: x_ = 0

integer, private :: y_ =0
contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x
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procedure, pass (this) :: set_y
procedure, pass (this) :: moveto
procedure, pass (this) :: draw

end type shape_type

interface shape_type
module procedure shape_type_ constructor
end interface shape_type

contains
type (shape_type) function &

shape_type_constructor (x, Vy)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
shape_type_constructor®$x_ = X
shape_type_constructor®y_ =y

end function shape_type_constructor
include ’‘shape_module_include_code.f90’
end module shape_module

The rest of the code is the same as in the previous example.
Compiling with gfortran 6.4 will generate the following error message.
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Error: Assignment to an allocatable polymorphic variable at (1) is not yet

supported

We maintain compiler standard conformance tables that document what features

from the 2003, 2008 and 2018 standards are supported by current compilers.
Visit

https://www. fortranplus.co.uk/fortran-information/

to get up to date information. At the time of writing Table28.1 was correct for

compilers we have used in this edition.
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Table 28.1 Polymorphic

ST . Compiler Version Assignment
intrinsic assignment support support
Cray 7.4 Yes
gfortran 4.x No
5.x No
6.x No
7.1 Yes
Intel 17.x No
18.x Yes
Nag 6.0 Yes
Oracle 12.6 No
Pathscale 6.0.1148 No
PGI 17.4.0 No

28.10 Summary

This chapter has introduced some of the essentials of object oriented programming.
The first example looked at object oriented programming as an extension of basic
data structuring. We used type bound procedures to implement our shape class. We
used methods to access the internal data of the shape object.

The second example looked at simple inheritance. We saw in this example how
we could reuse the methods from the base class and also add new data and methods
specific to the new shapes - circles and rectangles.

The third example then looked at how to achieve polymorphism in Fortran. We
could then create arrays of our base type and dynamically bind the appropriate
methods at run rime. Dynamic binding is needed when multiple classes contain
different implementations of the same method, i.e. to ensure in the following code

call shape_array (i) %x%draw ()

that the correct draw method is invoked on the shape object.

28.11 Problems

28.1 Compile and run all of the examples in this chapter with your compiler.
28.2 Add a triangle type to the simple inheritance example.

28.3 Add a triangle type to the polymorphic example.
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28.12 Further Reading

The following book

ISO/IEC DIS 1539-1 Information technology—Programming languages—Fortran—
Part 1: Base language

e Fortran 2018 draft standard.

https://www.iso.org/standard/72320.html

e Rouson D., Xia J., Xu X., Scientific Software Design: The Object Oriented Way,
Cambridge University Press, 2011.

uses Fortran throughout and is a very good coverage of what is possible in modern
Fortran. Well worth a read.
The second edition of the following book

e Meyer Bertrand, Object Oriented Software Construction, Prentice Hall, 1997.

provides a very good coverage and uses Eiffel throughout - he did design the lan-
guage!
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Additional Object Oriented Examples oo

Smalltalk is a vision. Adele Goldberg and David Robson, Xerox
Palo Alto Research Center

Aims
The aim of this chapter are to look at some additional object oriented programming
examples in Fortran.

29.1 Introduction

The first set of examples are based on the date example (ch2206.f90) in the data
structuring chapter. We are going to convert this example into an object oriented
version.

e Example 1 - OO date example
We use the following files.

— ¢ch2206_module.f90 - this is the module file for the example in Chap. 22

— ¢ch2206_program.f90 - the program to test out the date data structure

— ch2901_day_and_month_name_module.f90 - a separate module containing the
day and month names. Has the advantage that one can provide versions for
different natural languages. We will be using Welsh.

— ch2901_date_module.f90 - an object oriented implementation of the original
date module.

— ¢h2901.f90 - a program to test out the above module.

© Springer International Publishing AG, part of Springer Nature 2018 497
1. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_29
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e Example 2 - OO date example with simple inheritance
We use the following files.

— ch2902_iso_date_module.f90 - simple inheritance module based on ISO date
format (yyyymmdd)
— ¢ch2902.f90 - a program to test out the above module.

e Example 3 - OO date example with polymorphism
We use the following files.

— ch2903_date_wrapper_module.f90
— ¢h2903.f90

e Example 4 - abstract shape base class and concrete derived class
We use the following files.

— ch2904 _abstract_shape_module.fo0
— ch2904_square_module.f90
— ¢h2904.f90

e Example 5 - date checking module
We use the following file.

— ¢ch2905_valid_date_module.f90.

29.2 The Date Class

The first thing to do is split the complete example in Chap. 22 into a date module
and a date test program.

We will convert the date module into an object oriented version.

We will then convert the date program into one that can be used to test our object
oriented date module.

29.3 Example 1: The Base Date Class

Files used

e day and month name module
e 00 date module
e 00 date program.

The first thing we need to do is identify the functions and subroutines in the
original program. Here is a list.



29.3 Example 1: The Base Date Class

function calendar_to_julian(x)

function date_ (dd, mm, yyyy) result

function date_to_day_in_year (x)

function date_to_weekday_number (x)

function get_day (x)

function get_month (x)

function get_year (x)

function julian_to_date(julian)

subroutine

julian_to_date_and_week_and_day (jd, x,
date?2)

function ndays (datel,

function

print_date(x,

day_names,

short_month_name,

function year_and_day_to_date (year,

The conversion means making the above type bound procedures.

We have also made the following changes

add setter subroutines for the day, month and year

add a date constructor
add a separate module for the day and month names, so that we can access this

data in any inherited versions

result

(x)

result

day)

(ival)

(x)

wd, ddd)

result
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change the calling syntax from a conventional Fortran function and subroutine
syntax to an object oriented version

Here are the type bound procedures, with partial signatures.

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

’

’

’

i

i

’

’

’

this
this

pass ( )
pass ( )
pass (this)
pass (this)

(this)
pass (this)

pass

nopass
nopass

calendar_to_julian
date_to_day_in_year
date_to_weekday_ number

get_day
get_month
get_year

julian_to_date

julian_to_date_and_week_and_day

procedure
procedure
procedure
procedure
procedure
procedure

i

i

’

’

’

i

nopass
pass (this)
pass (this)
pass (this)
pass (this)
nopass

ndays
print_date
set_day
set_month
set_year

vear_and_day_to_date



500 29 Additional Object Oriented Examples
Here is the interface for the date constructor.

interface date
module procedure date_constructor
end interface

Here is the complete source code.

29.3.1 Day and Month Name Module

module day_and_month_name_module

implicit none

character (9) :: day(0:6) = (/ ’'Sunday &
'Monday ', 'Tuesday ', ’‘Wednesday’', &
'Thursday ', 'Friday ', 'Saturday ' /)

character (9) :: month(1:12) = (/ ’'January ', &
'February ', ’'March ', 'April r, &
'May ’, "June r, "July T, &
'August ', 'September’, ‘October ', &
'November ', ’'December ' /)

end module day_and_month_name_module

29.3.2 Date Module

module date_module
use day_and_month_name_module
implicit none
private
type, public :: date

private
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integer :: day
integer :: month
integer :: year
contains
procedure, pass (this) :: calendar_to_julian
procedure, pass (this) :: &

date_to_day_in_year
procedure, pass (this) :: &
date_to_weekday number

procedure, pass (this) :: get_day
procedure, pass (this) :: get_month
procedure, pass (this) :: get_year
procedure, nopass :: julian_to_date
procedure, nopass :: &

julian_to_date_and_week_and_day

procedure, nopass :: ndays

procedure, pass (this) :: print_date
procedure, pass (this) :: set_day
procedure, pass (this) :: set_month
procedure, pass (this) :: set_year
procedure, nopass :: year_and_day_to_date

end type date

interface date
module procedure date_constructor
end interface date

public :: calendar_to_julian, &
date_to_day_in_year, date_to_weekday_number,
get_day, get_month, get_vyear, &
julian_to_date, &
julian_to_date_and_week and_day, ndays, &
print_date, set_day, set_month, set_vear, &
yvear_and_day_to_date

contains

function calendar_to_julian(this) &
result (ival)
implicit none
integer :: ival
class (date), intent (in) :: this

&

501
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ival = this%day - 32075 + 1461* (this%year+ &
4800+ (this%month-14)/12)/4 + &
367* (this%$month-2-( (this%month- &
14)/12)*12) /12 - 3*((this%year+4900+ (this% &
month-14)/12)/100) /4
end function calendar_to_julian

type (date) function date_constructor(dd, mm, &

YYYY)

implicit none
integer, intent (in) :: dd, mm, yyyy

date_constructor%day = dd
date_constructor%month = mm
date_constructor$%year = yyyy

end function date_constructor

integer function date_to_day_in_year (this)
implicit none
class (date), intent (in) :: this
intrinsic modulo

date_to_day_in_year = 3055* (this%month+2)/ &
100 - (this%month+10)/13*2 - 91 + &
(1- (modulo (this%year,4)+3)/4+ (modulo (this% &
year,100)+99) /100- (modulo (this%year, &
400)+399) /400) * (this%$month+10) /13 + &
this%day
end function date_to_day_in_year

integer function date_to_weekday_number (this)
implicit none
class (date), intent (in) :: this

intrinsic modulo

date_to_weekday_number = modulo((13*( &
this$month+10- (this%month+10)/13*12)-1)/5+ &
this%day+77+5* (this%year+ (this%month- &
14) /12- (this%year+ (this%month-14)/12) /100* &
100) /4+ (this%year+ (this%month- &
14)/12)/400- (this%year+ (this%month- &
14)/12)/100*2, 7)
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end function date_to_weekday_number

function get_day (this)
implicit none
integer :: get_day
class (date), intent (in) :: this

get_day = this%day
end function get_day

function get_month(this)
implicit none
integer :: get_month
class (date), intent (in) :: this

get_month = this%month
end function get_month

function get_vyear (this)
implicit none
integer :: get_year
class (date), intent (in) :: this

get_year = this%year
end function get_year

function julian_to_date(julian)
implicit none

type (date) :: julian_to_date
integer, intent (in) :: julian
integer :: 1, n

1 = julian + 68569

n = 4*1/146097

1 1 - (146097*n+3)/4
julian_to_date%year = (4000*(1+1)/1461001)
1 =1 - 1461l*julian_to_date%year/4 + 31

julian_to_date%month = (80*1/2447)

julian_to_date%day = (1-2447*julian_to_date% &
month/80)

