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Preface to the Fourth Edition

The fourth edition of this book on Applied Multivariate Statistical Analysis offers
a new sub-chapter on Variable Selection by using least absolute shrinkage and
selection operator (LASSO) and its general form the so-called Elastic Net.

All pictures and numerical examples have been now calculated in the (almost)
standard language R & MATLAB. The code for each picture is indicated with
a small sign near the picture, e.g. MVAdenbank denotes the corresponding
quantlet for reproduction of Fig. 1.9, where we display the densities of the diagonal
of genuine and counterfeit bank notes. We believe that these publicly available
quantlets (see also http://sfb649.wiwi.hu-berlin.de/quantnet/) create a valuable
contribution to distribution of knowledge in the statistical science. The symbols and
notations have also been standardised. In the preparation of the fourth edition, we
received valuable input from Dedy Dwi Prastyo, Petra Burdejova, Sergey Nasekin
and Awdesch Melzer. We would like to thank them.

Berlin, Germany Wolfgang Karl Härdle
Louvain la Neuve, Belgium Léopold Simar
January 2014
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Preface to the Third Edition

The third edition of this book on Applied Multivariate Statistical Analysis offers the
following new features.

1. A new Chap. 8 on Regression Models has been added.
2. Almost all numerical examples have been reproduced in MATLAB or R.

The chapter on regression models focuses on a core business of multivariate
statistical analysis. This contribution has not been subject of a prominent discussion
in earlier editions of this book. We now take the opportunity to cover classical
themes of ANOVA and ANCOVA analysis. Categorical responses are presented in
Sect. 8.2. The spectrum of log linear models for contingency tables is presented in
Sect. 8.2.2, and applications to count data, e.g. in the economic and medical science
are presented there. Logit models are discussed in great detail, and the numerical
implementation in terms of matrix manipulations is presented.

The majority of pictures and numerical examples has been now calculated in the
(almost) standard language R & MATLAB. The code for each picture is indicated
with a small sign near the picture, e.g. MVAdenbank denotes the corresponding
quantlet for reproduction of Fig. 1.9, where we display the densities of the diagonal
of genuine and counterfeit bank notes. We believe that these publicly available
quantlets (see also www.quantlet.com) create a valuable contribution to distribution
of knowledge in the statistical science. The symbols and notations have also been
standardised. In the preparation of the third edition, we received valuable input from
Song Song, Weining Wang and Mengmeng Guo. We would like to thank them.

Berlin, Germany Wolfgang Karl Härdle
Louvain la Neuve, Belgium Léopold Simar
June 2011
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Part I
Descriptive Techniques



Chapter 1
Comparison of Batches

Multivariate statistical analysis is concerned with analysing and understanding data
in high dimensions. We suppose that we are given a set fxi gniD1 of n observations
of a variable vector X in R

p . That is, we suppose that each observation xi has p
dimensions:

xi D .xi1; xi2; : : : ; xip/;

and that it is an observed value of a variable vector X 2 R
p . Therefore, X is

composed of p random variables:

X D .X1;X2; : : : ; Xp/

where Xj , for j D 1; : : : ; p, is a one-dimensional random variable. How do
we begin to analyse this kind of data? Before we investigate questions on what
inferences we can reach from the data, we should think about how to look at the data.
This involves descriptive techniques. Questions that we could answer by descriptive
techniques are:

• Are there components of X that are more spread out than others?
• Are there some elements of X that indicate sub-groups of the data?
• Are there outliers in the components of X?
• How “normal” is the distribution of the data?
• Are there “low-dimensional” linear combinations of X that show “non-normal”

behaviour?

One difficulty of descriptive methods for high-dimensional data is the human
perceptional system. Point clouds in two dimensions are easy to understand and to
interpret. With modern interactive computing techniques we have the possibility
to see real time 3D rotations and thus to perceive also three-dimensional data.
A “sliding technique” as described in Härdle and Scott (1992) may give insight

© Springer-Verlag Berlin Heidelberg 2015
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4 1 Comparison of Batches

into four-dimensional structures by presenting dynamic 3D density contours as the
fourth variable is changed over its range.

A qualitative jump in presentation difficulties occurs for dimensions greater
than or equal to 5, unless the high-dimensional structure can be mapped into
lower-dimensional components (Klinke & Polzehl, 1995). Features like clustered
sub-groups or outliers, however, can be detected using a purely graphical analysis.

In this chapter, we investigate the basic descriptive and graphical techniques
allowing simple exploratory data analysis. We begin the exploration of a data
set using boxplots. A boxplot is a simple univariate device that detects outliers
component by component and that can compare distributions of the data among
different groups. Next, several multivariate techniques are introduced (Flury faces,
Andrews’ curves and parallel coordinates plots (PCPs)) which provide graphical
displays addressing the questions formulated above. The advantages and the
disadvantages of each of these techniques are stressed.

Two basic techniques for estimating densities are also presented: histograms and
kernel densities. A density estimate gives a quick insight into the shape of the
distribution of the data. We show that kernel density estimates (KDEs) overcome
some of the drawbacks of the histograms.

Finally, scatterplots are shown to be very useful for plotting bivariate or
trivariate variables against each other: they help to understand the nature of the
relationship among variables in a data set and allow for the detection of groups or
clusters of points. Draftman plots or matrix plots are the visualisation of several
bivariate scatterplots on the same display. They help detect structures in conditional
dependencies by brushing across the plots. Outliers and observations that need
special attention may be discovered with Andrews curves and PCPs. This chapter
ends with an explanatory analysis of the Boston Housing data.

1.1 Boxplots

Example 1.1 The Swiss bank data (see Chap. 22, Sect. 22.2) consists of 200
measurements on Swiss bank notes. The first half of these measurements are from
genuine bank notes, the other half are from counterfeit bank notes.

The authorities measured, as indicated in Fig. 1.1,

X1 D length of the bill

X2 D height of the bill (left)

X3 D height of the bill (right)

X4 D distance of the inner frame to the lower border

X5 D distance of the inner frame to the upper border

X6 D length of the diagonal of the central picture.
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X 1

X 2 X 3

X 4

X 5

Fig. 1.1 An old Swiss 1000-franc bank note

These data are taken from Flury and Riedwyl (1988). The aim is to study
how these measurements may be used in determining whether a bill is genuine or
counterfeit.

The boxplot is a graphical technique that displays the distribution of variables. It
helps us see the location, skewness, spread, tail length and outlying points.

It is particularly useful in comparing different batches. The boxplot is a graphical
representation of the Five Number Summary. To introduce the Five Number
Summary, let us consider for a moment a smaller, one-dimensional data set:
the population of the 15 largest world cities in 2006 (Table 1.1).

In the Five Number Summary, we calculate the upper quartileFU , the lower quar-
tile FL, the median and the extremes. Recall that order statistics fx.1/; x.2/; : : : ; x.n/g
are a set of ordered values x1; x2; : : : ; xn where x.1/ denotes the minimum and x.n/
the maximum. The median M typically cuts the set of observations in two equal
parts, and is defined as

M D
8
<

:

x� nC1
2

� n odd

1
2

n
x. n2 /

C x. n2C1/
o
n even

: (1.1)
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Table 1.1 The 15 largest
world cities in 2006

City Country Pop. (10,000) Order statistics

Tokyo Japan 3,420 x.15/

Mexico city Mexico 2,280 x.14/

Seoul South Korea 2,230 x.13/

New York USA 2,190 x.12/

Sao Paulo Brazil 2,020 x.11/

Bombay India 1,985 x.10/

Delhi India 1,970 x.9/

Shanghai China 1,815 x.8/

Los Angeles USA 1,800 x.7/

Osaka Japan 1,680 x.6/

Jakarta Indonesia 1,655 x.5/

Calcutta India 1,565 x.4/

Cairo Egypt 1,560 x.3/

Manila Philippines 1,495 x.2/

Karachi Pakistan 1,430 x.1/

The quartiles cut the set into four equal parts, which are often called fourths (that is
why we use the letter F ). Using a definition that goes back to Hoaglin, Mosteller,
and Tukey (1983) the definition of a median can be generalised to fourths, eights,
etc. Considering the order statistics we can define the depth of a data value x.i/
as minfi; n � i C 1g. If n is odd, the depth of the median is nC1

2
. If n is even,

nC1
2

is a fraction. Thus, the median is determined to be the average between
the two data values belonging to the next larger and smaller order statistics, i.e.

M D 1
2

n
x. n2 /

C x. n2C1/
o
. In our example, we have n D 15 hence the median

M D x.8/ D 1;815.
We proceed in the same way to get the fourths. Take the depth of the median and

calculate

depth of fourth D Œdepth of median�C 1
2

with Œz� denoting the largest integer smaller than or equal to z. In our example this
gives 4:5 and thus leads to the two fourths

FL D 1

2

˚
x.4/ C x.5/

�

FU D 1

2

˚
x.11/ C x.12/

�

(recalling that a depth which is a fraction corresponds to the average of the two
nearest data values).
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Table 1.2 Five number
summary

# 15 World cities

M 8 1,815

F 4.5 1,610 2,105

1 1,430 3,420

The F -spread, dF , is defined as dF D FU � FL. The outside bars

FU C 1:5dF (1.2)

FL � 1:5dF (1.3)

are the borders beyond which a point is regarded as an outlier. For the number of
points outside these bars see Exercise 1.3. For the n D 15 data points the fourths are
1610 D 1

2

˚
x.4/ C x.5/

�
and 2105 D 1

2

˚
x.11/ C x.12/

�
. Therefore the F -spread and

the upper and lower outside bars in the above example are calculated as follows:

dF D FU � FL D 2105� 1610 D 495 (1.4)

FL � 1:5dF D 1610� 1:5 � 495 D 867:5 (1.5)

FU C 1:5dF D 2105C 1:5 � 495 D 2847:5: (1.6)

Since Tokyo is beyond the outside bars it is considered to be an outlier. The mini-
mum and the maximum are called the extremes. The mean is defined as

x D n�1
nX

iD1
xi ;

which is 1;939:7 in our example. The mean is a measure of location. The median
(1815), the fourths (1610;2105) and the extremes (1430;3420) constitute basic
information about the data. The combination of these five numbers leads to the Five
Number Summary as shown in Table 1.2. The depths of each of the five numbers
have been added as an additional column.

Construction of the Boxplot

1. Draw a box with borders (edges) at FL and FU (i.e. 50 % of the data are in this
box).

2. Draw the median as a solid line (j) and the mean as a dotted line ().
3. Draw “whiskers” from each end of the box to the most remote point that is NOT

an outlier.
4. Show outliers as either “?” or “�”depending on whether they are outside ofFUL˙
1:5dF or FUL˙3dF respectively (this feather is not contained in some software).
Label them if possible.
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World Cities

1500

2000

2500

3000

3500
Boxplot

Fig. 1.2 Boxplot for world cities MVAboxcity

In the world cities example, the cut-off points (outside bars) are at 867:5 and
2847.5, hence we can draw whiskers to Karachi and Mexico City. We can see from
Fig. 1.2 that the data are very skew: The upper half of the data (above the median)
is more spread out than the lower half (below the median), the data contains one
outlier marked as a circle and the mean (as a non-robust measure of location) is
pulled away from the median.

Boxplots are very useful tools in comparing batches. The relative location of
the distribution of different batches tells us a lot about the batches themselves.
Before we come back to the Swiss bank data, let us compare the fuel economy
of vehicles from different countries, see Fig. 1.3 and Table 22.3.

Example 1.2 The data are from the second column of Table 22.3 and show
the mileage (miles per gallon) of American, Japanese and European cars.
The five-number summaries for these data sets are f12; 16:8; 18:8; 22; 30g,
f18; 22; 25; 30:5; 35g and f14; 19; 23; 25; 28g for American, Japanese and European
cars, respectively. This reflects the information shown in Fig. 1.3. The following
conclusions can be made:

• Japanese cars achieve higher fuel efficiency than US and European cars.
• There is one outlier, a very fuel-efficient car (VW-Rabbit Golf Diesel).
• The main body of the US car data (the box) lies below the Japanese car data.
• The worst Japanese car is more fuel-efficient than almost 50 % of the US cars.
• The spread of the Japanese and the US cars are almost equal.
• The median of the Japanese data is above that of the European data and the US

data.
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Fig. 1.3 Boxplot for the
mileage of American,
Japanese and European cars
(from left to right)
MVAboxcar
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Fig. 1.4 The X6 variable of
Swiss bank data (diagonal of
bank notes)
MVAboxbank6

GENUINE COUNTERFEIT

138

139

140

141

142

Swiss Bank Notes

Table 1.3 Five number
summary

# 100 Genuine bank notes

M 50.5 141.5

F 25.75 141.25 141.8

1 140.65 142.4

Now let us apply the boxplot technique to the bank data set. In Fig. 1.4 we
show the parallel boxplot of the diagonal variable X6. On the left is the value of
the genuine bank notes and on the right the value of the counterfeit bank notes. The
five number summary is reported in Table 1.3 and 1.4.
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Table 1.4 Five number
summary

# 100 Counterfeit bank notes

M 50.5 139.5

F 25.75 139.2 139.8

1 138.3 140.65

Fig. 1.5 The X1 variable of
Swiss bank data (length of
bank notes)
MVAboxbank1

GENUINE COUNTERFEIT

214

214.5

215

215.5

216

Swiss Bank Notes

One sees that the diagonals of the genuine bank notes tend to be larger. It is
harder to see a clear distinction when comparing the length of the bank notes X1,
see Fig. 1.5. There are a few outliers in both plots. Almost all the observations of
the diagonal of the genuine notes are above the ones from the counterfeit notes.
There is one observation in Fig. 1.4 of the genuine notes that is almost equal to
the median of the counterfeit notes. Can the parallel boxplot technique help us
distinguish between the two types of bank notes?

Summary
,! The median and mean bars are measures of locations.

,! The relative location of the median (and the mean) in the box is a
measure of how skewed it is.

,! The length of the box and whiskers are a measure of spread.

,! The length of the whiskers indicate the tail length of the distribu-
tion.

,! The outlying points are indicated with a “?” or “�” depending on
if they are outside of FUL ˙ 1:5dF or FUL ˙ 3dF respectively.
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Summary (continued)

,! The boxplots do not indicate multi-modality or clusters.

,! If we compare the relative size and location of the boxes, we are
comparing distributions.

1.2 Histograms

Histograms are density estimates. A density estimate gives a good impression of the
distribution of the data. In contrast to boxplots, density estimates show possible
multimodality of the data. The idea is to locally represent the data density by
counting the number of observations in a sequence of consecutive intervals (bins)
with origin x0. Let Bj .x0; h/ denote the bin of length h which is the element of a
bin grid starting at x0:

Bj .x0; h/ D Œx0 C .j � 1/h; x0 C jh/; j 2 Z;

where Œ:; :/ denotes a left closed and right open interval. If fxi gniD1 is an i.i.d. sample
with density f , the histogram is defined as follows:

Ofh.x/ D n�1h�1
X

j2Z

nX

iD1
Ifxi 2 Bj .x0; h/g Ifx 2 Bj .x0; h/g: (1.7)

In sum (1.7) the first indicator function Ifxi 2 Bj .x0; h/g (see Symbols and
Notation in Chap. 21) counts the number of observations falling into bin Bj .x0; h/.
The second indicator function is responsible for “localising” the counts around x.
The parameter h is a smoothing or localising parameter and controls the width of
the histogram bins. An h that is too large leads to very big blocks and thus to a
very unstructured histogram. On the other hand, an h that is too small gives a very
variable estimate with many unimportant peaks.

The effect of h is given in detail in Fig. 1.6. It contains the histogram (upper
left) for the diagonal of the counterfeit bank notes for x0 D 137:8 (the minimum
of these observations) and h D 0:1. Increasing h to h D 0:2 and using the same
origin, x0 D 137:8, results in the histogram shown in the lower left of the figure.
This density histogram is somewhat smoother due to the larger h. The binwidth is
next set to h D 0:3 (upper right). From this histogram, one has the impression that
the distribution of the diagonal is bimodal with peaks at about 138.5 and 139.9.
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Fig. 1.6 Diagonal of counterfeit bank notes. Histograms with x0 D 137:8 and h D 0:1 (upper
left), h D 0:2 (lower left), h D 0:3 (upper right), h D 0:4 (lower right) MVAhisbank1

The detection of modes requires fine tuning of the binwidth. Using methods from
smoothing methodology (Härdle, Müller, Sperlich, & Werwatz, 2004) one can find
an “optimal” binwidth h for n observations:

hopt D
�
24
p
�

n

�1=3

:

Unfortunately, the binwidth h is not the only parameter determining the shapes of Of .
In Fig. 1.7, we show histograms with x0 D 137:65 (upper left), x0 D 137:75

(lower left), with x0 D 137:85 (upper right), and x0 D 137:95 (lower right). All
the graphs have been scaled equally on the y-axis to allow comparison. One sees
that—despite the fixed binwidth h—the interpretation is not facilitated. The shift
of the origin x0 (to four different locations) created four different histograms. This
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Fig. 1.7 Diagonal of counterfeit bank notes. Histogram with h D 0:4 and origins x0 D 137:65

(upper left), x0 D 137:75 (lower left), x0 D 137:85 (upper right), x0 D 137:95 (lower right)
MVAhisbank2

property of histograms strongly contradicts the goal of presenting data features.
Obviously, the same data are represented quite differently by the four histograms. A
remedy has been proposed by Scott (1985): “Average the shifted histograms!”. The
result is presented in Fig. 1.8.

Here all bank note observations (genuine and counterfeit) have been used. The
(so-called) averaged shifted histogram is no longer dependent on the origin and
shows a clear bimodality of the diagonals of the Swiss bank notes.
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Fig. 1.8 Averaged shifted histograms based on all (counterfeit and genuine) Swiss bank notes:
there are 2 shifts (upper left), 4 shifts (lower left), 8 shifts (upper right) and 16 shifts (lower right)
MVAashbank

Summary
,! Modes of the density are detected with a histogram.

,! Modes correspond to strong peaks in the histogram.

,! Histograms with the same h need not be identical. They also
depend on the origin x0 of the grid.

,! The influence of the origin x0 is drastic. Changing x0 creates
different looking histograms.

,! The consequence of an h that is too large is an unstructured
histogram that is too flat.

,! A binwidth h that is too small results in an unstable histogram.
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Summary (continued)

,! There is an “optimal” h D .24p�=n/1=3.
,! It is recommended to use averaged histograms. They are kernel

densities.

1.3 Kernel Densities

The major difficulties of histogram estimation may be summarised in four cri-
tiques:

• determination of the binwidth h, which controls the shape of the histogram,
• choice of the bin origin x0, which also influences to some extent the shape,
• loss of information since observations are replaced by the central point of the

interval in which they fall,
• the underlying density function is often assumed to be smooth, but the histogram

is not smooth.

Rosenblatt (1956), Whittle (1958) and Parzen (1962) developed an approach
which avoids the last three difficulties. First, a smooth kernel function rather than
a box is used as the basic building block. Second, the smooth function is centred
directly over each observation. Let us study this refinement by supposing that x is
the centre value of a bin. The histogram can in fact be rewritten as

Ofh.x/ D n�1h�1
nX

iD1
I
�

jx � xi j � h

2

�

: (1.8)

If we define K.u/ D I.juj � 1
2
/, then (1.8) changes to

Ofh.x/ D n�1h�1
nX

iD1
K
�x � xi

h

�
: (1.9)

This is the general form of the kernel estimator. Allowing smoother kernel functions
like the quartic kernel,

K.u/ D 15

16
.1 � u2/2 I.juj � 1/;

and computing x not only at bin centers gives us the kernel density estimator.
Kernel estimators can also be derived via weighted averaging of rounded points
(WARPing) or by averaging histograms with different origins, see Scott (1985).
Table 1.5 introduces some commonly used kernels.
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Table 1.5 Kernel functions K.�/ Kernel

K.u/ D 1
2

I.juj � 1/ Uniform

K.u/ D .1� juj/ I.juj � 1/ Triangle

K.u/ D 3
4
.1� u2/ I.juj � 1/ Epanechnikov

K.u/ D 15
16
.1� u2/2 I.juj � 1/ Quartic (Biweight)

K.u/ D 1p
2�

exp.� u2

2
/ D '.u/ Gaussian

Different kernels generate different shapes of the estimated density. The most
important parameter is the so-called bandwidth h, and can be optimised, for exam-
ple, by cross-validation; see Härdle (1991) for details. The cross-validation method
minimises the integrated squared error. This measure of discrepancy is based on

the squared differences
n Ofh.x/ � f .x/

o2
. Averaging these squared deviations over

a grid of points fxlgLlD1 leads to

L�1
LX

lD1

n Ofh.xl /� f .xl /
o2
:

Asymptotically, if this grid size tends to zero, we obtain the integrated squared error:

Z n Ofh.x/ � f .x/
o2
dx:

In practice, it turns out that the method consists of selecting a bandwidth that
minimises the cross-validation function

Z
Of 2
h � 2

nX

iD1
Ofh;i .xi /;

where Ofh;i is the density estimate obtained by using all datapoints except for the i -th
observation. Both terms in the above function involve double sums. Computation
may therefore be slow. There are many other density bandwidth selection methods.
Probably the fastest way to calculate this is to refer to some reasonable reference
distribution. The idea of using the Normal distribution as a reference, for example,
goes back to Silverman (1986). The resulting choice of h is called the rule of thumb.

For the Gaussian kernel from Table 1.5 and a Normal reference distribution, the
rule of thumb is to choose

hG D 1:06 O� n�1=5 (1.10)
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Fig. 1.9 Densities of the
diagonals of genuine and
counterfeit bank notes.
Automatic density
estimates MVAdenbank
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where O� D p
n�1

Pn
iD1.xi � x/2 denotes the sample standard deviation. This

choice of hG optimises the integrated squared distance between the estimator and
the true density. For the quartic kernel, we need to transform (1.10). The modified
rule of thumb is:

hQ D 2:62 � hG: (1.11)

Figure 1.9 shows the automatic density estimates for the diagonals of the coun-
terfeit and genuine bank notes. The density on the left is the density corresponding
to the diagonal of the counterfeit data. The separation is clearly visible, but there is
also an overlap. The problem of distinguishing between the counterfeit and genuine
bank notes is not solved by just looking at the diagonals of the notes. The question
arises whether a better separation could be achieved using not only the diagonals,
but one or two more variables of the data set. The estimation of higher dimensional
densities is analogous to that of one dimensional. We show a two-dimensional
density estimate for X4 and X5 in Fig. 1.10. The contour lines indicate the height
of the density. One sees two separate distributions in this higher dimensional space,
but they still overlap to some extent.

We can add one more dimension and give a graphical representation of a three-
dimensional density estimate, or more precisely an estimate of the joint distribution
of X4, X5 and X6. Figure 1.11 shows the contour areas at three different levels of
the density: 0:2 (green), 0:4 (red) and 0:6 (blue) of this three-dimensional density
estimate. One can clearly recognise two “ellipsoids” (at each level), but as before,
they overlap. In Chap. 14 we will learn how to separate the two ellipsoids and how
to develop a discrimination rule to distinguish between these data points.
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Fig. 1.10 Contours of the
density of X5 and X6 of
genuine and counterfeit bank
notes MVAcontbank2
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Fig. 1.11 Contours of the
density of X4;X5; X6 of
genuine and counterfeit bank
notes MVAcontbank3
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Summary
,! Kernel densities estimate distribution densities by the kernel

method.
,! The bandwidth h determines the degree of smoothness of the

estimate Of .
,! Kernel densities are smooth functions and they can graphically

represent distributions (up to three dimensions).
,! A simple (but not necessarily correct) way to find a good bandwidth

is to compute the rule of thumb bandwidth hG D 1:06 O�n�1=5:
This bandwidth is to be used only in combination with a Gaussian
kernel '.

,! Kernel density estimates are a good descriptive tool for seeing
modes, location, skewness, tails, asymmetry, etc.

1.4 Scatterplots

Scatterplots are bivariate or trivariate plots of variables against each other. They help
us understand relationships among the variables of a data set. A downward-sloping
scatter indicates that as we increase the variable on the horizontal axis, the variable
on the vertical axis decreases. An analogous statement can be made for upward-
sloping scatters.

Figure 1.12 plots the 5th column (upper inner frame) of the bank data against
the 6th column (diagonal). The scatter is downward-sloping. As we already know
from the previous section on marginal comparison (e.g. Fig. 1.9) a good separation
between genuine and counterfeit bank notes is visible for the diagonal variable.
The sub-cloud in the upper half (circles) of Fig. 1.12 corresponds to the true bank
notes. As noted before, this separation is not distinct, since the two groups overlap
somewhat.

This can be verified in an interactive computing environment by showing the
index and coordinates of certain points in this scatterplot. In Fig. 1.12, the 70th
observation in the merged data set is given as a thick circle, and it is from a genuine
bank note. This observation lies well embedded in the cloud of counterfeit bank
notes. One straightforward approach that could be used to tell the counterfeit from
the genuine bank notes is to draw a straight line and define notes above this value as
genuine. We would of course misclassify the 70th observation, but can we do better?
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Fig. 1.13 3D scatterplot of the bank notes for .X4; X5; X6/. Genuine notes are circles, counterfeit
are stars MVAscabank456

If we extend the two-dimensional scatterplot by adding a third variable, e.g. X4
(lower distance to inner frame), we obtain the scatterplot in three dimensions as
shown in Fig. 1.13. It becomes apparent from the location of the point clouds that a
better separation is obtained. We have rotated the three-dimensional data until this
satisfactory 3D view was obtained. Later, we will see that the rotation is the same
as bundling a high-dimensional observation into one or more linear combinations
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Fig. 1.14 Draftman’s plot of the bank notes. The pictures in the left-hand column show
.X3; X4/, .X3; X5/ and .X3; X6/, in the middle we have .X4; X5/ and .X4; X6/, and in the
lower right .X5; X6/. The upper right half contains the corresponding density contour plots
MVAdrafbank4

of the elements of the observation vector. In other words, the “separation line"
parallel to the horizontal coordinate axis in Fig. 1.12 is, in Fig. 1.13, a plane and
no longer parallel to one of the axes. The formula for such a separation plane is a
linear combination of the elements of the observation vector:

a1x1 C a2x2 C � � � C a6x6 D const: (1.12)

The algorithm that automatically finds the weights (a1; : : : ; a6) will be investigated
later on in Chap. 14.

Let us study yet another technique: the scatterplot matrix. If we want to draw all
possible two-dimensional scatterplots for the variables, we can create a so-called
draftman’s plot (named after a draftman who prepares drafts for parliamentary
discussions). Similar to a draftman’s plot the scatterplot matrix helps in creating
new ideas and in building knowledge about dependencies and structure.

Figure 1.14 shows a draftman’s plot applied to the last four columns of the full
bank data set. For ease of interpretation we have distinguished between the group of
counterfeit and genuine bank notes by a different colour. As discussed several times
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earlier, the separability of the two types of notes is different for different scatterplots.
Not only is it difficult to perform this separation on, say, scatterplot X3 vs. X4, in
addition the “separation line” is no longer parallel to one of the axes. The most
obvious separation happens in the scatterplot in the lower right-hand side where
indicated, as in Fig. 1.12, X5 vs. X6. The separation line here would be upward-
sloping with an intercept at about X6 D 139. The upper right half of the draftman’s
plot shows the density contours that we introduced in Sect. 1.3.

The power of the draftman’s plot lies in its ability to show the internal
connections of the scatter diagrams. Define a brush as a re-scalable rectangle that we
can move via keyboard or mouse over the screen. Inside the brush we can highlight
or colour observations. Suppose the technique is installed in such a way that as we
move the brush in one scatter, the corresponding observations in the other scatters
are also highlighted. By moving the brush, we can study conditional dependence.

If we brush (i.e. highlight or colour the observation with the brush), the X5 vs.
X6 plot and move through the upper point cloud, we see that in other plots (e.g. X3
vs. X4), the corresponding observations are more embedded in the other sub-cloud.

Summary
,! Scatterplots in two and three dimensions helps in identifying

separated points, outliers or sub-clusters.
,! Scatterplots help us in judging positive or negative dependencies.

,! Draftman scatterplot matrices help detect structures conditioned on
values of other variables.

,! As the brush of a scatterplot matrix moves through a point cloud,
we can study conditional dependence.

1.5 Chernoff-Flury Faces

If we are given data in numerical form, we tend to also display it numerically. This
was done in the preceding sections: an observation x1 D .1; 2/ was plotted as
the point .1; 2/ in a two-dimensional coordinate system. In multivariate analysis
we want to understand data in low dimensions (e.g. on a 2D computer screen)
although the structures are hidden in high dimensions. The numerical display of
data structures using coordinates therefore ends at dimensions greater than three.
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If we are interested in condensing a structure into 2D elements, we have to
consider alternative graphical techniques. The Chernoff-Flury faces, for example,
provide such a condensation of high-dimensional information into a simple “face”.
In fact faces are a simple way of graphically displaying high-dimensional data. The
size of the face elements like pupils, eyes, upper and lower hair line, etc. are assigned
to certain variables. The idea of using faces goes back to Chernoff (1973) and has
been further developed by Bernhard Flury. We follow the design described in Flury
and Riedwyl (1988) which uses the following characteristics.

1. right eye size
2. right pupil size
3. position of right pupil
4. right eye slant
5. horizontal position of right eye
6. vertical position of right eye
7. curvature of right eyebrow
8. density of right eyebrow
9. horizontal position of right eyebrow

10. vertical position of right eyebrow
11. right upper hair line
12. right lower hair line
13. right face line
14. darkness of right hair
15. right hair slant
16. right nose line
17. right size of mouth
18. right curvature of mouth

19–36. like 1–18, only for the left side.

First, every variable that is to be coded into a characteristic face element is
transformed into a .0; 1/ scale, i.e. the minimum of the variable corresponds to 0 and
the maximum to 1. The extreme positions of the face elements therefore correspond
to a certain “grin” or “happy” face element. Dark hair might be coded as 1, and
blond hair as 0 and so on.

As an example, consider the observations 91–110 of the bank data. Recall that
the bank data set consists of 200 observations of dimension 6 where, for example,
X6 is the diagonal of the note. If we assign the six variables to the following face
elements

X1 D 1, 19 (eye sizes)

X2 D 2, 20 (pupil sizes)

X3 D 4, 22 (eye slants)
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Fig. 1.15 Chernoff-Flury faces for observations 91–110 of the bank notes MVAfacebank10

X4 D 11, 29 (upper hair lines)

X5 D 12, 30 (lower hair lines)

X6 D 13, 14, 31, 32 (face lines and darkness of hair),

we obtain Fig. 1.15. Also recall that observations 1–100 correspond to the genuine
notes, and that observations 101–200 correspond to the counterfeit notes. The
counterfeit bank notes then correspond to the upper half of Fig. 1.15. In fact the
faces for these observations look more grim and less happy. The variable X6
(diagonal) already worked well in the boxplot in Fig. 1.4 in distinguishing between
the counterfeit and genuine notes. Here, this variable is assigned to the face line and
the darkness of the hair. That is why we clearly see a good separation within these
20 observations.
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Observations 1 to 50

Fig. 1.16 Chernoff-Flury faces for observations 1–50 of the bank notes MVAfacebank50

What happens if we include all 100 genuine and all 100 counterfeit bank notes
in the Chernoff-Flury face technique? Figures 1.16 and 1.17 show the faces of
the genuine bank notes with the same assignments as used before, and Figs. 1.18
and 1.19 show the faces of the counterfeit bank notes. Comparing Figs. 1.16
and 1.18 one clearly sees that the diagonal (face line) is longer for genuine bank
notes. Equivalently coded is the hair darkness (diagonal) which is lighter (shorter)
for the counterfeit bank notes. One sees that the faces of the genuine bank notes
have a much darker appearance and have broader face lines. The faces in Figs. 1.16
and 1.17 are obviously different from the ones in Figs. 1.18 and 1.19.
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Fig. 1.17 Chernoff-Flury faces for observations 51–100 of the bank notes MVAfacebank50
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Observations 101 to 150

Fig. 1.18 Chernoff-Flury faces for observations 101–150 of the bank notes MVAfacebank50
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Fig. 1.19 Chernoff-Flury faces for observations 151–200 of the bank notes MVAfacebank50
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Summary
,! Faces can be used to detect sub-groups in multivariate data.

,! Sub-groups are characterised by similar looking faces.

,! Outliers are identified by extreme faces, e.g. dark hair, smile or a
happy face.

,! If one element of X is unusual, the corresponding face element
significantly changes in shape.

1.6 Andrews’ Curves

The basic problem of graphical displays of multivariate data is the dimensionality.
Scatterplots work well up to three dimensions (if we use interactive displays).
More than three dimensions have to be coded into displayable 2D or 3D structures
(e.g. faces). The idea of coding and representing multivariate data by curves was
suggested by Andrews (1972). Each multivariate observationXi D .Xi;1; : : : ; Xi;p/
is transformed into a curve as follows:

fi .t/ D

8
ˆ̂
<̂

ˆ̂
:̂

Xi;1p
2
CXi;2 sin.t/CXi;3 cos.t/C � � �
CXi;p�1 sin

�
p�1
2
t
�CXi;p cos

�
p�1
2
t
�

for p odd

Xi;1p
2
CXi;2 sin.t/CXi;3 cos.t/C � � � CXi;p sin

�
p

2
t
�

for p even

(1.13)

the observation represents the coefficients of a so-called Fourier series (t 2 Œ��; ��).
Suppose that we have three-dimensional observations: X1 D .0; 0; 1/, X2 D

.1; 0; 0/ and X3 D .0; 1; 0/. Here p D 3 and the following representations
correspond to the Andrews’ curves:

f1.t/ D cos.t/

f2.t/ D 1p
2

and

f3.t/ D sin.t/:

These curves are indeed quite distinct, since the observations X1, X2, and X3 are
the 3D unit vectors: each observation has mass only in one of the three dimensions.
The order of the variables plays an important role.
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Fig. 1.20 Andrews’ curves of the observations 96–105 from the Swiss bank note data. The order
of the variables is 1,2,3,4,5,6 MVAandcur

Example 1.3 Let us take the 96th observation of the Swiss bank note data set,

X96 D .215:6; 129:9; 129:9; 9:0; 9:5; 141:7/:

The Andrews’ curve is by (1.13):

f96.t/ D 215:6p
2
C 129:9 sin.t/C 129:9 cos.t/C 9:0 sin.2t/

C 9:5 cos.2t/C 141:7 sin.3t/:

Figure 1.20 shows the Andrews’ curves for observations 96–105 of the Swiss
bank note data set. We already know that the observations 96–100 represent genuine
bank notes, and that the observations 101–105 represent counterfeit bank notes. We
see that at least four curves differ from the others, but it is hard to tell which curve
belongs to which group.

We know from Fig. 1.4 that the sixth variable is an important one. Therefore, the
Andrews’ curves are calculated again using a reversed order of the variables.

Example 1.4 Let us consider again the 96th observation of the Swiss bank note data
set,

X96 D .215:6; 129:9; 129:9; 9:0; 9:5; 141:7/:
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Fig. 1.21 Andrews’ curves
of the observations 96–105
from the Swiss bank note
data. The order of the
variables is 6,5,4,3,2,1
MVAandcur2
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The Andrews’ curve is computed using the reversed order of variables:

f96.t/ D 141:7p
2
C 9:5 sin.t/C 9:0 cos.t/C 129:9 sin.2t/

C 129:9 cos.2t/C 215:6 sin.3t/:

In Fig. 1.21 the curves f96–f105 for observations 96–105 are plotted. Instead of a
difference in high frequency, now we have a difference in the intercept, which makes
it more difficult for us to see the differences in observations.