1 = julian_to_date%month/11

julian_to_date%month = (julian_to_date%$month &

+2-12*1)
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julian_to_date%year = (100* (n-49)+ &
julian_to_date%year+1)
end function julian_to_date

subroutine julian_to_date_and_week_and_day(jd, &
d, wd, ddd)
implicit none

integer, intent (in) :: jd
type (date), intent (out) :: d
integer, intent (out) :: wd, ddd

d = julian_to_date(3jd)
wd = date_to_weekday_number (d)
ddd = date_to_day_in_year (d)
end subroutine julian_to_date_and_week_ and_day

function ndays (datel, date2)
implicit none

integer :: ndays
class (date), intent (in) :: datel, date2
ndays = calendar_to_julian(datel) - &

calendar_to_julian(date2)
end function ndays

function print_date(this, day_names, &
short_month_name, digits)
implicit none
class (date), intent (in) :: this
logical, optional, intent (in) :: day_names, &
short_month_name, digits

character (40) :: print_date
integer :: pos
logical :: want_day, want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

ro

print_date =

if (present (day_names)) then
want_day = day_names

end if
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if (present (short_month_name)) then
want_short_month_name = short_month_name
end if
if (present(digits)) then
want_digits = digits

end 1if
if (want_digits) then
write (print_date(1:2), ’(i2)’) this%day
print_date(3:3) = '/’
write (print_date(4:5), ’(i2)’) this%month
print_date(6:6) = '/’
write (print_date(7:10), ’(i4)’) this%year
else

if (want_day) then
pos = date_to_weekday number (this)

i

print_date = trim(day(pos)) //

pos = len_trim(print_date) + 2
else
pos = 1
print_date = *
end if
write (print_date(pos:pos+1l), ‘' (i2)’) &
this%day
if (want_short_month name) then
print_date(pos+3:pos+5) = month(this% &
month) (1:3)
pos = pos + 7
else
print_date(pos+3:) = month(this%month)
pos = len_trim(print_date) + 2
end if
write (print_date(pos:pos+3), ' (i4)’') &
this%year
end if
return

end function print_date

subroutine set_day (this, d)
implicit none
integer, intent (in) :: d
class (date), intent (inout) :: this

this%day = d
end subroutine set_day
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subroutine set_month(this, m)
implicit none
integer, intent (in) :: m

class (date), intent (inout) :: this

this%$month = m
end subroutine set_month

subroutine set_year (this, vy)
implicit none
integer, intent (in) :: y

class (date), intent (inout) :: this

this%year = y
end subroutine set_year

function year_and_day_to_date(year, &
day_in_year)
use day_and_month_name_module
implicit none

type (date) :: year_and _day_to_date
integer, intent (in) :: day_in_year, year
integer :: t

intrinsic modulo

vear_and_day_to_date%year = year
t =0
if (modulo(year,4)==0) then
t =1
end if
if (modulo(year,400)/=0 .and. &
modulo (year,100)==0) then
t =0
end 1if
vear_and_day_to_date%day = day_in_year
if (day_in_year>59+t) then
vear_and_day_to_date%day = &
yvear_and_day_to_date%day + 2 - t
end 1if
vear_and_day_to_date%$month = &
((year_and_day_to_date%day+91) *100) /3055
vear_and_day_to_date%day = ( &
vear_and_day_to_date%day+91) - &
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(year_and_day_to_date%month*3055) /100

vear_and_day_to_date$month = &
vear_and_day_ to_date%month - 2

if (year_and_day_to_date%month>=1 .and. &
vear_and_day_to_date%$month<=12) then
return

end if

write (unit=*, fmt='(a,ill,a)’) ’'S$Syear_and_d&
&ay_to_date: day of the year input &
&=', day_in_year, ' 1is out of range.’

end function year_and_day_to_date

end module date_module

29.3.3 Diff Output Between Original Module and New
00 Module

Here is the diff output between the original module in example ch2206 and the new
0o module.

1cl,4

< module date_module

> module date_module_01

>

> use day_and_month_name_module
>

6al0

>

Tal2

>

10ale, 36

>

> contains

>

> procedure, pass (this) :: calendar_to_julian
> procedure, pass (this) :: &

> date_to_day_in_year

> procedure, pass (this) :: &

> date_to_weekday_ number

> procedure, pass (this) :: get_day

> procedure, pass (this) :: get_month
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> procedure, pass (this) :: get_year

> procedure, nopass :: julian_to_date

> procedure, nopass :: &

> julian_to_date_and_week_and_day

> procedure, nopass :: ndays

> procedure, pass (this) :: print_date

> procedure, pass (this) set_day

> procedure, pass (this) :: set_month

> procedure, pass (this) set_vyear

> procedure, nopass :: year_and_day_to_date
>

13,20c39,41

< character (9) :: day(0:6) = (/ ’'Sunday &
< '‘Monday ', 'Tuesday ', ’'Wednesday’, &
< ‘Thursday ‘', ’'Friday ', ’‘Saturday ' /)

< character (9) :: month(1:12) = (/ 'January ', &
< 'February ', ’'March ', 'April r,&
< 'May ', "June ', 'July T, &
< 'August ', ’'September’, ’‘October ', &

< ‘November ‘', ’'December ‘' /)

> interface date

> module procedure date_constructor

> end interface date

22c43

< public :: calendar_to_julian, date_, &

> public :: calendar_to_julian, &

27c48,49

< print_date, year_and_day_to_date

> print_date, set_day, set_month, set_year, &
> vear_and_day_to_date

31c53,54

< function calendar_to_julian(x) result (ival)
> function calendar_to_julian(this) &

> result (ival)

34c57

< type (date), intent (in) :: x

> class (date), intent (in) :: this
36,39c¢59,63

< ival = x%day - 32075 + 1461* (x%year+4800+ (x% &
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month-14)/12) /4 + 367* (x%$month-2- ( (x%month &
-14)/12)*12) /12 - 3*((x%year+4900+ (x%month &

< -14)/12)/100) /4

> ival = this%day - 32075 + 1461* (this%year+ &

> 4800+ (this%month-14)/12) /4 + &

> 367* (this%$month-2-( (this%month- &

> 14)/12)*12) /12 - 3*((this%year+4900+ (this% &
> month-14)/12)/100) /4

42c66,68

< function date_ (dd, mm, yyyy) result (x)

> type (date) function date_constructor (dd, mm, &

> YYYY)

>

44469

< type (date) :: x
47,48c72,74

< x = date(dd, mm, vyyyy)

< end function date_

> date_constructor%day = dd

date_constructor$month = mm

> date_constructor$year = yyvyy

50c76,78

< function date_to_day_in_year (x)

> end function date_constructor

>

> integer function date_to_day_ in_year (this)
52,53¢c80

< integer :: date_to_day_in_year

< type (date), intent (in) :: x

> class (date), intent (in) :: this

56,60c83,88

< date_to_day_in_year = 3055* (x%month+2) /100 - &
< (x%month+10) /13*2 - 91 + (1-(modulo (x%year &
< 4)+3) /4+ (modulo (x%year,100)+99) /100-( &

< modulo (x%year,400)+399) /400) * (x%month+10) / &
< 13 + x%day

\

date_to_day_in_year = 3055* (this%month+2)/ &
100 - (this%$month+10)/13*2 - 91 + &
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> (1- (modulo (this%year,4)+3)/4+ (modulo(this% &
> year,100)+99)/100- (modulo (this%year, &

> 400)+399)/400) * (this%month+10) /13 + &

> this%day

63c9l

< function date_to_weekday_number (x)

> integer function date_to_weekday_ number (this)
65,66c93

< integer :: date_to_weekday_number

< type (date), intent (in) :: x

> class (date), intent (in) :: this

70,73c97,101

< x%month+10- (x%month+10) /13*12)-1) /5+x%day+ &
< 77+5*% (x%year+ (xsmonth-14) /12- (x%year+ &

< (x%month-14)/12) /100*100) /4+ (x%year+ (X% &

< month-14)/12) /400- (x%year+ (x%month- &

> this$month+10- (this%month+10) /13*12)-1)/5+ &
> this%day+77+5* (this%year+ (this$month- &

> 14) /12— (this%year+ (this%month-14)/12) /100* &
> 100) /4+ (this%year+ (this%month- &

> 14)/12)/400- (this%year+ (this%month- &

77c105

< function get_day (x)

> function get_day(this)

80cl1l08

< type (date), intent (in) :: x
> class (date), intent (in) :: this
82c110

< get_day = x%day

> get_day = this%day

85c113

< function get_month (x)

> function get_month(this)

88cll6

< type (date), intent (in) :: x

> class (date), intent (in) :: this
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90cl18

< get_month = x%$month

> get_month = this%month

93cl21

< function get_year (x)

> function get_year (this)

96cl24

< type (date), intent (in) :: x

> class (date), intent (in) :: this
98cl26

< get_year = x%year

> get_year = this%year

101cl29

< function julian_to_date(julian) result (x)
> function julian_to_date(julian)
102al131

> type (date) :: julian_to_date
103al133

>

105d134

< type (date) :: x 110,116c139,148
< x%year = 4000*(1+1)/1461001

< 1l =1 - 1461*x%year/4 + 31

< x$month = 80*1/2447

< x%$day = 1 - 2447*x%month/80

< 1 = x%month/11

< x%month = x%month + 2 - 12*1

< x%year = 100* (n-49) + x%year + 1

> julian_to_date%year = (4000* (1+1)/1461001)

> 1 =1 - 1461*julian_to_date%year/4 + 31

> julian_to_date$month = (80*1/2447)

> julian_to_date%day = (1-2447*julian_to_date% &
> month/80)

> 1 = julian_to_date%$month/11

> julian_to_date%month = (julian_to_date%month &
> +2-12*1)

> julian_to_date%year = (100* (n-49)+ &

> julian_to_date%year+1)
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120cl152

< x, wd, ddd)

> d, wd, ddd)

122d153

< integer, intent (out) :: ddd, wd
124c155,156

< type (date), intent (out) :: x

> type (date), intent (out) :: d

> integer, intent (out) :: wd, ddd
126,128c158,160

< x = julian_to_date (jd)

< wd = date_to_weekday_ number (x)

< ddd = date_to_day_in_year (x)

> d = julian_to_date(3jd)

> wd = date_to_weekday number (d)

> ddd = date_to_day_ in_year (d)

134cl66

< type (date), intent (in) :: datel, date2
> class (date), intent (in) :: datel, date2
140cl172

< function print_date(x, day_names, &

> function print_date(this, day_names, &
143c175

< type (date), intent (in) :: x

> class (date), intent (in) :: this

166c198

< write (print_date(1:2), ’(i2)’) x%day

> write (print_date(1:2), ’(i2)’) this%day
168c200

< write (print_date(4:5), ’(i2)') x%month
> write (print_date(4:5), ’(i2)’) this%month
170c202

< write (print_date(7:10), ’(i4)') x%year
> write (print_date(7:10), ’(i4)’) this%year

173c205
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< pos = date_to_weekday number (x)

> pos = date_to_weekday number (this)
181c213

< x%day

> this%day

183,184c215,216

< print_date(pos+3:pos+5) = month (x%month) &
< (1:3)

> print_date(pos+3:pos+5) = month(this% &
> month) (1:3)

187c219

< print_date(pos+3:) = month (x%month)

> print_date(pos+3:) = month(this%month)
191c223

< x%year

> this%year

197,198c229
< function year_and_day_to_date(year, day) &

< result (x)

> subroutine set_day(this, d)

200,201c231,258

< type (date) :: x

< integer, intent (in) :: day, year
integer, intent (in) :: d

class (date), intent (inout) :: this

this%day = d
end subroutine set_day

subroutine set_month(this, m)
implicit none
integer, intent (in) :: m
class (date), intent (inout) :: this

this%month = m
end subroutine set_month

VV V V V V V V V V V V V V
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subroutine set_year (this, vy)
implicit none
integer, intent (in) :: vy
class (date), intent (inout) :: this

this%year =y
end subroutine set_year

function year_and_day_to_date(year, &
day_in_year)
use day_and_month_name_module
implicit none

type (date) :: year_and_day_to_date

V V V V V V V V V V V V V V

integer, intent (in) :: day_in_year, year

205c262
< x%year = year
> vear_and_day_to_date%year = year
214,221c271,284
< x%day = day
if (day>59+t) then
x%day = x%day + 2 - t
end if
x$month = ((x%day+91)*100) /3055
x%$day = (x%day+91) - (x%month*3055)/100
x$month = x%month - 2
if (x%month>=1 .and. x%month<=12) then

A AN AN AN AN AN A

vear_and_day_to_date%$day = day_in_year

if (day_in_year>59+t) then
vear_and_day_to_date%day = &

vear_and_day_to_date%day + 2 - t

end 1if

vear_and_day_to_date$month = &
((year_and_day_to_date%day+91)*100) /3055

vear_and_day_to_date%day = ( &
vear_and_day_to_date%day+91) - &
(year_and_day_to_date%month*3055) /100

vear_and_day_to_date%$month = &
yvear_and_day_to_date$month - 2

if (year_and_day_to_date%month>=1 .and. &
vear_and_day_to_date%month<=12) then

26c289

&=', day, ' is out of range.’

ANV V V V V V V V V V V V V V
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> &=', day_in_year, ' is out of range.’
229c292
< end module date_module

> end module date_module_01

29.3.4 Main Program

This is the main test program. This is a conversion of the main program in example
ch2206.

include ’'ch2901_day_and_month_name_module.f90’
include ’'ch2901_date_module.f90’

program ch2901

use date_module , only : calendar_to_julian, &
date, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_year, julian_to_date, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy
integer :: julian

integer :: val(8)

intrinsic date_and_time

type (date) :: datel, date2, x, txl, tx2

call date_and_time (values=val)
yyyy = val(l)
mm = 10
do i =31, 26, -1
x = date(i, mm, yyyy)

if (x%date_to_weekday_ number ()==0) then
print *, ’‘Turn clocks back to EST on: ', &
i, ' October ', x%get_year|()
exit
end 1if

end do
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call date_and_time (values=val)
yyyy = val(l)
mm = 4
do i1 =1, 8
x = date(i, mm, yvyyy)
if (x%date_to_weekday number ()==0) then
print *, ‘Turn clocks ahead to DST on: ',
i, ' April ', x%get_vyear ()
exit
end if
end do
call date_and_time (values=val)
yyyy = val(l)

mm = 12
dd = 31
x = date(dd, mm, yyyy)
if (x%date_to_day_in_year()==366) then

print *, x%get_year(), ' is a leap year’
else

print *, x%get_year(), ' 1is not a leap year’
end 1if

x = date(l, 1, 1970)

call julian_to_date_and week_and_day &
(calendar_to_julian(x), x, wd, ddd)

if (x%get_year()/=1970 .or. x%get_month() /=1
.or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1)
then
print *, &

‘julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ', x%get_year(),
x%get_month(), x%get_day(), wd, ddd
stop
end if

datel = date(22, 5, 1984)
date2 = date(22, 5, 1983)
ndiff = ndays(datel, date2)
vyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then

print *, ’'ndays failed; ndiff = ', ndiff
else

if (x%get_month()/=1 .and. x%get_day()/=1)

&
&

&

&

&
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then
print *, ’‘year_and_day_to_date failed’
print *, ’ mma, dda = ‘', x%get_month(), &
x%get_day ()

else
print *, ’ calendar_to_julian OK’
print *, ' date_ OK’
print *, ’ date_to_day_ in_year OK’
print *, ’ date_to_weekday_number OK’
print *, ’ get_day OK’
print *, ’ get_month OK’
print *, ’ get_year OK’

print *, &
’ julian_to_date_and_week_and_day OK’

print *, ’ ndays OK’
print *, ’ year_and_day_to_date OK’
end 1if
end if

txl = date(1, 1, 1970)
julian = txl%calendar_to_julian()

tx2 = julian_to_date(julian)

if (txl%get_day()==tx2%get_day() .and. &
txl%get_month () ==tx2%get_month() .and. &
txl%get_vear ()==tx2%get_year()) then
print *, ’ calendar_to_julian and
print *, ’ julian_to_date worked’

end if

x = date(11l, 2, 1952)

print *, ’ print_date test’

print *, ’ Single parameter T, &
x%print_date ()

print *, &
’ day_names=false short_month_name=false ', &
x%print_date (day_names=.false., &
short_month_name=.false.)

print *, &
'’ day_names=true short_month name=false ', &
x$print_date (day_names=.true., &
short_month_name=.false.)

print *, &
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' day_names=false short_month_name=true ', &
x$print_date (day_names=.false., &
short_month_name=.true.)

print *, &
'’ day_names=true short_month_ name=true ', &
x%print_date (day_names=.true., &
short_month_name=.true.)

print *, ’ digits=true L&
x%print_date(digits=.true.)

print *, ’ Test out a month’

yyyy = 1970
do dd = 1, 31
x = year_and_day_to_date(yyyy, dd)
print *, x%print_date(day_names=.false., &
short_month_name=.true.)
end do

end program ch2901

29.3.5 Diff Output Between Original Program and New
00 Test Program

Here is the diff output between the original and the new oo one.

1,3cl,4

< program ch2206

< use date_module, only: calendar_to_julian, &
< date, date_, date_to_day_in_year, &

> program date_program_01

>

> use date_module_01, only: calendar_to_julian, &

> date, date_to_day in_year, &

5,6c6,8

< get_year, julian_to_date_and_week_and_day, &
< ndays, print_date, year_and_day_to_date

get_year, julian_to_date, &
julian_to_date_and_week_and_day, ndays, &
print_date, year_and_day_to_date
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9al2

> integer :: julian

12cl15

< type (date) :: datel, date2, x

> type (date) :: datel, date2, x, txl, tx2
18,19c21,22

< x = date_ (i, mm, yyyy)

< if (date_to_weekday_number (x)==0) then
> x = date(i, mm, yyyy)

> if (x%date_to_weekday number ()==0) then
21c24

< i, ' October ', get_year (x)

> i, ’ October ', x%get_vyear|()
29,30c32,33

< x = date_ (i, mm, yyvyy)

< if (date_to_weekday number (x)==0) then
> x = date(i, mm, yyvyy)

> if (x%date_to_weekday number ()==0) then
32¢35

< i, ' April ', get_vyear (x)

> i, ' April ', x%get_year /()
40,42c43,45

< x = date_(dd, mm, yyyy)
< if (date_to_day_in_year (x)==366) then
< print *, get_year(x), ' is

a leap year’

> x = date(dd, mm, yyyy)

> if (x%date_to_day_in_year()==366) then

> print *, x%get_vear(), ' 1s a leap year’
44c47

< print *, get_year(x), ' is not a leap year’
> print *, x%get_year(), ' is not a leap year’
46c49

< x = date_(1, 1, 1970)

> x = date(l, 1, 1970)
49,50c52,53
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< if (get_year(x)/=1970 .or. get_month(x)/=1 &
.or. get_day(x)/=1 .or. wd/=4 .or. ddd/=1) &

> if (x%get_year()/=1970 .or. x%get_month()/=1 &

> .or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1l) &
54,55c57,58

< print *, ’ date, wd, ddd = ', get_year(x), &
< get_month (x), get_day(x), wd, ddd

> print *, ’ date, wd, ddd = ', x%get_year(), &
> x%get_month (), x%get_day(), wd, ddd
58,59c61,62

< datel = date_ (22, 5, 1984)
< date2 = date_ (22, 5,
1983)

> datel = date(22, 5, 1984)

> date2 = date(22, 5, 1983)

68c71

< if (get_month(x)/=1 .and. get_day(x)/=1) &

> if (x%get_month()/=1 .and. x%get_day()/=1) &
71,72c74,75

< print *, ' mma, dda = ', get_month(x), &

< get_day (x)

> print *, ’ mma, dda = ', x%get_month(), &
> x%get_day ()

88c91,101

< x = date_(11, 2, 1952)

txl = date(1l, 1, 1970)

julian = txl%calendar_to_julian()

tx2 = julian_to_date(julian)

if (txl%get_day()==tx2%get_day () .and. &
tx1%$get_month ()==tx2%get_month() .and. &
tx1%get_vyear () ==tx2%get_year()) then

(
(

print *, ’ calendar_to_julian and '
print *, ’ julian_to_date worked’
end if

V V.V V V V V V V V

> x = date(11l, 2, 1952)
92c105
< print_date (x)
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> x%print_date ()

95¢108

< print_date(x, day_names=.false.,
> x%print_date (day_names=.false., &
99cl12

< print_date(x, day_names=.true., &
> x%$print_date (day_names=.true., &
103clle

< print_date(x, day_names=.false.,
> x%print_date (day_names=.false., &
107c120

< print_date(x, day_names=.true., &
> x%$print_date (day_names=.true., &
110c123

< print_date(x, digits=.true.)

> x%print_date(digits=.true.)
117c¢130

< print *, print_date(x, day_names=
> print *, x%print_date(day_names=.
121c134

< end program ch2206

> end program date_program_01

Here is the build sequence

ch2901_day_and_month_name_module.f90
ch2901_date_module.f90
ch2901.£90

Here is the output from running the program.

Turn clocks ahead to DST on: 5 April
2015 is not a leap year
calendar_to_julian OK
date_ OK
date_to_day_in_year OK

&

&

.false.,

false.,

2015

&

&
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date_to_weekday number OK

get_day OK

get_month OK

get_year OK
julian_to_date_and_week_and_day OK
ndays OK

yvear_and_day_to_date OK
calendar_to_julian and

julian_to_date worked

print_date test

Single parameter 11 February 1952
day_names=false short_month_name=false
11 February 1952

day_names=true short_month_name=false
Monday 11 February 1952
day_names=false short_month_name=true
11 Feb 1952

day_names=true short_month_name=true
Monday 11 Feb 1952

digits=true 11/ 2/1952

Test out a month
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970
Jan 1970

o o Ul W N
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24
25
26
27
28
29
30
31

294

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

Example 2: Simple Inheritance Based on an ISO Date

1970
1970
1970
1970
1970
1970
1970
1970

Format

Files used

29.4.1 1ISO Date Module

day and month name module
oo date module
iso date module
iso date program.