This shows that the order of the variables plays an important role in the
interpretation. If X is high-dimensional, then the last variables will only have a
small visible contribution to the curve: they fall into the high frequency part of
the curve. To overcome this problem Andrews suggested using an order which
is suggested by Principal Component Analysis. This technique will be treated in
detail in Chap. 11. In fact, the sixth variable will appear there as the most important
variable for discriminating between the two groups. If the number of observations
is more than 20, there may be too many curves in one graph. This will result in
an over plotting of curves or a bad “signal-to-ink-ratio”, see Tufte (1983). It is
therefore advisable to present multivariate observations via Andrews’ curves only
for a limited number of observations.
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Summary
,! Outliers appear as single Andrews’ curves that look different from

the rest.
,! A sub-group of data is characterised by a set of similar curves.

,! The order of the variables plays an important role for interpretation.

,! The order of variables may be optimised by Principal Component
Analysis.

,! For more than 20 observations we may obtain a bad “signal-to-ink
ratio”, i.e. too many curves are overlaid in one picture.

1.7 Parallel Coordinates Plots

PCP is a method for representing high-dimensional data, see Inselberg (1985).
Instead of plotting observations in an orthogonal coordinate system, PCP draws
coordinates in parallel axes and connects them with straight lines. This method helps
in representing data with more than four dimensions.

One first scales all variables to max D 1 and min D 0. The coordinate index
j is drawn onto the horizontal axis, and the scaled value of variable xij is mapped
onto the vertical axis. This way of representation is very useful for high-dimensional
data. It is however also sensitive to the order of the variables, since certain trends in
the data can be shown more clearly in one ordering than in another.

Example 1.5 Take, once again, the observations 96–105 of the Swiss bank notes.
These observations are six dimensional, so we can’t show them in a six-dimensional
Cartesian coordinate system. Using the PCP technique, however, they can be plotted
on parallel axes. This is shown in Fig. 1.22.

PCP can also be used for detecting linear dependencies between variables:
if all the lines are of almost parallel dimensions (p D 2), there is a positive
linear dependence between them. In Fig. 1.23 we display the two variables weight
and displacement for the car data set in Sect. 22.3. The correlation coefficient �
introduced in Sect. 3.2 is 0.9. If all lines intersect visibly in the middle, there is
evidence of a negative linear dependence between these two variables, see Fig. 1.24.
In fact the correlation is � D �0:82 between two variables mileage and weight: The
more the weight, the less the mileage.
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Fig. 1.22 Parallel coordinates plot of observations 96–105 MVAparcoo1
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Fig. 1.23 Parallel coordinates plot indicating strong positive dependence with � D 0:9, X1 D
weight, X2 D displacement MVApcp2

Another use of PCP is sub-groups detection. Lines converging to different
discrete points indicate sub-groups. Figure 1.25 shows the last three variables—
displacement, gear ratio for high gear and company’s headquarters of the car
data; we see convergence to the last variable. This last variable is the company’s
headquarters with three discrete values: USA, Japan and Europe. PCP can also
be used for outlier detection. Figure 1.26 shows the variables headroom, rear seat
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Fig. 1.24 Parallel
coordinates plot showing
strong negative dependence
with � D �0:82, X1 D
mileage, X2 D weight
MVApcp3
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Fig. 1.25 Parallel
coordinates plot with
sub-groups MVApcp4
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clearance and trunk (boot) space in the car data set. There are two outliers visible.
The boxplot Fig. 1.27 confirms this.

PCPs have also possible shortcomings: We cannot distinguish observations when
two lines cross at one point unless we distinguish them clearly (e.g. by different line
style). In Fig. 1.28, observation A and B both have the same value at j D 2. Two
lines cross at one point here. At the 3rd and 4th dimension we cannot tell which line
belongs to which observation. A dotted line for A and solid line for B could have
helped there.

To solve this problem one uses an interpolation curve instead of straight lines, e.g.
cubic curves as in Graham and Kennedy (2003). Figure 1.29 is a variant of Fig. 1.28.
In Fig. 1.29, with a natural cubic spline, it is evident how to follow the curves
and distinguish the observations. The real power of PCP comes though through
colouring sub-groups.
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Fig. 1.26 PCP for
X1 D headroom, X2 D rear
seat clearance and
X3 D trunk space
MVApcp5
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Fig. 1.27 Boxplots for
headroom, rear seat clearance
and trunk space
MVApcp6
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Example 1.6 Data in Fig. 1.30 are coloured according to X13—car company’s
headquarters. Red stands for European car, green for Japan and black for US. This
PCP with colouring can provide some information for us:

1. US cars (black) tend to have large value in X7, X8, X9, X10, X11 (trunk (boot)
space, weight, length, turning diameter, displacement), which means US cars are
generally larger.

2. Japanese cars (green) have large value in X3, X4 (both for repair record), which
means Japanese cars tend to be repaired less.
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Fig. 1.28 PCP with
intersection for given data
points A D Œ0; 2; 3; 2� and
BD Œ3; 2; 2; 1� MVApcp7
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Fig. 1.29 PCP with cubic
spline interpolation
MVApcp8
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Fig. 1.30 Parallel coordinates plot for car data MVApcp1

Summary
,! Parallel coordinates plots overcome the visualisation problem of

the Cartesian coordinate system for dimensions greater than 4.
,! Outliers are visible as outlying polygon curves.

,! The order of variables is important, especially in the detection of
sub-groups.

,! Sub-groups may be screened by selective colouring.

1.8 Hexagon Plots

This section closely follows the presentation of Lewin-Koh (2006). In geometry, a
hexagon is a polygon with six edges and six vertices. Hexagon binning is a type of
bivariate histogram with hexagon borders. It is useful for visualising the structure
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of data sets entailing a large number of observations n. The concept of hexagon
binning is as follows:

1. The xy plane over the set (range(x), range(y)) is tessellated by a regular grid of
hexagons.

2. The number of points falling in each hexagon is counted.
3. The hexagons with count > 0 are plotted by using a colour ramp or varying the

radius of the hexagon in proportion to the counts.

This algorithm is extremely fast and effective for displaying the structure of data
sets even for n � 106. If the size of the grid and the cuts in the colour ramp are
chosen in a clever fashion, then the structure inherent in the data should emerge in
the binned plot. The same caveats apply to hexagon binning as histograms. Variance
and bias vary in opposite directions with bin width, so we have to settle for finding
the value of the bin width that yields the optimal compromise between variance and
bias reduction. Clearly, if we increase the size of the grid, the hexagon plot appears
to be smoother, but without some reasonable criterion on hand it remains difficult
to say which bin width provides the “optimal” degree of smoothness. The default
number of bins suggested by standard software is 30.

Applications to some data sets are shown as follows. The data is taken from
ALLBUS (2006)[ZA No.3762]. The number of respondents is 2,946. The following
nine variables have been selected to analyse the relation between each pair of
variables.

X1: Age

X2: Net income

X3: Time for television per day in minutes

X4: Time for work per week in hours

X5: Time for computer per week in hours

X6: Days for illness yearly

X7: Living space (square metres)

X8: Size

X9: Weight

Firstly, we consider two variables X1 D Age and X2 D Net income in Fig. 1.31.
The top left picture is a scatter plot. The second one is a hexagon plot with borders
making it easier to see the separation between hexagons. Looking at these plots one
can see that almost all individuals have a net monthly income of less than 2,000
EUR. Only two individuals earn more than 10,000 EUR per month.

Figure 1.32 shows the relation between X1 and X5. About 40 % of respondents
from 20 to 80 years old do not use a computer at least once per week. The
respondent who deals with a computer 105 h each week was actually not in full-
time employment.
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Fig. 1.31 Hexagon plots between X1 and X2 MVAageIncome
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Fig. 1.32 Hexagon plot between X1 and X5 MVAageCom

Clearly, people who earn modest incomes live in smaller flats. The trend here
is relatively clear in Fig. 1.33. The larger the net income, the larger the flat. A few
people do however earn high incomes but live in small flats.
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Fig. 1.33 Hexagon plot
between X2 and X7
MVAincomeLi
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Summary
,! Hexagon binning is a type of bivariate histogram, used for visual-

ising large data.
,! Variance and bias vary in opposite directions with bin width.

,! Hexagons have the property of “symmetry of the nearest neigh-
bours” which lacks in square bins.

,! Hexagons are visually less biased for displaying densities than
other regular tessellations.

1.9 Boston Housing

Aim of the Analysis

The Boston Housing data set was analysed by Harrison and Rubinfeld (1978) who
wanted to find out whether “clean air” had an influence on house prices. We will
use this data set in this chapter and in most of the following chapters to illustrate the
presented methodology. The data are described in Sect. 22.1.
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Fig. 1.34 Parallel
coordinates plot for Boston
housing data
MVApcphousing
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What Can Be Seen from the PCPs

In order to highlight the relations of X14 to the remaining 13 variables, we colour
all of the observations with X14 >median.X14/ as red lines in Fig. 1.34. Some of
the variables seem to be strongly related. The most obvious relation is the negative
dependence between X13 and X14. It can also be argued that a strong dependence
exists between X12 and X14 since no red lines are drawn in the lower part of X12.
The opposite can be said aboutX11: there are only red lines plotted in the lower part
of this variable. Low values of X11 induce high values of X14.

For the PCP, the variables have been rescaled over the interval Œ0; 1� for better
graphical representations. The PCP shows that the variables are not distributed in
a symmetric manner. It can be clearly seen that the values of X1 and X9 are much
more concentrated around 0. Therefore it makes sense to consider transformations
of the original data.

The Scatterplot Matrix

One characteristic of PCPs is that many lines are drawn on top of each other. This
problem is reduced by depicting the variables in pairs of scatterplots. Including all
14 variables in one large scatterplot matrix is possible, but makes it hard to see
anything from the plots. Therefore, for illustratory purposes we will analyse only
one such matrix from a subset of the variables in Fig. 1.35. On the basis of the PCP
and the scatterplot matrix we would like to interpret each of the 13 variables and
their eventual relation to the 14th variable. Included in the figure are images for



42 1 Comparison of Batches

Fig. 1.35 Scatterplot matrix
for variables X1; : : : ; X5 and
X14 of the Boston housing
data MVAdrafthousing

Fig. 1.36 Scatterplot matrix
for variables QX1; : : : ; QX5 andQX14 of the Boston housing
data
MVAdrafthousingt

X1–X5 and X14, although each variable is discussed in detail below. All references
made to scatterplots in the following refer to Fig. 1.35.

Per-Capita Crime Rate X1

Taking the logarithm makes the variable’s distribution more symmetric. This can be
seen in the boxplot of QX1 in Fig. 1.37 which shows that the median and the mean
have moved closer to each other than they were for the original X1. Plotting the
KDE of QX1 D log .X1/ would reveal that two sub-groups might exist with different
mean values. However, taking a look at the scatterplots in Fig. 1.36 of the logarithms
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which include X1 does not clearly reveal such groups. Given that the scatterplot of
log .X1/ vs. log .X14/ shows a relatively strong negative relation, it might be the
case that the two sub-groups of X1 correspond to houses with two different price
levels. This is confirmed by the two boxplots shown to the right of the X1 vs. X2
scatterplot (in Fig. 1.35): the right boxplot’s shape differs a lot from the black one’s,
having a much higher median and mean.

Proportion of Residential Area Zoned for Large Lots X2

It strikes the eye in Fig. 1.35 that there is a large cluster of observations for which
X2 is equal to 0. It also strikes the eye that—as the scatterplot ofX1 vs.X2 shows—
there is a strong, though non-linear, negative relation betweenX1 andX2; almost all
observations for which X2 is high have an X1-value close to zero, and vice versa,
many observations for which X2 is zero have quite a high per-capita crime rate X1.
This could be due to the location of the areas, e.g. urban districts might have a
higher crime rate and at the same time it is unlikely that any residential land would
be zoned in a generous manner.

As far as the house prices are concerned, it can be said that there seems to
be no clear (linear) relation between X2 and X14, but it is obvious that the more
expensive houses are situated in areas where X2 is large (this can be seen from the
two boxplots on the second position of the diagonal, where the red one has a clearly
higher mean/median than the black one).

Proportion of Non-retail Business Acres X3

The PCP (in Fig. 1.34) as well as the scatterplot of X3 vs. X14 shows an obvious
negative relation between X3 and X14. The relationship between the logarithms of
both variables seems to be almost linear. This negative relation might be explained
by the fact that non-retail business sometimes causes annoying sounds and other
pollution. Therefore, it seems reasonable to use X3 as an explanatory variable for
the prediction of X14 in a linear-regression analysis.

As far as the distribution of X3 is concerned, it can be said that the KDE of X3
clearly has two peaks, which indicates that there are two sub-groups. According to
the negative relation between X3 and X14 it could be the case that one sub-group
corresponds to the more expensive houses and the other one to the cheaper houses.

Charles River Dummy Variable X4

The observation made from the PCP that there are more expensive houses than
cheap houses situated on the banks of the Charles River is confirmed by inspecting
the scatterplot matrix. Still, we might have some doubt that proximity to the river
influences house prices. Looking at the original data set, it becomes clear that the
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observations for which X4 equals one are districts that are close to each other.
Apparently, the Charles River does not flow through very many different districts.
Thus, it may be pure coincidence that the more expensive districts are close to the
Charles River—their high values might be caused by many other factors such as the
pupil/teacher ratio or the proportion of non-retail business acres.

Nitric Oxides Concentration X5

The scatterplot of X5 vs. X14 and the separate boxplots of X5 for more and less
expensive houses reveal a clear negative relation between the two variables. As it
was the main aim of the authors of the original study to determine whether pollution
had an influence on housing prices, it should be considered very carefully whether
X5 can serve as an explanatory variable for price X14. A possible reason against it
being an explanatory variable is that people might not like to live in areas where the
emissions of nitric oxides are high. Nitric oxides are emitted mainly by automobiles,
by factories and from heating private homes. However, as one can imagine there are
many good reasons besides nitric oxides not to live in urban or industrial areas.
Noise pollution, for example, might be a much better explanatory variable for the
price of housing units. As the emission of nitric oxides is usually accompanied by
noise pollution, using X5 as an explanatory variable for X14 might lead to the false
conclusion that people run away from nitric oxides, whereas in reality it is noise
pollution that they are trying to escape.

Average Number of Rooms per Dwelling X6

The number of rooms per dwelling is a possible measure of the size of the houses.
Thus we expect X6 to be strongly correlated with X14 (the houses’ median price).
Indeed—apart from some outliers—the scatterplot ofX6 vs.X14 shows a point cloud
which is clearly upward-sloping and which seems to be a realisation of a linear
dependence of X14 on X6. The two boxplots of X6 confirm this notion by showing
that the quartiles, the mean and the median are all much higher for the red than for
the black boxplot.

Proportion of Owner-Occupied Units Built Prior to 1940 X7

There is no clear connection visible between X7 and X14. There could be a weak
negative correlation between the two variables, since the (red) boxplot of X7 for the
districts whose price is above the median price indicates a lower mean and median
than the (black) boxplot for the district whose price is below the median price. The
fact that the correlation is not so clear could be explained by two opposing effects.
On the one hand, house prices should decrease if the older houses are not in a good
shape. On the other hand, prices could increase, because people often like older
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houses better than newer houses, preferring their atmosphere of space and tradition.
Nevertheless, it seems reasonable that the age of the houses has an influence on their
price X14.

Raising X7 to the power of 2.5 reveals again that the data set might consist of
two sub-groups. But in this case it is not obvious that the sub-groups correspond
to more expensive or cheaper houses. One can furthermore observe a negative
relation between X7 and X8. This could reflect the way the Boston metropolitan
area developed over time; the districts with the newer buildings are further away
from employment centers and industrial facilities.

Weighted Distance to Five Boston Employment Centers X8

Since most people like to live close to their place of work, we expect a negative
relation between the distances to the employment centers and house prices. The
scatterplot hardly reveals any dependence, but the boxplots ofX8 indicate that there
might be a slightly positive relation as the red boxplot’s median and mean are higher
than the black ones. Again, there might be two effects in opposite directions at work
here. The first is that living too close to an employment centre might not provide
enough shelter from the pollution created there. The second, as mentioned above, is
that people do not travel very far to their workplace.

Index of Accessibility to Radial Highways X9

The first obvious thing one can observe from the scatterplots, as well in the
histograms and the KDEs, is that there are two sub-groups of districts containingX9
values which are close to the respective group’s mean. The scatterplots deliver no
hint as to what might explain the occurrence of these two sub-groups. The boxplots
indicate that for the cheaper and for the more expensive houses the average of X9 is
almost the same.

Full-Value Property Tax X10

X10 shows behaviour similar to that of X9: two sub-groups exist. A downward-
sloping curve seems to underlie the relation of X10 and X14. This is confirmed by
the two boxplots drawn for X10: the red one has a lower mean and median than the
black one.

Pupil/Teacher Ratio X11

The red and black boxplots ofX11 indicate a negative relation betweenX11 andX14.
This is confirmed by inspection of the scatterplot of X11 vs. X14: The point cloud is
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downward sloping, i.e. the less teachers there are per pupil, the less people pay on
median for their dwellings.

Proportion of African-American B, X12 D 1000.B � 0:63/2 I.B < 0:63/

Interestingly, X12 is negatively—though not linearly—correlated with X3, X7 and
X11, whereas it is positively related withX14. Looking at the data set reveals that for
almost all districts X12 takes on a value around 390. Since B cannot be larger than
0.63, such values can only be caused by B close to zero. Therefore, the higher X12
is, the lower the actual proportion of African-Americans is. Among observations
405–470 there are quite a few that have a X12 that is much lower than 390. This
means that in these districts the proportion of African-Americans is above zero.
We can observe two clusters of points in the scatterplots of log .X12/: one cluster
for which X12 is close to 390 and a second one for which X12 is between 3 and
100. When X12 is positively related with another variable, the actual proportion of
African-Americans is negatively correlated with this variable and vice versa. This
means that African-Americans live in areas where there is a high proportion of non-
retail business land, where there are older houses and where there is a high (i.e. bad)
pupil/teacher ratio. It can be observed that districts with housing prices above the
median can only be found where the proportion of African-Americans is virtually
zero.

Proportion of Lower Status of the Population X13

Of all the variablesX13 exhibits the clearest negative relation with X14—hardly any
outliers show up. Taking the square root of X13 and the logarithm ofX14 transforms
the relation into a linear one.

Transformations

Since most of the variables exhibit an asymmetry with a higher density on the left-
hand side, the following transformations are proposed:

fX1 D log .X1/

fX2 D X2=10

fX3 D log .X3/

fX4 none, since X4 is binary

fX5 D log .X5/
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fX6 D log .X6/

fX7 D X72:5=10000
fX8 D log .X8/

fX9 D log .X9/

eX10 D log .X10/

eX11 D exp .0:4 �X11/=1000
eX12 D X12=100
eX13 D

p
X13

eX14 D log .X14/

Taking the logarithm or raising the variables to the power of something smaller
than one helps to reduce the asymmetry. This is due to the fact that lower values
move further away from each other, whereas the distance between greater values is
reduced by these transformations.

Figure 1.37 displays boxplots for the original mean variance scaled variables as
well as for the proposed transformed variables. The transformed variables’ boxplots
are more symmetric and have less outliers than the original variables’ boxplots.

Fig. 1.37 Boxplots for all of
the variables from the Boston
housing data before and after
the proposed transformations
MVAboxbhd

Boston Housing Data

Transformed Boston Housing Data
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1.10 Exercises

Exercise 1.1 Is the upper extreme always an outlier?

Exercise 1.2 Is it possible for the mean or the median to lie outside of the fourths
or even outside of the outside bars?

Exercise 1.3 Assume that the data are normally distributedN.0; 1/. What percent-
age of the data do you expect to lie outside the outside bars?

Exercise 1.4 What percentage of the data do you expect to lie outside the outside
bars if we assume that the data are normally distributed N.0; �2/ with unknown
variance �2?

Exercise 1.5 How would the five-number summary of the 15 largest US cities differ
from that of the 50 largest US cities? How would the five-number summary of 15
observations ofN.0; 1/-distributed data differ from that of 50 observations from the
same distribution?

Exercise 1.6 Is it possible that all five numbers of the five-number summary could
be equal? If so, under what conditions?

Exercise 1.7 Suppose we have 50 observations of X � N.0; 1/ and another 50
observations of Y � N.2; 1/. What would the 100 Flury faces look like if you had
defined as face elements the face line and the darkness of hair? Do you expect any
similar faces? How many faces do you think should look like observations of Y even
though they are X observations?

Exercise 1.8 Draw a histogram for the mileage variable of the car data
(Sect. 22.3). Do the same for the three groups (USA, Japan, and Europe). Do
you obtain a similar conclusion as in the parallel boxplot in Fig. 1.3 for these data?

Exercise 1.9 Use some bandwidth selection criterion to calculate the optimally
chosen bandwidth h for the diagonal variable of the bank notes. Would it be better
to have one bandwidth for the two groups?

Exercise 1.10 In Fig. 1.9 the densities overlap in the region of diagonal	 140:4.
We partially observed this in the boxplot of Fig. 1.4. Our aim is to separate the two
groups. Will we be able to do this effectively on the basis of this diagonal variable
alone?

Exercise 1.11 Draw a parallel coordinates plot for the car data.

Exercise 1.12 How would you identify discrete variables (variables with only a
limited number of possible outcomes) on a parallel coordinates plot?

Exercise 1.13 True or false: the height of the bars of a histogram are equal to the
relative frequency with which observations fall into the respective bins.

Exercise 1.14 True or false: kernel density estimates must always take on a value
between 0 and 1. (Hint: Which quantity connected with the density function has to
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be equal to 1? Does this property imply that the density function has to always be
less than 1?)

Exercise 1.15 Let the following data set represent the heights of 13 students taking
the Applied Multivariate Statistical Analysis course:

1:72; 1:83; 1:74; 1:79; 1:94; 1:81; 1:66; 1:60; 1:78; 1:77; 1:85; 1:70; 1:76:

1. Find the corresponding five-number summary.
2. Construct the boxplot.
3. Draw a histogram for this data set.

Exercise 1.16 Describe the unemployment data (see Table 22.19) that contain
unemployment rates of all German Federal States using various descriptive tech-
niques.

Exercise 1.17 Using yearly population data (see Sect. 22.20), generate

1. a boxplot (choose one of variables)
2. an Andrew’s Curve (choose ten data points)
3. a scatterplot
4. a histogram (choose one of the variables)

What do these graphs tell you about the data and their structure?

Exercise 1.18 Make a draftman plot for the car data with the variables

X1 D price;

X2 D mileage;

X8 D weight;

X9 D length:

Move the brush into the region of heavy cars. What can you say about price, mileage
and length? Move the brush onto high fuel economy. Mark the Japanese, European
and American cars. You should find the same condition as in boxplot Fig. 1.3.

Exercise 1.19 What is the form of a scatterplot of two independent random
variables X1 and X2 with standard normal distribution?

Exercise 1.20 Rotate a three-dimensional standard normal point cloud in 3D
space. Does it “almost look the same from all sides”? Can you explain why or
why not?

Exercise 1.21 There are many reasons for using hexagons to visualise the structure
of data.

1. Hexagons have the property of “symmetry of nearest neighbours” which lacks in
square bins.
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Fig. 1.38 Hexagon binning algorithm MVAhexaAl

2. Hexagons have the maximum number of sides that a polygon can have for a
regular tessellation of the plane.

3. Hexagons are visually less biased for displaying densities than other regular
tessellations.

The hexagon binning algorithm is as follows:

1. Decrease y-axis variable by a factor of
p
3 (making the calculation more

quickly)
2. Create a dual lattice (circle and star lines in Fig. 1.38)
3. Bin each point into a pair of near neighbour rectangles
4. Choose the closest of the rectangle centers (adjusting for

p
3)

The rectangles created from dual lattice have length hx (bin width of hexagons) and
height hy D

p
3hx . From these rectangles we can get hexagons with bin width hx .

The first point of the star lattice has coordinates x0 and y0. The other star points
will have coordinates x0 C k1hx and y0 C l1hy , where k1; l1 D 1; 2; : : : The first

point of the circle lattice has coordinates x0C hx
2

and y0C
p
3hx
2

. Other circle points
are calculated like star points. Suppose an arbitrary point with coordinates x; y lies
in the intersection of two near neighbour rectangles. What’s the distance from this
point to one of two corners?
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Chapter 2
A Short Excursion into Matrix Algebra

This chapter serves as a reminder of basic concepts of matrix algebra, which
are particularly useful in multivariate analysis. It also introduces the notations
used in this book for vectors and matrices. Eigenvalues and eigenvectors play an
important role in multivariate techniques. In Sects. 2.2 and 2.3, we present the
spectral decomposition of matrices and consider the maximisation (minimisation)
of quadratic forms given some constraints.

In analysing the multivariate normal distribution, partitioned matrices appear
naturally. Some of the basic algebraic properties are given in Sect. 2.5. These
properties will be heavily used in Chaps. 4 and 5.

The geometry of the multinormal and the geometric interpretation of the
multivariate techniques (Part III) intensively uses the notion of angles between two
vectors, the projection of a point on a vector and the distances between two points.
These ideas are introduced in Sect. 2.6.

2.1 Elementary Operations

A matrix A is a system of numbers with n rows and p columns:

A D

0

B
B
B
B
B
B
B
B
B
B
@

a11 a12 : : : : : : : : : a1p
::: a22

:::
:::

:::
: : :

:::
:::

:::
: : :

:::
:::

:::
: : :

:::

an1 an2 : : : : : : : : : anp

1

C
C
C
C
C
C
C
C
C
C
A

:

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_2
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Table 2.1 Special matrices and vectors

Name Definition Notation Example

Scalar p D n D 1 a 3

Column vector p D 1 a

 
1

3

!

Row vector n D 1 a>

�

1 3
�

Vector of ones .1; : : : ; 1
„ ƒ‚ …

n

/> 1n

 
1

1

!

Vector of zeros .0; : : : ; 0
„ ƒ‚ …

n

/> 0n

 
0

0

!

Square matrix n D p A.p � p/
 
2 0

0 2

!

Diagonal matrix aij D 0, i 6D j , n D p diag.aii/

 
1 0

0 2

!

Identity matrix diag.1; : : : ; 1
„ ƒ‚ …

p

/ Ip
 
1 0

0 1

!

Unit matrix aij D 1, n D p 1n1
>
n

 
1 1

1 1

!

Symmetric matrix aij D aji

 
1 2

2 3

!

Null matrix aij D 0 0

 
0 0

0 0

!

Upper triangular matrix aij D 0; i < j

0

B
@

1 2 4

0 1 3

0 0 1

1

C
A

Idempotent matrix AA D A

0

B
@

1 0 0

0 1
2
1
2

0 1
2
1
2

1

C
A

Orthogonal matrix A>A D I D AA>

 
1p
2

1p
2

1p
2
� 1p

2

!

We also write .aij/ for A and A.n � p/ to indicate the numbers of rows and
columns. Vectors are matrices with one column and are denoted as x or x.p � 1/.
Special matrices and vectors are defined in Table 2.1. Note that we use small letters
for scalars as well as for vectors.
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Matrix Operations

Elementary operations are summarised below:

A> D .aji/

AC B D .aij C bij/

A � B D .aij � bij/

c �A D .c � aij/

A � B D A.n � p/ B.p �m/ D C.n �m/ D .cij/ D
0

@
pX

jD1
aijbjk

1

A :

Properties of Matrix Operations

AC B D B CA

A.B C C/ D AB CAC

A.BC/ D .AB/C

.A>/> D A

.AB/> D B>A>

Matrix Characteristics

Rank

The rank, rank.A/, of a matrix A.n � p/ is defined as the maximum number of
linearly independent rows (columns). A set of k rows aj of A.n � p/ are said to
be linearly independent if

Pk
jD1 cj aj D 0p implies cj D 0;8j , where c1; : : : ; ck

are scalars. In other words no rows in this set can be expressed as a nontrivial linear
combination of the .k � 1/ remaining rows.
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Trace

The trace of a matrix A.p � p/ is the sum of its diagonal elements

tr.A/ D
pX

iD1
aii:

Determinant

The determinant is an important concept of matrix algebra. For a square matrix A,
it is defined as:

det.A/ D jAj D
X

.�1/j� j a1�.1/ : : : ap�.p/;

the summation is over all permutations � of f1; 2; : : : ; pg, and j� j D 0 if the
permutation can be written as a product of an even number of transpositions and
j� j D 1 otherwise. Some properties of determinant of a matrix are:

jA>j D jAj
jABj D jAj � jAj
jcAj D cnjAj:

Example 2.1 In the case of p D 2, A D
�
a11 a12
a21 a22

�

and we can permute the digits

“1” and “2” once or not at all. So,

jAj D a11 a22 � a12 a21:

Transpose

For A.n � p/ and B.p � n/

.A>/> D A; and .AB/> D B>A>:

Inverse

If jAj 6D 0 and A.p � p/, then the inverse A�1 exists:

A A�1 D A�1 A D Ip:
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For small matrices, the inverse of A D .aij/ can be calculated as

A�1 D C
jAj ;

where C D .cij/ is the adjoint matrix of A. The elements cji of C> are the co-factors
of A:

cji D .�1/iCj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a11 : : : a1.j�1/ a1.jC1/ : : : a1p
:::

a.i�1/1 : : : a.i�1/.j�1/ a.i�1/.jC1/ : : : a.i�1/p
a.iC1/1 : : : a.iC1/.j�1/ a.iC1/.jC1/ : : : a.iC1/p
:::

ap1 : : : ap.j�1/ ap.jC1/ : : : app

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

The relationship between determinant and inverse of matrix A is jA�1j D jAj�1.

G-Inverse

A more general concept is the G-inverse (Generalised Inverse) A� which satisfies
the following:

A A�A D A:

Later we will see that there may be more than one G-inverse.

Example 2.2 The generalised inverse can also be calculated for singular matrices.
We have:

�
1 0

0 0

��
1 0

0 0

��
1 0

0 0

�

D
�
1 0

0 0

�

;

which means that the generalised inverse of A D
�
1 0

0 0

�

is A� D
�
1 0

0 0

�

even

though the inverse matrix of A does not exist in this case.

Eigenvalues, Eigenvectors

Consider a (p � p) matrix A. If there a scalar � and a vector � exists such as

A� D ��; (2.1)
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then we call

� an eigenvalue
� an eigenvector.

It can be proven that an eigenvalue � is a root of the p-th order polynomial jA �
�Ipj D 0. Therefore, there are up to p eigenvalues �1; �2; : : : ; �p of A. For each
eigenvalue �j , a corresponding eigenvector �j exists given by Eq. (2.1) . Suppose
the matrix A has the eigenvalues �1; : : : ; �p . Let ƒ D diag.�1; : : : ; �p).

The determinant jAj and the trace tr.A/ can be rewritten in terms of the
eigenvalues:

jAj D jƒj D
pY

jD1
�j (2.2)

tr.A/ D tr.ƒ/ D
pX

jD1
�j : (2.3)

An idempotent matrix A (see the definition in Table 2.1) can only have eigenvalues
in f0; 1g therefore tr.A/ D rank.A/ D number of eigenvalues¤ 0.

Example 2.3 Let us consider the matrix A D
0

@
1 0 0

0 1
2
1
2

0 1
2
1
2

1

A. It is easy to verify that

AA D A which implies that the matrix A is idempotent.
We know that the eigenvalues of an idempotent matrix are equal to 0 or 1. In this

case, the eigenvalues of A are �1 D 1, �2 D 1, and �3 D 0 since

0

@
1 0 0

0 1
2
1
2

0 1
2
1
2

1

A

0

@
1

0

0

1

A D

1

0

@
1

0

0

1

A,

0

@
1 0 0

0 1
2
1
2

0 1
2
1
2

1

A

0

B
@

0p
2
2p
2
2

1

C
A D 1

0

B
@

0p
2
2p
2
2

1

C
A, and

0

@
1 0 0

0 1
2
1
2

0 1
2
1
2

1

A

0

B
@

0p
2
2

�
p
2
2

1

C
A D 0

0

B
@

0p
2
2

�
p
2
2

1

C
A.

Using formulas (2.2) and (2.3), we can calculate the trace and the determinant
of A from the eigenvalues: tr.A/ D �1 C �2 C �3 D 2, jAj D �1�2�3 D 0, and
rank.A/ D 2.

Properties of Matrix Characteristics

A.n � n/; B.n � n/; c 2 R

tr.AC B/ D trAC trB (2.4)

tr.cA/ D c trA (2.5)
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jcAj D cnjAj (2.6)

jABj D jBAj D jAjjBj (2.7)

A.n � p/; B.p � n/
tr.A�B/ D tr.B�A/ (2.8)

rank.A/ � min.n; p/

rank.A/ � 0 (2.9)

rank.A/ D rank.A>/ (2.10)

rank.A>A/ D rank.A/ (2.11)

rank.AC B/ � rank.A/C rank.B/ (2.12)

rank.AB/ � minfrank.A/; rank.B/g (2.13)

A.n � p/; B.p � q/; C.q � n/
tr.ABC/ D tr.BCA/

D tr.CAB/ (2.14)

rank.ABC/ D rank.B/ for nonsingular A; C (2.15)

A.p � p/

jA�1j D jAj�1 (2.16)

rank.A/ D p if and only if A is nonsingular. (2.17)

Summary
,! The determinant jAj is the product of the eigenvalues of A.

,! The inverse of a matrix A exists if jAj ¤ 0.

,! The trace tr.A/ is the sum of the eigenvalues of A.

,! The sum of the traces of two matrices equals the trace of the sum
of the two matrices.

,! The trace tr.AB/ equals tr.BA/.

,! The rank.A/ is the maximal number of linearly independent rows
(columns) of A.
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2.2 Spectral Decompositions

The computation of eigenvalues and eigenvectors is an important issue in the
analysis of matrices. The spectral decomposition or Jordan decomposition links the
structure of a matrix to the eigenvalues and the eigenvectors.

Theorem 2.1 (Jordan Decomposition) Each symmetric matrix A.p � p/ can be
written as

A D 	 ƒ 	> D
pX

jD1
�j �j �

>
j

(2.18)

where

ƒ D diag.�1; : : : ; �p/

and where

	 D .�1 ; �2; : : : ; �p /

is an orthogonal matrix consisting of the eigenvectors �j of A.

Example 2.4 Suppose that A D
�
1
2
2
3

�
. The eigenvalues are found by solving jA�

�Ij D 0. This is equivalent to

ˇ
ˇ
ˇ
ˇ
1 � � 2

2 3 � �
ˇ
ˇ
ˇ
ˇ D .1 � �/.3 � �/ � 4 D 0:

Hence, the eigenvalues are �1 D 2Cp5 and �2 D 2 � p5. The eigenvectors are
�1 D .0:5257; 0:8506/> and �2 D .0:8506;�0:5257/>. They are orthogonal since
�>1 �2 D 0.

Using spectral decomposition, we can define powers of a matrix A.p � p/.
Suppose A is a symmetric matrix with positive eigenvalues. Then by Theorem 2.1

A D 	ƒ	>;

and we define for some ˛ 2 R

A˛ D 	ƒ˛	>; (2.19)
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where ƒ˛ D diag.�˛1 ; : : : ; �
˛
p/. In particular, we can easily calculate the inverse of

the matrix A. Suppose that the eigenvalues of A are positive. Then with ˛ D �1,
we obtain the inverse of A from

A�1 D 	ƒ�1	>: (2.20)

Another interesting decomposition which is later used is given in the following
theorem.