Here is the source code for the ISO date module.

module iso_date_module

use day_and_month_name_module

use date_module

implicit none

public

type,

extends

contains

procedure,

(date)

pass (this)

print_iso_date

procedure,

procedure,

nopass
nopass

iso_date

:: print_date => &

julian_to_iso_date
&

523
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julian_to_iso_date_and_week_and_day
procedure, nopass :: &
vear_and_day_to_iso_date
end type iso_date
interface iso_date
module procedure iso_date_constructor
end interface iso_date

contains

type (iso_date) function iso_date_constructor( &
vyyy, mm, dd)

implicit none

integer, intent (in) :: dd, mm, yyyy

call iso_date_constructor%$set_day (dd)
call iso_date_constructor%set_month (mm)
call iso_date_constructor%set_vyear (yyyy)

end function iso_date_constructor

function julian_to_iso_date(julian)
implicit none

type (iso_date) :: julian_to_iso_date
integer, intent (in) :: julian
integer :: 1, n

1l = julian + 68569

n = 4*1/146097

1 1 - (146097*n+3) /4

call julian_to_iso_date%$set_year ((4000* (1+ &
1)/1461001))

1 =1 - 1461*julian_to_iso_date%get_year()/4 &
+ 31

call julian_to_iso_date%set_month((80*1/ &
2447))

call julian_to_iso_date%set_day((1l- &
2447*3julian_to_iso_date%get_month()/80))

1 = julian_to_iso_date%$get_month() /11

call julian_to_iso_date%set_month &
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((julian_to_iso_date%get_month()+2-12*1))
call julian_to_iso_date%set_year ((100* (n- &
49)+julian_to_iso_date%get_year()+1))

end function julian_to_iso_date
subroutine julian_to_iso_date_and_week_and_day &

(jd, 4, wd, ddd)
implicit none

integer, intent (in) :: jd
type (iso_date), intent (out) :: d
integer, intent (out) :: wd, ddd

d = julian_to_iso_date(jd)
wd = date_to_weekday_number (d)
ddd = date_to_day_in_year (d)
end subroutine &
julian_to_iso_date_and_week_and_day

function print_iso_date(this, day_names, &
short_month_name, digits)
use day_and_month_name_module
implicit none
class (iso_date), intent (in) :: this
logical, optional, intent (in) :: day_names, &
short_month_name, digits

character (40) :: print_iso_date
integer :: pos
logical :: want_day, want_short_month name, &

want_digits
integer :: 1, t

intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

print_iso_date = ’

if (present (day_names)) then
want_day = day_names

end 1if

if (present (short_month_name)) then
want_short_month_name = short_month_name

end if

if (present(digits)) then
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want_digits = digits
end if
! yvear month day
if then
(print_iso_date(1:4),

(want_digits)
write
this%get_vear ()
print_iso_date(5:5) = "/’
write (print_iso_date(6:7),
this%get_month ()
vz
(print_iso_date(9:10),
this%get_day ()
else

print_iso_date(8:8) =

write

pos = 1
write

this%get_year ()
pos =
if

pos + 5
(want_short_month_name)
print_iso_date (pos:pos+2)

(print_iso_date (pos:pos+3),
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f(i4) ")

&

" (12) 1)

&

(12) ") &

‘(14) ") &

then
&

= month (this%get_month()) (1:3)

pos = pos + 4
else
print_iso_date(pos:) =
get_month())
pos =
end if
if (want_day) then
t =
1 =

print_iso_date (pos:pos+1)

len_trim(day(t))
pos = pos + 1 + 1
end 1if
write
this%get_day ()

end 1if

end function print_iso_date

function year_and_day to_iso_date(year,

day_in_year)

use day_and_month_name_module
implicit none

type
integer,

(iso_date)
intent (in)

integer :: t

(print_iso_date (pos:pos+1),

day_in_year,

month (this% &

len_trim(print_iso_date) + 2

date_to_weekday_number (this)

= trim(day(t))

(1i2)7) &

&

vear_and_day_to_iso_date

year
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intrinsic modulo

call year_and_day_to_iso_date%set_year (year)

t =20

if (modulo(year,4)==0) then
t =1

end if

if (modulo(year,400)/=0 .and. &
modulo (year,100)==0) then
t =20

end if

call year_and_day_to_iso_date%set_day &
(day_in_vyear)

if (day_in_year>59+t) then
call year_and_day_to_iso_date%set_day &

(year_and_day_to_iso_date%get_day()+2-t)

end if

call year_and_day_to_iso_date%set_month((( &
vear_and_day_to_iso_date%get_day()+ &
91)*100) /3055)

call year_and_day_to_iso_date%set_day &
((year_and_day_to_iso_date%get_day( &
)+91) - (year_and_day_to_iso_date%get_month( &
) *3055) /100)

call year_and_day_to_iso_date%$set_month &
(year_and_day_to_iso_date%get_month()-2)

if (year_and_day_to_iso_date%get_month()>= &
1 .and. year_and_day_to_iso_date%get_month &

()<=12) then
return
end if
write (unit=*, fmt=’(a,ill,a)’) ’'S$Syear_and_d&

&ay_to_date: day of the year input &
=', day_in_year, ' is out of range.’
end function year_and_day_to_iso_date

end module iso_date_module

29.4.2 ISO Test Program

Here is the source code for the ISO date test program.

527



528 29 Additional Object Oriented Examples

include ’'ch2901_day_and_month_name_module.f90’
include ’'ch2901_date_module.f90’
include 'ch2902_iso_date_module.f90’

program ch2902

use date_module , only: calendar_to_julian, &
date, date_to_day_in_year, &
date_to_weekday_number, get_day, get_month, &
get_vyear, julian_to_date, &
julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

use iso_date_module

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy
integer :: julian
integer :: val(8)

intrinsic date_and_time
type (iso_date) :: datel, date2, x, txl, tx2

call date_and_time(values=val)
yyyy = val(l)
mm = 10
do i =31, 26, -1
x = iso_date(yyyy, mm, i)

if (x%date_to_weekday number ()==0) then
print *, ‘Turn clocks Dback to EST on: ', &
i, ' October ', x%get_year()
exit
end 1if
end do

call date_and_time(values=val)
yyyy = val(l)
mm = 4
doi=1, 8
x = iso_date(yyyy, mm, i)

if (x%date_to_weekday number ()==0) then
print *, ‘Turn clocks ahead to DST on: ', &
i, ' April ', x%get_year ()
exit
end if

end do
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call date_and_time (values=val)
yyyy = val(l)

mm = 12
dd = 31
x = iso_date(yyyy, mm, dd)
if (x%date_to_day_in_year()==366) then

print *, x%get_year(), ' is a leap year’
else

print *, x%get_year(), ' 1s not a leap year’
end 1f

x = iso_date (1970, 1, 1)

call julian_to_iso_date_and_week_and_day &
(calendar_to_julian(x), x, wd, ddd)

if (x%get_year()/=1970 .or. x%get_month()/=1 &
.or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1) &
then
print *, &

‘julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ', x%get_vyear(), &
x%get_month (), x%get_day (), wd, ddd
stop
end if

datel = iso_date (1984, 5, 22)
date2 = iso_date (1983, 5, 22)
ndiff = ndays(datel, date2)
vyyy = 1970

x = year_and_day_to_iso_date(yyyy, ddd)

if (ndiff/=366) then

print *, 'ndays failed; ndiff = ', ndiff
else

if (x%get_month()/=1 .and. x%get_day()/=1) &

then
print *, ’‘year_and_day_ to_date failed’
print *, ’ mma, dda = ‘', x%get_month(), &
x%get_day ()
else
print *, ’ calendar_to_julian OK’
print *, ' date_ OK’
print *, '’ date_to_day_ in_year OK’
print *, ’ date_to_weekday_number OK’
print *, ’ get_day OK’

print *, ’ get_month OK’
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print *, ’ get_year OK’

print *, &

29 Additional Object Oriented Examples

and_day OK’

' julian_to_date_and_week_
print *, ’ ndays OK’
print *, ’ year_and_day_to_date OK’
end 1if
end if

txl =
julian =
tx2 =
if

iso_date(1970, 1, 1)
julian_to_iso_date(julian

(tx1%get_day () ==tx2%get_day ()

tx1%get_year () ==tx2%get_year ()
print *, ’ calendar_to_julian
print *, ’ julian_to_iso_date
end if

2, 11)

x = iso_date (1952,

print *, ' print iso date test’

print *, ’ Single parameter
x%print_date()

print *, &

' day_names=false short_month_:

x%print_date (day_names=.false.

short_month_name=.false.)
print *, &

' day_names=true

x%print_date (day_names=.true.,

short_month_name=.false.)
print *, &

’ day_names=false short_month_:

x%print_date (day_names=.false.
short_month_name=.true.)

print *, &
’ day_names=true
x$print_date (day_names=.true.,
short_month_name=.true.)

print *, &
' digits=true
x%print_date(digits=.true.)

(
tx1%get_month () ==tx2%get_month ()

short_month_:

short_month_:

txl%calendar_to_julian()
)

.and. &
.and. &
) then
and ’
worked’

name=false ', &
, &

name=false ', &
&

name=true ', &
, &

name=true ', &
&
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print *, ’ Test out a month’

vyyy = 1970
do dd = 1, 31
x = year_and_day_to_iso_date(yyyy, dd)
print *, x%print_date (day_names=.false., &
short_month_name=.true.)
end do

end program ch2902

29.5 Example 3: Using the Two Date Formats and Showing
Polymorphism and Dynamic Binding

Files used

day and month name module
date module

date wrapper module

iso date module

test program.

29.5.1 Date Wrapper Module

Here is the source code for the date wrapper module.

module date_wrapper_module
use date_module
type date_wrapper
class (date), allocatable :: date

end type date_wrapper

end module date_wrapper_module



532

29 Additional Object Oriented Examples

29.5.2 Polymorphic and Dynamic Binding Test Program

Here is the source code for the polymorphic date test program.

include
include
include
include

program

'ch2901_day_and_month_name_module.f90’
'ch2901_date_module.f90’
'ch2902_iso_date_module.£90"
'ch2903_date_wrapper_module.f90’

ch2903

use date_module

use iso_date_module

use date_wrapper_module

! use us_date_module_01

implicit none

integer :: i, ndiff
integer, parameter :: n_dates = 2
type (date_wrapper), dimension (1l:n_dates) :: &
x
x(1)%date = date(1l, 1, 1970)
x(2)%date = iso_date(1980, 1, 1)
! x(3)%date = us_date(1l, 1, 1990)

do 1 = 1, n_dates

if (x(i)%date%date_to_day_in_year()==366) &
then
print *, x(i)%date%get_vear(), &
' is a leap year’
else
print *, x(i)%date%get_year(), &
'’ is not a leap year’
end if
end do
ndiff = ndays(x(1l)%date, x(2)%date)
print *, ’ Number of days = ', ndiff

x(1)%date = date(1, 1, 1970)
x(2)%date = iso_date(1980, 1, 1)
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! x(3)%date = us_date(1, 1, 1990)

do i = 1, n_dates
print *, ’ print date test’
print *, ’ Single parameter &

x (i) %date%print_date()

print *, &
' day_names=false short_month_name=false ' &
, X(1)%date%print_date (day_names=.false., &
short_month_name=.false.)

print *, &
' day_names=true short_month_name=false ’' &
, X(i)%date%$print_date(day_names=.true., &
short_month_name=.false.)

print *, &
' day_names=false short_month_name=true ' &
, X(i)%date%print_date (day_names=.false., &
short_month_name=.true.)

print *, &
' day_names=true short_month_name=true ' &
, X(i)%date%print_date(day_names=.true., &
short_month_name=.true.)

print *, &
' digits=true " &
, X(1)%date%print_date(digits=.true.)

end do

end program ch2903

This example requires a compiler that supports polymorphic intrinsic assignment.

29.6 Dates, Date Validity and Calendars

In this section we look at dates, date validity and calendars.

29.6.1 Calendars

A calendar date is most commonly regarded as a reference to a particular day repre-
sented within a calendar system.

The most widely used calendar system is the Gregorian.

The Gregorian calendar, also called the Western calendar and the Christian cal-
endar, is internationally the most widely used civil calendar. It is named for Pope
Gregory XIII, who introduced it in October 1582.
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The calendar was a refinement to the Julian calendar amounting to a 0.002%
correction in the length of the year. The motivation for the reform was to stop the
drift of the calendar with respect to the equinoxes and solstices particularly the vernal
equinox, which set the date for Easter celebrations. Transition to the Gregorian calen-
dar would restore the holiday to the time of the year in which it was celebrated when
introduced by the early Church. The reform was adopted initially by the Catholic
countries of Europe. Protestants and Eastern Orthodox countries continued to use
the traditional Julian calendar and adopted the Gregorian reform after a time, for the
sake of convenience in international trade. The last European country to adopt the
reform was Greece, in 1923.

A particular day may be represented by a different date in another calendar as in
the Gregorian calendar and the Julian calendar, which have been used simultaneously
in different places.

The Julian calendar, introduced by Julius Caesar in 46 BC (708 AUC), was a
reform of the Roman calendar. It took effect in 45 BC (AUC 709), shortly after the
Roman conquest of Egypt. It was the predominant calendar in the Roman world,
most of Europe, and in European settlements in the Americas and elsewhere, until it
was refined and gradually replaced by the Gregorian calendar, promulgated in 1582
by Pope Gregory XIII. The Julian calendar gains against the mean tropical year at
the rate of one day in 128 years. For the Gregorian the figure is one day in 3,226
years. The difference in the average length of the year between Julian (365.25 days)
and Gregorian (365.2425 days) is 0.002%.

From a history point of view the course of the Sun and Moon have been the basis
of timekeeping, and hence calendars.

29.6.2 Date Formats

There are a number of commonly used date formats. Here are some Gregorian vari-
ations, with figures for the countries that use these formats.

e DMY - Asia (Central, SE, West), Australia (24), New Zealand (5), parts of Europe
(ca. 675), Latin America (570), North Africa; India (1240), Indonesia (250),
Nigeria (170), Bangladesh (150), Russia (140) 3295

e YMD - China (1360), Koreas (75), Taiwan (23), Hungary (10), Iran (80), Japan
(130), Lithuania. Known in other countries due to ISO 8601. 1660

e MDY - Federated States of Micronesia, United States (320) 320

e DMY, MDY Philippines (100), Saudi Arabia (30) 130

e DMY, YMD Albania (3), Austria (9), Croatia (4), Czech Republic (11), Denmark
(6), [1] Germany (81), [2][not in citation given] Hong Kong (9), Kenya (45), Latvia
(2), Macau (1), Nepal (50), South Africa (54), Slovenia (2), Sweden (10) [3] 290

e DMY, MDY, YMD Canada (40) 40
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29.6.3 Other Calendar Systems

Quite a number of calendar systems exist, including

Chinese
Coptic
Islamic
Jewish
Julian

29.6.4 Proleptic Gregorian Calendar

The proleptic Gregorian calendar is produced by extending the Gregorian calendar
backward to dates preceding its official introduction in 1582. In countries that adopted
the Gregorian calendar later, dates occurring in the interim (between 1582 and the
local adoption) are sometimes “Gregorian-ized” as well. For example, George Wash-
ington was born on February 11, 1731 (Old Style), as Britain was using the Julian
calendar. After the switch, that day became February 22, which is the date commonly
given as Washington’s birthday.

The proleptic Gregorian calendar is explicitly required for all dates before 1582 by
ISO 8601:2004 (clause 4.3.2.1 The Gregorian calendar) if the partners to information
exchange agree. Itis also used by most Maya scholars, [2] especially when converting
Long Count dates (1st century BC 10th century).

Extending the Gregorian calendar backwards to dates preceding its official intro-
duction produces a proleptic calendar, which should be used with some caution.
For ordinary purposes, the dates of events occurring prior to 15 October 1582 are
generally shown as they appeared in the Julian calendar, with the year starting on 1
January, and no conversion to their Gregorian equivalents. For example, the Battle of
Agincourt is universally considered to have been fought on 25 October 1415 which
is Saint Crispin’s Day.

29.6.5 References

Wikipedia is a good starting place.

https://en.wikipedia.org/wiki/Calendar
https://en.wikipedia.org/wiki/List_of_calendars
https://en.wikipedia.org/wiki/Date_format_by country
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29.7 An Abstract Base Class in Fortran

A type in Fortran can have the abstract attribute.

The DEFERRED attribute defers the implementation of a type-bound procedure
to extensions of the type and it can appear only in an abstract type. The dynamic type
of an object cannot be abstract; therefore, a deferred type-bound procedure cannot
be invoked. An extension of an abstract type need not be abstract if it has no deferred
type-bound procedures.

A short example of an abstract type taken from the standard is given below.

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS
PROCEDURE (OPEN_FILE), DEFERRED, &
PASS (HANDLE) :: OPEN
END TYPE

Section C.2.4 of the standard has an additional example on abstract types. It
illustrates how an abstract type can be used as the basis for a collection of related
types, and how a non-abstract member of that collection can be created by type
extension.

TYPE, ABSTRACT :: DRAWABLE_OBJECT
REAL, DIMENSION(3) :: &
RGB_COLOR = (/1.0,1.0,1.0/) ! White
REAL, DIMENSION(2) :: &
POSITION = (/0.0,0.0/) ! Centroid
CONTAINS
PROCEDURE (RENDER_X) , &
PASS (OBJECT), DEFERRED :: RENDER

END TYPE DRAWABLE_OBJECT

ABSTRACT INTERFACE
SUBROUTINE RENDER_X(OBJECT, WINDOW)
IMPORT DRAWABLE_OBJECT, X_WINDOW
CLASS (DRAWABLE_OBJECT) , INTENT (IN) :: OBJECT
CLASS (X_WINDOW) , INTENT (INOUT) :: WINDOW
END SUBROUTINE RENDER_X
END INTERFACE

TYPE, EXTENDS (DRAWABLE_OBJECT) :: DRAWABLE_TRIANGLE
! Not ABSTRACT
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REAL, DIMENSION(2,3) :: VERTICES

! In relation to centroid
CONTAINS

PROCEDURE, PASS(OBJECT) :: &

RENDER=>RENDER_TRIANGLE_X
END TYPE DRAWABLE_TRIANGLE

The actual drawing procedure will draw a triangle in WINDOW with vertices at

x and y coordinates at OBJECT%POSITION(1)+OBJECT%VERTICES(1,1:3) and
OBJECT%POSITION(2)+OBJECT%VERTICES(2,1:3):

SUBROUTINE RENDER_TRIANGLE_X (OBJECT, WINDOW)
CLASS (DRAWABLE_TRIANGLE), INTENT(IN) :: OBJECT
CLASS (X_WINDOW) , INTENT (INOUT) :: WINDOW

END SUBROUTINE RENDER_TRIANGLE_X

The following example is a variant of the shape class in the earlier chapter on
object oriented programming.

module shape_module

type, abstract :: shape_type
integer, private :: x_ = 0
integer, private :: y_ =0
contains

procedure, pass (this) get_x

procedure, pass (this) get_y

procedure, pass (this) :: set_x

procedure, pass (this) set_vy

procedure (calculate_area), pass (this), &
deferred :: area

end type shape_type

abstract interface
integer function calculate_area(this)
import :: shape_type
class (shape_type), intent (in) :: this
end function calculate_area
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end interface

contains

integer function get_x(this)

implicit none
class (shape_type), intent (in) :: this

get_x = this%x_
end function get_x

integer function get_y (this)
implicit none

class (shape_type), intent (in) :: this

get_y = this%y_
end function get_y

subroutine set_x(this, x)

implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: x
this%x_ = x

end subroutine set_x

subroutine set_vy(this, vy)
implicit none

class (shape_type), intent (inout) :: this
integer, intent (in) :: y
this%y = vy

end subroutine set_y
end module shape_module

Let us look at this example in more depth.
Here is the derived class.

module square_module
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use shape_module

type, extends (shape_type) :: square_type
integer, private :: side_ = 0

contains
procedure, pass (this) :: area => &

square_area
end type square_type
interface square_type
module procedure square_type_constructor

end interface square_type

contains

type (square_type) function &
square_type_constructor (x, y, side)
implicit none

integer, intent (in) :: x
integer, intent (in) :: y
integer, intent (in) :: side

call square_type_constructor%set_x(x)
call square_type_constructor%set_y(y)
square_type_constructor%side_ = side

end function square_type_constructor
integer function square_area(this)
implicit none

class (square_type), intent (in) :: this

square_area = this%$side_*this%side_

end function square_area
end module square_module

here is the test program that demonstrates the use of an abstract base class and simple
concrete derived class.
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include ’'ch2904_abstract_shape_module.f90’
include ’'ch2904_square_module.f90"

program ch2904
use square_module
type (square_type) :: x
X = square_type(l, 2, 3)
print *, ’ Square area = ', x%areal()

end program ch2904

29.8 Problems

29.1 Compile and run the examples in this chapter.
29.2 Add a US date module and test program for simple inheritance.
29.3 Add the US date data type to the polymorphic example.