Theorem 2.2 (Singular Value Decomposition) Each matrix A.n�p/ with rank r
can be decomposed as

A D 	 ƒ 
>;

where 	.n� r/ and
.p � r/. Both 	 and
 are column orthonormal, i.e. 	>	 D

>
 D Ir and ƒ D diag

�
�
1=2
1 ; : : : ; �

1=2
r

�
, �j > 0. The values �1; : : : ; �r are

the nonzero eigenvalues of the matrices AA> and A>A. 	 and 
 consist of the
corresponding r eigenvectors of these matrices.

This is obviously a generalisation of Theorem 2.1 (Jordan decomposition). With
Theorem 2.2, we can find a G-inverse A� of A. Indeed, define A� D 
 ƒ�1 	>.
Then A A� A D 	 ƒ 
> D A. Note that the G-inverse is not unique.

Example 2.5 In Example 2.2, we showed that the generalised inverse of A D
�
1 0

0 0

�

is A�
�
1 0

0 0

�

. The following also holds

�
1 0

0 0

��
1 0

0 8

��
1 0

0 0

�

D
�
1 0

0 0

�

which means that the matrix

�
1 0

0 8

�

is also a generalised inverse of A.

Summary
,! The Jordan decomposition gives a representation of a symmetric

matrix in terms of eigenvalues and eigenvectors.
,! The eigenvectors belonging to the largest eigenvalues indicate the

“main direction” of the data.
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Summary (continued)

,! The Jordan decomposition allows one to easily compute the power
of a symmetric matrix A: A˛ D 	ƒ˛	>.

,! The singular value decomposition (SVD) is a generalisation of the
Jordan decomposition to non-quadratic matrices.

2.3 Quadratic Forms

A quadratic form Q.x/ is built from a symmetric matrix A.p � p/ and a vector
x 2 R

p:

Q.x/ D x> A x D
pX

iD1

pX

jD1
aijxixj : (2.21)

Definiteness of Quadratic Forms and Matrices

Q.x/ > 0 for all x 6D 0 positive definite
Q.x/ � 0 for all x 6D 0 positive semidefinite

A matrix A is called positive definite (semidefinite) if the corresponding quadratic
formQ.:/ is positive definite (semidefinite). We write A > 0 .� 0/.

Quadratic forms can always be diagonalised, as the following result shows.

Theorem 2.3 If A is symmetric andQ.x/ D x>Ax is the corresponding quadratic
form, then there exists a transformation x 7! 	>x D y such that

x> A x D
pX

iD1
�iy

2
i ;

where �i are the eigenvalues of A.

Proof A D 	 ƒ 	>. By Theorem 2.1 and y D 	>˛ we have that x>Ax D
x>	ƒ	>x D y>ƒy DPp

iD1 �iy2i : ut
Positive definiteness of quadratic forms can be deduced from positive eigenval-

ues.

Theorem 2.4 A > 0 if and only if all �i > 0, i D 1; : : : ; p.

Proof 0 < �1y21 C � � � C �py2p D x>Ax for all x ¤ 0 by Theorem 2.3. ut
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Corollary 2.1 If A > 0, then A�1 exists and jAj > 0.

Example 2.6 The quadratic form Q.x/ D x21 C x22 corresponds to the matrix A D�
1

0

0

1

�
with eigenvalues �1 D �2 D 1 and is thus positive definite. The quadratic

formQ.x/ D .x1 � x2/2 corresponds to the matrix A D
�

1
�1
�1
1

�
with eigenvalues

�1 D 2; �2 D 0 and is positive semidefinite. The quadratic form Q.x/ D x21 � x22
with eigenvalues �1 D 1; �2 D �1 is indefinite.

In the statistical analysis of multivariate data, we are interested in maximising
quadratic forms given some constraints.

Theorem 2.5 If A and B are symmetric and B > 0, then the maximum of x
>Ax
x>Bx is

given by the largest eigenvalue of B�1A. More generally,

max
x

x>Ax
x>Bx D �1 � �2 � � � � � �p D min

x

x>Ax
x>Bx ;

where �1; : : : ; �p denote the eigenvalues of B�1A. The vector which maximises

(minimises) x>Ax
x>Bx is the eigenvector of B�1A which corresponds to the largest

(smallest) eigenvalue of B�1A. If x>Bx D 1, we get

max
x
x>Ax D �1 � �2 � � � � � �p D min

x
x>Ax

Proof Denote norm of vector x as kxk D p
x>x. By definition, B1=2 D

	B ƒ
1=2

B 	>B is symmetric. Then x>Bx D 	
	x>B1=2

	
	2 D 	

	B1=2x
	
	2. Set y D

B1=2x
kB1=2xk , then

max
x

x>Ax
x>Bx D max

fyWy>yD1g
y>B�1=2 AB�1=2y: (2.22)

From Theorem 2.1, let

B�1=2 A B�1=2 D 	 ƒ 	>

be the spectral decomposition of B�1=2 A B�1=2. Set

z D 	>y; then z>z D y>	 	> y D y>y:

Thus (2.22) is equivalent to

max
fzWz>zD1g

z> ƒ z D max
fzWz>zD1g

pX

iD1
�iz

2
i :
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But

max
z

X
�i z

2
i � �1 max

z

X
z2i

„ ƒ‚ …
D1

D �1:

The maximum is thus obtained by z D .1; 0; : : : ; 0/>, i.e.

y D �1; hencex D B�1=2�1 :

Since B�1A and B�1=2 A B�1=2 have the same eigenvalues, the proof is complete.
To maximise (minimise) x>Ax under x>Bx D 1, below is another proof using

the Lagrange method.

max
x
x>Ax D max

x
Œx>Ax � � �x>Bx � 1��:

The first derivative of it in respect to x is equal to 0:

2Ax � 2�Bx D 0:

so

B�1Ax D �x

By the definition of eigenvector and eigenvalue, our maximiser x� is B�1A’s
eigenvector corresponding to eigenvalue �. So

max
fxWx>BxD1g

x>Ax D max
fxWx>BxD1g

x>BB�1Ax D max
fxWx>BxD1g

x>B�x D max�

which is just the maximum eigenvalue of B�1A, and we choose the corresponding
eigenvector as our maximiser x�. ut

Example 2.7 Consider the matrices A D
�
1 2

2 3

�

and B D
�
1 0

0 1

�

,

we calculate B�1A D
�
1 2

2 3

�

: The biggest eigenvalue of the matrix B�1A is 2C
p
5. This means that the maximum of x>Ax under the constraint x>Bx D 1 is

2Cp5. Notice that the constraint x>Bx D 1 corresponds to our choice of B, to the
points which lie on the unit circle x21 C x22 D 1.
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Summary
,! A quadratic form can be described by a symmetric matrix A.

,! Quadratic forms can always be diagonalised.

,! Positive definiteness of a quadratic form is equivalent to positive-
ness of the eigenvalues of the matrix A.

,! The maximum and minimum of a quadratic form given some
constraints can be expressed in terms of eigenvalues.

2.4 Derivatives

For later sections of this book, it will be useful to introduce matrix notation for
derivatives of a scalar function of a vector x, i.e. f .x/, with respect to x. Consider
f W Rp ! R and a .p � 1/ vector x, then @f .x/

@x
is the column vector of partial

derivatives
n
@f .x/

@xj

o
; j D 1; : : : ; p and @f .x/

@x> is the row vector of the same derivative
�
@f .x/

@x
is called the gradient of f

�
.

We can also introduce second order derivatives: @2f .x/

@x@x> is the .p � p/ matrix of

elements @2f .x/

@xi @xj
; i D 1; : : : ; p and j D 1; : : : ; p � @2f .x/

@x@x> is called the Hessian of f
�
.

Suppose that a is a .p � 1/ vector and that A D A> is a .p � p/ matrix. Then

@a>x
@x

D @x>a
@x

D a; (2.23)

@x>Ax
@x

D 2Ax: (2.24)

The Hessian of the quadratic formQ.x/ D x>Ax is:

@2x>Ax
@x@x>

D 2A: (2.25)

Example 2.8 Consider the matrix

A D
�
1 2

2 3

�

:
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From formulas (2.24) and (2.25) it immediately follows that the gradient ofQ.x/ D
x>Ax is

@x>Ax
@x

D 2Ax D 2
�
1 2

2 3

�

x D
�
2x 4x

4x 6x

�

and the Hessian is

@2x>Ax
@x@x>

D 2A D 2
�
1 2

2 3

�

D
�
2 4

4 6

�

:

2.5 Partitioned Matrices

Very often we will have to consider certain groups of rows and columns of a matrix
A.n � p/. In the case of two groups, we have

A D
�
A11 A12

A21 A22

�

;

where Aij.ni � pj /; i; j D 1; 2; n1 C n2 D n and p1 C p2 D p.
If B.n � p/ is partitioned accordingly, we have:

AC B D
�
A11 C B11 A12 C B12
A21 C B21 A22 C B22

�

B> D
�
B>11 B>21
B>12 B>22

�

AB> D
�
A11B>11 CA12B>12 A11B>21 CA12B>22
A21B>11 CA22B>12 A21B>21 CA22B>22

�

:

An important particular case is the square matrix A.p � p/, partitioned in such a
way that A11 and A22 are both square matrices (i.e. nj D pj ; j D 1; 2). It can be
verified that when A is non-singular (AA�1 D Ip):

A�1 D
�
A11 A12

A21 A22

�

(2.26)

where
8
ˆ̂
<̂

ˆ̂
:̂

A11 D .A11 �A12A�122 A21/
�1 defD .A11�2/�1

A12 D �.A11�2/�1A12A�122
A21 D �A�122 A21.A11�2/�1
A22 D A�122 CA�122 A21.A11�2/�1A12A�122 :
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An alternative expression can be obtained by reversing the positions of A11 and A22

in the original matrix.
The following results will be useful if A11 is non-singular:

jAj D jA11jjA22 �A21A�111 A12j D jA11jjA22�1j: (2.27)

If A22 is non-singular, we have that:

jAj D jA22jjA11 �A12A�122 A21j D jA22jjA11�2j: (2.28)

A useful formula is derived from the alternative expressions for the inverse and
the determinant. For instance let

B D
�
1 b>
a A

�

where a and b are .p � 1/ vectors and A is non-singular. We then have:

jBj D jA� ab>j D jAjj1� b>A�1aj (2.29)

and equating the two expressions for B22, we obtain the following:

.A � ab>/�1 D A�1 C A�1ab>A�1
1 � b>A�1a : (2.30)

Example 2.9 Let’s consider the matrix

A D
�
1 2

2 2

�

:

We can use formula (2.26) to calculate the inverse of a partitioned matrix, i.e. A11 D
�1;A12 D A21 D 1;A22 D �1=2. The inverse of A is

A�1 D
��1 1

1 �0:5
�

:

It is also easy to calculate the determinant of A:

jAj D j1jj2� 4j D �2:

Let A.n � p/ and B.p � n/ be any two matrices and suppose that n � p.
From (2.27) and (2.28) we can conclude that

ˇ
ˇ
ˇ
ˇ
��In �A
B Ip

ˇ
ˇ
ˇ
ˇ D .��/n�pjBA� �Ipj D jAB � �Inj: (2.31)
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Since both determinants on the right-hand side of (2.31) are polynomials in �, we
find that the n eigenvalues of AB yield the p eigenvalues of BA plus the eigenvalue
0, n � p times.

The relationship between the eigenvectors is described in the next theorem.

Theorem 2.6 For A.n�p/ and B.p�n/, the nonzero eigenvalues of AB and BA
are the same and have the same multiplicity. If x is an eigenvector of AB for an
eigenvalue � ¤ 0, then y D Bx is an eigenvector of BA.

Corollary 2.2 For A.n � p/, B.q � n/, a.p � 1/, and b.q � 1/ we have

rank.Aab>B/ � 1:

The nonzero eigenvalue, if it exists, equals b>BAa (with eigenvector Aa).

Proof Theorem 2.6 asserts that the eigenvalues of Aab>B are the same as those of
b>BAa. Note that the matrix b>BAa is a scalar and hence it is its own eigenvalue
�1.

Applying Aab>B to Aa yields

.Aab>B/.Aa/ D .Aa/.b>BAa/ D �1Aa:

ut

2.6 Geometrical Aspects

Distance

Let x; y 2 R
p . A distance d is defined as a function

d W R2p ! RC which fulfills

8
<

:

d.x; y/ > 0 8x ¤ y
d.x; y/ D 0 if and only if x D y
d.x; y/ � d.x; z/C d.z; y/ 8x; y; z

:

A Euclidean distance d between two points x and y is defined as

d2.x; y/ D .x � y/TA.x � y/ (2.32)

where A is a positive definite matrix .A > 0/. A is called a metric.
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Fig. 2.1 Distance d

Fig. 2.2 Iso-distance sphere

Fig. 2.3 Iso-distance
ellipsoid

Example 2.10 A particular case is when A D Ip , i.e.

d2.x; y/ D
pX

iD1
.xi � yi /2: (2.33)

Figure 2.1 illustrates this definition for p D 2.

Note that the sets Ed D fx 2 R
p j .x � x0/>.x � x0/ D d2g , i.e. the spheres

with radius d and centre x0, are the Euclidean Ip iso-distance curves from the point
x0 (see Fig. 2.2).

The more general distance (2.32) with a positive definite matrix A .A > 0/ leads
to the iso-distance curves

Ed D fx 2 R
p j .x � x0/>A.x � x0/ D d2g; (2.34)

i.e. ellipsoids with centre x0, matrix A and constant d (see Fig. 2.3).
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Let �1; �2; : : : ; �p be the orthonormal eigenvectors of A corresponding to the
eigenvalues �1 � �2 � � � � � �p . The resulting observations are given in the next
theorem.

Theorem 2.7 (i) The principal axes of Ed are in the direction of �i I i D
1; : : : ; p.

(ii) The half-lengths of the axes are
q

d2

�i
; i D 1; : : : ; p.

(iii) The rectangle surrounding the ellipsoid Ed is defined by the following
inequalities:

x0i �
p
d2aii � xi � x0i C

p
d2aii; i D 1; : : : ; p;

where aii is the .i; i/ element of A�1. By the rectangle surrounding the ellipsoid
Ed we mean the rectangle whose sides are parallel to the coordinate axis.

It is easy to find the coordinates of the tangency points between the ellipsoid and
its surrounding rectangle parallel to the coordinate axes. Let us find the coordinates
of the tangency point that are in the direction of the j -th coordinate axis (positive
direction).

For ease of notation, we suppose the ellipsoid is centred around the origin .x0 D
0/. If not, the rectangle will be shifted by the value of x0.

The coordinate of the tangency point is given by the solution to the following
problem:

x D arg max
x>AxDd2

e>j x (2.35)

where e>j is the j -th column of the identity matrix Ip . The coordinate of the
tangency point in the negative direction would correspond to the solution of the
min problem: by symmetry, it is the opposite value of the former.

The solution is computed via the Lagrangian L D e>j x � �.x>Ax � d2/ which
by (2.23) leads to the following system of equations:

@L

@x
D ej � 2�Ax D 0 (2.36)

@L

@�
D x>Ax � d2 D 0: (2.37)

This gives x D 1
2�
A�1ej , or componentwise

xi D 1

2�
aij; i D 1; : : : ; p (2.38)

where aij denotes the .i; j /-th element of A�1.
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Premultiplying (2.36) by x>, we have from (2.37):

xj D 2�d2:

Comparing this to the value obtained by (2.38), for i D j we obtain 2� D
q

ajj

d2
.

We choose the positive value of the square root because we are maximising e>j x. A
minimum would correspond to the negative value. Finally, we have the coordinates
of the tangency point between the ellipsoid and its surrounding rectangle in the
positive direction of the j -th axis:

xi D
r
d2

ajj
aij; i D 1; : : : ; p: (2.39)

The particular case where i D j provides statement (iii) in Theorem 2.7.

Remark: Usefulness of Theorem 2.7

Theorem 2.7 will prove to be particularly useful in many subsequent chapters. First,
it provides a helpful tool for graphing an ellipse in two dimensions. Indeed, knowing
the slope of the principal axes of the ellipse, their half-lengths and drawing the
rectangle inscribing the ellipse, allows one to quickly draw a rough picture of the
shape of the ellipse.

In Chap. 7, it is shown that the confidence region for the vector� of a multivariate
normal population is given by a particular ellipsoid whose parameters depend
on sample characteristics. The rectangle inscribing the ellipsoid (which is much
easier to obtain) will provide the simultaneous confidence intervals for all of the
components in �.

In addition it will be shown that the contour surfaces of the multivariate normal
density are provided by ellipsoids whose parameters depend on the mean vector
and on the covariance matrix. We will see that the tangency points between the
contour ellipsoids and the surrounding rectangle are determined by regressing one
component on the .p � 1/ other components. For instance, in the direction of the
j -th axis, the tangency points are given by the intersections of the ellipsoid contours
with the regression line of the vector of .p � 1/ variables (all components except
the j -th) on the j -th component.
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Norm of a Vector

Consider a vector x 2 R
p . The norm or length of x (with respect to the metric Ip)

is defined as

kxk D d.0p; x/ D
p
x>x:

If kxk D 1; x is called a unit vector. A more general norm can be defined with
respect to the metric A:

kxkA D
p
x>Ax:

Angle Between Two Vectors

Consider two vectors x and y 2 R
p . The angle � between x and y is defined by the

cosine of � :

cos � D x>y
kxk kyk ; (2.40)

see Fig. 2.4. Indeed for p D 2, x D
 
x1

x2

!

and y D
 
y1

y2

!

, we have

kxk cos �1 D x1 I kyk cos �2 D y1
kxk sin �1 D x2 I kyk sin �2 D y2; (2.41)

therefore,

cos � D cos �1 cos �2 C sin �1 sin �2 D x1y1 C x2y2
kxk kyk D x>y

kxk kyk :

Fig. 2.4 Angle between
vectors
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Fig. 2.5 Projection

Remark 2.1 If x>y D 0, then the angle � is equal to
�

2
. From trigonometry, we

know that the cosine of � equals the length of the base of a triangle (jjpxjj) divided
by the length of the hypotenuse (jjxjj). Hence, we have

jjpx jj D jjxjjj cos� j D jx
>yj
kyk ; (2.42)

where px is the projection of x on y (which is defined below). It is the coordinate
of x on the y vector, see Fig. 2.5.

The angle can also be defined with respect to a general metric A

cos � D x>Ay
kxkA kykA : (2.43)

If cos � D 0 then x is orthogonal to y with respect to the metric A.

Example 2.11 Assume that there are two centred (i.e. zero mean) data vectors. The
cosine of the angle between them is equal to their correlation (defined in (3.8)).
Indeed for x and y with x D y D 0 we have

rXY D
P
xiyi

qP
x2i
P
y2i

D cos �

according to formula (2.40).

Rotations

When we consider a point x 2 R
p , we generally use a p-coordinate system to obtain

its geometric representation, like in Fig. 2.1 for instance. There will be situations in
multivariate techniques where we will want to rotate this system of coordinates by
the angle � .

Consider for example the point P with coordinates x D .x1; x2/
> in R

2 with
respect to a given set of orthogonal axes. Let 	 be a .2 � 2/ orthogonal matrix
where

	 D
�

cos � sin �
� sin � cos �

�

: (2.44)
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If the axes are rotated about the origin through an angle � in a clockwise direction,
the new coordinates of P will be given by the vector y

y D 	 x; (2.45)

and a rotation through the same angle in a anti-clockwise direction gives the new
coordinates as

y D 	> x: (2.46)

More generally, premultiplying a vector x by an orthogonal matrix 	 geomet-
rically corresponds to a rotation of the system of axes, so that the first new axis is
determined by the first row of 	 . This geometric point of view will be exploited in
Chaps. 11 and 12.

Column Space and Null Space of a Matrix

Define for X .n � p/

Im.X / defD C.X / D fx 2 R
n j 9a 2 R

p so that Xa D xg;

the space generated by the columns of X or the column space of X . Note that
C.X / 
 R

n and dimfC.X /g D rank.X / D r � min.n; p/:

Ker.X / defD N.X / D fy 2 R
p j Xy D 0g

is the null space of X . Note that N.X / 
 R
p and that dimfN.X /g D p � r:

Remark 2.2 N.X>/ is the orthogonal complement of C.X / in R
n, i.e. given a

vector b 2 R
n it will hold that x>b D 0 for all x 2 C.X /, if and only if b 2 N.X>/.

Example 2.12 Let X D

0

B
B
@

2 3 5

4 6 7

6 8 6

8 2 4

1

C
C
A : It is easy to show (e.g. by calculating the

determinant of X ) that rank.X / D 3. Hence, the column space of X is C.X / D R
3.

The null space of X contains only the zero vector .0; 0; 0/> and its dimension is
equal to rank.X / � 3 D 0.
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For X D

0

B
B
@

2 3 1

4 6 2

6 8 3

8 2 4

1

C
C
A ; the third column is a multiple of the first one and the

matrix X cannot be of full rank. Noticing that the first two columns of X are
independent, we see that rank.X / D 2. In this case, the dimension of the columns
space is 2 and the dimension of the null space is 1.

Projection Matrix

A matrix P.n � n/ is called an (orthogonal) projection matrix in R
n if and only if

P D P> D P2 (P is idempotent). Let b 2 R
n. Then a D Pb is the projection of b

on C.P/.

Projection on C.X /

Consider X .n � p/ and let

P D X .X>X /�1X> (2.47)

and Q D In � P . It’s easy to check that P and Q are idempotent and that

PX D X and QX D 0: (2.48)

Since the columns of X are projected onto themselves, the projection matrix P
projects any vector b 2 R

n onto C.X /. Similarly, the projection matrix Q projects
any vector b 2 R

n onto the orthogonal complement of C.X /.

Theorem 2.8 Let P be the projection (2.47) and Q its orthogonal complement.
Then:

(i) x D Pb entails x 2 C.X /,
(ii) y D Qb means that y>x D 0 8x 2 C.X /.
Proof (i) holds, since x D X .X>X /�1X>b D Xa, where a D .X>X /�1X>b 2

R
p .

(ii) follows from y D b � Pb and x D Xa: Hence y>x D b>Xa �
b>X .X>X /�1X>Xa D 0.

ut
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Remark 2.3 Let x; y 2 R
n and consider px 2 R

n, the projection of x on y (see
Fig. 2.5). With X D y we have from (2.47)

px D y.y>y/�1y>x D y>x
kyk2 y (2.49)

and we can easily verify that

kpxk D
q

p>x px D
jy>xj
kyk :

See again Remark 2.1.

Summary
,! A distance between two p-dimensional points x and y is a

quadratic form .x � y/>A.x � y/ in the vectors of differences
.x � y/. A distance defines the norm of a vector.

,! Iso-distance curves of a point x0 are all those points that have the
same distance from x0. Iso-distance curves are ellipsoids whose
principal axes are determined by the direction of the eigenvectors
of A. The half-length of principal axes is proportional to the inverse
of the roots of the eigenvalues of A.

,! The angle between two vectors x and y is given by cos � D
x>Ay

kxkA kykA w.r.t. the metric A.

,! For the Euclidean distance with A D I the correlation between
two centred data vectors x and y is given by the cosine of the angle
between them, i.e. cos � D rXY .

,! The projection P D X .X>X /�1X> is the projection onto the
column space C.X / of X .

,! The projection of x 2 R
n on y 2 R

n is given by px D y>x

kyk2 y:

2.7 Exercises

Exercise 2.1 Compute the determinant for a .3 � 3/ matrix.

Exercise 2.2 Suppose thatjAj D 0. Is it possible that all eigenvalues of A are
positive?
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Exercise 2.3 Suppose that all eigenvalues of some (square) matrix A are different
from zero. Does the inverse A�1 of A exist?

Exercise 2.4 Write a program that calculates the Jordan decomposition of the
matrix

A D
0

@
1 2 3

2 1 2

3 2 1

1

A :

Check Theorem 2.1 numerically.

Exercise 2.5 Prove (2.23), (2.24) and (2.25).

Exercise 2.6 Show that a projection matrix only has eigenvalues in f0; 1g.
Exercise 2.7 Draw some iso-distance ellipsoids for the metric A D †�1 of
Example 3.13.

Exercise 2.8 Find a formula for jA C aa>j and for .A C aa>/�1: (Hint: use the

inverse partitioned matrix with B D
�
1 �a>
a A

�

:)

Exercise 2.9 Prove the Binomial inverse theorem for two non-singular matrices
A.p �p/ and B.p� p/: .ACB/�1 D A�1 �A�1.A�1CB�1/�1A�1: (Hint: use

(2.26) with C D
�
A Ip
�Ip B�1

�

:)



Chapter 3
Moving to Higher Dimensions

We have seen in the previous chapters how very simple graphical devices can help in
understanding the structure and dependency of data. The graphical tools were based
on either univariate (bivariate) data representations or on “slick” transformations
of multivariate information perceivable by the human eye. Most of the tools are
extremely useful in a modelling step, but unfortunately, do not give the full picture
of the data set. One reason for this is that the graphical tools presented capture
only certain dimensions of the data and do not necessarily concentrate on those
dimensions or sub-parts of the data under analysis that carry the maximum structural
information. In Part III of this book, powerful tools for reducing the dimension of
a data set will be presented. In this chapter, as a starting point, simple and basic
tools are used to describe dependency. They are constructed from elementary facts
of probability theory and introductory statistics (e.g. the covariance and correlation
between two variables).

Sections 3.1 and 3.2 show how to handle these concepts in a multivariate setup
and how a simple test on correlation between two variables can be derived. Since
linear relationships are involved in these measures, Sect. 3.4 presents the simple
linear model for two variables and recalls the basic t-test for the slope. In Sect. 3.5,
a simple example of one-factorial analysis of variance introduces the notations for
the well-known F -test.

Due to the power of matrix notation, all of this can easily be extended to a more
general multivariate setup. Section 3.3 shows how matrix operations can be used to
define summary statistics of a data set and for obtaining the empirical moments of
linear transformations of the data. These results will prove to be very useful in most
of the chapters in Part III.

Finally, matrix notation allows us to introduce the flexible multiple linear model,
where more general relationships among variables can be analysed. In Sect. 3.6, the
least squares adjustment of the model and the usual test statistics are presented with
their geometric interpretation. Using these notations, the ANOVA model is just a
particular case of the multiple linear model.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_3
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3.1 Covariance

Covariance is a measure of dependency between random variables. Given two
(random) variables X and Y the (theoretical) covariance is defined by:

�XY D Cov.X; Y / D E.XY/ � .EX/.EY /: (3.1)

The precise definition of expected values is given in Chap. 4. If X and Y are
independent of each other, the covariance Cov.X; Y / is necessarily equal to zero,
see Theorem 3.1. The converse is not true. The covariance of X with itself is the
variance:

�XX D Var.X/ D Cov.X;X/:

If the variable X is p-dimensional multivariate, e.g. X D

0

B
@

X1
:::

Xp

1

C
A, then the

theoretical covariances among all the elements are put into matrix form, i.e. the
covariance matrix:

† D

0

B
@

�X1X1 : : : �X1Xp
:::

: : :
:::

�XpX1 : : : �XpXp

1

C
A :

Properties of covariance matrices will be detailed in Chap. 4. Empirical versions of
these quantities are:

sXY D 1

n

nX

iD1
.xi � x/.yi � y/ (3.2)

sXX D 1

n

nX

iD1
.xi � x/2: (3.3)

For small n, say n � 20, we should replace the factor 1
n

in (3.2) and (3.3) by 1
n�1 in

order to correct for a small bias. For a p-dimensional random variable, one obtains
the empirical covariance matrix (see Sect. 3.3 for properties and details)

S D

0

B
@

sX1X1 : : : sX1Xp
:::

: : :
:::

sXpX1 : : : sXpXp

1

C
A :
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For a scatterplot of two variables the covariances measure “how close the scatter
is to a line”. Mathematical details follow but it should already be understood here
that in this sense covariance measures only “linear dependence”.

Example 3.1 If X is the entire bank data set, one obtains the covariance matrix S
as indicated below:

S D

0

B
B
B
B
B
B
B
@

0:14 0:03 0:02 �0:10 �0:01 0:08

0:03 0:12 0:10 0:21 0:10 �0:21
0:02 0:10 0:16 0:28 0:12 �0:24
�0:10 0:21 0:28 2:07 0:16 �1:03
�0:01 0:10 0:12 0:16 0:64 �0:54
0:08 �0:21 �0:24 �1:03 �0:54 1:32

1

C
C
C
C
C
C
C
A

: (3.4)

The empirical covariance between X4 and X5, i.e. sX4X5 , is found in row 4 and
column 5. The value is sX4X5 D 0:16. Is it obvious that this value is positive? In
Exercise 3.1 we will discuss this question further.

If Xf denotes the counterfeit bank notes, we obtain:

Sf D

0

B
B
B
B
B
B
B
@

0:123 0:031 0:023 �0:099 0:019 0:011

0:031 0:064 0:046 �0:024 �0:012 �0:005
0:024 0:046 0:088 �0:018 0:000 0:034

�0:099 �0:024 �0:018 1:268 �0:485 0:236

0:019 �0:012 0:000 �0:485 0:400 �0:022
0:011 �0:005 0:034 0:236 �0:022 0:308

1

C
C
C
C
C
C
C
A

� (3.5)

For the genuine Xg , we have:

Sg D

0

B
B
B
B
B
B
B
@

0:149 0:057 0:057 0:056 0:014 0:005

0:057 0:131 0:085 0:056 0:048 �0:043
0:057 0:085 0:125 0:058 0:030 �0:024
0:056 0:056 0:058 0:409 �0:261 �0:000
0:014 0:049 0:030 �0:261 0:417 �0:074
0:005 �0:043 �0:024 �0:000 �0:074 0:198

1

C
C
C
C
C
C
C
A

� (3.6)

Note that the covariance between X4 (distance of the frame to the lower border)
and X5 (distance of the frame to the upper border) is negative in both (3.5) and
(3.6). Why would this happen? In Exercise 3.2 we will discuss this question in more
detail.

At first sight, the matrices Sf and Sg look different, but they create almost the
same scatterplots (see the discussion in Sect. 1.4). Similarly, the common principal
component analysis in Chap. 11 suggests a joint analysis of the covariance structure
as in Flury and Riedwyl (1988).
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Fig. 3.1 Scatterplot of
variables X4 vs. X5 of the
entire bank data set
MVAscabank45
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Swiss bank notes

Scatterplots with point clouds that are “upward-sloping”, like the one in the
upper left of Fig. 1.14, show variables with positive covariance. Scatterplots with
“downward-sloping” structure have negative covariance. In Fig. 3.1 we show the
scatterplot of X4 vs. X5 of the entire bank data set. The point cloud is upward-
sloping. However, the two sub-clouds of counterfeit and genuine bank notes are
downward-sloping.

Example 3.2 A textile shop manager is studying the sales of “classic blue”
pullovers over ten different periods. He observes the number of pullovers sold
(X1), variation in price (X2, in EUR), the advertisement costs in local newspapers
(X3, in EUR) and the presence of a sales assistant (X4, in hours per period). Over
the periods, he observes the following data matrix:

X D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

230 125 200 109

181 99 55 107

165 97 105 98

150 115 85 71

97 120 0 82

192 100 150 103

181 80 85 111

189 90 120 93

172 95 110 86

170 125 130 78

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

He is convinced that the price must have a large influence on the number of pullovers
sold. So he makes a scatterplot of X2 vs. X1, see Fig. 3.2. A rough impression
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Fig. 3.2 Scatterplot of
variables X2 vs. X1 of the
pullovers data set
MVAscapull1
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is that the cloud is somewhat downward-sloping. A computation of the empirical
covariance yields

sX1X2 D
1

9

10X

iD1

�
X1i � NX1

� �
X2i � NX2

� D �80:02;

a negative value as expected.
Note: The covariance function is scale dependent. Thus, if the prices in this

example were in Japanese Yen (JPY), we would obtain a different answer (see
Exercise 3.16). A measure of (linear) dependence independent of the scale is the
correlation, which we introduce in the next section.

Summary
,! The covariance is a measure of dependence.

,! Covariance measures only linear dependence.

,! Covariance is scale dependent.

,! There are non-linear dependencies that have zero covariance.

,! Zero covariance does not imply independence.
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Summary (continued)

,! Independence implies zero covariance.

,! Negative covariance corresponds to downward-sloping scatter-
plots.

,! Positive covariance corresponds to upward-sloping scatterplots.

,! The covariance of a variable with itself is its variance
Cov.X;X/ D �XX D �2X .

,! For small n, we should replace the factor 1
n

in the computation of
the covariance by 1

n�1 .

3.2 Correlation

The correlation between two variables X and Y is defined from the covariance as
the following:

�XY D Cov.X; Y /
p

Var.X/Var.Y /
� (3.7)

The advantage of the correlation is that it is independent of the scale, i.e. changing
the variables’ scale of measurement does not change the value of the correlation.
Therefore, the correlation is more useful as a measure of association between two
random variables than the covariance. The empirical version of �XY is as follows:

rXY D sXYp
sXXsYY

� (3.8)

The correlation is in absolute value always less than 1. It is zero if the covariance
is zero and vice versa. For p-dimensional vectors .X1; : : : ; Xp/> we have the
theoretical correlation matrix

P D

0

B
@

�X1X1 : : : �X1Xp
:::

: : :
:::

�XpX1 : : : �XpXp

1

C
A ;

and its empirical version, the empirical correlation matrix which can be calculated
from the observations,

R D

0

B
@

rX1X1 : : : rX1Xp
:::

: : :
:::

rXpX1 : : : rXpXp

1

C
A :
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Example 3.3 We obtain the following correlation matrix for the genuine bank
notes:

Rg D

0

B
B
B
B
B
B
B
@

1:00 0:41 0:41 0:22 0:05 0:03

0:41 1:00 0:66 0:24 0:20 �0:25
0:41 0:66 1:00 0:25 0:13 �0:14
0:22 0:24 0:25 1:00 �0:63 �0:00
0:05 0:20 0:13 �0:63 1:00 �0:25
0:03 �0:25 �0:14 �0:00 �0:25 1:00

1

C
C
C
C
C
C
C
A

; (3.9)

and for the counterfeit bank notes:

Rf D

0

B
B
B
B
B
B
B
@

1:00 0:35 0:24 �0:25 0:08 0:06

0:35 1:00 0:61 �0:08 �0:07 �0:03
0:24 0:61 1:00 �0:05 0:00 0:20

�0:25 �0:08 �0:05 1:00 �0:68 0:37

0:08 �0:07 0:00 �0:68 1:00 �0:06
0:06 �0:03 0:20 0:37 �0:06 1:00

1

C
C
C
C
C
C
C
A

: (3.10)

As noted before for Cov.X4;X5/, the correlation betweenX4 (distance of the frame
to the lower border) and X5 (distance of the frame to the upper border) is negative.
This is natural, since the covariance and correlation always have the same sign (see
also Exercise 3.17).

Why is the correlation an interesting statistic to study? It is related to indepen-
dence of random variables, which we shall define more formally later on. For the
moment we may think of independence as the fact that one variable has no influence
on another.

Theorem 3.1 If X and Y are independent, then �.X; Y / D Cov.X; Y / D 0:

!
In general, the converse is not true, as the following example shows.