29.4 The names of the days of the week and months in the year are English.
Here are their Welsh equivalents.

Llun Monday
Mawrth Tuesday
Mercher Wednesday
Tau Thursday
Gwener Friday
Sadwrn Saturday

Sul Sunday

January Ionawr July Gorffennaf
February Chwefror August Awst
March Mawrth September Medi

April Ebrill October Hydref
May Mai November Tachwedd
June Mehefin December Rhagfyr

Choose a language of you own, and write another language version of the date
class. Test it out.
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29.5 The following module contains code that tests the validity of a date using a
date expressed in terms of days, months and years.

module valid_date_module
implicit none
contains
logical function leap_year (year)
implicit none

integer, intent (in) :: year

if ((year/4)*4==year) then

leap_year = .true.
if ((year/400)*400==year) then
leap_vyear = .true.

else if ((year/100)*100==year) then

leap_vyear = .false.
end if
else
leap_year = .false.
end 1if

end function leap_year

subroutine check_date(day, month, year, ifail)

implicit none

integer, intent (in) :: day
integer, intent (in) :: month
integer, intent (in) :: year
integer, intent (inout) :: ifail
integer, parameter :: n_months = 12
integer, dimension (l:n_months) :: &
days_in month = [ 31, 28, 31, 30, 31, 30, &

31, 31, 30, 31, 30, 311
! Initialise ifail to O
ifail = 0
! Simple test for Gregorian start date

! This is a warning. See the book for more
! details
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about dates and calendars.

if (year<1582) then
ifail =1
end 1if

if ((month<l) .or. (month>12)) then
ifail = ifail + 2
return

end if

Now have a valid month

reset in case of leap year in previous call

days_in_month(2) = 28

if (leap_year (year)) then
days_in_month(2) = 29
end if

if ((day<l) .or. (day>days_in_month (month))) &
then
ifail = ifail + 4
return

end if

return

end subroutine check_date

end module valid_date_module

How easy would it be to add date checking to the base class?
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Chapter 30 ®)
Introduction to Submodules Geda

The competent programmer is fully aware of the limited size of
his own skull. He therefore approaches his task with full
humility, and avoids clever tricks like the plague

Edsger Dijkstra

Aims
The aims of this chapter is to provide a short introduction to submodules.

30.1 Introduction

Modules were introduced into Fortran in the 1990 standard. Over the next ten or so
years a number of issues arose that lead to the TR on Enhanced Module Facilities,
N1602, which was the starting point for the submodule facility in Fortran. A copy
can be found at the WGS5 site. Visit

https://wgb-fortran.org/

to obtain a copy.
The actual published technical report (TR 19767) can be found at the ISO site.

https://www.iso.org/standard/37995.html

The document discussed the fact that the module system of Fortran was adequate
for a wide range of problems, but had shortcomings when one ended up with large
modules.

Four areas of concern were identified in this document:

© Springer International Publishing AG, part of Springer Nature 2018 543
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_30
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e Decomposing large and interconnected facilities. If an intellectual concept is large
and internally interconnected, it requires a large module to implement it. Decom-
posing such a concept into components of tractable size using modules may require
one to convert private data to public data. One problem occurs during maintenance,
when one must then answer the question where is this entity used?

e Avoiding recompilation cascades. Once the design of a program is stable, few
changes to a module occur in its interface, that is, in its public data, public types,
the interfaces of its public procedures, and private entities that affect their defini-
tions. We refer to the rest of a module, that is, private entities that do not affect
the definitions of public entities, and the bodies of its public procedures, as its
implementation. Changes in the implementation have no effect on the translation
of other program units that access the module. The existing module facility, how-
ever, draws no structural distinction between the interface and the implementation.
Therefore, if one changes any part of a module, most language translation systems
have no alternative but to conclude that a change might have occurred that could
affect the translation of other modules that access the changed module. This effect
cascades into modules that access modules that access the changed module, and
so on. This can cause a substantial expense to re-translate and re-certify a large
program. Re-certification can be several orders of magnitude more costly than
retranslation.

e Packaging proprietary software. If a module is used to package proprietary soft-
ware, the source text of the module cannot be published as authoritative docu-
mentation of the interface of the module, without either exposing trade secrets, or
requiring the expense of separating the implementation from the interface every
time a revision is published.

e Easier library creation. Most Fortran translator systems produce a single file of
computer instructions and data, frequently called an object file, for each module.
This is easier than producing an object file for the specification part and one for
each module procedure. It is also convenient, and conserves space and time, when
a program uses all or most of the procedures in each module. It is inconvenient,
and results in a larger program, when only a few of the procedures in a general
purpose module are needed in a particular program.

We provide a brief technical background below and then look at an example based
on the date class from the second object oriented chapter.

30.2 Brief Technical Background

The following is taken from Sect. 14.2.3 of the Fortran 2018 standard.

A submodule is a program unit that extends a module or another submodule. The
program unit that it extends is its host, and is specified by the parent-identifier in the
submodule-stmt.
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A module or submodule is an ancestor program unit of all of its descendants,
which are its submodules and their descendants. The submodule identifier is the
ordered pair whose first element is the ancestor module name and whose second
element is the submodule name; the submodule name by itself is not a local or global
identifier.

A module and its submodules stand in a tree-like relationship one to another, with
the module at the root. Therefore, a submodule has exactly one ancestor module and
can have one or more ancestor submodules.

A submodule may provide implementations for separate module procedures
(15.6.2.5), each of which is declared within that submodule or one of its ances-
tors, and declarations and definitions of other entities that are accessible by host
association in its descendants.

Here is an example taken from N1602.

The example module POINTS below declares a type POINT and a module proce-
dure interface body for a module function POINT_DIST. Because the interface body
includes the MODULE prefix, it accesses the scoping unit of the module by host
association, without needing an IMPORT statement; indeed, an IMPORT statement
is prohibited.

MODULE POINTS

TYPE :: POINT
REAL :: X, Y
END TYPE POINT

INTERFACE
REAL MODULE FUNCTION POINT_DIST ( A, B ) &
RESULT ( DISTANCE )

TYPE (POINT), INTENT(IN) :: A, B
! POINT is accessed by host association
REAL :: DISTANCE

END FUNCTION POINT_DIST
END INTERFACE

END MODULE POINTS

The example submodule POINTS A below is a submodule of the POINTS module.
The type POINT and the interface POINT_DIST are accessible in the submodule
by host association. The characteristics of the function POINT_DIST are redeclared
in the module function body, and the dummy arguments have the same names. The
function POINT_DIST is accessible by use association because its module procedure
interface body is in the ancestor module and has the PUBLIC attribute.

SUBMODULE ( POINTS ) POINTS_A
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CONTAINS
REAL MODULE FUNCTION POINT_DIST ( A, B ) &
RESULT ( DISTANCE )
TYPE (POINT), INTENT(IN) :: A, B
DISTANCE = SQRT( (A%X-B%X)**2 + (A%Y-B%Y)**2 )
END FUNCTION POINT_DIST
END SUBMODULE POINTS_A

A complete example is given below.

30.3 Example 1: Rewrite of the Date Class Using
Submodules

In this example we rewrite the base date module to have type declarations and inter-
faces for each of the contained module procedures.

The submodule will be based on the base date module and will have the imple-
mentations of the contained methods.

We have thus effectively decoupled the interface from the implementation.

The stages we followed are

Duplicate the original module, creating an interface module and a implementation

submodule

e Add interfaces for each function and subroutine to the interface module

e Add the new syntax to the interfaces in the module, i.e. add the MODULE keyword
to each function and subroutine

e Remove all executable code from the interface module, in this example all code
after the contains statement

e Remove all code before the contains statement in the implementation module

e Add the new submodule syntax

e Add the new syntax to each contained procedure, i.e. add the MODULE keyword
to each function and subroutine

e Copy the module test program

e Change the test program to use the new module names

We can distribute the module interface, and effectively keep the implementation
functions and subroutines hidden.

Here is the first source file. This is the base date class, but now rewritten just to
have the interfaces, and no executable or implementation code.

module date_module_interface

use day_and_month_name_module
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implicit none

private
type, public :: date
private
integer :: day
integer :: month
integer :: year
contains
procedure, pass (this) :: calendar_to_julian
procedure, pass (this) :: date_to_day_in_year
procedure, pass (this) :: &

date_to_weekday_ number

procedure, pass (this) get_day
procedure, pass (this) get_month
procedure, pass (this) :: get_year
procedure, nopass :: julian_to_date
procedure, nopass &

julian_to_date_and_ week_and_day

procedure, nopass :: ndays

procedure, pass (this) :: print_date
procedure, pass (this) :: set_day
procedure, pass (this) :: set_month
procedure, pass (this) :: set_year
procedure, nopass :: year_and_day_to_date

end type date

interface date
module procedure date_constructor
end interface date

interface
module function calendar_to_julian(this) &
result (ival)
implicit none
integer :: ival
class (date), intent (in) :: this
end function calendar_to_julian
end interface
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interface
type (date) module function &
date_constructor(dd, mm, yvyvyy)

implicit none
integer, intent (in) :: dd, mm, yyyy
end function date_constructor
end interface

interface
integer module function &
date_to_day_in_year (this)
implicit none
class (date), intent (in) :: this
intrinsic modulo
end function date_to_day_in_year
end interface

interface
integer module function &
date_to_weekday_number (this)
implicit none
class (date), intent (in) :: this
intrinsic modulo
end function date_to_weekday_number
end interface

interface
module function get_day (this)
implicit none
integer :: get_day
class (date), intent (in) :: this
end function get_day
end interface

interface
module function get_month (this)
implicit none
integer :: get_month
class (date), intent (in) :: this
end function get_month
end interface

Introduction to Submodules
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interface
module function get_year (this)
implicit none
integer :: get_vyear
class (date), intent (in) :: this
end function get_year
end interface

interface
module function julian_to_date(julian)
implicit none
type (date) :: julian_to_date
integer, intent (in) :: julian
end function julian_to_date

end interface

interface
module subroutine &
julian_to_date_and week_and_day &
(jd, d, wd, ddd)
implicit none

integer, intent (in) :: jd
type (date), intent (out) :: d
integer, intent (out) :: wd, ddd

end subroutine &
julian_to_date_and_week_and_day

end interface

interface
module function ndays (datel, date2)
implicit none
integer :: ndays
class (date), intent (in) :: datel, date2
end function ndays
end interface

interface
module function &
print_date(this, day_names, &
short_month_name, digits)
implicit none
class (date), intent (in) :: this
logical, optional, intent (in) :: &
day_names, short_month_name, digits
character (len=40) :: print_date
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end function print_date
end interface

interface
module subroutine set_day (this, d)
implicit none
integer, intent (in) :: d
class (date), intent (inout) :: this
end subroutine set_day
end interface

interface
module subroutine set_month(this, m)
implicit none
integer, intent (in) :: m
class (date), intent (inout) :: this
end subroutine set_month
end interface

interface
module subroutine set_year (this, vy)
implicit none
integer, intent (in) :: y
class (date), intent (inout) :: this
end subroutine set_year
end interface

interface
module function &
yvear_and_day_to_date(year, day_in_year)
use day_and_month_name_module
implicit none
type (date) :: year_and day_to_date
integer, intent (in) :: day_in_year, year
end function year_and_day_to_date
end interface

public :: calendar_to_julian, &
date_to_day_in_year, &
date_to_weekday_number, get_day, &
get_month, &
get_year, julian_to_date, &
julian_to_date_and_week_and_day, &
ndays, print_date, &
set_day, set_month, set_year, &
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vear_and_day_to_date
end module date_module_interface