Example 3.4 Consider a standard normally-distributed random variable X and a
random variable Y D X2, which is surely not independent of X . Here we have

Cov.X; Y / D E.XY/ � E.X/E.Y / D E.X3/ D 0

(because E.X/ D 0 and E.X2/ D 1). Therefore �.X; Y / D 0, as well. This example
also shows that correlations and covariances measure only linear dependence. The
quadratic dependence of Y D X2 on X is not reflected by these measures of
dependence.
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Remark 3.1 For two normal random variables, the converse of Theorem 3.1
is true: zero covariance for two normally distributed random variables implies
independence. This will be shown later in Corollary 5.2.

Theorem 3.1 enables us to check for independence between the components of
a bivariate normal random variable. That is, we can use the correlation and test
whether it is zero. The distribution of rXY for an arbitrary .X; Y / is unfortunately
complicated. The distribution of rXY will be more accessible if .X; Y / are jointly
normal (see Chap. 5). If we transform the correlation by Fisher’s Z-transformation,

W D 1

2
log

�
1C rXY

1 � rXY

�

; (3.11)

we obtain a variable that has a more accessible distribution. Under the hypothesis
that � D 0, W has an asymptotic normal distribution. Approximations of the
expectation and variance ofW are given by the following:

E.W / 	 1
2

log
�
1C�XY
1��XY

�

Var.W / 	 1
.n�3/ �

(3.12)

The distribution is given in Theorem 3.2.

Theorem 3.2

Z D W � E.W /
p

Var.W /

L�! N.0; 1/: (3.13)

The symbol “
L�!” denotes convergence in distribution, which will be explained

in more detail in Chap. 4.
Theorem 3.2 allows us to test different hypotheses on correlation. We can fix the

level of significance ˛ (the probability of rejecting a true hypothesis) and reject the
hypothesis if the difference between the hypothetical value and the calculated value
of Z is greater than the corresponding critical value of the normal distribution. The
following example illustrates the procedure.

Example 3.5 Let’s study the correlation between mileage (X2) and weight (X8) for
the car data set (22.3) where n D 74. We have rX2X8 D �0:823. Our conclusions
from the boxplot in Fig. 1.3 (“Japanese cars generally have better mileage than the
others”) needs to be revised. From Fig. 3.3 and rX2X8 , we can see that mileage is
highly correlated with weight, and that the Japanese cars in the sample are in fact
all lighter than the others.

If we want to know whether �X2X8 is significantly different from �0 D 0, we
apply Fisher’s Z-transform (3.11). This gives us

w D 1

2
log

�
1C rX2X8
1 � rX2X8

�

D �1:166 and z D �1:166� 0q
1
71

D �9:825;
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Fig. 3.3 Mileage (X2) vs.
weight (X8) of US (star),
European (plus signs) and
Japanese (circle) cars
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i.e. a highly significant value to reject the hypothesis that � D 0 (the 2.5 % and
97.5 % quantiles of the normal distribution are �1:96 and 1:96, respectively). If we
want to test the hypothesis that, say, �0 D �0:75, we obtain:

z D �1:166� .�0:973/q
1
71

D �1:627:

This is a non-significant value at the ˛ D 0:05 level for z since it is between the
critical values at the 5 % significance level (i.e. �1:96 < z < 1:96).

Example 3.6 Let us consider again the pullovers data set from Example 3.2.
Consider the correlation between the presence of the sales assistants (X4) vs. the
number of sold pullovers (X1) (see Fig. 3.4). Here we compute the correlation as

rX1X4 D 0:633:

The Z-transform of this value is

w D 1

2
log

�
1C rX1X4
1� rX1X4

�

D 0:746: (3.14)

The sample size is n D 10, so for the hypothesis �X1X4 D 0, the statistic to
consider is:

z D p7.0:746� 0/ D 1:974 (3.15)

which is just statistically significant at the 5% level (i.e. 1.974 is just a little larger
than 1.96).
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Fig. 3.4 Hours of sales
assistants (X4) vs. sales (X1)
of pullovers
MVAscapull2
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Remark 3.2 The normalising and variance stabilising properties of W are asymp-
totic. In addition the use of W in small samples (for n � 25) is improved by
Hotelling’s transform (Hotelling, 1953):

W � D W � 3W C tanh.W /

4.n� 1/ with Var.W �/ D 1

n � 1:

The transformed variableW � is asymptotically distributed as a normal distribution.

Example 3.7 From the preceding remark, we obtain w� D 0:6663 andp
10� 1w� D 1:9989 for the preceding Example 3.6. This value is significant

at the 5% level.

Remark 3.3 Note that the Fisher’s Z-transform is the inverse of the hyperbolic
tangent function:W D tanh�1.rXY/; equivalently rXY D tanh.W / D e2W �1

e2WC1 .

Remark 3.4 Under the assumptions of normality of X and Y , we may test their
independence (�XY D 0) using the exact t-distribution of the statistic

T D rXY

s
n � 2
1 � r2XY

�XYD0� tn�2:

Setting the probability of the first error type to ˛, we reject the null hypothesis
�XY D 0 if jT j � t1�˛=2In�2.
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Summary
,! The correlation is a standardised measure of dependence.

,! The absolute value of the correlation is always less or equal to one.

,! Correlation measures only linear dependence.

,! There are non-linear dependencies that have zero correlation.

,! Zero correlation does not imply independence. For two normal
random variables, it does.

,! Independence implies zero correlation.

,! Negative correlation corresponds to downward-sloping scatter-
plots.

,! Positive correlation corresponds to upward-sloping scatterplots.

,! Fisher’s Z-transform helps us in testing hypotheses on correlation.

,! For small samples, Fisher’s Z-transform can be improved by the
transformationW � D W � 3WCtanh.W /

4.n�1/ .

3.3 Summary Statistics

This section focuses on the representation of basic summary statistics (means,
covariances and correlations) in matrix notation, since we often apply linear
transformations to data. The matrix notation allows us to derive instantaneously
the corresponding characteristics of the transformed variables. The Mahalanobis
transformation is a prominent example of such linear transformations.

Assume that we have observed n realisations of a p-dimensional random
variable; we have a data matrix X .n � p/:

X D

0

B
B
B
B
@

x11 � � � x1p
:::

:::
:::

:::

xn1 � � � xnp

1

C
C
C
C
A
: (3.16)

The rows xi D .xi1; : : : ; xip/ 2 R
p denote the i th observation of a p-dimensional

random variable X 2 R
p.



90 3 Moving to Higher Dimensions

The statistics that were briefly introduced in Sects. 3.1 and 3.2 can be rewritten in
matrix form as follows. The “centre of gravity” of the n observations in R

p is given
by the vector x of the means xj of the p variables:

x D

0

B
@

x1
:::

xp

1

C
A D n�1X>1n: (3.17)

The dispersion of the n observations can be characterised by the covariance
matrix of the p variables. The empirical covariances defined in (3.2) and (3.3) are
the elements of the following matrix:

S D n�1X>X � x x> D n�1.X>X � n�1X>1n1>n X /: (3.18)

Note that this matrix is equivalently defined by

S D 1

n

nX

iD1
.xi � x/.xi � x/>:

The covariance formula (3.18) can be rewritten as S D n�1X>HX with the
centering matrix

H D In � n�11n1>n : (3.19)

Note that the centering matrix is symmetric and idempotent. Indeed,

H2 D .In � n�11n1>n /.In � n�11n1>n /
D In � n�11n1>n � n�11n1>n C .n�11n1>n /.n�11n1>n /
D In � n�11n1>n D H:

As a consequence S is positive semidefinite, i.e.

S � 0: (3.20)

Indeed for all a 2 R
p ,

a>Sa D n�1a>X>HXa

D n�1.a>X>H>/.HXa/ since H>H D H;

D n�1y>y D n�1
pX

jD1
y2j � 0
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for y D HXa. It is well known from the one-dimensional case that n�1
Pn

iD1.xi �
x/2 as an estimate of the variance exhibits a bias of the order n�1 (Breiman, 1973).
In the multi-dimensional case, Su D n

n�1 S is an unbiased estimate of the true
covariance. (This will be shown in Example 4.15.)

The sample correlation coefficient between the i th and j th variables is rXiXj , see
(3.8). If D D diag.sXiXi /, then the correlation matrix is

R D D�1=2SD�1=2; (3.21)

where D�1=2 is a diagonal matrix with elements .sXiXi /
�1=2 on its main diagonal.

Example 3.8 The empirical covariances are calculated for the pullover data set.
The vector of the means of the four variables in the dataset is x D

.172:7; 104:6; 104:0; 93:8/>.

The sample covariance matrix is S D

0

B
B
@

1037:2 �80:2 1430:7 271:4
�80:2 219:8 92:1 �91:6
1430:7 92:1 2624 210:3

271:4 �91:6 210:3 177:4

1

C
C
A :

The unbiased estimate of the variance (n D 10) is equal to

Su D 10

9
S D

0

B
B
@

1152:5 �88:9 1589:7 301:6

�88:9 244:3 102:3 �101:8
1589:7 102:3 2915:6 233:7

301:6 �101:8 233:7 197:1

1

C
C
A :

The sample correlation matrix is R D

0

B
B
@

1 �0:17 0:87 0:63

�0:17 1 0:12 �0:46
0:87 0:12 1 0:31

0:63 �0:46 0:31 1

1

C
C
A :

Linear Transformation

In many practical applications we need to study linear transformations of the
original data. This motivates the question of how to calculate summary statistics
after such linear transformations.

Let A be a (q � p) matrix and consider the transformed data matrix

Y D XA> D .y1; : : : ; yn/>: (3.22)
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The row yi D .yi1; : : : ; yiq/ 2 R
q can be viewed as the i th observation

of a q-dimensional random variable Y D AX . In fact we have yi D xiA>.
We immediately obtain the mean and the empirical covariance of the variables
(columns) forming the data matrix Y:

y D 1

n
Y>1n D 1

n
AX>1n D Ax (3.23)

SY D 1

n
Y>HY D 1

n
AX>HXA> D ASXA>: (3.24)

Note that if the linear transformation is non-homogeneous, i.e.

yi D Axi C b where b.q � 1/;

only (3.23) changes: y D Ax C b. The formulas (3.23) and (3.24) are useful in the
particular case of q D 1, i.e. y D Xa, i.e. yi D a>xi I i D 1; : : : ; n:

y D a>x
Sy D a>SX a:

Example 3.9 Suppose that X is the pullover data set. The manager wants to
compute his mean expenses for advertisement (X3) and sales assistant (X4).

Suppose that the sales assistant charges an hourly wage of 10 EUR. Then the
shop manager calculates the expenses Y as Y D X3 C 10X4. Formula (3.22) says
that this is equivalent to defining the matrix A.4 � 1/ as:

A D .0; 0; 1; 10/:

Using formulas (3.23) and (3.24), it is now computationally very easy to obtain the
sample mean y and the sample variance Sy of the overall expenses:

y D Ax D .0; 0; 1; 10/

0

B
B
@

172:7

104:6

104:0

93:8

1

C
C
A D 1042:0

SY D ASXA> D .0; 0; 1; 10/

0

B
B
@

1152:5 �88:9 1589:7 301:6

�88:9 244:3 102:3 �101:8
1589:7 102:3 2915:6 233:7

301:6 �101:8 233:7 197:1

1

C
C
A

0

B
B
@

0

0

1

10

1

C
C
A

D 2915:6C 4674C 19710D 27299:6:
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Mahalanobis Transformation

A special case of this linear transformation is

zi D S�1=2.xi � x/; i D 1; : : : ; n: (3.25)

Note that for the transformed data matrix Z D .z1; : : : ; zn/>,

SZ D n�1Z>HZ D Ip: (3.26)

So the Mahalanobis transformation eliminates the correlation between the variables
and standardises the variance of each variable. If we apply (3.24) using A D S�1=2,
we obtain the identity covariance matrix as indicated in (3.26).

Summary
,! The centre of gravity of a data matrix is given by its mean vector

x D n�1X>1n.
,! The dispersion of the observations in a data matrix is given by the

empirical covariance matrix S D n�1X>HX .
,! The empirical correlation matrix is given by R D D�1=2SD�1=2.

,! A linear transformation Y D XA> of a data matrix X has mean
Ax and empirical covariance ASXA>.

,! The Mahalanobis transformation is a linear transformation zi D
S�1=2.xi � x/ which gives a standardised, uncorrelated data
matrix Z .

3.4 Linear Model for Two Variables

We have looked several times now at downward and upward-sloping scatterplots.
What does the eye define here as a slope? Suppose that we can construct a line
corresponding to the general direction of the cloud. The sign of the slope of this
line would correspond to the upward and downward directions. Call the variable on
the vertical axis Y and the one on the horizontal axis X . A slope line is a linear
relationship between X and Y :

yi D ˛ C ˇxi C "i ; i D 1; : : : ; n: (3.27)
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Here, ˛ is the intercept and ˇ is the slope of the line. The errors (or deviations from
the line) are denoted as "i and are assumed to have zero mean and finite variance
�2. The task of finding .˛; ˇ/ in (3.27) is referred to as a linear adjustment.

In Sect. 3.6 we shall derive estimators for ˛ and ˇ more formally, as well as
accurately describe what a “good” estimator is. For now, one may try to find a
“good” estimator . Ǫ ; Ǒ/ via graphical techniques. A very common numerical and
statistical technique is to use those Ǫ and Ǒ that minimise:

. Ǫ ; Ǒ/ D arg min
.˛;ˇ/

nX

iD1
.yi � ˛ � ˇxi /2: (3.28)

The solution to this task are the estimators:

Ǒ D sXY

sXX
(3.29)

Ǫ D y � Ǒx: (3.30)

The variance of Ǒ is:

Var. Ǒ/ D �2

n � sXX
: (3.31)

The standard error (SE) of the estimator is the square root of (3.31),

SE. Ǒ/ D fVar. Ǒ/g1=2 D �

.n � sXX/1=2
: (3.32)

We can use this formula to test the hypothesis that ˇ D 0. In an application the
variance �2 has to be estimated by an estimator O�2 that will be given below. Under
a normality assumption of the errors, the t-test for the hypothesis ˇ D 0 works as
follows.

One computes the statistic

t D
Ǒ

SE. Ǒ/ (3.33)

and rejects the hypothesis at a 5 % significance level if j t j� t0:975In�2, where the
97.5 % quantile of the Student’s tn�2 distribution is clearly the 95 % critical value
for the two-sided test. For n � 30, this can be replaced by 1.96, the 97.5 % quantile
of the normal distribution. An estimator O�2 of �2 will be given in the following.

Example 3.10 Let us apply the linear regression model (3.27) to the “classic blue”
pullovers. The sales manager believes that there is a strong dependence on the
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Fig. 3.5 Regression of sales (X1) on price (X2) of pullovers MVAregpull

number of sales as a function of price. He computes the regression line as shown in
Fig. 3.5.

How good is this fit? This can be judged via goodness-of-fit measures. Define

byi D Ǫ C Ǒxi ; (3.34)

as the predicted value of y as a function of x. With Oy the textile shop manager in
the above example can predict sales as a function of prices x. The variation in the
response variable is:

nsYY D
nX

iD1
.yi � y/2: (3.35)

The variation explained by the linear regression (3.27) with the predicted values
(3.34) is:

nX

iD1
.byi � y/2: (3.36)

The residual sum of squares, the minimum in (3.28), is given by:

RSS D
nX

iD1
.yi �byi /2: (3.37)



96 3 Moving to Higher Dimensions

An unbiased estimatorb�2 of �2 is given by RSS=.n � 2/.
The following relation holds between (3.35) and (3.37):

nX

iD1
.yi � y/2 D

nX

iD1
.byi � y/2 C

nX

iD1
.yi �byi/2; (3.38)

Total variation D Explained variationC Unexplained variation:

The coefficient of determination is r2:

r2 D

nP

iD1
.byi � y/2

nP

iD1
.yi � y/2

D explained variation

total variation
� (3.39)

The coefficient of determination increases with the proportion of explained variation
by the linear relation (3.27). In the extreme cases where r2 D 1, all of the variation
is explained by the linear regression (3.27). The other extreme, r2 D 0, is where
the empirical covariance is sXY D 0. The coefficient of determination can be
rewritten as

r2 D 1 �

nP

iD1
.yi �byi /2

nP

iD1
.yi � y/2

: (3.40)

From (3.39), it can be seen that in the linear regression (3.27), r2 D r2XY is the
square of the correlation between X and Y .

Example 3.11 For the above pullover example, we estimate

Ǫ D 210:774 and Ǒ D �0:364:

The coefficient of determination is

r2 D 0:028:

The textile shop manager concludes that sales are not influenced very much by the
price (in a linear way).

The geometrical representation of formula (3.38) can be graphically evaluated
using Fig. 3.6. This plot shows a section of the linear regression of the “sales”
on “price” for the pullovers data. The distance between any point and the overall
mean is given by the distance between the point and the regression line and the
distance between the regression line and the mean. The sums of these two distances
represent the total variance (solid blue lines from the observations to the overall
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Fig. 3.6 Regression of sales
(X1) on price (X2) of
pullovers. The overall mean is
given by the dashed line
MVAregzoom
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Fig. 3.7 Regression of X5
(upper inner frame) on X4
(lower inner frame) for
genuine bank notes
MVAregbank
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mean), i.e. the explained variance (distance from the regression curve to the mean)
and the unexplained variance (distance from the observation to the regression line),
respectively.

In general the regression of Y on X is different from that of X on Y . We will
demonstrate this, once again, using the Swiss bank notes data.

Example 3.12 The least squares fit of the variables X4 (X ) and X5 (Y ) from
the genuine bank notes are calculated. Figure 3.7 shows the fitted line if X5 is
approximated by a linear function of X4. In this case the parameters are

Ǫ D 15:464 and Ǒ D �0:638:
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If we predict X4 by a function of X5 instead, we would arrive at a different
intercept and slope

Ǫ D 14:666 and Ǒ D �0:626:

The linear regression of Y on X is given by minimising (3.28), i.e. the vertical
errors "i . The linear regression of X on Y does the same, but here the errors
to be minimised in the least squares sense are measured horizontally. As seen in
Example 3.12, the two least squares lines are different although both measure (in a
certain sense) the slope of the cloud of points.

As shown in the next example, there is still one other way to measure the
main direction of a cloud of points: it is related to the spectral decomposition of
covariance matrices.

Example 3.13 Suppose that we have the following covariance matrix:

† D
�
1 �

� 1

�

:

Figure 3.8 shows a scatterplot of a sample of two normal random variables with
such a covariance matrix (with � D 0:8).

The eigenvalues of † are, as was shown in Example 2.4, solutions to:

ˇ
ˇ
ˇ
ˇ
1 � � �

� 1 � �
ˇ
ˇ
ˇ
ˇ D 0:

Fig. 3.8 Scatterplot for a
sample of two correlated
normal random variables
(sample size n D 150,
� D 0:8) MVAcorrnorm
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Hence, �1 D 1 C � and �2 D 1 � �. Therefore ƒ D diag.1 C �; 1 � �/. The
eigenvector corresponding to �1 D 1 C � can be computed from the system of
linear equations:

�
1 �

� 1

��
x1
x2

�

D .1C �/
�
x1
x2

�

or

x1 C �x2 D x1 C �x1
�x1 C x2 D x2 C �x2

and thus

x1 D x2:

The first (standardised) eigenvector is

�1 D
�
1
ıp

2

1
ıp

2

�

:

The direction of this eigenvector is the diagonal in Fig. 3.8 and captures the main
variation in this direction. We shall come back to this interpretation in Chap. 11. The
second eigenvector (orthogonal to �1) is

�2 D
�

1
ıp

2

�1ıp2
�

:

So finally

	 D .�1; �2/ D
�
1
ıp

2 1
ıp

2

1
ıp

2 �1ıp2
�

and we can check our calculation by

† D 	 ƒ 	> :

The first eigenvector captures the main direction of a point cloud. The linear
regression of Y on X and X on Y accomplished, in a sense, the same thing. In
general the direction of the eigenvector and the least squares slope are different.
The reason is that the least squares estimator minimises either vertical or horizontal
errors (in (3.28)), whereas the first eigenvector corresponds to a minimisation that
is orthogonal to the eigenvector (see Chap. 11).
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Summary
,! The linear regression y D ˛ C ˇx C " models a linear relation

between two one-dimensional variables.
,! The sign of the slope Ǒ is the same as that of the covariance and the

correlation of x and y.
,! A linear regression predicts values of Y given a possible observa-

tion x of X .
,! The coefficient of determination r2 measures the amount of varia-

tion in Y which is explained by a linear regression on X .
,! If the coefficient of determination is r2 D 1, then all points lie on

one line.
,! The regression line of X on Y and the regression line of Y on X

are in general different.

,! The t-test for the hypothesis ˇ D 0 is t D Ǒ
SE. Ǒ/ , where SE. Ǒ/ D

O�
.n�sXX/1=2

.

,! The t-test rejects the null hypothesis ˇ D 0 at the level of
significance ˛ if j t j� t1�˛=2In�2 where t1�˛In�2 is the 1 � ˛=2
quantile of the Student’s t-distribution with .n � 2/ degrees of
freedom.

,! The standard error SE. Ǒ/ increases/decreases with less/more
spread in the X variables.

,! The direction of the first eigenvector of the covariance matrix of
a two-dimensional point cloud is different from the least squares
regression line.

3.5 Simple Analysis of Variance

In a simple (i.e. one-factorial) analysis of variance (ANOVA), it is assumed that
the average values of the response variable y are induced by one simple factor.
Suppose that this factor takes on p values and that for each factor level, we have
m D n=p observations. The sample is of the form given in Table 3.1, where all of
the observations are independent.

The goal of a simple ANOVA is to analyse the observation structure

ykl D �l C "kl for k D 1; : : : ; m; and l D 1; : : : ; p: (3.41)

Each factor has a mean value �l . Each observation ykl is assumed to be a sum of the
corresponding factor mean value �l and a zero mean random error "kl. The linear
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Table 3.1 Observation
structure of a simple ANOVA

Sample element Factor levels l

1 y11 � � � y1l � � � y1p

2
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

k yk1 � � � ykl � � � ykp
:
:
:

:
:
:

:
:
:

:
:
:

m D n=p ym1 � � � yml � � � ymp

Table 3.2 Pullover sales as
function of marketing
strategy

Shop Marketing strategy

k Factor l

1 2 3

1 9 10 18

2 11 15 14

3 10 11 17

4 12 15 9

5 7 15 14

6 11 13 17

7 12 7 16

8 10 15 14

9 11 13 17

10 13 10 15

regression model falls into this scheme with m D 1, p D n and �i D ˛ C ˇxi ,
where xi is the i th level value of the factor.

Example 3.14 The “classic blue” pullover company analyses the effect of three
marketing strategies
1. advertisement in local newspaper,
2. presence of sales assistant,
3. luxury presentation in shop windows.

All of these strategies are tried in ten different shops. The resulting sale
observations are given in Table 3.2.

There are p D 3 factors and n D mp D 30 observations in the data. The “classic
blue” pullover company wants to know whether all three marketing strategies have
the same mean effect or whether there are differences. Having the same effect
means that all �l in (3.41) equal one value, �. The hypothesis to be tested is
therefore

H0 W �l D � for l D 1; : : : ; p:
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The alternative hypothesis, that the marketing strategies have different effects, can
be formulated as

H1 W �l ¤ �l 0 for some l and l 0:

This means that one marketing strategy is better than the others.

The method used to test this problem is to compute as in (3.38) the total variation
and to decompose it into the sources of variation. This gives:

pX

lD1

mX

kD1
.ykl � Ny/2 D m

pX

lD1
. Nyl � Ny/2 C

pX

lD1

mX

kD1
.ykl � Nyl /2 (3.42)

The total variation (sum of squaresDSS) is:

SS.reduced/ D
pX

lD1

mX

kD1
.ykl � Ny/2 (3.43)

where Ny D n�1
Pp

lD1
Pm

kD1 ykl is the overall mean. Here the total variation is
denoted as SS(reduced), since in comparison with the model under the alternative
H1, we have a reduced set of parameters. In fact there is 1 parameter � D �l
under H0. Under H1, the “full” model, we have three parameters, namely the three
different means �l .

The variation underH1 is therefore:

SS.full/ D
pX

lD1

mX

kD1
.ykl � Nyl /2 (3.44)

where Nyl D m�1Pm
kD1 ykl is the mean of each factor l . The hypothetical modelH0

is called reduced, since it has (relative to H1) fewer parameters.
The F -test of the linear hypothesis is used to compare the difference in the

variations under the reduced model H0 (3.43) and the full model H1 (3.44) to the
variation under the full modelH1:

F D fSS.reduced/� SS.full/g=fdf .r/� df .f /g
SS.full/=df .f /

: (3.45)

Here df .f / and df .r/ denote the degrees of freedom under the full model and
the reduced model, respectively. The degrees of freedom are essential in spec-
ifying the shape of the F -distribution. They have a simple interpretation: df .�/
is equal to the number of observations minus the number of parameters in the
model.
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From Example 3.14, p D 3 parameters are estimated under the full model, i.e.
df .f / D n � p D 30 � 3 D 27. Under the reduced model, there is one parameter
to estimate, namely the overall mean, i.e. df .r/ D n � 1 D 29. We can compute

SS.reduced/ D 260:3

and

SS.full/ D 157:7:

The F -statistic (3.45) is therefore

F D .260:3� 157:7/=2
157:7=27

D 8:78:

This value needs to be compared to the quantiles of the F2;27 distribution. Looking
up the critical values in a F -distribution shows that the test statistic above is highly
significant. We conclude that the marketing strategies have different effects.

The F -Test in a Linear Regression Model

The t-test of a linear regression model can be put into this framework. For a linear
regression model (3.27), the reduced model is the one with ˇ D 0:

yi D ˛ C 0 � xi C "i :

The reduced model has n�1 degrees of freedom and one parameter, the intercept ˛.
The full model is given by ˇ ¤ 0,

yi D ˛ C ˇ � xi C "i ;

and has n � 2 degrees of freedom, since there are two parameters .˛; ˇ/.
The SS(reduced) equals

SS.reduced/ D
nX

iD1
.yi � Ny/2 D total variation:

The SS(full) equals

SS.full/ D
nX

iD1
.yi � Oyi /2 D RSS D unexplained variation:
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The F -test is therefore, from (3.45),

F D .total variation� unexplained variation/ =1

(unexplained variation)=.n � 2/ (3.46)

D explained variation

(unexplained variation)=.n� 2/ : (3.47)

Using the estimators Ǫ and Ǒ the explained variation is:

nX

iD1
. Oyi � Ny/2 D

nX

iD1

�
Ǫ C Ǒxi � Ny

�2

D
nX

iD1

n
. Ny � Ǒ Nx/C Ǒxi � Ny

o2

D
nX

iD1
Ǒ2.xi � Nx/2

D Ǒ2nsXX :

From (3.32) the F -ratio (3.46) is therefore:

F D
Ǒ2nsXX

RSS=.n � 2/ (3.48)

D
 Ǒ

SE. Ǒ/

!2

: (3.49)

The t-test statistic (3.33) is just the square root of the F -statistic (3.49).
Note, using (3.39) the F -statistic can be rewritten as

F D r2=1

.1 � r2/=.n� 2/ :

In the pullover Example 3.11, we obtain F D 0:028
0:972

8
1
D 0:2305, so that the null

hypothesis ˇ D 0 cannot be rejected. We conclude therefore that there is only a
minor influence of prices on sales.
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Summary
,! Simple ANOVA models an output Y as a function of one factor.

,! The reduced model is the hypothesis of equal means.

,! The full model is the alternative hypothesis of different means.

,! The F -test is based on a comparison of the sum of squares under
the full and the reduced models.

,! The degrees of freedom are calculated as the number of observa-
tions minus the number of parameters.

,! The F -statistic is

F D fSS.reduced/� SS.full/g=fdf .r/� df .f /g
SS.full/=df .f /

:

,! The F -test rejects the null hypothesis if the F -statistic is larger
than the 95 % quantile of the Fdf .r/�df .f /;df .f / distribution.

,! The F -test statistic for the slope of the linear regression model
yi D ˛ C ˇxi C "i is the square of the t-test statistic.

3.6 Multiple Linear Model

The simple linear model and the analysis of variance model can be viewed as a
particular case of a more general linear model where the variations of one variable y
are explained by p explanatory variables x respectively. Let y .n�1/ and X .n�p/
be a vector of observations on the response variable and a data matrix on the p
explanatory variables. An important application of the developed theory is the least
squares fitting. The idea is to approximate y by a linear combination Oy of columns
of X , i.e. Oy 2 C.X /. The problem is to find Ǒ 2 R

p such that Oy D X Ǒ is the best
fit of y in the least-squares sense. The linear model can be written as

y D Xˇ C "; (3.50)

where " are the errors. The least squares solution is given by Ǒ:
Ǒ D arg min

ˇ
.y � Xˇ/>.y � Xˇ/ D arg min

ˇ
">": (3.51)
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Suppose that .X>X / is of full rank and thus invertible. Minimising the expres-
sion (3.51) with respect to ˇ yields:

Ǒ D .X>X /�1X>y: (3.52)

The fitted value Oy D X Ǒ D X .X>X /�1X>y D Py is the projection of y onto
C.X / as computed in (2.47).

The least squares residuals are

e D y � Oy D y � X Ǒ D Qy D .In � P/y:

The vector e is the projection of y onto the orthogonal complement of C.X /.

Remark 3.5 A linear model with an intercept ˛ can also be written in this
framework. The approximating equation is:

yi D ˛ C ˇ1xi1 C � � � C ˇpxip C "i I i D 1; : : : ; n:

This can be written as:

y D X �ˇ� C "

where X � D .1n X / (we add a column of ones to the data). We have by (3.52):

Ǒ� D
� Ǫ
Ǒ
�

D .X �>X �/�1X �>y:

Example 3.15 Let us come back to the “classic blue” pullovers example. In
Example 3.11, we considered the regression fit of the sales X1 on the price X2
and concluded that there was only a small influence of sales by changing the prices.
A linear model incorporating all three variables allows us to approximate sales as
a linear function of price (X2), advertisement (X3) and presence of sales assistants
(X4) simultaneously. Adding a column of ones to the data (in order to estimate the
intercept ˛) leads to

Ǫ D 65:670 and b̌1 D �0:216; b̌2 D 0:485; b̌3 D 0:844:

The coefficient of determination is computed as before in (3.40) and is:

r2 D 1 � e>e
P
.yi � y/2

D 0:907:

We conclude that the variation of X1 is well approximated by the linear relation.
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Remark 3.6 The coefficient of determination is influenced by the number of
regressors. For a given sample size n, the r2 value will increase by adding more
regressors into the linear model. The value of r2 may therefore be high even if
possibly irrelevant regressors are included. An adjusted coefficient of determination
for p regressors and a constant intercept (p C 1 parameters) is

r2adj D r2 �
p.1 � r2/
n � .p C 1/ : (3.53)

Example 3.16 The corrected coefficient of determination for Example 3.15 is

r2adj D 0:907�
3.1� 0:9072/
10 � 3 � 1

D 0:818:

This means that 81:8% of the variation of the response variable is explained by the
explanatory variables.

Note that the linear model (3.50) is very flexible and can model non-linear
relationships between the response y and the explanatory variables x. For example,
a quadratic relation in one variable x could be included. Then yi D ˛ C ˇ1xi C
ˇ2x

2
i C "i could be written in matrix notation as in (3.50), y D Xˇ C " where

X D

0

B
B
B
@

1 x1 x
2
1

1 x2 x
2
2

:::
:::
:::

1 xn x
2
n

1

C
C
C
A
:

Properties of Ǒ

When yi is the i th observation of a random variable Y , the errors are also random.
Under standard assumptions (independence, zero mean and constant variance �2),
inference can be conducted on ˇ. Using the properties of Chap. 4, it is easy to prove:

E. Ǒ/ D ˇ
Var. Ǒ/ D �2.X>X /�1:

The analogue of the t-test for the multivariate linear regression situation is

t D
b̌
j

SE.b̌j /
:
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The standard error of each coefficient b̌j is given by the square root of the diagonal
elements of the matrix Var. Ǒ/. In standard situations, the variance �2 of the error "
is not known. For linear model with intercept, one may estimate it by

O�2 D 1

n � .p C 1/.y � Oy/
>.y � Oy/;

where p is the dimension of ˇ. In testing ˇj D 0 we reject the hypothesis at the
significance level ˛ if jt j � t1�˛=2In�.pC1/. More general issues on testing linear
models are addressed in Chap. 7.

The ANOVA Model in Matrix Notation

The simple ANOVA problem (Sect. 3.5) may also be rewritten in matrix terms.
Recall the definition of a vector of ones from (2.1) and define a vector of zeros
as 0n. Then construct the following (n � p) matrix (here p D 3),

X D
0

@
1m 0m 0m

0m 1m 0m
0m 0m 1m

1

A ; (3.54)

wherem D 10. Equation (3.41) then reads as follows.
The parameter vector is ˇ D .�1; �2; �3/>. The data set from Example 3.14 can

therefore be written as a linear model y D Xˇ C " where y 2 R
n with n D m � p

is the stacked vector of the columns of Table 3.1. The projection into the column
space C.X / of (3.54) yields the least-squares estimator Ǒ D .X>X /�1X>y. Note
that .X>X /�1 D .1=10/I3 and that X>y D .106; 124; 151/> is the sum

Pm
kD1 ykj

for each factor, i.e. the three column sums of Table 3.1. The least squares estimator
is therefore the vector ǑH1 D . O�1; O�2; O�3/ D .10:6; 12:4; 15:1/> of sample means
for each factor level j D 1; 2; 3. Under the null hypothesis of equal mean values
�1 D �2 D �3 D �, we estimate the parameters under the same constraints. This
can be put into the form of a linear constraint:

��1 C �2 D 0
��1 C �3 D 0:

This can be written as Aˇ D a, where

a D
�
0

0

�
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and

A D
��1 1 0
�1 0 1

�

:

The constrained least-squares solution can be shown (Exercise 3.24) to be given by:

Ǒ
H0 D ǑH1 � .X>X /�1A>fA.X>X /�1A>g�1.A ǑH1 � a/: (3.55)

It turns out that (3.55) amounts to simply calculating the overall mean Ny D 12:7 of
the response variable y: ǑH0 D .12:7; 12:7; 12:7/>.

The F -test that has already been applied in Example 3.14 can be written as

F D fjjy � X ǑH0 jj2 � jjy � X ǑH1 jj2g=2
jjy � X ǑH1 jj2=27

(3.56)

which gives the same significant value 8:78. Note that again we compare the RSSH0
of the reduced model to the RSSH1 of the full model. It corresponds to comparing
the lengths of projections into different column spaces. This general approach in
testing linear models is described in detail in Chap. 7.

Summary
,! The relation y D Xˇ C e models a linear relation between a one-

dimensional variable Y and a p-dimensional variable X . Py gives
the best linear regression fit of the vector y onto C.X /. The least
squares parameter estimator is Ǒ D .X>X /�1X>y.

,! The simple ANOVA model can be written as a linear model.

,! The ANOVA model can be tested by comparing the length of the
projection vectors.

,! The test statistic of the F -test can be written as

fjjy � X ǑH0 jj2 � jjy � X ǑH1 jj2g=fdf .r/ � df .f /g
jjy � X ǑH1 jj2=df .f /

:

,! The adjusted coefficient of determination is

r2adj D r2 �
p.1 � r2/
n � .p C 1/ :
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3.7 Boston Housing

The main statistics presented so far can be computed for the data matrix X .506�14/
from our Boston Housing data set. The sample means and the sample medians
of each variable are displayed in Table 3.3. The table also provides the unbiased
estimates of the variance of each variable and the corresponding standard deviations.
The comparison of the means and the medians confirms the asymmetry of the
components of X that was pointed out in Sect. 1.9.

The (unbiased) sample covariance matrix is given by the following .14 � 14/
matrix Sn:
0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

73:99 �40:22 23:99�0:12 0:42 �1:33 85:41 �6:88 46:85 844:82 5:40 �302:38 27:99 �30:72

�40:22 543:94 �85:41�0:25�1:40 5:11�373:90 32:63 �63:35�1236:45�19:78 373:72 �68:78 77:32

23:99 �85:41 47:06 0:11 0:61 �1:89 124:51 �10:23 35:55 833:36 5:69 �223:58 29:58 �30:52

�0:12 �0:25 0:11 0:06 0:00 0:02 0:62 �0:05 �0:02 �1:52 �0:07 1:13 �0:10 0:41

0:42 �1:40 0:61 0:00 0:01 �0:02 2:39 �0:19 0:62 13:05 0:05 �4:02 0:49 �0:46

�1:33 5:11 �1:89 0:02�0:02 0:49 �4:75 0:30 �1:28 �34:58 �0:54 8:22 �3:08 4:49

85:41 �373:90 124:51 0:62 2:39 �4:75 792:36 �44:33 111:77 2402:69 15:94 �702:94 121:08 �97:59

�6:88 32:63 �10:23�0:05�0:19 0:30 �44:33 4:43 �9:07 �189:66 �1:06 56:04 �7:47 4:84

46:85 �63:35 35:55�0:02 0:62 �1:28 111:77 �9:07 75:82 1335:76 8:76 �353:28 30:39 �30:56

844:82�1236:45 833:36�1:52 13:05�34:58 2402:69�189:66 1335:76 28404:76 168:15�6797:91 654:71�726:26

5:40 �19:78 5:69�0:07 0:05 �0:54 15:94 �1:06 8:76 168:15 4:69 �35:06 5:78 �10:11

�302:38 373:72�223:58 1:13�4:02 8:22�702:94 56:04�353:28�6797:91�35:06 8334:75�238:67 279:99

27:99 �68:78 29:58�0:10 0:49 �3:08 121:08 �7:47 30:39 654:71 5:78 �238:67 50:99 �48:45

�30:72 77:32 �30:52 0:41�0:46 4:49 �97:59 4:84 �30:56 �726:26�10:11 279:99 �48:45 84:59

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

and the corresponding correlation matrix R.14 � 14/ is:

Table 3.3 Descriptive
statistics for the Boston
Housing data set
MVAdescbh

X x Median.X/ Var.X/ Std.X/

X1 3:61 0:26 73:99 8:60

X2 11:36 0:00 543:94 23:32

X3 11:14 9:69 47:06 6:86

X4 0:07 0:00 0:06 0:25

X5 0:55 0:54 0:01 0:12

X6 6:28 6:21 0:49 0:70

X7 68:57 77:50 792:36 28:15

X8 3:79 3:21 4:43 2:11

X9 9:55 5:00 75:82 8:71

X10 408:24 330:00 28;405:00 168:54

X11 18:46 19:05 4:69 2:16

X12 356:67 391:44 8;334:80 91:29

X13 12:65 11:36 50:99 7:14

X14 22:53 21:20 84:59 9:20
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0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1:00�0:20 0:41�0:06 0:42�0:22 0:35�0:38 0:63 0:58 0:29�0:39 0:46�0:39
�0:20 1:00�0:53�0:04�0:52 0:31�0:57 0:66�0:31�0:31�0:39 0:18�0:41 0:36

0:41�0:53 1:00 0:06 0:76�0:39 0:64�0:71 0:60 0:72 0:38�0:36 0:60�0:48
�0:06�0:04 0:06 1:00 0:09 0:09 0:09�0:10�0:01�0:04�0:12 0:05�0:05 0:18

0:42�0:52 0:76 0:09 1:00�0:30 0:73�0:77 0:61 0:67 0:19�0:38 0:59�0:43
�0:22 0:31�0:39 0:09�0:30 1:00�0:24 0:21�0:21�0:29�0:36 0:13�0:61 0:70

0:35�0:57 0:64 0:09 0:73�0:24 1:00�0:75 0:46 0:51 0:26�0:27 0:60�0:38
�0:38 0:66�0:71�0:10�0:77 0:21�0:75 1:00�0:49�0:53�0:23 0:29�0:50 0:25

0:63�0:31 0:60�0:01 0:61�0:21 0:46�0:49 1:00 0:91 0:46�0:44 0:49�0:38
0:58�0:31 0:72�0:04 0:67�0:29 0:51�0:53 0:91 1:00 0:46�0:44 0:54�0:47
0:29�0:39 0:38�0:12 0:19�0:36 0:26�0:23 0:46 0:46 1:00�0:18 0:37�0:51
�0:39 0:18�0:36 0:05�0:38 0:13�0:27 0:29�0:44�0:44�0:18 1:00�0:37 0:33

0:46�0:41 0:60�0:05 0:59�0:61 0:60�0:50 0:49 0:54 0:37�0:37 1:00�0:74
�0:39 0:36�0:48 0:18�0:43 0:70�0:38 0:25�0:38�0:47�0:51 0:33�0:74 1:00

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Analysing R confirms most of the comments made from examining the scatterplot
matrix in Chap. 1. In particular, the correlation betweenX14 (the value of the house)
and all the other variables is given by the last row (or column) of R. The highest
correlations (in absolute values) are in decreasing order X13;X6;X11; X10; etc.

Using the Fisher’s Z-transform on each of the correlations between X14 and the
other variables would confirm that all are significantly different from zero, except
the correlation between X14 and X4 (the indicator variable for the Charles River).
We know, however, that the correlation and Fisher’sZ-transform are not appropriate
for binary variable.

The same descriptive statistics can be calculated for the transformed variables
(transformations were motivated in Sect. 1.9). The results are given in Table 3.4
and as can be seen, most of the variables are now more symmetric. Note that the

Table 3.4 Descriptive
statistics for the Boston
Housing data set after the
transformation
MVAdescbh

QX Qx Median. QX/ Var. QX/ Std. QX/
eX1 �0:78 �1:36 4:67 2:16

eX2 1:14 0:00 5:44 2:33

eX3 2:16 2:27 0:60 0:78

eX4 0:07 0:00 0:06 0:25

eX5 �0:61 �0:62 0:04 0:20

eX6 1:83 1:83 0:01 0:11

eX7 5:06 5:29 12:72 3:57

eX8 1:19 1:17 0:29 0:54

eX9 1:87 1:61 0:77 0:87

eX10 5:93 5:80 0:16 0:40

eX11 2:15 2:04 1:86 1:36

eX12 3:57 3:91 0:83 0:91

eX13 3:42 3:37 0:97 0:99

eX14 3:03 3:05 0:17 0:41
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covariances and the correlations are sensitive to these non-linear transformations.
For example, the correlation matrix is now

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1:00�0:52 0:74 0:03 0:81�0:32 0:70�0:74 0:84 0:81 0:45�0:48 0:62�0:57
�0:52 1:00�0:66�0:04�0:57 0:31�0:53 0:59�0:35�0:31�0:35 0:18�0:45 0:36

0:74�0:66 1:00 0:08 0:75�0:43 0:66�0:73 0:58 0:66 0:46�0:33 0:62�0:55
0:03�0:04 0:08 1:00 0:08 0:08 0:07�0:09 0:01�0:04�0:13 0:05�0:06 0:16

0:81�0:57 0:75 0:08 1:00�0:32 0:78�0:86 0:61 0:67 0:34�0:38 0:61�0:52
�0:32 0:31�0:43 0:08�0:32 1:00�0:28 0:28�0:21�0:31�0:32 0:13�0:64 0:61

0:70�0:53 0:66 0:07 0:78�0:28 1:00�0:80 0:47 0:54 0:38�0:29 0:64�0:48
�0:74 0:59�0:73�0:09�0:86 0:28�0:80 1:00�0:54�0:60�0:32 0:32�0:56 0:41

0:84�0:35 0:58 0:01 0:61�0:21 0:47�0:54 1:00 0:82 0:40�0:41 0:46�0:43
0:81�0:31 0:66�0:04 0:67�0:31 0:54�0:60 0:82 1:00 0:48�0:43 0:53�0:56
0:45�0:35 0:46�0:13 0:34�0:32 0:38�0:32 0:40 0:48 1:00�0:20 0:43�0:51
�0:48 0:18�0:33 0:05�0:38 0:13�0:29 0:32�0:41�0:43�0:20 1:00�0:36 0:40

0:62�0:45 0:62�0:06 0:61�0:64 0:64�0:56 0:46 0:53 0:43�0:36 1:00�0:83
�0:57 0:36�0:55 0:16�0:52 0:61�0:48 0:41�0:43�0:56�0:51 0:40�0:83 1:00

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Notice that some of the correlations between eX14 and the other variables have
increased.

If we want to explain the variations of the price eX14 by the variation of all the
other variables eX1; : : : ; eX13 we could estimate the linear model

eX14 D ˇ0 C
13X

jD1
ˇjeXj C ": (3.57)

The result is given in Table 3.5.

Table 3.5 Linear regression
results for all variables of
Boston Housing data set
MVAlinregbh

Variable Ǒ
j SE. Ǒj / t p-Value

Constant 4:1769 0:3790 11:020 0:0000

eX1 �0:0146 0:0117 �1:254 0:2105

eX2 0:0014 0:0056 0:247 0:8051

eX3 �0:0127 0:0223 �0:570 0:5692

eX4 0:1100 0:0366 3:002 0:0028

eX5 �0:2831 0:1053 �2:688 0:0074

eX6 0:4211 0:1102 3:822 0:0001

eX7 0:0064 0:0049 1:317 0:1885

eX8 �0:1832 0:0368 �4:977 0:0000

eX9 0:0684 0:0225 3:042 0:0025

eX10 �0:2018 0:0484 �4:167 0:0000

eX11 �0:0400 0:0081 �4:946 0:0000

eX12 0:0445 0:0115 3:882 0:0001

eX13 �0:2626 0:0161 �16:320 0:0000
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The value of r2 (0.765) and r2adj (0.759) show that most of the variance of X14 is
explained by the linear model (3.57).

Again we see that the variations of eX14 are mostly explained by (in decreasing
order of the absolute value of the t-statistic) eX13; eX8; eX11;eX10; eX12; eX6; eX9; eX4

and eX5. The other variables eX1; eX2; eX3 and eX7 seem to have little influence on
the variations of eX14. This will be confirmed by the testing procedures that will be
developed in Chap. 7.

3.8 Exercises

Exercise 3.1 The covariance sX4X5 between X4 and X5 for the entire bank data
set is positive. Given the definitions of X4 and X5, we would expect a negative
covariance. Using Fig. 3.1 can you explain why sX4X5 is positive?

Exercise 3.2 Consider the two sub-clouds of counterfeit and genuine bank notes in
Fig. 3.1 separately. Do you still expect sX4X5 (now calculated separately for each
cloud) to be positive?

Exercise 3.3 We remarked that for two normal random variables, zero covariance
implies independence. Why does this remark not apply to Example 3.4?

Exercise 3.4 Compute the covariance between the variables

X2 D miles per gallon,

X8 D weight

from the car data set (Table 22.3). What sign do you expect the covariance to have?

Exercise 3.5 Compute the correlation matrix of the variables in Example 3.2.
Comment on the sign of the correlations and test the hypothesis

�X1X2 D 0:

Exercise 3.6 Suppose you have observed a set of observations fxi gniD1 with x D 0,
sXX D 1 and n�1

Pn
iD1.xi � x/3 D 0. Define the variable yi D x2i . Can you

immediately tell whether rXY ¤ 0?

Exercise 3.7 Find formulas (3.29) and (3.30) for Ǫ and Ǒ by differentiating the
objective function in (3.28) w.r.t. ˛ and ˇ.

Exercise 3.8 How many sales does the textile manager expect with a “classic blue”
pullover price of x D 105?

Exercise 3.9 What does a scatterplot of two random variables look like for r2 D 1
and r2 D 0?
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Exercise 3.10 Prove the variance decomposition (3.38) and show that the coeffi-
cient of determination is the square of the simple correlation between X and Y .

Exercise 3.11 Make a boxplot for the residuals "i D yi � Ǫ � Ǒxi for the “classic
blue” pullovers data. If there are outliers, identify them and run the linear regression
again without them. Do you obtain a stronger influence of price on sales?

Exercise 3.12 Under what circumstances would you obtain the same coefficients
from the linear regression lines of Y on X and of X on Y ?

Exercise 3.13 Treat the design of Example 3.14 as if there were thirty shops and
not ten. Define xi as the index of the shop, i.e. xi D i; i D 1; 2; : : : ; 30. The
null hypothesis is a constant regression line, EY D �. What does the alternative
regression curve look like?

Exercise 3.14 Perform the test in Exercise 3.13 for the shop example with a 0:99
significance level. Do you still reject the hypothesis of equal marketing strategies?

Exercise 3.15 Compute an approximate confidence interval for �X1X4 in Exam-
ple 3.2. Hint: start from a confidence interval for tanh�1.�X1X4/ and then apply
the inverse transformation.

Exercise 3.16 In Example 3.2, using the exchange rate of 1 EUR D 106 JPY,
compute the same empirical covariance using prices in Japanese Yen rather than
in Euros. Is there a significant difference? Why?

Exercise 3.17 Why does the correlation have the same sign as the covariance?

Exercise 3.18 Show that rank.H/ D tr.H/ D n� 1.

Exercise 3.19 Show that X� D HXD�1=2 is the standardised data matrix, i.e.
x� D 0 and SX�

D RX .

Exercise 3.20 Compute for the pullovers data the regression of X1 on X2;X3 and
of X1 on X2;X4. Which one has the better coefficient of determination?

Exercise 3.21 Compare for the pullovers data the coefficient of determination for
the regression of X1 on X2 (Example 3.11), of X1 on X2;X3 (Exercise 3.20) and of
X1 on X2;X3;X4 (Example 3.15). Observe that this coefficient is increasing with
the number of predictor variables. Is this always the case?

Exercise 3.22 Consider the ANOVA problem (Sect. 3.5) again. Establish the con-
straint Matrix A for testing �1 D �2. Test this hypothesis via an analog of (3.55)
and (3.56).

Exercise 3.23 Prove (3.52). (Hint, let f .ˇ/ D .y � xˇ/>.y � xˇ/ and solve
@f .ˇ/

@ˇ
D 0.)

Exercise 3.24 Consider the linear model Y D Xˇ C " where Ǒ D arg min
ˇ
">" is

subject to the linear constraints A Ǒ D a where A.q �p/; .q�p/ is of rank q and
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a is of dimension .q � 1/. Show that Ǒ D ǑOLS � .X>X /�1A>
�
A.X>X /�1A>

��1
�
A ǑOLS � a

�
where ǑOLS D .X>X /�1X>y. (Hint, let f .ˇ; �/ D .y � xˇ/>.y �

xˇ/ � �>.Aˇ � a/ where � 2 R
q and solve @f .ˇ;�/

@ˇ
D 0 and @f .ˇ;�/

@�
D 0.)

Exercise 3.25 Compute the covariance matrix S D Cov.X / where X denotes the
matrix of observations on the counterfeit bank notes. Make a Jordan decomposition
of S. Why are all of the eigenvalues positive?

Exercise 3.26 Compute the covariance of the counterfeit notes after they are
linearly transformed by the vector a D .1; 1; 1; 1; 1; 1/>.



Chapter 4
Multivariate Distributions

The preceding chapter showed that by using the two first moments of a multivariate
distribution (the mean and the covariance matrix), a lot of information on the
relationship between the variables can be made available. Only basic statistical
theory was used to derive tests of independence or of linear relationships. In this
chapter we give an introduction to the basic probability tools useful in statistical
multivariate analysis.

Means and covariances share many interesting and useful properties, but they
represent only part of the information on a multivariate distribution. Section 4.1
presents the basic probability tools used to describe a multivariate random variable,
including marginal and conditional distributions and the concept of independence.
In Sect. 4.2, basic properties on means and covariances (marginal and conditional
ones) are derived.

Since many statistical procedures rely on transformations of a multivariate
random variable, Sect. 4.3 proposes the basic techniques needed to derive the
distribution of transformations with a special emphasis on linear transforms. As
an important example of a multivariate random variable, Sect. 4.4 defines the
multinormal distribution. It will be analysed in more detail in Chap. 5 along
with most of its “companion” distributions that are useful in making multivariate
statistical inferences.

The normal distribution plays a central role in statistics because it can be viewed
as an approximation and limit of many other distributions. The basic justification
relies on the central limit theorem presented in Sect. 4.5. We present this central
theorem in the framework of sampling theory. A useful extension of this theorem is
also given: it is an approximate distribution to transformations of asymptotically
normal variables. The increasing power of computers today makes it possible
to consider alternative approximate sampling distributions. These are based on
resampling techniques and are suitable for many general situations. Section 4.8
gives an introduction to the ideas behind bootstrap approximations.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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4.1 Distribution and Density Function

Let X D .X1;X2; : : : ; Xp/
> be a random vector. The cumulative distribution

function (cdf) of X is defined by

F.x/ D P.X � x/ D P.X1 � x1;X2 � x2; : : : ; Xp � xp/:

For continuousX , a nonnegative probability density function (pdf) f exists that

F.x/ D
Z x

�1
f .u/du: (4.1)

Note that
Z 1

�1
f .u/ du D 1:

Most of the integrals appearing below are multidimensional. For instance,R x
�1 f .u/du means

R xp
�1 : : :

R x1
�1 f .u1; : : : ; up/du1 : : : dup: Note also that the cdf

F is differentiable with

f .x/ D @pF.x/

@x1 � � � @xp :

For discrete X , the values of this random variable are concentrated on a countable
or finite set of points fcj gj2J , the probability of events of the form fX 2 Dg can
then be computed as

P.X 2 D/ D
X

fj Wcj2Dg
P.X D cj /:

If we partition X as X D .X1;X2/
> with X1 2 R

k and X2 2 R
p�k , then the

function

FX1.x1/ D P.X1 � x1/ D F.x11; : : : ; x1k;1; : : : ;1/ (4.2)

is called the marginal cdf. F D F.x/ is called the joint cdf. For continuous X
the marginal pdf can be computed from the joint density by “integrating out” the
variable not of interest.

fX1.x1/ D
Z 1

�1
f .x1; x2/dx2: (4.3)
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The conditional pdf of X2 given X1 D x1 is given as

f .x2 j x1/ D f .x1; x2/

fX1.x1/
� (4.4)

Example 4.1 Consider the pdf

f .x1; x2/ D


1
2
x1 C 3

2
x2 0 � x1; x2 � 1;

0 otherwise.

f .x1; x2/ is a density since

Z

f .x1; x2/dx1dx2 D 1

2

�
x21
2

�1

0

C 3

2

�
x22
2

�1

0

D 1

4
C 3

4
D 1:

The marginal densities are

fX1.x1/ D
Z

f .x1; x2/dx2 D
Z 1

0

�
1

2
x1 C 3

2
x2

�

dx2 D 1

2
x1 C 3

4
I

fX2.x2/ D
Z

f .x1; x2/dx1 D
Z 1

0

�
1

2
x1 C 3

2
x2

�

dx1 D 3

2
x2 C 1

4
�

The conditional densities are therefore

f .x2 j x1/ D
1
2
x1 C 3

2
x2

1
2
x1 C 3

4

and f .x1 j x2/ D
1
2
x1 C 3

2
x2

3
2
x2 C 1

4

�

Note that these conditional pdf’s are nonlinear in x1 and x2 although the joint pdf
has a simple (linear) structure.

Independence of two random variables is defined as follows.

Definition 4.1 X1 and X2 are independent iff f .x/ D f .x1; x2/ D
fX1.x1/fX2.x2/.

That is, X1 and X2 are independent if the conditional pdf’s are equal to the
marginal densities, i.e. f .x1 j x2/ D fX1.x1/ and f .x2 j x1/ D fX2.x2/.
Independence can be interpreted as follows: knowing X2 D x2 does not change the
probability assessments on X1, and conversely.

!
Different joint pdf’s may have the same marginal pdf’s.
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Example 4.2 Consider the pdf’s

f .x1; x2/ D 1; 0 < x1; x2 < 1;

and

f .x1; x2/ D 1C ˛.2x1 � 1/.2x2 � 1/; 0 < x1; x2 < 1; �1 � ˛ � 1:

We compute in both cases the marginal pdf’s as

fX1.x1/ D 1; fX2.x2/ D 1:

Indeed

Z 1

0

1C ˛.2x1 � 1/.2x2 � 1/dx2 D 1C ˛.2x1 � 1/Œx22 � x2�10 D 1:

Hence we obtain identical marginals from different joint distributions.

Let us study the concept of independence using the bank notes example. Consider
the variablesX4 (lower inner frame) and X5 (upper inner frame). From Chap. 3, we
already know that they have significant correlation, so they are almost surely not
independent. Kernel estimates of the marginal densities, OfX4 and OfX5 , are given in
Fig. 4.1. In Fig. 4.2 (left) we show the product of these two densities. The kernel
density technique was presented in Sect. 1.3. If X4 and X5 are independent, this
product OfX4 � OfX5 should be roughly equal to Of .x4; x5/, the estimate of the joint
density of .X4;X5/. Comparing the two graphs in Fig. 4.2 reveals that the two
densities are different. The two variablesX4 and X5 are therefore not independent.

An elegant concept of connecting marginals with joint cdfs is given by copulae.
Copulae are important in Value-at-Risk calculations and are an essential tool in
quantitative finance (Härdle, Hautsch, & Overbeck, 2009).

For simplicity of presentation we concentrate on the p D 2 dimensional case.
A two-dimensional copula is a function C W Œ0; 1�2 ! Œ0; 1� with the following
properties:

• For every u 2 Œ0; 1�: C.0; u/ D C.u; 0/ D 0.
• For every u 2 Œ0; 1�: C.u; 1/ D u and C.1; u/ D u.
• For every .u1; u2/; .v1; v2/ 2 Œ0; 1� � Œ0; 1� with u1 � v1 and u2 � v2:

C.v1; v2/� C.v1; u2/� C.u1; v2/C C.u1; u2/ � 0 :

The usage of the name “copula” for the function C is explained by the following
theorem.
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Fig. 4.1 Univariate estimates of the density of X4 (left) and X5 (right) of the bank notes
MVAdenbank2

Fig. 4.2 The product of univariate density estimates (left) and the joint density estimate (right) for
X4 (left) and X5 of the bank notes MVAdenbank3

Theorem 4.1 (Sklar’s Theorem) Let F be a joint distribution function with
marginal distribution functions FX1 and FX2 . Then a copula C exists with

F.x1; x2/ D C fFX1.x1/; FX2.x2/g (4.5)
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for every x1; x2 2 R. If FX1 and FX2 are continuous, then C is unique. On the other
hand, if C is a copula and FX1 and FX2 are distribution functions, then the function
F defined by (4.5) is a joint distribution function with marginals FX1 and FX2 .

With Sklar’s Theorem, the use of the name “copula” becomes obvious. It was
chosen to describe “a function that links a multidimensional distribution to its one-
dimensional margins” and appeared in the mathematical literature for the first time
in Sklar (1959).

Example 4.3 The structure of independence implies that the product of the distri-
bution functions FX1 and FX2 equals their joint distribution function F ,

F.x1; x2/ D FX1.x1/ � FX2.x2/: (4.6)

Thus, we obtain the independence copula C D … from

….u1; : : : ; un/ D
nY

iD1
ui :

Theorem 4.2 Let X1 and X2 be random variables with continuous distribution
functions FX1 and FX2 and the joint distribution function F . Then X1 and X2 are
independent if and only if CX1;X2 D ….

Proof From Sklar’s Theorem we know that there exists an unique copula C with

P.X1 � x1;X2 � x2/ D F.x1; x2/ D C fFX1.x1/; FX2.x2/g : (4.7)

Independence can be seen using (4.5) for the joint distribution function F and the
definition of …,

F.x1; x2/ D C fFX1.x1/; FX2.x2/g D FX1.x1/FX2.x2/ : (4.8)

ut
Example 4.4 The Gumbel–Hougaard family of copulae (Nelsen, 1999) is given by
the function

C�.u; v/ D exp
h
� ˚.� log u/� C .� log v/�

�1=�
i
: (4.9)

The parameter � may take all values in the interval Œ1;1/. The Gumbel–Hougaard
copulae are suited to describe bivariate extreme value distributions.

For � D 1, the expression (4.9) reduces to the product copula, i.e. C1.u; v/ D
….u; v/ D u v. For � !1 one finds for the Gumbel–Hougaard copula:

C�.u; v/�!min.u; v/ DM.u; v/;
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where the function M is also a copula such that C.u; v/ � M.u; v/ for arbitrary
copula C . The copulaM is called the Fréchet–Hoeffding upper bound.

Similarly, we obtain the Fréchet–Hoeffding lower bound W.u; v/ D max.u C
v � 1; 0/ which satisfies W.u; v/ � C.u; v/ for any other copula C .

Summary
,! The cumulative distribution function (cdf) is defined as F.x/ D

P.X < x/.
,! If a probability density function (pdf) f exists then F.x/ DR x

�1 f .u/du.

,! The pdf integrates to one, i.e.
R1
�1 f .x/dx D 1.

,! Let X D .X1;X2/
> be partitioned into sub-vectors X1 and

X2 with joint cdf F . Then FX1.x1/ D P.X1 � x1/ is the
marginal cdf of X1. The marginal pdf of X1 is obtained by
fX1.x1/ D

R1
�1 f .x1; x2/dx2. Different joint pdf’s may have the

same marginal pdf’s.
,! The conditional pdf of X2 given X1 D x1 is defined as f .x2 j

x1/ D f .x1; x2/
fX1.x1/

�
,! Two random variables X1 and X2 are called independent iff

f .x1; x2/ D fX1.x1/fX2.x2/. This is equivalent to f .x2 j x1/ D
fX2.x2/.

,! Different joint pdf’s may have identical marginal pdf’s.

,! Copula is a function which connects marginals to form joint cdfs.

4.2 Moments and Characteristic Functions

Moments: Expectation and Covariance Matrix

If X is a random vector with density f .x/ then the expectation of X is

EX D

0

B
@

EX1
:::

EXp

1

C
A D

Z

xf .x/dx D

0

B
@

R
x1f .x/dx

:::
R
xpf .x/dx

1

C
A D �: (4.10)
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Accordingly, the expectation of a matrix of random elements has to be understood
component by component. The operation of forming expectations is linear:

E .˛X C ˇY / D ˛ EX C ˇ EY: (4.11)

If A.q � p/ is a matrix of real numbers, we have:

E.AX/ D AEX: (4.12)

When X and Y are independent,

E.XY>/ D EX EY >: (4.13)

The matrix

Var.X/ D † D E.X � �/.X � �/> (4.14)

is the (theoretical) covariance matrix. We write for a vector X with mean vector �
and covariance matrix †,

X � .�;†/: (4.15)

The .p � q/ matrix

†XY D Cov.X; Y / D E.X � �/.Y � 
/> (4.16)

is the covariance matrix of X � .�;†XX/ and Y � .
;†YY/. Note that †XY D †>YX

and that Z D
�
X

Y

�
has covariance†ZZ D

�
†XX
†YX

†XY
†YY

�
. From

Cov.X; Y / D E.XY>/� �
> D E.XY>/� EX E Y > (4.17)

it follows that Cov.X; Y / D 0 in the case where X and Y are independent. We
often say that � D E.X/ is the first order moment of X and that E.XX>/ provides
the second order moments of X :

E.XX>/ D fE.XiXj /g; for i D 1; : : : ; p and j D 1; : : : ; p: (4.18)

Properties of the Covariance Matrix † D Var.X/

† D .�XiXj /; �XiXj D Cov.Xi ; Xj /; �XiXi D Var.Xi/ (4.19)

† D E.XX>/� ��> (4.20)

† � 0 (4.21)
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Properties of Variances and Covariances

Var.a>X/ D a>Var.X/a D
X

i;j

aiaj �XiXj (4.22)

Var.AX C b/ D AVar.X/A> (4.23)

Cov.X C Y;Z/ D Cov.X;Z/C Cov.Y;Z/ (4.24)

Var.X C Y / D Var.X/C Cov.X; Y /C Cov.Y;X/C Var.Y / (4.25)

Cov.AX;BY / D ACov.X; Y /B>: (4.26)

Let us compute these quantities for a specific joint density.

Example 4.5 Consider the pdf of Example 4.1. The mean vector � D ��1
�2

�
is

�1 D
Z Z

x1f .x1; x2/dx1dx2 D
Z 1

0

Z 1

0

x1

�
1

2
x1 C 3

2
x2

�

dx1dx2

D
Z 1

0

x1

�
1

2
x1 C 3

4

�

dx1 D 1

2

�
x31
3

�1

0

C 3

4

�
x21
2

�1

0

D 1

6
C 3

8
D 4C 9

24
D 13

24
;

�2 D
Z Z

x2f .x1; x2/dx1dx2 D
Z 1

0

Z 1

0

x2

�
1

2
x1 C 3

2
x2

�

dx1dx2

D
Z 1

0

x2

�
1

4
C 3

2
x2

�

dx2 D 1

4

�
x22
2

�1

0

C 3

2

�
x32
3

�1

0

D 1

8
C 1

2
D 1C 4

8
D 5

8
�

The elements of the covariance matrix are

�X1X1 D EX2
1 � �21 with

EX2
1 D

Z 1

0

Z 1

0

x21

�
1

2
x1 C 3

2
x2

�

dx1dx2 D 1

2

�
x41
4

�1

0

C 3

4

�
x31
3

�1

0

D 3

8

�X2X2 D EX2
2 � �22 with

EX2
2 D

Z 1

0

Z 1

0

x22

�
1

2
x1 C 3

2
x2

�

dx1dx2 D 1

4

�
x32
3

�1

0

C 3

2

�
x42
4

�1

0

D 11

24

�X1X2 D E.X1X2/� �1�2 with
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E.X1X2/ D
Z 1

0

Z 1

0

x1x2

�
1

2
x1 C 3

2
x2

�

dx1dx2 D
Z 1

0

�
1

6
x2 C 3

4
x22

�

dx2

D 1

6

�
x22
2

�1

0

C 3

4

�
x32
3

�1

0

D 1

3
:

Hence the covariance matrix is

† D
�
0:0815 0:0052

0:0052 0:0677

�

:

Conditional Expectations

The conditional expectations are

E.X2 j x1/ D
Z

x2f .x2 j x1/ dx2 and E.X1 j x2/ D
Z

x1f .x1 j x2/ dx1:

(4.27)

E.X2jx1/ represents the location parameter of the conditional pdf of X2 given that
X1 D x1. In the same way, we can define Var.X2jX1 D x1/ as a measure of the
dispersion of X2 given that X1 D x1. We have from (4.20) that

Var.X2jX1 D x1/ D E.X2 X>2 jX1 D x1/� E.X2jX1 D x1/ E.X>2 jX1 D x1/:

Using the conditional covariance matrix, the conditional correlations may be
defined as:

�X2 X3jX1Dx1 D
Cov.X2;X3jX1 D x1/

p
Var.X2jX1 D x1/ Var.X3jX1 D x1/

:

These conditional correlations are known as partial correlations betweenX2 andX3,
conditioned on X1 being equal to x1.

Example 4.6 Consider the following pdf

f .x1; x2; x3/ D 2

3
.x1 C x2 C x3/ where 0 < x1; x2; x3 < 1:
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Note that the pdf is symmetric in x1; x2 and x3 which facilitates the computations.
For instance,

f .x1; x2/ D 2
3
.x1 C x2 C 1

2
/ 0 < x1; x2 < 1

f .x1/ D 2
3
.x1 C 1/ 0 < x1 < 1

and the other marginals are similar. We also have

f .x1; x2jx3/ D x1 C x2 C x3
x3 C 1 ; 0 < x1; x2 < 1

f .x1jx3/ D
x1 C x3 C 1

2

x3 C 1 ; 0 < x1 < 1:

It is easy to compute the following moments:

E.Xi / D 5
9
I E.X2

i / D 7
18
I E.XiXj / D 11

36
.i 6D j and i; j D 1; 2; 3/

E.X1jX3 D x3/ D E.X2jX3 D x3/ D 1
12

�
6x3C7
x3C1

�
I

E.X2
1 jX3 D x3/ D E.X2

2 jX3 D x3/ D 1
12

�
4x3C5
x3C1

�

and

E.X1X2jX3 D x3/ D 1
12

�
3x3C4
x3C1

�
:

Note that the conditional means of X1 and of X2, given X3 D x3, are not linear
in x3. From these moments we obtain:

† D
0

@

13
162
� 1
324
� 1
324

� 1
324

13
162
� 1
324

� 1
324
� 1
324

13
162

1

A in particular �X1X2 D �
1

26
	 �0:0385:

The conditional covariance matrix of X1 and X2, given X3 D x3 is

Var

  
X1

X2

!

j X3 D x3
!

D
0

@
12x23C24x3C11
144.x3C1/2

�1
144.x3C1/2

�1
144.x3C1/2

12x23C24x3C11
144.x3C1/2

1

A :

In particular, the partial correlation between X1 and X2, given that X3 is fixed at x3,
is given by �X1X2jX3Dx3 D � 1

12x23C24x3C11 which ranges from �0:0909 to �0:0213
when x3 goes from 0 to 1. Therefore, in this example, the partial correlation may be
larger or smaller than the simple correlation, depending on the value of the condition
X3 D x3.



128 4 Multivariate Distributions

Example 4.7 Consider the following joint pdf

f .x1; x2; x3/ D 2x2.x1 C x3/I 0 < x1; x2; x3 < 1:

Note the symmetry of x1 and x3 in the pdf and that X2 is independent of .X1;X3/.
It immediately follows that

f .x1; x3/ D .x1 C x3/ 0 < x1; x3 < 1

f .x1/ D x1 C 1

2
I

f .x2/ D 2x2I

f .x3/ D x3 C 1

2
:

Simple computations lead to

E.X/ D

0

B
B
B
@

7
12

2
3

7
12

1

C
C
C
A

and † D
0

@

11
144

0 � 1
144

0 1
18

0

� 1
144

0 11
144

1

A :

Let us analyse the conditional distribution of .X1;X2/ given X3 D x3. We have

f .x1; x2jx3/ D 4.x1 C x3/x2
2x3 C 1 0 < x1; x2 < 1

f .x1jx3/ D 2
�
x1 C x3
2x3 C 1

�

0 < x1 < 1

f .x2jx3/ D f .x2/ D 2x2 0 < x2 < 1

so that again X1 and X2 are independent conditional on X3 D x3. In this case

E

  
X1

X2

!

jX3 D x3
!

D
 
1
3

�
2C3x3
1C2x3

�

2
3

!

Var

  
X1

X2

!

jX3 D x3
!

D
 

1
18

�
6x23C6x3C1
.2x3C1/2

�
0

0 1
18

!