Here is the submodule that actually has the implementation.

submodule (date_module_interface) &
date_module_implementation

contains

module function &
calendar_to_julian(this) &
result (ival)
implicit none
integer :: ival
class (date), intent (in) :: this

ival = this%day - 32075 + 1461*&
(this%year+ &
4800+ (this%month-14)/12) /4 + &
367* (this%month-2- ( (this%month- &
14)/12)*12) /12 - 3*&
((this%year+4900+ (this% &
month-14)/12)/100) /4

end function calendar_to_julian

type (date) module function &
date_constructor (dd, mm, &
YYYY)

implicit none

integer, intent (in) :: dd, mm, yyyy

date_constructor%day = dd
date_constructor$month = mm
date_constructor$%year = yyyy

end function date_constructor

integer module function &
date_to_day_in_year (this)
implicit none

class (date), intent (in) :: this

551
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intrinsic modulo
date_to_day_in_year = 3055*&
(this%month+2)/ &
100 - (this%month+10)/13*2 - &
91 + &
(1-(modulo (this%year,4)+3) /4+&
(modulo (this% &
year,100)+99) /100- (modulo (this%year,
400)+399)/400) * (this%month+10) /13 +
this%day
end function date_to_day_in_year

integer module function &
date_to_weekday_number (this)
implicit none

(date),

intrinsic modulo

class intent (in) this

date_to_weekday_number = modulo( (13*(
this%month+10-&

(this%$month+10)/13*12)-1) /5+ &

&

&

Introduction to Submodules

this%day+77+5* (this%year+ (this$month- &

14) /12- (this%year+&
(this%$month-14)/12)/100* &
100) /4+ (this%year+ (this%month- &
14)/12)/400- (this%year+ (this%month-
14)/12)/100*2, 7)
end function date_to_weekday_ number

module function get_day (this)
implicit none
integer get_day

(date) , (in) this

class intent

get_day = this%day
end function get_day

module function get_month(this)
implicit none
integer get_month
class (date), intent (in) this
this%$month

end function get_month

get_month =

&
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module function get_year (this)
implicit none
integer :: get_year
class (date), intent (in) :: this

get_vyear = this%year
end function get_year

module function julian_to_date(julian)

implicit none

type (date) :: julian_to_date
integer, intent (in) :: julian
integer :: 1, n

1 = julian + 68569
n 4*1/146097
1 =1 - (146097*n+3)/4
julian_to_date%year = (4000* (1+1)/1461001)
1 =1 - 1461l*julian_to_date%year/4 + 31
julian_to_date%month = (80*1/2447)
julian_to_date%day = &
(1-2447*julian_to_date% &
month/80)
1 = julian_to_date%month/11
julian_to_date%month = &

(julian_to_date%month &
+2-12*1)
julian_to_date%year = (100* (n-49)+ &
julian_to_date%year+1)
end function julian_to_date

module subroutine &
julian_to_date_and_week_ and_day (jd, &
d, wd, ddd)
implicit none

integer, intent (in) :: jd
type (date), intent (out) :: d
integer, intent (out) :: wd, ddd

d = julian_to_date(3jd)

wd = date_to_weekday_ number (d)

ddd = date_to_day_in_year (d)
end subroutine &
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julian_to_date_and_week_and_day

module function ndays(datel, date2)
implicit none

integer :: ndays
class (date), intent (in) :: datel, date2
ndays = calendar_to_julian(datel) - &

calendar_to_julian(date2)
end function ndays

module function &
print_date(this, day_names, &
short_month_name, digits)
implicit none
class (date), intent (in) :: this
logical, optional, intent (in) :: &
day_names, &
short_month_name, digits

character (40) :: print_date
integer :: pos
logical :: want_day, &

want_short_month_name, &
want_digits

intrinsic len_trim, present, trim

want_day = .false.
want_short_month_name = .false.
want_digits = .false.

print_date = *

if (present (day_names)) then
want_day = day_names

end 1if

if (present (short_month_name)) then
want_short_month_name = short_month_name

end if

if (present(digits)) then
want_digits = digits

end if

if (want_digits) then

write (print_date(1:2), ’(i2)’) this%day

print_date(3:3) = '/’

write (print_date(4:5), ' (i2)') &
this%month

print_date(6:6) = '/’
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write (print_date(7:10), ’(i4)'’) this%year
else
if (want_day) then

pos =

date_to_weekday_number (this)

print_date = trim(day(pos)) // ' '

pos = len_trim(print_date) + 2
else
pos = 1
print_date = *
end if
write (print_date(pos:pos+1l), ' (i2)"')
this%day
if (want_short_month name) then
print_date(pos+3:pos+5) = month(this% &
month) (1:3)
pos = pos + 7
else
print_date(pos+3:) = month(this%month)
pos = len_trim(print_date) + 2
end if
write (print_date(pos:pos+3), ’(i4)")
this%year
end if
return

end function print_date

module subroutine set_day (this, d)

implicit none

integer, intent (in) :: d

class (date), intent (inout) :: this
this%day = d

end subroutine set_day

module subroutine set_month(this, m)

implicit none
integer, intent (in) :: m
class (date), intent (inout) :: this

this%month = m

end subroutine set_month

module subroutine set_year (this, vy)

implicit

none

555
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integer, intent (in) :: y

class (date), intent (inout) :: this

this%year = vy
end subroutine set_year

module function year_and_day_to_date(year, &
day_in_year)
use day_and_month_name_module
implicit none

type (date) :: year_and day_to_date
integer, intent (in) :: day_in_year, year
integer :: t

intrinsic modulo

vear_and_day_to_date%year = year
t =0
if (modulo(year,4)==0) then
t =1
end if
if (modulo(year,400)/=0 .and. &
modulo (year,100)==0) then
t =0
end 1if
vear_and_day_to_date%day = day_in_year
if (day_in_year>59+t) then
vear_and_day_to_date%day = &
yvear_and_day_to_date%day + 2 - t
end if
vear_and_day_to_date%$month = &
( (year_and_day_to_date%day+91)*100) /3055
vear_and_day_to_date%day = ( &
vear_and_day_to_date%day+91) - &
(year_and_day_to_date$month*3055) /100
vear_and_day_to_date$month = &
yvear_and_day_to_date%$month - 2
if (year_and_day_to_date%month>=1 .and. &
vear_and_day_to_date%$month<=12) then
return
end 1if
write (unit=*, fmt='(a,ill,a)’) &
'$Syear_and_d&
&ay_to_date: day of the year input &
=’, day_in_year, ' is out of range.’
end function year_and_day_to_date
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end submodule date_module_implementation

Here is the Fortran driving program to test the submodule out.

include ‘day_and_month_name_module.f90"
include ’'date_module_interface.f90’
include ’'date_module_implementation.f90’

program ch3001
use date_module_interface , only : &

calendar_to_julian, &
date, date_to_day_in_year, &

date_to_weekday_number, get_day, get_month,

get_vyear, julian_to_date, &

julian_to_date_and_week_and_day, ndays,

print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy
integer :: julian
integer :: val(8)

intrinsic date_and_time

type (date) :: datel, date2, x, txl, tx2

call date_and_time(values=val)
yyyy = val(l)
mm = 10
do i =31, 26, -1
x = date(i, mm, yyyy)

if (x%date_to_weekday number ()==0) then
print *, ‘Turn clocks Dback to EST on:
i, ' October ', x%get_year ()
exit
end 1if
end do

call date_and_time (values=val)
yyyy = val(l)
mm = 4
do i =1, 8
x = date(i, mm, yyyy)

if (x%date_to_weekday_ number ()==0) then
print *, ‘Turn clocks ahead to DST on:
i, ' April ', x%get_year ()

exit

’
i

&

&
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end 1if
end do
call date_and_time (values=val)
yyyy = val(l)
mm = 12
dd = 31
x = date(dd, mm, yyyy)
if (x%date_to_day_in_year()==366) then
print *, x%get_year(), ' is a leap year’
else
print *, x%get_year(), ' 1is not a leap year’
end if

x = date(1, 1, 1970)

call julian_to_date_and_week_and_day &
(calendar_to_julian(x), x, wd, ddd)

if (x%get_year()/=1970 .or. x%get_month()/
.or. x%get_day()/=1 .or. wd/=4 .or. ddd/
then
print *, &

=1 &
=1) &

'julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ', x%get_year
x%get_month (), x%get_day (), wd, ddd

stop

end if

datel = date(22, 5, 1984)

date2 = date(22, 5, 1983)

ndiff = ndays(datel, date2)

yyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then
print *, ’'ndays failed; ndiff = ’, ndiff
else
if (x%get_month()/=1 .and. x%get_day()/=
then
print *, ’‘year_and_day_ to_date failed’

print *, ’ mma, dda = ‘', x%get_month()
x%get_day ()
else
print *, ’ calendar_to_julian OK’
print *, ' date_ OK’
print *, ' date_to_day_in_year OK’
print *, ’ date_to_weekday_number OK’

print *, ’ get_day OK’

(), &

1) &

, &
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print *, ’ get_month OK’
print *, ’ get_year OK’
print *, &
' julian_to_date_and_week_ and_day OK’

print *, ’ ndays OK’
print *, ’ year_and_day_to_date OK’
end if
end if

txl = date(1l, 1, 1970)
julian = txl%calendar_to_julian()

tx2 = julian_to_date(julian)

if (txl%get_day()==tx2%get_day() .and. &
txl%get_month () ==tx2%get_month () .and. &
tx1%get_vyear ()==tx2%get_year()) then
print *, ’ calendar_to_julian and ’
print *, ’ julian_to_date worked’

end if

x = date(11l, 2, 1952)

print *, ’ print_date test’

print *, ’ Single parameter r, &
x%print_date ()

print *, &
' day_names=false short_month_name=false
x%print_date (day_names=.false., &
short_month_name=.false.)

print *, &
'’ day_names=true short_month_name=false
x%print_date (day_names=.true., &
short_month_name=.false.)

print *, &
’ day_names=false short_month_name=true
x%print_date (day_names=.false., &
short_month_name=.true.)

print *, &
’ day_names=true short_month_ name=true
x%print_date (day_names=.true., &
short_month_name=.true.)

print *, ’ digits=true T, &
x%print_date(digits=.true.)

print *, ’ Test out a month’
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vyyy = 1970
do dd = 1, 31
x = year_and_day_ to_date(yyyy, dd)
print *, x%print_date(day_names=.false., &
short_month_name=.true.)
end do

end program ch3001

As can be seen the test or driving program is identical to the earlier, non submodule
version.