:
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Properties of Conditional Expectations

Since E.X2jX1 D x1/ is a function of x1, say h.x1/, we can define the random
variable h.X1/ D E.X2jX1/. The same can be done when defining the random
variable Var.X2jX1/. These two random variables share some interesting properties:

E.X2/ D EfE.X2jX1/g (4.28)

Var.X2/ D EfVar.X2jX1/g C VarfE.X2jX1/g: (4.29)

Example 4.8 Consider the following pdf

f .x1; x2/ D 2e�
x2
x1 I 0 < x1 < 1; x2 > 0:

It is easy to show that

f .x1/ D 2x1 for 0 < x1 < 1I E.X1/ D 2

3
and Var.X1/ D 1

18

f .x2jx1/ D 1

x1
e
� x2x1 for x2 > 0I E.X2jX1/ D X1 and Var.X2jX1/ D X2

1 :

Without explicitly computing f .x2/, we can obtain:

E.X2/ D E fE.X2jX1/g D E.X1/ D 2

3

Var.X2/ D E fVar.X2jX1/g C Var fE.X2jX1/g

D E.X2
1 /C Var.X1/ D 2

4
C 1

18
D 10

18
:

The conditional expectation E.X2jX1/ viewed as a function h.X1/ ofX1 (known
as the regression function of X2 on X1), can be interpreted as a conditional
approximation of X2 by a function of X1. The error term of the approximation is
then given by:

U D X2 � E.X2jX1/:

Theorem 4.3 Let X1 2 R
k and X2 2 R

p�k and U D X2 � E.X2jX1/. Then we
have:

1. E.U / D 0
2. E.X2jX1/ is the best approximation of X2 by a function h.X1/ of X1 where h W

R
k �! R

p�k . “Best” is the minimum mean squared error (MSE) sense, where

MSE.h/ D EŒfX2 � h.X1/g> fX2 � h.X1/g�:
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Characteristic Functions

The characteristic function (cf) of a random vectorX 2 R
p (respectively its density

f .x/) is defined as

'X.t/ D E.eit>X/ D
Z

eit>xf .x/ dx; t 2 R
p;

where i is the complex unit: i2 D �1. The cf has the following properties:

'X.0/ D 1 and j'X.t/j � 1: (4.30)

If ' is absolutely integrable, i.e. the integral
R1
�1 j'.x/jdx exists and is finite, then

f .x/ D 1

.2�/p

Z 1

�1
e�it>x'X.t/ dt: (4.31)

If X D .X1;X2; : : : ; Xp/>, then for t D .t1; t2; : : : ; tp/>

'X1.t1/ D 'X.t1; 0; : : : ; 0/; : : : ; 'Xp .tp/ D 'X.0; : : : ; 0; tp/: (4.32)

If X1; : : : ; Xp are independent random variables, then for t D .t1; t2; : : : ; tp/>

'X.t/ D 'X1.t1/� : : : � 'Xp.tp/: (4.33)

If X1; : : : ; Xp are independent random variables, then for t 2 R

'X1C���CXp.t/ D 'X1.t/� : : : � 'Xp.t/: (4.34)

The characteristic function can recover all the cross-product moments of any order:
8jk � 0; k D 1; : : : ; p and for t D .t1; : : : ; tp/> we have

E
�
X
j1
1 � : : : �Xjp

p

�
D 1

ij1C���Cjp

"
@'X.t/

@t
j1
1 : : : @t

jp
p

#

tD0
: (4.35)

Example 4.9 The cf of the density in Example 4.5 is given by

'X.t/ D
Z 1

0

Z 1

0

eit>xf .x/dx

D
Z 1

0

Z 1

0

fcos.t1x1 C t2x2/C i sin.t1x1 C t2x2/g
�
1

2
x1 C 3

2
x2

�

dx1dx2;
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D 0:5 ei t1
�
3 i t1 � 3 i ei t2 t1 C i t2 � i ei t2 t2 C t1 t2 � 4 ei t2 t1 t2

�

t12 t22

� 0:5
�
3 i t1 � 3 i ei t2 t1 C i t2 � i ei t2 t2 � 3 ei t2 t1 t2

�

t12 t22
:

Example 4.10 Suppose X 2 R
1 follows the density of the standard normal

distribution

fX.x/ D 1p
2�

exp

�

�x
2

2

�

(see Sect. 4.4) then the cf can be computed via

'X.t/ D 1p
2�

Z 1

�1
eitx exp

�

�x
2

2

�

dx

D 1p
2�

Z 1

�1
exp




�1
2
.x2 � 2itx C i2t2/




exp



1

2
i2t2




dx

D exp

�

� t
2

2

� Z 1

�1
1p
2�

exp




� .x � it/2

2




dx

D exp

�

� t
2

2

�

;

since i2 D �1 and
R

1p
2�

exp
n
� .x�it /2

2

o
dx D 1.

A variety of distributional characteristics can be computed from 'X.t/. The
standard normal distribution has a very simple cf, as was seen in Example 4.10.
Deviations from normal covariance structures can be measured by the deviations
from the cf (or characteristics of it). In Table 4.1 we give an overview of the cf’s for
a variety of distributions.

Theorem 4.4 (Cramer–Wold) The distribution of X 2 R
p is completely deter-

mined by the set of all (one-dimensional) distributions of t>X where t 2 R
p .

Table 4.1 Characteristic functions for some common distributions

pdf cf

Uniform f .x/D I.x 2 Œa; b�/=.b � a/ 'X.t/ D .eibt � eiat /=.b � a/it
N1.�; �

2/ f .x/D .2��2/�1=2expf�.x � �/2=2�2g 'X.t/ D ei�t��2t2=2

�2.n/ f .x/D I.x > 0/xn=2�1e�x=2=f	.n=2/2n=2g 'X.t/ D .1� 2it /�n=2

Np.�;†/ f .x/D j2�†j�1=2expf�.x � �/>†.x � �/=2g 'X.t/ D eit>��t>†t=2
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This theorem says that we can determine the distribution of X in R
p by

specifying all of the one-dimensional distributions of the linear combinations

pX

jD1
tjXj D t>X; t D .t1; t2; : : : ; tp/>:

Cumulant Functions

Moments mk D
R
xkf .x/dx often help in describing distributional characteristics.

The normal distribution in d D 1 dimension is completely characterised by its
standard normal density f D ' and the moment parameters are � D m1 and
�2 D m2 � m2

1 . Another helpful class of parameters are the cumulants or semi-
invariants of a distribution. In order to simplify notation we concentrate here on the
one-dimensional (d D 1) case.

For a given one-dimensional random variable X with density f and finite
moments of order k the characteristic function 'X.t/ D E.eitX / has the derivative

1

ij

�
@j log f'X.t/g

@tj

�

tD0
D �j ; j D 1; : : : ; k:

The values �j are called cumulants or semi-invariants since �j does not change
(for j > 1) under a shift transformation X 7! X C a. The cumulants are natural
parameters for dimension reduction methods, in particular the Projection Pursuit
method (see Sect. 20.2).

The relationship between the first k moments m1; : : : ; mk and the cumulants is
given by

�k D .�1/k�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

m1 1 : : : 0

m2

�
1

0

�

m1 : : :

:::
:::

: : :
:::

mk

�
k � 1
0

�

mk�1 : : :
�
k � 1
k � 2

�

m1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

: (4.36)

Example 4.11 Suppose that k D 1, then formula (4.36) above yields

�1 D m1:
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For k D 2 we obtain

�2 D �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

m1 1

m2

�
1

0

�

m1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D m2 �m2

1:

For k D 3 we have to calculate

�3 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

m1 1 0

m2 m1 1

m3 m2 2m1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

Calculating the determinant we have:

�3 D m1

ˇ
ˇ
ˇ
ˇ
m1 1

m2 2m1

ˇ
ˇ
ˇ
ˇ�m2

ˇ
ˇ
ˇ
ˇ
1 0

m2 2m1

ˇ
ˇ
ˇ
ˇCm3

ˇ
ˇ
ˇ
ˇ
1 0

m1 1

ˇ
ˇ
ˇ
ˇ

D m1.2m
2
1 �m2/�m2.2m1/Cm3

D m3 � 3m1m2 C 2m3
1: (4.37)

Similarly one calculates

�4 D m4 � 4m3m1 � 3m2
2 C 12m2m

2
1 � 6m4

1: (4.38)

The same type of process is used to find the moments from the cumulants:

m1 D �1
m2 D �2 C �21
m3 D �3 C 3�2�1 C �31
m4 D �4 C 4�3�1 C 3�22 C 6�2�21 C �41 : (4.39)

A very simple relationship can be observed between the semi-invariants and the
central moments �k D E.X � �/k , where � D m1 as defined before. In fact,
�2 D �2, �3 D �3 and �4 D �4 � 3�22.

Skewness �3 and kurtosis �4 are defined as:

�3 D E.X � �/3=�3
�4 D E.X � �/4=�4: (4.40)
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The skewness and kurtosis determine the shape of one-dimensional distributions.
The skewness of a normal distribution is 0 and the kurtosis equals 3. The relation of
these parameters to the cumulants is given by:

�3 D �3

�
3=2
2

(4.41)

From (4.39) and Example 4.11

�4 D �4 C 3�22 C �41 �m4
1

�4
D �4 C 3�22

�22
D �4

�22
C 3: (4.42)

These relations will be used later in Sect. 20.2 on Projection Pursuit to determine
deviations from normality.

Summary
,! The expectation of a random vector X is � D R

xf.x/ dx, the
covariance matrix† D Var.X/ D E.X ��/.X ��/>. We denote
X � .�;†/.

,! Expectations are linear, i.e. E.˛X C ˇY / D ˛ EX C ˇ EY . If X
and Y are independent, then E.XY>/ D EX EY >.

,! The covariance between two random vectors X and Y is †XY D
Cov.X; Y / D E.X � EX/.Y � EY /> D E.XY>/ � EX E Y >.
If X and Y are independent, then Cov.X; Y / D 0.

,! The characteristic function (cf) of a random vector X is 'X.t/ D
E.eit>X/.

,! The distribution of a p-dimensional random variable X is com-
pletely determined by all one-dimensional distributions of t>X
where t 2 R

p (Theorem of Cramer–Wold).
,! The conditional expectation E.X2jX1/ is the MSE best approxima-

tion of X2 by a function of X1.
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4.3 Transformations

Suppose that X has pdf fX.x/. What is the pdf of Y D 3X? Or if X D
.X1;X2;X3/

>, what is the pdf of

Y D
0

@
3X1

X1 � 4X2
X3

1

A‹

This is a special case of asking for the pdf of Y when

X D u.Y / (4.43)

for a one-to-one transformation u: Rp ! R
p . Define the Jacobian of u as

J D
�
@xi

@yj

�

D
�
@ui .y/

@yj

�

and let abs.jJ j/ be the absolute value of the determinant of this Jacobian. The pdf
of Y is given by

fY .y/ D abs.jJ j/ � fX fu.y/g: (4.44)

Using this we can answer the introductory questions, namely

.x1; : : : ; xp/
> D u.y1; : : : ; yp/ D 1

3
.y1; : : : ; yp/

>

with

J D

0

B
@

1
3

0

: : :

0 1
3

1

C
A

and hence abs.jJ j/ D � 1
3

�p
. So the pdf of Y is

1

3p
fX

�y

3

�
.

This introductory example is a special case of

Y D AX C b; where A is nonsingular.

The inverse transformation is

X D A�1.Y � b/:
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Therefore

J D A�1;

and hence

fY .y/ D abs.jAj�1/fX fA�1.y � b/g: (4.45)

Example 4.12 Consider X D .X1;X2/ 2 R
2 with density fX.x/ D fX.x1; x2/,

A D
�
1 1

1 �1
�

; b D
�
0

0

�

:

Then

Y D AX C b D
�
X1 CX2
X1 �X2

�

and

jAj D �2; abs.jAj�1/ D 1

2
; A�1 D �1

2

��1 �1
�1 1

�

:

Hence

fY .y/ D abs.jAj�1/ � fX.A�1y/

D 1

2
fX



1

2

�
1 1

1 �1
��

y1

y2

�


D 1

2
fX



1

2
.y1 C y2/; 1

2
.y1 � y2/




: (4.46)

Example 4.13 Consider X 2 R
1 with density fX.x/ and Y D exp.X/. According

to (4.43) x D u.y/ D log.y/ and hence the Jacobian is

J D dx

dy
D 1

y
:

The pdf of Y is therefore:

fY .y/ D 1

y
fX flog.y/g:
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Summary
,! If X has pdf fX.x/, then a transformed random vector Y , i.e. X D

u.Y /, has pdf fY .y/ D abs.jJ j/ � fX fu.y/g, where J denotes the

Jacobian J D
�
@u.yi /
@yj

�
.

,! In the case of a linear relation Y D AX C b the pdf’s of X and Y
are related via fY .y/ D abs.jAj�1/fX fA�1.y � b/g.

4.4 The Multinormal Distribution

The multinormal distribution with mean � and covariance† > 0 has the density

f .x/ D j2�†j�1=2 exp




�1
2
.x � �/>†�1.x � �/




: (4.47)

We write X � Np.�;†/.
How is this multinormal distribution with mean � and covariance † related to

the multivariate standard normal Np.0; Ip/? Through a linear transformation using
the results of Sect. 4.3, as shown in the next theorem.

Theorem 4.5 Let X �Np.�;†/ and Y D †�1=2.X � �/ (Mahalanobis transfor-
mation). Then

Y � Np.0; Ip/;

i.e. the elements Yj 2 R are independent, one-dimensionalN.0; 1/ variables.

Proof Note that .X � �/>†�1.X � �/ D Y >Y . Application of (4.45) gives J D
†1=2, hence

fY .y/ D .2�/�p=2 exp

�

�1
2
y>y

�

(4.48)

which is by (4.47) the pdf of a Np.0; Ip/. ut



138 4 Multivariate Distributions

Note that the above Mahalanobis transformation yields in fact a random variable
Y D .Y1; : : : ; Yp/> composed of independent one-dimensionalYj � N1.0; 1/ since

fY .y/ D 1

.2�/p=2
exp

�

�1
2
y>y

�

D
pY

jD1

1p
2�

exp

�

�1
2
y2j

�

D
pY

jD1
fYj .yj /:

Here each fYj .y/ is a standard normal density 1p
2�

exp
�
� y2

2

�
. From this it is clear

that E.Y / D 0 and Var.Y / D Ip .
How can we create Np.�;†/ variables on the basis of Np.0; Ip/ variables? We

use the inverse linear transformation

X D †1=2Y C �: (4.49)

Using (4.11) and (4.23) we can also check that E.X/ D � and Var.X/ D †. The
following theorem is useful because it presents the distribution of a variable after it
has been linearly transformed. The proof is left as an exercise.

Theorem 4.6 Let X � Np.�;†/ and A.p � p/; c 2 R
p , where A is nonsingular.

Then Y D AX C c is again a p-variate Normal, i.e.

Y � Np.A�C c;A†A>/: (4.50)

Geometry of the Np.�; †/ Distribution

From (4.47) we see that the density of the Np.�;†/ distribution is constant on
ellipsoids of the form

.x � �/>†�1.x � �/ D d2: (4.51)

Example 4.14 Figure 4.3 shows the contour ellipses of a two-dimensional normal
distribution. Note that these contour ellipses are the iso-distance curves (2.34) from
the mean of this normal distribution corresponding to the metric †�1.
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According to Theorem 2.7 in Sect. 2.6 the half-lengths of the axes in the contour
ellipsoid are

p
d2�i where �i are the eigenvalues of †. If † is a diagonal matrix,

the rectangle circumscribing the contour ellipse has sides with length 2d�i and is
thus naturally proportional to the standard deviations of Xi .i D 1; 2/.

The distribution of the quadratic form in (4.51) is given in the next theorem.

Theorem 4.7 If X � Np.�;†/, then the variable U D .X ��/>†�1.X ��/ has
a �2p distribution.

Theorem 4.8 The characteristic function (cf) of a multinormal Np.�;†/ is
given by

'X.t/ D exp

�

i t>� � 1
2
t>†t

�

: (4.52)

We can check Theorem 4.8 by transforming the cf back:

f .x/ D 1

.2�/p

Z

exp

�

�it>x C it>� � 1
2
t>†t

�

dt

D 1

j2�†�1j1=2j2�†j1=2
Z

exp
�

�1
2
ft>†t C 2it>.x � �/ � .x � �/>†�1.x � �/g

�
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� exp

�

�1
2
f.x � �/>†�1.x � �/g

�

dt

D 1

j2�†j1=2 exp
�

�1
2
f.x � �/>†.x � �/g

�

since

Z
1

j2�†�1j1=2 exp

�

�1
2
ft>†t C 2it>.x � �/ � .x � �/>†�1.x � �/g

�

dt

D
Z

1

j2�†�1j1=2 exp

�

�1
2
f.t C i†�1.x � �//>†.t C i†�1.x � �//g

�

dt

D 1:

Note that if Y � Np.0; Ip/, then

'Y .t/ D exp

�

�1
2
t>Ipt

�

D exp

 

�1
2

pX

iD1
t2i

!

D 'Y1.t1/ � : : : � 'Yp.tp/

which is consistent with (4.33).

Singular Normal Distribution

Suppose that we have rank.†/ D k < p, where p is the dimension of X . We define
the (singular) density of X with the aid of the G-Inverse†� of †,

f .x/ D .2�/�k=2

.�1 � � ��k/1=2 exp




�1
2
.x � �/>†�.x � �/




(4.53)

where

1. x lies on the hyperplane N>.x ��/ D 0 with N .p � .p � k// W N>† D 0 and
N>N D Ik .

2. †� is the G-Inverse of †, and �1; : : : ; �k are the nonzero eigenvalues of †.

What is the connection to a multinormal with k-dimensions? If

Y � Nk.0;ƒ1/ and ƒ1 D diag.�1; : : : ; �k/; (4.54)

then an orthogonal matrix B.p�k/with B>B D Ik exists that meansX D BY C�
where X has a singular pdf of the form (4.53).
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Gaussian Copula

In Examples 4.3 and 4.4 we have introduced copulae. Another important copula is
the Gaussian or normal copula,

C�.u; v/ D
Z ˆ�1

1 .u/

�1

Z ˆ�1
2 .v/

�1
f�.x1; x2/dx2dx1 ; (4.55)

see Embrechts, McNeil, and Straumann (1999). In (4.55), f� denotes the bivariate
normal density function with correlation � for n D 2. The functions ˆ1 and ˆ2
in (4.55) refer to the corresponding one-dimensional standard normal cdfs of the
margins.

In the case of vanishing correlation, � D 0, the Gaussian copula becomes

C0.u; v/ D
Z ˆ�1

1 .u/

�1
fX1.x1/dx1

Z ˆ�1
2 .v/

�1
fX2.x2/dx2

D u v

D ….u; v/ :

Summary
,! The pdf of a p-dimensional multinormalX � Np.�;†/ is

f .x/ D j2�†j�1=2 exp




�1
2
.x � �/>†�1.x � �/




:

The contour curves of a multinormal are ellipsoids with half-
lengths proportional to

p
�i , where �i denotes the eigenvalues of

† (i D 1; : : : ; p).
,! The Mahalanobis transformation transforms X � Np.�;†/ to

Y D †�1=2.X � �/ � Np.0; Ip/. Going in the other direction,
one can create a X � Np.�;†/ from Y � Np.0; Ip/ via X D
†1=2Y C �.

,! If the covariance matrix † is singular (i.e. rank.†/ < p), then it
defines a singular normal distribution.



142 4 Multivariate Distributions

Summary (continued)

,! The Gaussian copula is given by

C�.u; v/ D
Z ˆ�1

1 .u/

�1

Z ˆ�1
2 .v/

�1
f�.x1; x2/dx2dx1 :

,! The density of a singular normal distribution is given by

.2�/�k=2

.�1 � � ��k/1=2 exp




�1
2
.x � �/>†�.x � �/




:

4.5 Sampling Distributions and Limit Theorems

In multivariate statistics, we observe the values of a multivariate random variable
X and obtain a sample fxi gniD1, as described in Chap. 3. Under random sampling,
these observations are considered to be realisations of a sequence of i.i.d. random
variablesX1; : : : ; Xn, where eachXi is a p-variate random variable which replicates
the parent or population random variable X . Some notational confusion is hard to
avoid: Xi is not the i th component of X , but rather the i th replicate of the p-variate
random variable X which provides the i th observation xi of our sample.

For a given random sample X1; : : : ; Xn, the idea of statistical inference is to
analyse the properties of the population variable X . This is typically done by
analysing some characteristic � of its distribution, like the mean, covariance matrix,
etc. Statistical inference in a multivariate setup is considered in more detail in
Chaps. 6 and 7.

Inference can often be performed using some observable function of the sample
X1; : : : ; Xn, i.e. a statistics. Examples of such statistics were given in Chap. 3: the
sample mean x, the sample covariance matrix S. To get an idea of the relationship
between a statistics and the corresponding population characteristic, one has to
derive the sampling distribution of the statistic. The next example gives some insight
into the relation of .x; S/ to .�;†/.

Example 4.15 Consider an iid sample of n random vectors Xi 2 R
p where

E.Xi / D � and Var.Xi/ D †. The sample mean x and the covariance matrix
S have already been defined in Sect. 3.3. It is easy to prove the following results:

E.x/ D n�1
nP

iD1
E.Xi/ D �

Var.x/ D n�2
nP

iD1
Var.Xi/ D n�1† D E.x x>/� ��>
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E.S/ D n�1 E



nP

iD1
.Xi � x/.Xi � x/>




D n�1 E



nP

iD1
XiX

>
i � n x x>




D n�1
˚
n
�
†C ��>� � n �n�1†C ��>��

D n�1
n
†:

This shows in particular that S is a biased estimator of †. By contrast, Su D n
n�1S

is an unbiased estimator of †.

Statistical inference often requires more than just the mean and/or the variance
of a statistic. We need the sampling distribution of the statistics to derive confidence
intervals or to define rejection regions in hypothesis testing for a given significance
level. Theorem 4.9 gives the distribution of the sample mean for a multinormal
population.

Theorem 4.9 Let X1; : : : ; Xn be i.i.d. with Xi � Np.�;†/. Then x �
Np.�; n

�1†/.

Proof x D n�1
Pn

iD1 Xi is a linear combination of independent normal variables,
so it has a normal distribution (see Chap. 5). The mean and the covariance matrix
were given in the preceding example. ut

With multivariate statistics, the sampling distributions of the statistics are often
more difficult to derive than in the preceding Theorem. In addition they might
be so complicated that approximations have to be used. These approximations
are provided by limit theorems. Since they are based on asymptotic limits, the
approximations are only valid when the sample size is large enough. In spite of this
restriction, they make complicated situations rather simple. The following central
limit theorem shows that even if the parent distribution is not normal, when the
sample size n is large, the sample mean Nx has an approximate normal distribution.

Theorem 4.10 (Central Limit Theorem (CLT)) Let X1;X2; : : : ; Xn be i.i.d. with
Xi � .�;†/. Then the distribution of

p
n.x � �/ is asymptotically Np.0;†/, i.e.

p
n.x � �/ L�! Np.0;†/ as n �!1:

The symbol “
L�!” denotes convergence in distribution which means that the

distribution function of the random vector
p
n. Nx � �/ converges to the distribution

function of Np.0;†/.
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Example 4.16 Assume that X1; : : : ; Xn are i.i.d. and that they have Bernoulli
distributions where p D 1

2
(this means that P.Xi D 1/ D 1

2
; P.Xi D 0/ D 1

2
/.

Then � D p D 1
2

and † D p.1 � p/ D 1
4
. Hence,

p
n

�

x � 1
2

�
L�! N1

�

0;
1

4

�

as n �!1:

The results are shown in Fig. 4.4 for varying sample sizes.

Example 4.17 Now consider a two-dimensional random sample X1; : : : ; Xn that is
i.i.d. and created from two independent Bernoulli distributions with p D 0:5. The
joint distribution is given by P.Xi D .0; 0/>/ D 1

4
; P.Xi D .0; 1/>/ D 1

4
; P.Xi D

.1; 0/>/ D 1
4
; P.Xi D .1; 1/>/ D 1

4
. Here we have

p
n

(

x �
 
1
2
1
2

!)

D N2
  
0

0

!

;

 
1
4

0

0
1
4

!!

as n �!1:

Figure 4.5 displays the estimated two-dimensional density for different sample
sizes.

The asymptotic normal distribution is often used to construct confidence intervals
for the unknown parameters. A confidence interval at the level 1 � ˛; ˛ 2 .0; 1/, is
an interval that covers the true parameter with probability 1 � ˛:

P.� 2 Œb� l ;b� u�/ D 1 � ˛;

where � denotes the (unknown) parameter and b�l and b�u are the lower and upper
confidence bounds, respectively.

Example 4.18 Consider the i.i.d. random variables X1; : : : ; Xn with Xi � .�; �2/
and �2 known. Since we have

p
n.x��/ L! N.0; �2/ from the CLT, it follows that

P

�

�u1�˛=2 �
p
n
.x � �/
�

� u1�˛=2
�

�! 1 � ˛; as n �!1

where u1�˛=2 denotes the .1 � ˛=2/-quantile of the standard normal distribution.
Hence the interval

�

x � �p
n

u1�˛=2; x C �p
n

u1�˛=2
�

is an approximate .1 � ˛/-confidence interval for �.

But what can we do if we do not know the variance �2? The following corollary
gives the answer.
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Fig. 4.4 The CLT for
Bernoulli distributed random
variables. Sample size n D 5

(up) and n D 35 (down)
MVAcltbern
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Corollary 4.1 If O† is a consistent estimate for †, then the CLT still holds, namely

p
n b†�1=2.x � �/ L�! Np.0; I/ as n �!1:
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Fig. 4.5 The CLT in the two-dimensional case. Sample size n D 5 (left) and n D 85 (right)
MVAcltbern2

Example 4.19 Consider the i.i.d. random variables X1; : : : ; Xn with Xi � .�; �2/,
and now with an unknown variance �2. From Corollary 4.1 usingb�2 D 1

n

Pn
iD1.xi�

x/2 we obtain

p
n

�
x � �
O�

�
L�! N.0; 1/ as n �!1:

Hence we can construct an approximate .1� ˛/-confidence interval for � using the
variance estimate O�2:

C1�˛ D
�

x � O�p
n

u1�˛=2; x C O�p
n

u1�˛=2
�

:

Note that by the CLT

P.� 2 C1�˛/ �! 1 � ˛ as n �!1:

Remark 4.1 One may wonder how large should n be in practice to provide
reasonable approximations. There is no definite answer to this question: it mainly
depends on the problem at hand (the shape of the distribution of the Xi and the
dimension of Xi ). If the Xi are normally distributed, the normality of x is achieved
from n D 1. In most situations, however, the approximation is valid in one-
dimensional problems for n larger than, say, 50.
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Transformation of Statistics

Often in practical problems, one is interested in a function of parameters for
which one has an asymptotically normal statistic. Suppose for instance that we are
interested in a cost function depending on the mean � of the process: f .�/ D
�>A� where A > 0 is given. To estimate � we use the asymptotically normal
statistic x. The question is: how does f .x/ behave? More generally, what happens
to a statistic t that is asymptotically normal when we transform it by a function
f .t/? The answer is given by the following theorem.

Theorem 4.11 If
p
n.t � �/ L�! Np.0;†/ and if f D .f1; : : : ; fq/

> W Rp !
R
q are real valued functions which are differentiable at � 2 R

p , then f .t/ is
asymptotically normal with mean f .�/ and covariance D>†D, i.e.

p
nff .t/ � f .�/g L�! Nq.0;D>†D/ for n �!1; (4.56)

where

D D
�
@fj

@ti

�

.t/

ˇ
ˇ
ˇ
ˇ
tD�

is the .p � q/ matrix of all partial derivatives.

Example 4.20 We are interested in seeing how f .x/ D x>Ax behaves asymp-
totically with respect to the quadratic cost function of �; f .�/ D �>A�, where
A > 0.

D D @f .x/

@x

ˇ
ˇ
ˇ
ˇ
xD�
D 2A�:

By Theorem 4.11 we have

p
n.x>Ax � �>A�/ L�! N1 .0; 4�

>A†A�/:

Example 4.21 Suppose

Xi � .�;†/I � D
 
0

0

!

; † D
�
1 0:5

0:5 1

�

; p D 2:

We have by the CLT (Theorem 4.10) for n!1 that

p
n.x � �/ L�! N.0;†/:
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Suppose that we would like to compute the distribution of

�
x21 � x2
x1 C 3x2

�

. According

to Theorem 4.11 we have to consider f D .f1; f2/> with

f1.x1; x2/ D x21 � x2; f2.x1; x2/ D x1 C 3x2; q D 2:

Given this f .�/ D �0
0

�
and

D D .dij/; dij D
�
@fj

@xi

�ˇ
ˇ
ˇ
ˇ
xD�
D
�
2x1 1

�1 3
�ˇ
ˇ
ˇ
ˇ
xD0

:

Thus

D D
�

0 1

�1 3
�

:

The covariance is

�
0 �1
1 3

� �
1 1
2

1
2
1

� �
0 1

�1 3
�

D
�
0 �1
1 3

� �� 1
2
5
2

�1 7
2

�

D
�

1 � 7
2

� 7
2
13

�

D> † D D> †D D>†D
;

which yields

p
n

�
x21 � x2
x1 C 3x2

�
L�! N2

  
0

0

!

;

�
1 � 7

2

� 7
2
13

�!

:

Example 4.22 Let us continue the previous example by adding one more compo-
nent to the function f . Since q D 3 > p D 2, we might expect a singular normal
distribution. Consider f D .f1; f2; f3/> with

f1.x1; x2/ D x21 � x2; f2.x1; x2/ D x1 C 3x2; f3 D x32 ; q D 3:

From this we have that

D D
�

0 1 0

�1 3 0
�

and thus D>†D D
0

@
1 � 7

2
0

� 7
2
13 0

0 0 0

1

A :

The limit is in fact a singular normal distribution!
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Summary
,! If X1; : : : ; Xn are i.i.d. random vectors with Xi � Np.�;†/, then

Nx � Np.�; 1n†/.
,! If X1; : : : ; Xn are i.i.d. random vectors with Xi � .�;†/, then the

distribution of
p
n.x��/ is asymptoticallyN.0;†/ (Central Limit

Theorem).
,! If X1; : : : ; Xn are i.i.d. random variables with Xi � .�; �/, then

an asymptotic confidence interval can be constructed by the CLT:
x ˙ O�p

n
u1�˛=2.

,! If t is a statistic that is asymptotically normal, i.e.
p
n.t � �/ L�!

Np.0;†/, then this holds also for a function f .t/, i.e.
p
nff .t/ �

f .�/g is asymptotically normal.

4.6 Heavy-Tailed Distributions

Heavy-tailed distributions were first introduced by the Italian-born Swiss economist
Pareto and extensively studied by Paul Lévy. Although in the beginning these
distributions were mainly studied theoretically, nowadays they have found many
applications in areas as diverse as finance, medicine, seismology, structural engi-
neering. More concretely, they have been used to model returns of assets in
financial markets, stream flow in hydrology, precipitation and hurricane damage
in meteorology, earthquake prediction in seismology, pollution, material strength,
teletraffic and many others.

A distribution is called heavy-tailed if it has higher probability density in its
tail area compared with a normal distribution with same mean � and variance �2.
Figure 4.6 demonstrates the differences of the pdf curves of a standard Gaussian
distribution and a Cauchy distribution with location parameter � D 0 and scale
parameter � D 1. The graphic shows that the probability density of the Cauchy
distribution is much higher than that of the Gaussian in the tail part, while in the
area around the centre, the probability density of the Cauchy distribution is much
lower.

In terms of kurtosis, a heavy-tailed distribution has kurtosis greater than 3 (see
Chap. 4, formula (4.40)), which is called leptokurtic, in contrast to mesokurtic dis-
tribution (kurtosisD 3) and platykurtic distribution (kurtosis< 3). Since univariate
heavy-tailed distributions serve as basics for their multivariate counterparts and their
density properties have been proved useful even in multivariate cases, we will start
from introducing some univariate heavy-tailed distributions. Then we will move on
to analyse their multivariate counterparts and their tail behaviour.
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Generalised Hyperbolic Distribution

The generalised hyperbolic distribution was introduced by Barndorff-Nielsen and at
first applied to model grain size distributions of wind blown sands. Today one of
its most important uses is in stock price modelling and market risk measurement.
The name of the distribution is derived from the fact that its log-density forms a
hyperbola, while the log-density of the normal distribution is a parabola (Fig. 4.7).
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The density of a one-dimensional generalised hyperbolic (GH) distribution for
x 2 R is

fGH.xI�; ˛; ˇ; ı; �/

D
�p
˛2 � ˇ2=ı��p

2�K�.ı
p
˛2 � ˇ2/

K��1=2
˚
˛
p
ı2 C .x � �/2�

p
ı2 C .x � �/2=˛/1=2�� eˇ.x��/ (4.57)

whereK� is a modified Bessel function of the third kind with index �

K�.x/ D 1

2

Z 1

0

y��1e�
x
2 .yCy�1/dy (4.58)

The domain of variation of the parameters is � 2 R and

ı � 0; jˇj < ˛; if � > 0

ı > 0; jˇj < ˛; if � D 0
ı > 0; jˇj � ˛; if � < 0

The generalised hyperbolic distribution has the following mean and variance

EŒX� D �C ıˇ
p
˛2 � ˇ2

K�C1.ı
p
˛2 � ˇ2/

K�.ı
p
˛2 � ˇ2/ (4.59)

VarŒX� D ı2
"

K�C1.ı
p
˛2 � ˇ2/

ı
p
˛2 � ˇ2K�.ı

p
˛2 � ˇ2/ C

ˇ2

˛2 � ˇ2
�
K�C2.ı

p
˛2 � ˇ2/

K�.ı
p
˛2 � ˇ2/

�


K�C1.ı

p
˛2 � ˇ2/

K�.ı
p
˛2 � ˇ2/


 2�
#

(4.60)

Where � and ı play important roles in the density’s location and scale respectively.
With specific values of �, we obtain different sub-classes of GH such as hyperbolic
(HYP) or normal-inverse Gaussian (NIG) distribution.

For � D 1 we obtain the hyperbolic distributions (HYP)

fHYP.xI˛; ˇ; ı; �/ D
p
˛2 � ˇ2

2˛ıK1.ı
p
˛2 � ˇ2/e

f�˛
p
ı2C.x��/2Cˇ.x��/g (4.61)

where x; � 2 R; ı � 0 and jˇj < ˛. For � D �1=2 we obtain the NIG distribution

fNIG.xI˛; ˇ; ı; �/ D ˛ı

�

K1

�
˛
p
.ı2 C .x � �/2/�

p
ı2 C .x � �/2 efı

p
˛2�ˇ2Cˇ.x��/g (4.62)
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Student’s t-Distribution

The t-distribution was first analysed by Gosset (1908) who published it under
pseudonym “Student” by request of his employer. Let X be a normally distributed
random variable with mean � and variance �2, and Y be the random variable such
that Y 2=�2 has a chi-square distribution with n degrees of freedom. Assume that X
and Y are independent, then

t
defD X

p
n

Y
(4.63)

is distributed as Student’s t with n degrees of freedom. The t-distribution has the
following density function

ft .xIn/ D
	
�
nC1
2

�

p
n�	

�
n
2

�

 

1C x2

n

!� nC1
2

(4.64)

where n is the number of degrees of freedom, �1 < x <1, and 	 is the gamma
function:

	.˛/ D
Z 1

0

x˛�1e�xdx: (4.65)

The mean, variance, skewness and kurtosis of Student’s t-distribution .n > 4/ are:

� D 0
�2 D n

n � 2
Skewness D 0

Kurtosis D 3C 6

n � 4 :

The t-distribution is symmetric around 0, which is consistent with the fact that its
mean is 0 and skewness is also 0 (Fig. 4.8).