30.4 Example 2: Rewrite of the First Order RKM ODE
Solver Using Modules

The module rkm_module from Chap. 26 contained the runge_kutta_merson
subroutine which was an implementation of the Runge Kutta Merson (RKM) algo-
rithm.

‘We have now introduced a submodule called rkm_module_implementation
which contains the runge_kutta_merson subroutine. By moving the body of
the procedure into a submodule any subsequent changes to the body will typically
only require recompilation of the submodule. Here is the new RKM module code.

module rkm_module
interface

module subroutine &
runge_kutta_merson(y, fun, ifail, n, a, b, tol)

use precision_module, wp=> dp

implicit none

real (wp), intent (inout), dimension (:) :: y
real (wp), intent (in) :: a, b, tol

integer, intent (in) :: n

integer, intent (out) :: ifail

interface

subroutine fun(t, y, £, n)
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use precision_module, wp => dp
implicit none

real (wp), intent (in), dimension (:) :: y
real (wp), intent (out), dimension (:) :: £
real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun

end interface

end subroutine runge_kutta_merson

end interface

end module rkm_module

Here is the RKM submodule.

submodule (rkm_module) rkm_module_implementation

contains

module subroutine &
runge_kutta_merson(y, fun, ifail, n, a, b, tol)
use precision_module, wp => dp

! runge-kutta-merson method for the solution
! of a system of n 1lst order initial value

! ordinary differential equations.

! the routine tries to integrate from

! t=a to t=b with initial conditions in vy,

! subject to the condition that the

! absolute error estimate <= tol. the step

! length is adjusted automatically to meet

! this condition.

! if the routine is successful it returns with
! ifail = 0, t=b and the solution in y.

implicit none
! define arguments
real (wp), intent (inout), &

dimension (:) :: vy

real (wp), intent (in) :: a, b, tol
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integer, intent (in) :: n
integer, intent (out) :: ifail
interface

subroutine fun(t, y, £, n)
use precision_module, wp => dp
implicit none

real (wp), intent (in), &
dimension (:) :: vy

real (wp), intent (out), &
dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun
end interface

! local variables

real (wp), dimension (l:size(y)) :: &

sl, s2, s3, s4, s5, new_y_1, new_y_2, error

real (wp) :: &

t, h, h2, h3, h6, h8, factor = 1l.e-2_wp
real (wp) :: &

smallest_step = 1l.e-6_wp, max_error
integer :: no_of_steps = 0
ifail = 0

! check input parameters

if (n<=0 .or. a==b .or. tol<=0.0) then
ifail = 1
return

end if

! initialize t to be start of interval and
! h to be 1/100 of interval

t =a
h = (b-a)/100.0_wp
do

! ##### beginning of
! ##### repeat loop
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h2 h/2.0_wp
h3 = h/3.0_wp
hé = h/6.0_wp
h8 = h/8.0_wp

! calculate sl,s2,s3,s4,s5 !
sl=f(t,y)

call fun(t, y, sl, n)
new_v_1 = vy + h3*sl

! s2 = £(t+h/3,y+h/3*sl)

call fun(t+h3, new_y_1, s2, n)
new y_ 1 =y + h6*sl + h6*s2

! s3=f(t+h/3,y+h/6*sl+h/6*s2)

call fun(t+h3, new_y_ 1, s3, n)
new_v_1 = vy + h8*(s2+3.0_wp*s3)

! s4=f (t+h/2,y+h/8* (s2+3*s3))

call fun(t+h2, new_y_1, s4, n)
new_vy 1 =y + h2*(s1-3.0_wp*s3+4.0_wp*s4)

! s5=f (t+h,y+h/2* (s1-3*s3+4*s4))
call fun(t+h, new_y_1, s5, n)
! calculate values at t+h

new v 1 =y + h6*(sl+4.0_wp*sd+s5)
new_ vy 2 =y + h2*(sl1-3.0_wp*s3+4.0_wp*s4)

! calculate error estimate
error = abs(0.2_wp* (new_y_l-new_y_2))
max_error = maxval (error)
if (max_error>tol) then

! halve step length and try again

if (abs (h2)<smallest_step) then
ifail = 2
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return
end if
h = h2
else

! accepted approximation so overwrite
! v with yv_new_ 1, and t with t+h

y = new_vy_ 1
t t + h

! can next step be doubled?

if (max_error*factor<tol) then
h = h*2.0_wp
end if

! does next step go beyond interval end b,
! if so set h = b-t
if (t+h>b) then
h=Db-t¢t
end if
no_of_steps = no_of_steps + 1
end if

if (t>=b) exit

! ##### end of
! ##### repeat loop

end do
end subroutine runge_kutta_merson

end submodule rkm_module_implementation
Here is the funl_module, which is the same code as in Chap. 26.
module funl_module
implicit none
contains

subroutine funl(t, y, £, n)
use precision_module, wp => dp
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implicit none

real (wp), intent (in), dimension (:) :: vy
real (wp), intent (out), dimension (:) :: £
real (wp), intent (in) :: t
integer, intent (in) :: n
£(1) = tan(y(3))
£(2) = -0.032_wp*f(1)/y(2) - &
0.02_wp*y(2) /cos(y(3))
£(3) = -0.032_wp/(y(2)*y(2))

end subroutine funl

end module funl_module

Here is the main program, which is the same code as in Chap. 26.

include ’'precision_module.f90’

include ’'ch3002_funl_module.f90’

include ’'ch3002_rkm_interface_module.£90"
include ’'ch3002_rkm_ implementation_module.f90’

program ch3002
use precision_module, wp => dp
use rkm_module

use funl_module

implicit none

real (wp), dimension (:), allocatable :: y
real (wp) :: a, b, tol

integer :: n, ifail, all_stat

print *, ‘input no of equations’

read *, n

! allocate space for y - checking to see that it
! allocates properly

allocate (y(l:n), stat=all_stat)
if (all_stat/=0) then

print *, ’ not enough memory’
print *, ’ array y is not allocated’
stop

end if

print *, ’ input start and end of interval over’
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print *, ' which equations to be solved’
read *, a, b
print *, ‘input initial conditions’
read *, y(l:n)
print *, ’‘input tolerance’
read *, tol
print 100, a
100 format &
("at t= ', £5.2, ’ initial conditions are :')
print 110, y(1:n)
110 format (4(£5.2,2x%))
call &
runge_kutta_merson(y, funl, ifail, n, a, b, tol)
if (ifail/=0) then
print *, &

‘integration stopped with ifail = ', ifail
else
print 120, b
120 format ('at t= ’, £5.2, ' solution is:’)

print 110, y(1l:n)
end if

end program ch3002

30.5 Problems

30.1 Compile and run the above example. Compare the output to the previous ver-
sion.

30.2 Convert an earlier module example to use submodules, with an interface mod-
ule and an implementation submodule.
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e Fortran 2018 draft standard.
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Chapter 31 ®)
Introduction to Parallel Programming oo

‘Can you do addition?’ the White Queen asked. ‘What’s one and
one and one and one and one and one and one and one and one
and one?’
‘I don’t know’ said Alice. ‘I lost count.’
‘She can’t do addition,” the Red Queen interrupted.

Lewis Carroll, Through the Looking Glass and What Alice
Found There

Aims
The aims of this chapter is to provide a short introduction to parallel programming.

31.1 Introduction

Parallel programming involves breaking a program down into parts that can be exe-
cuted concurrently. Here is a simple diagram to illustrate the idea.

Sequential Parallel Step
Execution Execution

| | 1

/N #

I 2

| I 3

\ / @

| | 4
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On the left hand side we have a sequential program and this steps through linearly
from beginning to end. The right hand side has the same program that has been
partially parallelised. There are two parallel regions and the work here is now shared
between two processes or threads. At each parallel part of the program we have the
following

Parallel Parallel

Region 1 Region 2
Set up cost Step # Step ##
Parallel section Steps 2,3 Steps 6,7
Synchronisation cost Step @ Step @@

The theory is that the overall run time of the program will have been reduced or
we will have been able to solve a larger problem by parallelising our code. In the
above example we have divided the work between two processes or threads. Here are
some details of a range of processors which support multiple cores. Visit the AMD
and Intel sites for up to date information.

Processor Cores Hyper
Threading
AMD Phenom II X6
Intel Core i7 920
Intel Core i7 2600K
AMD Opteron Shanghai
Istanbul
Magny Cours

0 o B O
*

Magny Cours 12
Intel E5-2697 12 * 2

Intel introduced hyperthreading technology in 2002. For each physical processor
core the Intel chip has the operating system can see or address two virtual or logical
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cores, and can share the workload between them when possible. See the Wikipedia
entry for more information.

http://en.wikipedia.org/wiki/Hyper-threading

There are several ways of doing parallel programming, and this chapter will look
at three ways of doing this in Fortran. There are a common set of concepts and
terminology that are useful to know about, whichever method we use, and we will
cover these first.

31.2 Parallel Computing Classification

Parallel computing is often classified by the way the hardware supports parallelism.
Two of the most common are:

e multi-processor and multi-core computers having multiple processing elements
within a single system
e clusters or grids with multiple computers connected to work together.

Modern large systems are increasingly hybrids of the two above.

31.3 Amdahl’s Law

Amdahl’s law is a simple equation for the speedup of a program when parallelised.
It assumes that the problem size remains the same when parallelised. In the equation
below

e P is the proportion of the program that can be parallelised
e (1-P) is the serial proportion

e N is the number of processors

e speedup =1/ ((1-P) 4+ P/N).

We have included a couple of graphs to illustrate the above. We have written
programs that use the dislin graphics library to do the plots. More information on
these programs can be found in Chap. 35, where we have a look at third party numeric
and graphics libraries.
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31.3.1 Amdahl’s Law Graph 1-8 Processors or Cores

Plot of Amdahls Law
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31.3.2 Amdahl’s Law Graph 2-64 Processors or Cores

Plot of Amdahls Law

64 Processors

20.0\AAAAAAAAlAAAAAAAAAlAAAAAAAAAlAAAAAAAAAlAAAAAAAAAlAAAAAAAAAlAAA
128 legend
wod | T 0%
: 20%
16.0 ------ 30%
15.0 ~— 40%
------ 50%
1403 | ____. 60%
13.0 7