Student’s t-distribution approaches the normal distribution as n increases, since

lim
n!1ft .xIn/ D

1p
2�
e�

x2

2 : (4.66)

In practice the t-distribution is widely used, but its flexibility of modelling is
restricted because of the integer-valued tail index.

In the tail area of the t-distribution, x is proportional to jxj�.nC1/. In Fig. 4.13
we compared the tail-behaviour of t-distribution with different degrees of freedom.
With higher degree of freedom, the t-distribution decays faster.
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Fig. 4.8 pdf (left) and cdf (right) of t -distribution with different degrees of freedom (t3 stands for
t -distribution with degree of freedom 3) MVAtdis

Laplace Distribution

The univariate Laplace distribution with mean zero was introduced by Laplace
(1774). The Laplace distribution can be defined as the distribution of differences
between two independent variates with identical exponential distributions. There-
fore it is also called the double exponential distribution (Fig. 4.9).

The Laplace distribution with mean � and scale parameter � has the pdf

fLaplace.xI�; �/ D 1

2�
e�

jx��j

� (4.67)

and the cdf

FLaplace.xI�; �/ D 1

2




1C sign.x � �/.1 � e� jx��j

� /




; (4.68)

where sign is sign function. The mean, variance, skewness and kurtosis of the
Laplace distribution are

� D �
�2 D 2�2

Skewness D 0
Kurtosis D 6

With mean 0 and � D 1, we obtain the standard Laplace distribution
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Fig. 4.9 pdf (left) and cdf (right) of Laplace distribution with zero mean and different scale
parameters (L1 stands for Laplace distribution with � D 1) MVAlaplacedis

f .x/ D e�jxj

2
(4.69)

F.x/ D


ex

2
for x < 0

1 � e�x

2
for x � 0 (4.70)

Cauchy Distribution

The Cauchy distribution is motivated by the following example.

Example 4.23 A gangster has just robbed a bank. As he runs to a point s metres
away from the wall of the bank, a policeman reaches the crime scene behind the
wall of the bank. The robber turns back and starts to shoot but he is such a poor
shooter that the angle of his fire (marked in Fig. 4.10 as ˛) is uniformly distributed.
The bullets hit the wall at distance x (from the centre). Obviously the distribution
of x, the random variable where the bullet hits the wall, is of vital knowledge to the
policeman in order to identify the location of the gangster. (Should the policeman
calculate the mean or the median of the observed bullet hits fxi gniD1 in order to
identify the location of the robber?)

Since ˛ is uniformly distributed:

f .˛/ D 1

�
I.˛ 2 Œ��=2; �=2�/
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Fig. 4.10 Introduction to Cauchy distribution—robber vs. policeman

and

tan ˛ D x

s

˛ D arctan
�x

s

�

d˛ D 1

s

1

1C . x
s
/2

dx

For a small interval d˛, the probability is given by

f .˛/d˛ D 1

�
d˛

D 1

s�

1

1C � x
s

�2 dx

with

Z �
2

� �2

1

�
d˛ D 1
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Z 1

�1
1

s�

1

1C � x
s

�2 dx D 1

�

n
arctan

�x

s

�o1
�1

D 1

�

n�

2
�
�
� �
2

�o

D 1

So the pdf of x can be written as:

f .x/ D 1

s�

1

1C . x
s
/2

The general formula for the pdf and cdf of the Cauchy distribution is

fCauchy.xIm; s/ D 1

s�

1

1C . x�m
s
/2

(4.71)

FCauchy.xIm; s/ D 1

2
C 1

�
arctan

�
x �m
s

�

(4.72)

where m and s are location and scale parameter respectively. The case in the above
example where m D 0 and s D 1 is called the standard Cauchy distribution with
pdf and cdf as following,

fCauchy.x/ D 1

�.1C x2/ (4.73)

FCauchy.xIm; s/ D 1

2
C arctan.x/

�
(4.74)

The mean, variance, skewness and kurtosis of Cauchy distribution are all undefined,
since its moment generating function diverges. But it has mode and median, both
equal to the location parameterm (Fig. 4.11).

Mixture Model

Mixture modelling concerns modelling a statistical distribution by a mixture (or
weighted sum) of different distributions. For many choices of component density
functions, the mixture model can approximate any continuous density to arbitrary
accuracy, provided that the number of component density functions is sufficiently
large and the parameters of the model are chosen correctly. The pdf of a mixture
distribution consists of n distributions and can be written as:



4.6 Heavy-Tailed Distributions 157

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

X

Y

C1
C1.5
C2

PDF of Cauchy distribution

−6 −4 −2 0 2 4 6

0.
2

0.
4

0.
6

0.
8

X

Y

C1
C1.5
C2

CDF of Cauchy distribution

●

●

●

●

●

●

Fig. 4.11 pdf (left) and cdf (right) of Cauchy distribution with m D 0 and different scale
parameters (C1 stands for Cauchy distribution with s D 1) MVAcauchy

f .x/ D
LX

lD1
wlpl .x/ (4.75)

under the constraints:

0 � wl � 1
LX

lD1
wl D 1

Z

pl.x/dx D 1

where pl.x/ is the pdf of the l’th component density and wl is a weight. The mean,
variance, skewness and kurtosis of a mixture are

� D
LX

lD1
wl�l (4.76)

�2 D
LX

lD1
wlf�2l C .�l � �/2g (4.77)

Skewness D
LX

lD1
wl

(�
�l

�

�3

SKl C 3�2l .�l � �/
�3

C
�
�l � �
�

�3
)

(4.78)
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Kurtosis D
LX

lD1
wl

(�
�l

�

�4

Kl C 6.�l � �/2�2l
�4

C 4.�l � �/�3l
�4

SKl

C
�
�l � �
�

�4
)

; (4.79)

where �l; �l ; SKl and Kl are respectively mean, variance, skewness and kurtosis of
l’th distribution.

Mixture models are ubiquitous in virtually every facet of statistical analysis,
machine learning and data mining. For data sets comprising continuous vari-
ables, the most common approach involves mixture distributions having Gaussian
components.

The pdf for a Gaussian mixture is:

fGM.x/ D
LX

lD1

wlp
2��l

e
� .x��l /

2

2�2
l : (4.80)

For a Gaussian mixture consisting of Gaussian distributions with mean 0, this can
be simplified to:

fGM.x/ D
LX

lD1

wlp
2��l

e
� x2

2�2
l ; (4.81)

with variance, skewness and kurtosis

�2 D
LX

lD1
wl�

2
l (4.82)

Skewness D 0 (4.83)

Kurtosis D
LX

lD1
wl

�
�l

�

�4

3 (4.84)

Example 4.24 Consider a Gaussian Mixture which is 80 % N(0,1) and 20 % N(0,9).
The pdf of N(0,1) and N(0,9) are (Fig. 4.12):

fN.0;1/.x/ D 1p
2�
e�

x2

2

fN.0;9/.x/ D 1

3
p
2�
e�

x2

18

so the pdf of the Gaussian Mixture is
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Fig. 4.12 pdf (left) and cdf (right) of a Gaussian mixture (Example 4.24) MVAmixture

Table 4.2 Basic statistics of
t , Laplace and Cauchy
distribution

t Laplace Cauchy

Mean 0 � Not defined

Variance n
n�2

2�2 Not defined

Skewness 0 0 Not defined

Kurtosis 3C 6
n�4

6 Not defined

fGM.x/ D 1

5
p
2�

�
4e� x

2

2 C 1

3
e� x2

18

�

Notice that the Gaussian Mixture is not a Gaussian distribution:

� D 0
�2 D 0:8 � 1C 0:2 � 9 D 2:6

Skewness D 0

Kurtosis D 0:8 �
�

1p
2:6

�4

� 3C 0:2 �
� p

9p
2:6

�4

� 3 D 7:54

The kurtosis of this Gaussian mixture is higher than 3.

A summary of the basic statistics is given in Tables 4.2 and 4.3.
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Table 4.3 Basic statistics of GH distribution and mixture model

GH

Mean �C ıˇp
˛2Cˇ2

K�C1.ı
p

˛2Cˇ2/

K�.ı
p
˛2Cˇ2/

Variance ı2

"
K�C1.ı

p
˛2Cˇ2/

ı
p
˛2Cˇ2K�.ı

p
˛2Cˇ2/

C ˇ2

˛2Cˇ2

�
K�C2.ı

p
˛2Cˇ2/

K�.ı
p
˛2Cˇ2/

�


K�C1.ı

p
˛2Cˇ2/

K�.ı
p
˛2Cˇ2/


 2�
#

Mixture

Mean
PL

lD1 wl�l

Variance
PL

lD1 wlf�2l C .�l � �/2g

Skewness
PL

lD1 wl

(�
�l
�

�3

SKl C 3�2l .�l��/

�3
C
�
�l��

�

�3
)

Kurtosis
PL

lD1 wl

(�
�l
�

�4

Kl C 6.�l��/2�2l
�4

C 4.�l��/�3l
�4

SKl C
�
�l��

�

�4
)

Multivariate Generalised Hyperbolic Distribution

The multivariate Generalised Hyperbolic Distribution (GHd ) has the following pdf

fGHd .xI�; ˛; ˇ; ı;
;�/ D ad
K�� d2

n
˛
p
ı2 C .x � �/>
�1.x � �/

o

n
˛�1

p
ı2 C .x � �/>
�1.x � �/

o d
2��

eˇ
>.x��/

(4.85)

ad D ad .�; ˛; ˇ; ı;
/ D
�p

˛2 � ˇ>
ˇ=ı
��

.2�/
d
2 K�.ı

p
˛2 � ˇ>
ˇ

; (4.86)

and characteristic function

�.t/ D
�

˛2 � ˇ>
ˇ
˛2 � ˇ>
ˇ C 1

2
t>
t � iˇ>
t

� �
2

�
K�

�
ı

q

˛2 � ˇ>
ˇ> C 1
2
t>
t � iˇ>
t

�

K�

�
ı
p
˛2 � ˇ>
ˇ>

� (4.87)
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These parameters have the following domain of variation:

� 2 R; ˇ; � 2 R
d

ı > 0; ˛ > ˇ>
ˇ

 2 R

d�d positive definite matrix
j
j D 1

For � D dC1
2

we obtain the multivariate hyperbolic (HYP) distribution; for � D � 1
2

we get the multivariate normal inverse Gaussian (NIG) distribution.

Blæsild and Jensen (1981) introduced a second parameterisation (�;…;†), where

� D ı
q

˛2 � ˇ>
ˇ (4.88)

… D ˇ
s




˛2 � ˇ>
ˇ (4.89)

† D ı2
 (4.90)

The mean and variance of X � GHd

EŒX� D �C ıR�.�/…
1
2 (4.91)

VarŒX� D ı2˚��1R�.�/
C S�.�/.…
1
2 />.…


1
2 /
�

(4.92)

where

R�.x/ D K�C1.x/
K�.x/

(4.93)

S�.x/ D
K�C2.x/K�.x/ �K2

�C1.x/
K2
�.x/

(4.94)

Theorem 4.12 Suppose thatX is a d -dimensional variate distributed according to
the generalised hyperbolic distribution GHd . Let .X1;X2/ be a partitioning of X ,
let r and k denote the dimensions of X1 and X2, respectively, and let .ˇ1; ˇ2/ and
.�1; �2/ be similar partitions of ˇ and �, let


 D
�

11 
12


21 
22

�

(4.95)



162 4 Multivariate Distributions

be a partition of 
 such that 
11 is a r � r matrix. Then one has the following

1. The distribution of X1 is the r-dimensional generalised hyperbolic distribution,
GHr .�

�; ˛�; ˇ�; ı�; ��; 
�/, where

�� D �

˛� D j
11j� 1
2r f˛2 � ˇ2.
22 �
21


�1
11 
12/ˇ

>
2 g

1
2

ˇ� D ˇ1 C ˇ2
21

�1
11

ı� D ıj
11j
1
2�

�� D �1


� D j
j� 1r 
11

2. The conditional distribution of X2 given X1 D x1 is the k-dimensional
generalised hyperbolic distribution GHk. Q�; Q̨ ; Q̌; Qı; Q�; Q
),where

Q� D � � r
2

Q̨ D ˛j
11j 12k
Q̌ D ˇ2
Qı D j
11j� 1

2k fı2 C .x1 � �1/
�111 .x1 � �1/>g
1
2

Q� D �2 C .x1 � �1/
�111 
12

Q
 D j
11j 1k .
22 �
21

�1
11 
12/

3. Let Y D XA C B be a regular affine transformation of X and let
jjAjj denote the absolute value of the determinant of A. The distri-
bution of Y is the d -dimensional generalised hyperbolic distribution
GHd .�

C; ˛C; ˇC; ıC; �C; 
C/,where

�C D �

˛C D ˛jjAjj� 1
d

ˇC D ˇ.A�1/>

ıC D jjAjj 1d
�C D �ACB

C D jjAjj� 2

d A>
A
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Multivariate t-Distribution

If X and Y are independent and distributed as Np.�;†/ and X 2
n respectively, and

X
p
n=Y D t � �, then the pdf of t is given by

ft .t In;†;�/ D 	 f.nC p/=2g
	.n=2/np=2�p=2 j†j1=2 ˚1C 1

n
.t � �/>†�1.t � �/�.nCp/=2

(4.96)

The distribution of t is the noncentral t-distribution with n degrees of freedom and
the noncentrality parameter �, Giri (1996).

Multivariate Laplace Distribution

Let g and G be the pdf and cdf of a d -dimensional Gaussian distribution Nd.0;†/,
the pdf and cdf of a multivariate Laplace distribution can be written as

fMLaplaced .xIm;†/ D
Z 1

0

g.z� 1
2 x � z

1
2 m/z� d2 e�zdz (4.97)

FMLaplaced .x;m;†/ D
Z 1

0

G.z�
1
2 x � z

1
2 m/e�zdz (4.98)

the pdf can also be described as

fMLaplaced .xIm;†/ D
2ex

>†�1m

.2�/
d
2 j†j 12

�
x>†�1x

2Cm>†�1m
� �

2

�K�

�q

.2Cm>†�1m/.x>†�1x/
�

(4.99)

where � D 2�d
2

andK�.x/ is the modified Bessel function of the third kind

K�.x/ D 1

2

�
x

2

�� Z 1

0

t���1e�t�
x2

4t dt; x > 0 (4.100)

Multivariate Laplace distribution has mean and variance

EŒX� D m (4.101)

CovŒX� D †C mm> (4.102)
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Fig. 4.13 Tail comparison of t -distribution MVAtdistail

Multivariate Mixture Model

A multivariate mixture model comprises multivariate distributions, e.g. the pdf of a
multivariate Gaussian distribution can be written as

f .x/ D
LX

lD1

wl

j2�†l j 12
e�

1
2 .x��l />†�1.x��l / (4.103)

Generalised Hyperbolic Distribution

The GH distribution has an exponential decaying speed

fGH.xI�; ˛; ˇ; ı; � D 0/ � x��1e�.˛�ˇ/x as x !1; (4.104)

As a comparison to tail behaviour of t-distribution depicted in Fig. 4.13, the
Fig. 4.14 illustrates the tail behaviour of GH distributions with different value of
� with ˛ D 1; ˇ D 0; ı D 1; � D 0. It is clear that among the four distributions,
GH with � D 1:5 has the lowest decaying speed, while NIG decays faster.

In Fig. 4.15, Chen, Härdle, and Jeong (2008), four distributions and especially
their tail-behaviour are compared. In order to keep the comparability of these
distributions, we specified the means to 0 and standardised the variances to 1.
Furthermore we used one important subclass of the GH distribution: the NIG
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distribution with � D � 1
2

introduced above. On the left panel, the complete forms
of these distributions are revealed. The Cauchy (dots) distribution has the lowest
peak and the fattest tails. In other words, it has the flattest distribution. The NIG
distribution decays second fast in the tails although it has the highest peak, which is
more clearly displayed on the right panel.
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4.7 Copulae

The cumulative distribution function (cdf) of a two-dimensional vector .X1;X2/ is
given by

F .x1; x2/ D P .X1 � x1;X2 � x2/ : (4.105)

For the case that X1 and X2 are independent, their joint cumulative distribution
function F.x1; x2/ can be written as a product of their one-dimensional marginals:

F.x1; x2/ D FX1 .x1/ FX2 .x2/ D P .X1 � x1/ P .X2 � x2/ : (4.106)

But how can we model dependence of X1 and X2? Most people would suggest
linear correlation. Correlation is though an appropriate measure of dependence only
when the random variables have an elliptical or spherical distribution, which include
the normal multivariate distribution. Although the terms “correlation” and “depen-
dency” are often used interchangeably, correlation is actually a rather imperfect
measure of dependency, and there are many circumstances where correlation should
not be used.

Copulae represent an elegant concept of connecting marginals with joint cumula-
tive distribution functions. Copulae are functions that join or “couple” multivariate
distribution functions to their one-dimensional marginal distribution functions. Let
us consider a d -dimensional vector X D .X1; : : : ; Xd /

>. Using copulae, the
marginal distribution functions FXi .i D 1; : : : ; d / can be separately modelled
from their dependence structure and then coupled together to form the multivariate
distribution FX . Copula functions have a long history in probability theory and
statistics. Their application in finance is very recent. Copulae are important in Value-
at-Risk calculations and constitute an essential tool in quantitative finance (Härdle
et al., 2009).

First let us concentrate on the two-dimensional case, then we will extend this
concept to the d -dimensional case, for a random variable in R

d with d � 1. To be
able to define a copula function, first we need to represent a concept of the volume
of a rectangle, a 2-increading function and a grounded function.

Let U1 and U2 be two sets in R D R[fC1g[ f�1g and consider the function
F W U1 � U2 �! R:

Definition 4.2 The F -volume of a rectangle B D Œx1; x2� � Œy1; y2� � U1 � U2 is
defined as:

VF .B/ D F.x2; y2/� F.x1; y2/� F.x2; y1/C F.x1; y1/ (4.107)
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Definition 4.3 F is said to be a 2-increasing function if for every B D Œx1; x2� �
Œy1; y2� � U1 � U2,

VF .B/ � 0 (4.108)

Remark 4.2 Note that “to be 2-increasing function” neither implies nor is implied
by “to be increasing in each argument”.

The following lemmas (Nelsen, 1999) will be very useful later for establishing
the continuity of copulae.

Lemma 4.1 Let U1 and U2 be non-empty sets in R and let F W U1 �U2 �! R be a
two-increasing function. Let x1, x2 be in U1 with x1 � x2, and y1, y2 be in U2 with
y1 � y2. Then the function t 7! F.t; y2/ � F.t; y1/ is non-decreasing on U1 and
the function t 7! F.x2; t/ � F.x1; t/ is non-decreasing on U2.

Definition 4.4 If U1 and U2 have a smallest element minU1 and minU2 respec-
tively, then we say that a function F W U1 � U2 �! R is grounded if :

for all x 2 U1 : F.x;minU2/ D 0 and (4.109)

for all y 2 U2 : F.minU1; y/ D 0 (4.110)

In the following, we will refer to this definition of a cdf.

Definition 4.5 A cdf is a function from R
2 7! Œ0; 1� which

(i) is grounded
(ii) is 2-increasing

(iii) satisfies F .1;1/ D 1
Lemma 4.2 Let U1 and U2 be non-empty sets in R and let F W U1 � U2 �! R be
a grounded two-increasing function. Then F is non-decreasing in each argument.

Definition 4.6 If U1 and U2 have a greatest element maxU1 and maxU2 respec-
tively, then we say that a function F W U1 � U2 �! R has margins and that the
margins of F are given by:

F.x/ D F.x;maxU2/ for all x 2 U1 (4.111)

F.y/ D F.maxU1; y/ for all y 2 U2 (4.112)

Lemma 4.3 Let U1 and U2 be non-empty sets in R and let F W U1 � U2 �! R

be a grounded two-increasing function which has margins. Let .x1; y1/, .x2; y2/ 2
S1 � S2. Then

jF.x2; y2/ � F.x1; y1/j � jF.x2/ � F.x1/j C jF.y2/� F.y1/j (4.113)
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Definition 4.7 A two-dimensional copula is a functionC defined on the unit square
I 2 D I � I with I D Œ0; 1� such that

(i) for every u 2 I holds: C.u; 0/ D C.0; v/ D 0, i.e. C is grounded.
(ii) for every u1; u2; v1; v2 2 I with u1 � u2 and v1 � v2 holds:

C.u2; v2/ � C.u2; v1/� C.u1; v2/C C.u1; v1/ � 0; (4.114)

i.e. C is 2-increasing.
(iii) for every u 2 I holds C.u; 1/ D u and C.1; v/ D v.

Informally, a copula is a joint distribution function defined on the unit square Œ0; 1�2

which has uniform marginals. That means that if FX1.x1/ and FX2.x2/ are univariate
distribution functions, then C fFX1.x1/; FX2.x2/g is a two-dimensional distribution
function with marginals FX1.x1/ and FX2.x2/.

Example 4.25 The functions max.uCv�1; 0/, uv, min.u; v/ can be easily checked
to be copula functions. They are called respectively the minimum, product and
maximum copula.

Example 4.26 Consider the function

CGauss
� .u; v/ D ˆ�

˚
ˆ�1.u/; ˆ�1.v/

�
(4.115)

D
Z ˆ�1

1 .u/

�1

Z ˆ�1
2 .v/

�1
f�.x1; x2/dx2dx1

where ˆ� is the joint two-dimensional standard normal distribution function with
correlation coefficient �, while ˆ1 and ˆ2 refer to standard normal cdfs and

f�.x1; x2/ D 1

2�
p
1 � �2 exp




�x
2
1 � 2�x1x2 C x22
2.1� �2/




(4.116)

denotes the bivariate normal pdf.
It is easy to see that CGauss is a copula, the so-called Gaussian or normal copula,

since it is 2-increasing and

ˆ�
˚
ˆ�1.u/; ˆ�1.0/

� D ˆ�
˚
ˆ�1.0/;ˆ�1.v/

� D 0 (4.117)

ˆ�
˚
ˆ�1.u/; ˆ�1.1/

� D u and ˆ�
˚
ˆ�1.1/;ˆ�1.v/

� D v (4.118)
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Fig. 4.16 Surface plot of the Gumbel–Hougaard copula, � D 3 MVAghsurface

A simple and useful way to represent the graph of a copula is the contour diagram
that is, graphs of its level sets—the sets in I 2 given by C.u; v/ D a constant.
In Figs. 4.16 and 4.17 we present the countour diagrams of the Gumbel–Hougard
copula (Example 4.4) for different values of the copula parameter � .

For � D 1 the Gumbel–Hougaard copula reduces to the product copula, i.e.

C1.u; v/ D ….u; v/ D uv (4.119)

For � !1, one finds for the Gumbel–Hougaard copula:

C�.u; v/ �! min.u; v/ DM.u; v/ (4.120)

where M is also a copula such that C.u; v/ � M.u; v/ for an arbitrary copula C .
The copulaM is called the Fréchet–Hoeffding upper bound.

The two-dimensional function W.u; v/ D max.u C v � 1; 0/ defines a copula
with W.u; v/ � C.u; v/ for any other copula C . W is called the Fréchet–Hoeffding
lower bound.

In Fig. 4.18 we show an example of Gumbel–Hougaard copula sampling for fixed
parameters �1 D 1, �2 D 1 and � D 3.

One can demonstrate the so-called Fréchet–Hoeffding inequality, which we have
already used in Example 1.3, and which states that each copula function is bounded
by the minimum and maximum one:

W.u; v/ D max.uC v � 1; 0/ � C.u; v/ � min.u; v/ DM.u; v/ (4.121)
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Fig. 4.17 Contour plots of the Gumbel–Hougard copula MVAghcontour

The full relationship between copula and joint cdf depends on Sklar theorem.

Example 4.27 Let us verify that the Gaussian copula satisfies Sklar’s theorem in
both directions. On the one side, let

F.x1; x2/ D
Z x1

�1

Z x2

�1
1

2�
p
1� �2 exp




�u21 � 2�u1u2 C u22
2.1� �2/




du2du1:

(4.122)

be a two-dimensional normal distribution function with standard normal cdf’s
FX1.x1/ and FX2.x2/. Since FX1.x1/ and FX2.x2/ are continuous, a unique copula
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Fig. 4.18 10,000-sample
output for �1 D 1, �2 D 1,
� D 3 MVAsample1000
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C exists such that for all x1, x2 2 R
2

a two-dimensional distribution function can
be written as a copula in FX1.x1/ and FX2.x2/:

F .x1; x2/ D C fˆX1 .x1/ ;ˆX2 .x2/g (4.123)

The Gaussian copula satisfies the above equality, therefore it is the unique copula
mentioned in Sklar’s theorem. This proves that the Gaussian copula, together with
Gaussian marginals, gives the two-dimensional normal distribution.

Conversely, if C is a copula and FX1 and FX2 are standard normal distribution
functions, then

C fFX1.x1/; FX2.x2/g D
Z ��1

1 fFX1 .x1/g
�1

Z ��1
2 fFX2 .x2/g

�1
1

2�
p
1 � �2

� exp




�x
2
1 � 2�x1x2 C x22
2.1� �2/




dx2dx1 (4.124)

is evidently a joint (two-dimensional) distribution function. Its margins are

C fFX1.x1/; FX2.C1/g D ˆ�
�
ˆ�1 fFX1.x1/g ;C1

� D FX1.x1/ (4.125)

C fFX1.C1/; FX2.x2/g D ˆ�
�C1; ˆ�1 fFX2.x2/g

� D FX2.x2/ (4.126)

The following proposition shows one attractive feature of the copula represen-
tation of dependence, i.e. that the dependence structure described by a copula
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is invariant under increasing and continuous transformations of the marginal
distributions.

Theorem 4.13 If .X1;X2/ have copula C and set g1; g2 two continuously increas-
ing functions, then fg1 .X1/ ; g2 .X2/g have the copula C, too.

Example 4.28 Independence implies that the product of the cdf’s FX1 and FX2
equals the joint distribution function F , i.e.:

F.x1; x2/ D FX1.x1/FX2.x2/: (4.127)

Thus, we obtain the independence or product copula C D ….u; v/ D uv.

While it is easily understood how a product copula describes an independence
relationship, the converse is also true. Namely, the joint distribution function of two
independent random variables can be interpreted as a product copula. This concept
is formalised in the following theorem:

Theorem 4.14 Let X1 and X2 be random variables with continuous distribution
functions FX1 and FX2 and the joint distribution function F . Then X1 and X2 are
independent if and only if CX1;X2 D ….

Example 4.29 Let us consider the Gaussian copula for the case � D 0, i.e. vanishing
correlation. In this case the Gaussian copula becomes

CGauss
0 .u; v/ D

Z ˆ�1
1 .u/

�1
'.x1/dx1

Z ˆ�1
2 .v/

�1
'.x2/dx2

D uv (4.128)

D ….u; v/:

The following theorem, which follows directly from Lemma 4.3, establishes the
continuity of copulae .

Theorem 4.15 Let C be a copula. Then for any u1; v1; u2; v2 2 I holds

jC.u2; v2/ � C.u1; v1/j � ju2 � u1j C jv2 � v1j (4.129)

From (4.129) it follows that every copula C is uniformly continuous on its
domain.

A further important property of copulae concerns the partial derivatives of a
copula with respect to its variables:

Theorem 4.16 Let C.u; v/ be a copula. For any u 2 I , the partial derivative @C.u;v/
@v

exists for almost all u 2 I . For such u and v one has:

@C.u; v/

@v
2 I (4.130)
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The analogous statement is true for the partial derivative @C.u;v/
@u :

@C.u; v/

@u
2 I (4.131)

Moreover, the functions

u 7! Cv.u/
defD @C.u; v/=@v and

v 7! Cu.v/
defD @C.u; v/=@u

are defined and non-increasing almost everywhere on I .

Until now, we have considered copulae only in a two-dimensional setting. Let
us now extend this concept to the d -dimensional case, for a random variable in R

d

with d � 1.
Let U1; U2; : : : ; Ud be non-empty sets in R and consider the function F W U1 �

U2� � � � �Ud �! R. For a D .a1; a2; : : : ; ad / and b D .b1; b2; : : : ; bd / with a � b
(i.e. ak � bk for all k) let B D Œa; b� D Œa1; b1� � Œa2; b2� � � � � � Œan; bn� be the
d -box with vertices c D .c1; c2; : : : ; cd /. It is obvious that each ck is either equal to
ak or to bk .

Definition 4.8 The F -volume of a d -box B D Œa; b� D Œa1; b1� � Œa2; b2� � � � � �
Œad ; bd � � U1 � U2 � � � � � Ud is defined as follows:

VF .B/ D
dX

kD1
sign.ck/F.ck/ (4.132)

where sign.ck/ D 1, if ck D ak for even k and sign.ck/ D �1, if ck D ak for odd k.

Example 4.30 For the case d D 3, theF -volume of a 3-boxB D Œa; b� D Œx1; x2��
Œy1; y2� � Œz1; z2� is defined as:

VF .B/ D F.x2; y2; z2/� F.x2; y2; z1/ � F.x2; y1; z2/� F.x1; y2; z2/
CF.x2; y1; z1/C F.x1; y2; z1/C F.x1; y1; z2/� F.x1; y1; z1/

Definition 4.9 F is said to be a d -increasing function if for all d -boxes B with
vertices in U1 � U2 � � � � � Ud holds:

VF .B/ � 0 (4.133)
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Definition 4.10 If U1; U2; : : : ; Ud have a smallest element minU1;minU2; : : :,
minUd respectively, then we say that a function F W U1 � U2 � � � � � Ud �! R

is grounded if :

F.x/ D 0 for all x 2 U1 � U2 � � � � � Ud (4.134)

such that xk D minUk for at least one k.

The lemmas, which we presented for the two-dimensional case, have analogous
multivariate versions, see Nelsen (1999).

Definition 4.11 A d -dimensional copula (or d -copula) is a function C defined on
the unit d -cube I d D I � I � � � � � I such that

(i) for every u 2 I d holds: C.u/ D 0, if at least one coordinate of u is equal to 0;
i.e. C is grounded.

(ii) for every a; b 2 I d with a � b holds:

VC .Œa; b�/ � 0I (4.135)

i.e. C is 2-increasing.
(iii) for every u 2 I d holds: C.u/ D uk, if all coordinates of u are 1 except uk .

Analogously to the two-dimensional setting, let us state the Sklar’s theorem for
the d -dimensional case.

Theorem 4.17 (Sklar’s Theorem in d -Dimensional Case) Let F be a d -
dimensional distribution function with marginal distribution functions

FX1; FX2; : : : ; FXd . Then a d -copula C exists such that for all x1; : : : ; xd 2 R
d

:

F .x1; x2; : : : ; xd / D C fFX1 .x1/ ; FX2 .x2/ ; : : : ; FXd .xd /g (4.136)

Moreover, if FX1; FX2; : : : ; FXd are continuous then C is unique. Otherwise C is
uniquely determined on the Cartesian product Im.FX1/�Im.FX2/�� � ��Im.FXd /.

Conversely, if C is a copula and FX1; FX2 ; : : : ; FXd are distribution functions
then F defined by (4.136) is a d -dimensional distribution function with marginals
FX1; FX2; : : : ; FXd .

In order to illustrate the d -copulae we present the following examples:

Example 4.31 Let ˆ denote the univariate standard normal distribution function
and ˆ†;d the d -dimensional standard normal distribution function with correlation
matrix †. Then the function

CGauss
� .u; †/ D ˆ†;d

˚
ˆ�1.u1/; : : : ; ˆ�1.ud /

�

D
Z ��1

1 .ud /

�1
: : :

Z ��1
2 .u1/

�1
f†.x1; : : : ; xn/dx1 : : : dxd (4.137)
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is the d -dimensional Gaussian or normal copula with correlation matrix †. The
function

f�.x1; : : : ; xd / D 1
p

det.†/

� exp
n
� .ˆ�1.u1/;:::;ˆ�1.ud //>.†�1�Id /.ˆ�1.u1/;:::;ˆ�1.ud //

2

o (4.138)

is a copula density function. The copula dependence parameter ˛ is the collection of
all unknown correlation coefficients in †. If ˛ ¤ 0, then the corresponding normal
copula allows to generate joint symmetric dependence. However, it is not possible
to model a tail dependence, i.e. joint extreme events have a zero probability.

Example 4.32 Let us consider the following function

CGH
� .u1; : : : ; ud / D exp

2

6
4�

8
<

:

dX

jD1

�� log uj
��

9
=

;

1=�
3

7
5 (4.139)

One recognise this function is as the d -dimensional Gumbel–Hougaard copula
function. Unlike the Gaussian copula, the copula (4.139) can generate an upper tail
dependence.

Example 4.33 As in the two-dimensional setting, let us consider the d -dimensional
Gumbel–Hougaard copula for the case � D 1. In this case the Gumbel–Hougaard
copula reduces to the d -dimensional product copula, i.e.

C1.u1; : : : ; ud / D
dY

jD1
uj D …d.u/ (4.140)

The extension of the two-dimensional copula M , which one gets from the d -
dimensional Gumbel–Hougaard copula for � !1 is denotedMd.u/:

C�.u1; : : : ud / �! min.u1; : : : ; ud / DMd.u/ (4.141)

The d -dimensional function

W d.u/ D max.u1 C u2 C � � � C ud � d C 1; 0/ (4.142)

defines a copula with W.u/ � C.u/ for any other d -dimensional copula function
C.u/. W d.u/ is the Fréchet–Hoeffding lower bound in the d -dimensional case.
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The functions Md and …d are d -copulae for all d � 2, whereas the function W d

fails to be a d -copula for any d > 2 (Nelsen, 1999). However, the d -dimensional
version of the Fréchet–Hoeffding inequality can be written as follows:

W d.u/ � C.u/ �Md.u/ (4.143)

As we have already mentioned, copula functions have been widely applied in
empirical finance.

Summary
,! The cumulative distribution function (cdf) is defined as F.x/ D

P.X < x/.
,! If a probability density function (pdf) f exists then F.x/ DR x

�1 f .u/du.

,! The pdf integrates to one, i.e.
R1
�1 f .x/dx D 1.

4.8 Bootstrap

Recall that we need large sample sizes in order to sufficiently approximate the
critical values computable by the CLT. Here large means n > 50 for one-
dimensional data. How can we construct confidence intervals in the case of smaller
sample sizes? One way is to use a method called the Bootstrap. The Bootstrap
algorithm uses the data twice:

1. estimate the parameter of interest,
2. simulate from an estimated distribution to approximate the asymptotic distribu-

tion of the statistics of interest.

In detail, bootstrap works as follows. Consider the observations x1; : : : ; xn of the
sample X1; : : : ; Xn and estimate the empirical distribution function (EDF) Fn. In
the case of one-dimensional data

Fn.x/ D 1

n

nX

iD1
I.Xi � x/: (4.144)

This is a step function which is constant between neighbouring data points.
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Fig. 4.19 The standard normal cdf (thick line) and the empirical distribution function (thin line)
for n D 100 MVAedfnormal
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Fig. 4.20 The standard normal cdf (thick line) and the empirical distribution function (thin line)
for n D 1;000 MVAedfnormal

Example 4.34 Suppose that we have n D 100 standard normal N.0; 1/ data points
Xi , i D 1; : : : ; n. The cdf of X is ˆ.x/ D R x�1 '.u/du and is shown in Fig. 4.19 as
the thin, solid line. The EDF is displayed as a thick step function line. Figure 4.20
shows the same setup for n D 1;000 observations.
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Now draw with replacement a new sample from this empirical distribution. That
is we sample with replacement n� observations X�1 ; : : : ; X�n� from the original
sample. This is called a Bootstrap sample. Usually one takes n� D n.

Since we sample with replacement, a single observation from the original sample
may appear several times in the Bootstrap sample. For instance, if the original
sample consists of the three observations x1; x2; x3, then a Bootstrap sample might
look like X�1 D x3;X

�
2 D x2;X

�
3 D x3: Computationally, we find the Bootstrap

sample by using a uniform random number generator to draw from the indices
1; 2; : : : ; n of the original samples.

The Bootstrap observations are drawn randomly from the empirical distribution,
i.e. the probability for each original observation to be selected into the Bootstrap
sample is 1=n for each draw. It is easy to compute that

EFn.X
�
i / D

1

n

nX

iD1
xi D x:

This is the expected value given that the cdf is the original mean of the sample
x1; : : : ; xn. The same holds for the variance, i.e.

VFn.X
�
i / D b�2;

whereb�2 D n�1P.xi � x/2. The cdf of the bootstrap observations is defined as in
(4.144). Figure 4.21 shows the cdf of the n D 100 original observations as a solid
line and two bootstrap cdf’s as thin lines.

The CLT holds for the bootstrap sample. Analogously to Corollary 4.1 we have
the following corollary.

Fig. 4.21 The cdf Fn (thick
line) and two bootstrap cdf’s
F �
n (thin lines)

MVAedfbootstrap
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Corollary 4.2 If X�1 ; : : : ; X�n is a bootstrap sample from X1; : : : ; Xn, then the
distribution of

p
n

�
x� � x
b��

�

also becomes N.0; 1/ asymptotically, where x� D n�1
Pn

iD1 X�i and .b��/2 D
n�1

Pn
iD1.X�i � x�/2.

How do we find a confidence interval for � using the Bootstrap method? Recall
that the quantile u1�˛=2 might be bad for small sample sizes because the true

distribution of
p
n
�
x��
O�
�

might be far away from the limit distributionN.0; 1/. The

Bootstrap idea enables us to “simulate” this distribution by computing
p
n
�
x��x
b��

�

for many Bootstrap samples . In this way we can estimate an empirical (1 � ˛=2)-
quantile u�1�˛=2. The bootstrap improved confidence interval is then

C �1�˛ D
�

x � O�p
n

u�1�˛=2; x C
O�p
n

u�1�˛=2
�

:

By Corollary 4.2 we have

P.� 2 C �1�˛/ �! 1 � ˛ as n!1;

but with an improved speed of convergence, see Hall (1992).

Summary
,! For small sample sizes the bootstrap improves the precision of the

confidence interval.
,! The bootstrap distribution L

˚p
n.x� � x/= O��� converges to the

same asymptotic limit as the distribution L
˚p
n.x� � x/= O��.

4.9 Exercises

Exercise 4.1 Assume that the random vector Y has the following normal distribu-
tion: Y � Np.0; I/. Transform it according to (4.49) to create X � N.�;†/ with

mean � D .3; 2/> and † D
�

1
�1:5

�1:5
4

�
. How would you implement the resulting

formula on a computer?
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Exercise 4.2 Prove Theorem 4.7 using Theorem 4.5.

Exercise 4.3 Suppose that X has mean zero and covariance † D
�
1
0
0
2

�
. Let Y D

X1CX2. Write Y as a linear transformation, i.e. find the transformation matrix A.
Then compute Var.Y / via (4.26). Can you obtain the result in another fashion?

Exercise 4.4 Calculate the mean and the variance of the estimate Ǒ in (3.50).

Exercise 4.5 Compute the conditional moments E.X2jx1/ and E.X1jx2/ for the pdf
of Example 4.5.

Exercise 4.6 Prove the relation (4.28).

Exercise 4.7 Prove the relation (4.29).
Hint: Note that Var.E.X2jX1// D E.E.X2jX1/ E.X>2 jX1// � E.X2/ E.X>2 // and
that
E.Var.X2jX1// D EŒE.X2X>2 jX1/� E.X2jX1/ E.X>2 jX1/�.
Exercise 4.8 Compute (4.46) for the pdf of Example 4.5.

Exercise 4.9

Show that fY .y/ D
(
1
2
y1 � 1

4
y2 0 � y1 � 2; jy2j � 1 � j1� y1j

0 otherwise
is a pdf:

Exercise 4.10 Compute (4.46) for a two-dimensional standard normal distribution.
Show that the transformed random variables Y1 and Y2 are independent. Give a
geometrical interpretation of this result based on iso-distance curves.

Exercise 4.11 Consider the Cauchy distribution which has no moment, so that the
CLT cannot be applied. Simulate the distribution of x (for different n’s). What can
you expect for n!1?

Hint: The Cauchy distribution can be simulated by the quotient of two indepen-
dent standard normally distributed random variables.

Exercise 4.12 A European car company has tested a new model and reports the
consumption of petrol (X1/ and oil (X2). The expected consumption of petrol is 8 l
per 100 km (�1) and the expected consumption of oil is 1 l per 10,000 km (�2).
The measured consumption of petrol is 8.1 l per 100 km (x1) and the measured
consumption of oil is 1.1 l per 10,000 km (x2). The asymptotic distribution ofp
n
n�
x1
x2

� � ��1
�2

�o
is N

��
0
0

�
;
�
0:1
0:05

0:05
0:1

��
.

For the American market the basic measuring units are miles (1 mile 	 1.6 km)
and gallons (1 gallon 	 3.8 l). The consumptions of petrol (Y1) and oil (Y2) are
usually reported in miles per gallon. Can you express y1 and y2 in terms of x1 and
x2? Recompute the asymptotic distribution for the American market.

Exercise 4.13 Consider the pdf f .x1; x2/ D e�.x1Cx2/; x1; x2 > 0 and let U1 D
X1 CX2 and U2 D X1 � X2. Compute f .u1; u2/.
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Exercise 4.14 Consider the pdf’s

f .x1; x2/ D 4x1x2e�x21 x1; x2 > 0;

f .x1; x2/ D 1 0 < x1; x2 < 1 and x1 C x2 < 1
f .x1; x2/ D 1

2
e�x1 x1 > jx2j:

For each of these pdf’s compute E.X/;Var.X/;E.X1jX2/;E.X2jX1/;Var.X1jX2/
and Var.X2jX1/:
Exercise 4.15 Consider the pdf f .x1; x2/ D 3

4
x
� 1
2

1 ; 0 < x1 < x2 < 1. Compute
P.X1 < 0:25/; P.X2 < 0:25/ and P.X2 < 0:25jX1 < 0:25/:
Exercise 4.16 Consider the pdf f .x1; x2/ D 1

2�
; 0 < x1 < 2�; 0 < x2 < 1:

Let U1 D sinX1
p�2 logX2 and U2 D cosX1

p�2 logX2. Compute f .u1; u2/.

Exercise 4.17 Consider f .x1; x2; x3/ D k.x1 C x2x3/I 0 < x1; x2; x3 < 1:
(a) Determine k so that f is a valid pdf of .X1;X2;X3/ D X:
(b) Compute the .3 � 3/ matrix †X .
(c) Compute the .2 � 2/ matrix of the conditional variance of .X2;X3/ given

X1 D x1.

Exercise 4.18 Let X � N2
�
�
1
2

�
;

�
2 a

a 2

��

.

(a) Represent the contour ellipses for a D 0I � 1
2
I C 1

2
I 1:

(b) For a D 1
2

find the regions of X centred on � which cover the area of the true
parameter with probability 0:90 and 0:95.

Exercise 4.19 Consider the pdf

f .x1; x2/ D 1

8x2
e
�
�
x1
2x2
C x2

4

�

x1; x2 > 0:

Compute f .x2/ and f .x1jx2/. Also give the best approximation of X1 by a function
of X2. Compute the variance of the error of the approximation.

Exercise 4.20 Prove Theorem 4.6.



Chapter 5
Theory of the Multinormal

In the preceding chapter we saw how the multivariate normal distribution comes into
play in many applications. It is useful to know more about this distribution, since
it is often a good approximate distribution in many situations. Another reason for
considering the multinormal distribution relies on the fact that it has many appealing
properties: it is stable under linear transforms, zero correlation corresponds to
independence, the marginals and all the conditionals are also multivariate normal
variates, etc. The mathematical properties of the multinormal make analyses much
simpler.

In this chapter we will first concentrate on the probabilistic properties of
the multinormal, then we will introduce two “companion” distributions of the
multinormal which naturally appear when sampling from a multivariate normal
population: the Wishart and the Hotelling distributions. The latter is particularly
important for most of the testing procedures proposed in Chap. 7.

5.1 Elementary Properties of the Multinormal

Let us first summarise some properties which were already derived in the previous
chapter.

• The pdf of X � Np.�;†/ is

f .x/ D j2�†j�1=2 exp




�1
2
.x � �/>†�1.x � �/




: (5.1)

© Springer-Verlag Berlin Heidelberg 2015
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The expectation is E.X/ D �, the covariance can be calculated as
Var.X/ D E.X � �/.X � �/> D †.

• Linear transformations turn normal random variables into normal random
variables. If X � Np.�;†/ and A.p � p/; c 2 R

p , then Y D AX C c is
p-variate Normal, i.e.

Y � Np.A�C c;A†A>/: (5.2)

• If X � Np.�;†/, then the Mahalanobis transformation is

Y D †�1=2.X � �/ � Np.0; Ip/ (5.3)

and it holds that

Y >Y D .X � �/> †�1.X � �/ � �2p: (5.4)

Often it is interesting to partition X into sub-vectors X1 and X2. The following
theorem tells us how to correct X2 to obtain a vector which is independent of X1.

Theorem 5.1 Let X D �
X1
X2

� � Np.�;†/, X1 2 R
r , X2 2 R

p�r . Define X2:1 D
X2 �†21†�111 X1 from the partitioned covariance matrix

† D
�
†11 †12
†21 †22

�

:

Then

X1 � Nr.�1;†11/; (5.5)

X2:1 � Np�r .�2:1; †22:1/ (5.6)

are independent with

�2:1 D �2 �†21†�111 �1; †22:1 D †22 �†21†�111 †12: (5.7)

Proof

X1 D AX with A D . Ir ; 0 /
X2:1 D BX with B D . �†21†�111 ; Ip�r /:
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Then, by (5.2) X1 and X2:1 are both normal. Note that

Cov.X1;X2:1/ D A†B> D

0

B
B
@

1 0
: : :

0 1

0

1

C
C
A

�
†11 †12
†21 †22

�

0

B
B
B
B
B
B
B
@

.�†21†�111 />

1 0
: : :

0 1

1

C
C
C
C
C
C
C
A

;

A† D .Ir 0/
�
†11 †12
†21 †22

�

D .†11 †12/ ;

hence, A†B> D .†11 †12/

 ��†21†�111
�>

Ip�r

!

D
�
�†11

�
†21†

�1
11

�> C†12
�
:

Recall that †21 D .†12/>. Hence A†B> D �†11†�111 †12 C†12 � 0.
Using (5.2) again we also have the joint distribution of (X1;X2:1), namely

�
X1

X2:1

�

D
�A
B

�

X � Np
��

�1

�2:1

�

;

�
†11 0

0 †22:1

��

:

With this block diagonal structure of the covariance matrix, the joint pdf of
(X1;X2:1) can easily be factorised into

f .x1; x2:1/ D j2�†11j� 12 exp




�1
2
.x1 � �1/>†�111 .x1 � �1/




�j2�†22:1j� 12 exp




�1
2
.x2:1 � �2:1/>†�122:1.x2:1 � �2:1/




from which the independence between X1 and X2:1 follows. ut
The next two corollaries are direct consequences of Theorem 5.1.

Corollary 5.1 Let X D
�
X1

X2

�

� Np.�;†/, † D
�
†11 †12

†21 †22

�

. †12 D 0 if and

only if X1 is independent of X2.

The independence of two linear transforms of a multinormalX can be shown via
the following corollary.

Corollary 5.2 If X � Np.�;†/ and given some matrices A and B , then AX and
BX are independent if and only if A†B> D 0.
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The following theorem is also useful. It generalises Theorem 4.6. The proof is
left as an exercise.

Theorem 5.2 If X � Np.�;†/, A.q � p/, c 2 R
q and q � p, then Y D AX C c

is a q-variate Normal, i.e.

Y � Nq.A�C c;A†A>/:

The conditional distribution of X2 given X1 is given by the next theorem.

Theorem 5.3 The conditional distribution of X2 given X1 D x1 is normal with
mean �2 C†21†�111 .x1 � �1/ and covariance†22:1, i.e.

.X2 j X1 D x1/ � Np�r .�2 C†21†�111 .x1 � �1/;†22:1/: (5.8)

Proof SinceX2 D X2:1C†21†�111 X1, for a fixed value ofX1 D x1,X2 is equivalent
to X2:1 plus a constant term:

.X2jX1 D x1/ D .X2:1 C†21†�111 x1/;

which has the normal distribution N.�2:1 C†21†�111 x1;†22:1/. ut
Note that the conditional mean of .X2 j X1/ is a linear function ofX1 and that the

conditional variance does not depend on the particular value ofX1. In the following
example we consider a specific distribution.

Example 5.1 Suppose that p D 2, r D 1, � D
�
0

0

�

and † D
�

1

�0:8
�0:8
2

�

.

Then †11 D 1, †21 D �0:8 and †22:1 D †22 � †21†�111 †12 D 2 � .0:8/2 D 1:36.
Hence the marginal pdf of X1 is

fX1.x1/ D
1p
2�

exp

�

�x
2
1

2

�

and the conditional pdf of .X2 j X1 D x1/ is given by

f .x2 j x1/ D 1
p
2�.1:36/

exp




� .x2 C 0:8x1/
2

2 � .1:36/



:

As mentioned above, the conditional mean of .X2 j X1/ is linear in X1. The shift in
the density of .X2 j X1/ can be seen in Fig. 5.1.

Sometimes it will be useful to reconstruct a joint distribution from the marginal
distribution of X1 and the conditional distribution .X2jX1/. The following theorem
shows under which conditions this can be easily done in the multinormal framework.
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Fig. 5.1 Shifts in the conditional density MVAcondnorm

Theorem 5.4 IfX1 � Nr.�1;†11/ and .X2jX1 D x1/ � Np�r .Ax1Cb;�/ where
� does not depend on x1, then X D �X1

X2

� � Np.�;†/, where

� D
 

�1

A�1 C b

!

† D
�
†11 †11A>
A†11 �CA†11A>

�

:

Example 5.2 Consider the following random variables

X1 � N1.0; 1/;

X2jX1 D x1 � N2
��

2x1
x1 C 1

�

;

�
1 0

0 1

��

:

Using Theorem (5.4), where A D .2 1/>, b D .0 1/> and � D I2, we easily
obtain the following result:

X D
�
X1
X2

�

� N3
0

@

0

@
0

0

1

1

A ;

0

@
1 2 1

2 5 2

1 2 2

1

A

1

A :
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In particular, the marginal distribution of X2 is

X2 � N2
��

0

1

�

;

�
5 2

2 2

��

;

thus conditional on X1, the two components of X2 are independent but marginally
they are not.

Note that the marginal mean vector and covariance matrix of X2 could have
also been computed directly by using (4.28)–(4.29). Using the derivation above,
however, provides us with useful properties: we have multinormality.

Conditional Approximations

As we saw in Chap. 4 (Theorem 4.3), the conditional expectation E.X2jX1/ is the
mean squared error (MSE) best approximation of X2 by a function of X1. We have
in this case

X2 D E.X2jX1/C U D �2 C†21†�111 .X1 � �1/C U: (5.9)

Hence, the best approximation of X2 2 R
p�r by X1 2 R

r is the linear
approximation that can be written as:

X2 D ˇ0 C BX1 C U (5.10)

with B D †21†�111 , ˇ0 D �2 � B�1 and U � N.0;†22:1/.
Consider now the particular case where r D p � 1. Now X2 2 R and B is a row

vector ˇ> of dimension .1 � r/

X2 D ˇ0 C ˇ> X1 C U: (5.11)

This means, geometrically speaking, that the best MSE approximation of X2 by a
function of X1 is a hyperplane. The marginal variance of X2 can be decomposed
via (5.11):

�22 D ˇ>†11ˇ C �22:1 D �21†�111 �12 C �22:1: (5.12)

The ratio

�22:1:::r D
�21†

�1
11 �12

�22
(5.13)

is known as the square of the multiple correlation between X2 and the r variables
X1. It is the percentage of the variance of X2 which is explained by the linear
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approximation ˇ0 C ˇ>X1. The last term in (5.12) is the residual variance
of X2. The square of the multiple correlation corresponds to the coefficient of
determination introduced in Sect. 3.4, see (3.39), but here it is defined in terms of
the r.v. X1 and X2. It can be shown that �2:1:::r is also the maximum correlation
attainable between X2 and a linear combination of the elements of X1, the optimal
linear combination being precisely given by ˇ>X1. Note that when r D 1, the
multiple correlation �2:1 coincides with the usual simple correlation �X2X1 between
X2 and X1.

Example 5.3 Consider the “classic blue” pullover example (Example 3.15) and
suppose that X1 (sales), X2 (price), X3 (advertisement) and X4 (sales assistants)
are normally distributed with

� D

0

B
B
@

172:7

104:6

104:0

93:8

1

C
C
A and † D

0

B
B
@

1037:21

�80:02 219:84
1430:70 92:10 2624:00

271:44 �91:58 210:30 177:36

1

C
C
A :

(These are in fact the sample mean and the sample covariance matrix but in this
example we pretend that they are the true parameter values.)

The conditional distribution ofX1 given .X2;X3;X4/ is thus an univariate normal
with mean

�1 C �12†�122

0

@
X2 � �2
X3 � �3
X4 � �4

1

A D 65:670� 0:216X2 C 0:485X3C 0:844X4

and variance

�11:2 D �11 � �12†�122 �21 D 96:761

The linear approximation of the sales .X1/ by the price .X2/, advertisement .X3/
and sales assistants .X4/ is provided by the conditional mean above. (Note that
this coincides with the results of Example 3.15 due to the particular choice of
� and †.) The quality of the approximation is given by the multiple correlation

�21:234 D �12†
�1
22 �21
�11

D 0:907. (Note again that this coincides with the coefficient of

determination r2 found in Example 3.15.)
This example also illustrates the concept of partial correlation. The correlation

matrix between the four variables is given by

P D

0

B
B
@

1 �0:168 0:867 0:633

�0:168 1 0:121 �0:464
0:867 0:121 1 0:308

0:633 �0:464 0:308 1

1

C
C
A ;
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so that the correlation betweenX1 (sales) andX2 (price) is�0:168:We can compute
the conditional distribution of .X1;X2/ given .X3;X4/, which is a bivariate normal
with mean:

 
�1

�2

!

C
 
�13 �14

�23 �24

! 
�33 �34

�43 �44

!�1  
X3 � �3
X4 � �4

!

D
 
32:516C 0:467X3 C 0:977X4
153:644C 0:085X3 � 0:617X4

!

and covariance matrix:

�
�11 �12
�21 �22

�

�
�
�13 �14
�23 �24

��
�33 �34
�43 �44

��1 �
�31 �32
�41 �42

�

D
�
104:006

�33:574 155:592
�

:

In particular, the last covariance matrix allows the partial correlation between
X1 and X2 to be computed for a fixed level of X3 and X4:

�X1X2jX3X4 D
�33:574p

104:006 � 155:592 D �0:264;

so that in this particular example with a fixed level of advertisement and sales
assistance, the negative correlation between price and sales is more important than
the marginal one.
MVAbluepullover

Summary

,! If X � Np.�;†/, then a linear transformation AX C c, A.q �p/,
where c 2 R

q , has distribution Nq.A�C c;A†A>/.
,! Two linear transformations AX and BX with X � Np.�;†/ are

independent if and only if A†B> D 0.
,! If X1 and X2 are partitions of X � Np.�;†/, then the conditional

distribution of X2 given X1 D x1 is again normal.
,! In the multivariate normal case,X1 is independent ofX2 if and only

if †12 D 0.
,! The conditional expectation of .X2jX1/ is a linear function if�

X1
X2

�
� Np.�;†/.

,! The multiple correlation coefficient is defined as �22:1:::r D
�21†

�1
11 �12
�22

:

,! The multiple correlation coefficient is the percentage of the vari-
ance of X2 explained by the linear approximation ˇ0 C ˇ>X1.
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5.2 The Wishart Distribution

The Wishart distribution (named after its discoverer) plays a prominent role in the
analysis of estimated covariance matrices. If the mean of X � Np.�;†/ is known
to be � D 0, then for a data matrix X .n � p/ the estimated covariance matrix is
proportional to X>X . This is the point where the Wishart distribution comes in,
because M.p � p/ D X>X DPn

iD1 xix>i has a Wishart distributionWp.†; n/.

Example 5.4 Set p D 1, then forX � N1.0; �2/ the data matrix of the observations

X D .x1; : : : ; xn/> with M D X>X D
nX

iD1
xixi

leads to the Wishart distribution W1.�
2; n/ D �2�2n. The one-dimensional Wishart

distribution is thus in fact a �2 distribution.

When we talk about the distribution of a matrix, we mean of course the joint
distribution of all its elements. More exactly: since M D X>X is symmetric we
only need to consider the elements of the lower triangular matrix

M D

0

B
B
B
@

m11

m21 m22

:::
:::
: : :

mp1 mp2 : : : mpp

1

C
C
C
A
: (5.14)

Hence the Wishart distribution is defined by the distribution of the vector

.m11; : : : ; mp1;m22; : : : ; mp2; : : : ; mpp/
>: (5.15)

Linear transformations of the data matrix X also lead to Wishart matrices.

Theorem 5.5 If M � Wp.†; n/ and B.p � q/, then the distribution of B>MB is
Wishart Wq.B>†B; n/.

With this theorem we can standardise Wishart matrices since with BD†�1=2
the distribution of †�1=2M†�1=2 is Wp.I; n/. Another connection to the
�2-distribution is given by the following theorem.

Theorem 5.6 If M � Wp.†;m/, and a 2 R
p with a>†a ¤ 0, then the

distribution of
a>Ma

a>†a
is �2m.

This theorem is an immediate consequence of Theorem 5.5 if we apply the linear
transformation x 7! a>x. Central to the analysis of covariance matrices is the next
theorem.
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Theorem 5.7 (Cochran) Let X .n�p/ be a data matrix from a Np.0;†/ distribu-
tion and let C.n � n/ be a symmetric matrix.

(a) X>CX has the distribution of weighted Wishart random variables, i.e.

X>CX D
nX

iD1
�iWp.†; 1/;

where �i , i D 1; : : : ; n, are the eigenvalues of C.
(b) X>CX is Wishart if and only if C2 D C. In this case

X>CX � Wp.†; r/;

and r D rank.C/ D tr.C/:
(c) nS D X>HX is distributed as Wp.†; n � 1/ (note that S is the sample

covariance matrix).
(d) Nx and S are independent.

The following properties are useful:

1. If M � Wp.†; n/, then E.M/ D n†.
2. If Mi are independent WishartWp.†; ni / i D 1; : : : ; k, then M DPk

iD1Mi �
Wp.†; n/ where n DPk

iD1 ni .
3. The density of Wp.†; n � 1/ for a positive definite M is given by:

f†;n�1.M/ D jMj 12 .n�p�2/e� 12 tr.M†�1/

2
1
2 p.n�1/� 1

4p.p�1/j†j 12 .n�1/Qp
iD1 	f n�i2 g

; (5.16)

where 	 is the gamma function: 	.z/ D R1
0
t z�1e�t dt .

For further details on the Wishart distribution, see Mardia, Kent, and Bibby
(1979).

Summary
,! The Wishart distribution is a generalisation of the �2-distribution.

In particularW1.�
2; n/ D �2�2n.

,! The empirical covariance matrix S has a 1
n
Wp.†; n � 1/ distribu-

tion.
,! In the normal case, Nx and S are independent.

,! For M � Wp.†;m/;

a>Ma=a>†a � �2m.
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5.3 Hotelling’s T 2-Distribution

Suppose that Y 2 R
p is a standard normal random vector, i.e. Y � Np.0; I/,

independent of the random matrix M � Wp.I; n/. What is the distribution of
Y >M�1Y ? The answer is provided by the Hotelling T 2-distribution: n Y >M�1Y
is Hotelling T 2p;n distributed.

The Hotelling T 2-distribution is a generalisation of the Student t-distribution.
The general multinormal distribution N.�;†/ is considered in Theorem 5.8.
The Hotelling T 2-distribution will play a central role in hypothesis testing in
Chap. 7.

Theorem 5.8 If X � Np.�;†/ is independent of M � Wp.†; n/, then

n.X � �/>M�1.X � �/ � T 2p;n:

Corollary 5.3 If x is the mean of a sample drawn from a normal population
Np.�;†/ and S is the sample covariance matrix, then

.n � 1/.x � �/>S�1.x � �/ D n.x � �/>S�1u .x � �/ � T 2p;n�1: (5.17)

Recall that Su D n
n�1S is an unbiased estimator of the covariance matrix.

A connection between the Hotelling T 2- and the F -distribution is given by the next
theorem.

Theorem 5.9

T 2p;n D
np

n � p C 1 Fp;n�pC1:

Example 5.5 In the univariate case (p D 1), this theorem boils down to the
well-known result:

� Nx � �p
Su=
p
n

�2

� T 21;n�1 D F1;n�1 D t2n�1

For further details on Hotelling T 2-distribution see Mardia et al. (1979). The next
corollary follows immediately from (3.23), (3.24) and from Theorem 5.8. It will be
useful for testing linear restrictions in multinormal populations.
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Corollary 5.4 Consider a linear transform of X � Np.�;†/; Y D AX where
A.q�p/ with .q � p/: If x and SX are the sample mean and the covariance matrix,
we have

y D Ax � Nq
�

A�; 1
n
A†A>

�

nSY D nASXA> � Wq.A†A>; n � 1/

.n � 1/.Ax �A�/>.ASXA>/�1.Ax �A�/ � T 2q;n�1

The T 2 distribution is closely connected to the univariate t-statistic.
In Example 5.4 we described the manner in which the Wishart distribution
generalises the �2-distribution. We can write (5.17) as:

T 2 D pn.x � �/>
 Pn

jD1.xj � x/.xj � x/>
n � 1

!�1p
n.x � �/

which is of the form

�
multivariate normal

random vector

�>
0

B
B
B
@

Wishart random
matrix

degrees of freedom

1

C
C
C
A

�1
�

multivariate normal
random vector

�

:

This is analogous to

t2 D pn.x � �/.s2/�1pn.x � �/

or

�
normal

random variable

�

0

B
B
B
@

�2-random
variable

degrees of freedom

1

C
C
C
A

�1
�

normal
random variable

�

for the univariate case. Since the multivariate normal and Wishart random variables
are independently distributed, their joint distribution is the product of the marginal
normal and Wishart distributions. Using calculus, the distribution of T 2 as given
above can be derived from this joint distribution.
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Summary
,! Hotelling’s T 2-distribution is a generalisation of the t-distribution.

In particular T 21;n D tn.
,! .n � 1/.x � �/>S�1.x � �/ has a T 2p;n�1 distribution.

,! The relation between Hotelling’s T 2- and Fisher’s F -distribution is
given by T 2p;n D np

n�pC1 Fp;n�pC1:

5.4 Spherical and Elliptical Distributions

The multinormal distribution belongs to the large family of elliptical distributions
which has recently gained a lot of attention in financial mathematics. Elliptical
distributions are often used, particularly in risk management.

Definition 5.1 A .p � 1/ random vector Y is said to have a spherical distribution
Sp.�/ if its characteristic function  Y .t/ satisfies:  Y .t/ D �.t>t/ for some
scalar function �.:/ which is then called the characteristic generator of the spherical
distribution Sp.�/. We will write Y � Sp.�/.

This is only one of several possible ways to define spherical distributions. We can
see spherical distributions as an extension of the standard multinormal distribution
Np.0; Ip/.

Theorem 5.10 Spherical random variables have the following properties:

1. All marginal distributions of a spherically distributed random vector are
spherical.

2. All the marginal characteristic functions have the same generator.
3. LetX � Sp.�/, thenX has the same distribution as ru.p/ where u.p/ is a random

vector distributed uniformly on the unit sphere surface in R
p and r � 0 is a

random variable independent of u.p/. If E.r2/ <1, then

E.X/ D 0 ; Cov.X/ D E.r2/
p

Ip:

The random radius r is related to the generator � by a relation described in Fang,
Kotz, and Ng (1990, p. 29). The moments of X � Sp.�/, provided that they exist,
can be expressed in terms of one-dimensional integral.

A spherically distributed random vector does not, in general, necessarily possess
a density. However, if it does, the marginal densities of dimension smaller than
p � 1 are continuous and the marginal densities of dimension smaller than p � 2
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are differentiable (except possibly at the origin in both cases). Univariate marginal
densities for p greater than 2 are non-decreasing on .�1; 0/ and non-increasing
on .0;1/.
Definition 5.2 A .p � 1/ random vector X is said to have an elliptical distribution
with parameters�.p�1/ and†.p�p/ ifX has the same distribution as �CA>Y ,
where Y � Sk.�/ and A is a .k�p/matrix such that A>A D †with rank.†/ D k.
We shall write X � ECp.�;†; �/.

Remark 5.1 The elliptical distribution can be seen as an extension of Np.�;†/.

Example 5.6 The multivariate t-distribution. Let Z � Np.0; Ip/ and s � �2m be
independent. The random vector

Y D pm Z

s

has a multivariate t-distribution with m degrees of freedom. Moreover the
t-distribution belongs to the family of p-dimensional spherical distributions.

Example 5.7 The multinormal distribution. Let X � Np.�;†/. Then
X �ECp.�;†; �/ and �.u/ D exp .�u=2/. Figure 4.3 shows a density surface

of the multivariate normal distribution: f .x/D det.2�†/� 12 expf � 1
2
.x��/>†�1

.x��/g with † D
�
1 0:6

0:6 1

�

and � D
�
0

0

�

Notice that the density is constant on

ellipses. This is the reason for calling this family of distributions “elliptical”.

Theorem 5.11 Elliptical random vectors X have the following properties:

1. Any linear combination of elliptically distributed variables are elliptical.
2. Marginal distributions of elliptically distributed variables are elliptical.
3. A scalar function �.:/ can determine an elliptical distribution ECp.�;†; �/ for

every � 2 R
p and † � 0 with rank.†/ D k iff �.t>t/ is a p-dimensional

characteristic function.
4. Assume that X is non-degenerate. If X � ECp.�;†; �/ and X �ECp

.��; †�; ��/, then a constant c > 0 exists that

� D ��; † D c†�; ��.:/ D �.c�1:/:

In other words †;�;A are not unique, unless we impose the condition that
det.†/ D 1.

5. The characteristic function of X; .t/ D E.eit>X/ is of the form

 .t/ D eit>��.t>†t/

for a scalar function �.
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6. X � ECp.�;†; �/ with rank.†/ D k iff X has the same distribution as:

�C rA>u.k/ (5.18)

where r � 0 is independent of u.k/ which is a random vector distributed
uniformly on the unit sphere surface in R

k and A is a .k � p/ matrix such that
A>A D †.

7. Assume that X � ECp.�;†; �/ and E.r2/ <1. Then

E.X/ D � Cov.X/ D E.r2/
rank.†/

† D �2�>.0/†:

8. Assume that X � ECp.�;†; �/ with rank.†/ D k. Then

Q.X/ D .X � �/>†�1.X � �/

has the same distribution as r2 in Eq. (5.18).

5.5 Exercises

Exercise 5.1 Consider X � N2.�;†/ with � D .2; 2/> and † D
�
1

0

0

1

�

and the

matrices A D
 
1

1

!>
, B D

 
1

�1

!>
. Show that AX and BX are independent.

Exercise 5.2 Prove Theorem 5.4.

Exercise 5.3 Prove proposition (c) of Theorem 5.7.

Exercise 5.4 Let

X � N2
��

1

2

�

;

�
2 1

1 2

��

and

Y j X � N2
��

X1
X1 CX2

�

;

�
1 0

0 1

��

:

(a) Determine the distribution of Y2 j Y1.
(b) Determine the distribution of W D X � Y .
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Exercise 5.5 Consider

0

@
X

Y

Z

1

A � N3.�;†/: Compute � and † knowing that

Y j Z � N1.�Z; 1/

�ZjY D �1
3
� 1
3
Y

X j Y;Z � N1.2C 2Y C 3Z; 1/:

Determine the distributions of X j Y and of X j Y CZ.

Exercise 5.6 Knowing that

Z � N1.0; 1/
Y j Z � N1.1CZ; 1/

X j Y;Z � N1.1 � Y; 1/

(a) find the distribution of

0

@
X

Y

Z

1

A and of Y j X;Z.

(b) find the distribution of

�
U

V

�

D
�
1CZ
1 � Y

�

:

(c) compute E.Y j U D 2/.

Exercise 5.7 Suppose

�
X

Y

�

� N2.�;†/ with † positive definite. Is it possible

that

(a) �X jY D 3Y 2,
(b) �XX jY D 2C Y 2,
(c) �X jY D 3 � Y , and
(d) �XX jY D 5?
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Exercise 5.8 Let X � N3
0

@

0

@
1

2

3

1

A ;

0

@
11 �6 2

�6 10 �4
2 �4 6

1

A

1

A.

(a) Find the best linear approximation ofX3 by a linear function ofX1 andX2 and
compute the multiple correlation between X3 and .X1;X2/.

(b) Let Z1 D X2 � X3; Z2 D X2 C X3 and .Z3 j Z1;Z2/ � N1.Z1 C Z2; 10/.

Compute the distribution of

0

@
Z1

Z2
Z3

1

A.

Exercise 5.9 Let .X; Y;Z/> be a trivariate normal r.v. with

Y j Z � N1.2Z; 24/
Z j X � N1.2X C 3; 14/

X � N1.1; 4/
and �XY D 0:5:

Find the distribution of .X; Y;Z/> and compute the partial correlation between
X and Y for fixed Z. Do you think it is reasonable to approximate X by a linear
function of Y and Z?

Exercise 5.10 Let X � N4

0

B
B
@

0

B
B
@

1

2

3

4

1

C
C
A ;

0

B
B
@

4 1 2 4

1 4 2 1

2 2 16 1

4 1 1 9

1

C
C
A

1

C
C
A :

(a) Give the best linear approximation ofX2 as a function of .X1;X4/ and evaluate
the quality of the approximation.

(b) Give the best linear approximation of X2 as a function of .X1;X3;X4/ and
compare your answer with part (a).

Exercise 5.11 Prove Theorem 5.2.
(Hint: complete the linear transformation Z D

�
A

Ip�q

�
X C

�
c

0p�q

�
and then use

Theorem 5.1 to get the marginal of the first q components of Z.)

Exercise 5.12 Prove Corollaries 5.1 and 5.2.



Chapter 6
Theory of Estimation

We know from our basic knowledge of statistics that one of the objectives in
statistics is to better understand and model the underlying process which generates
data. This is known as statistical inference: we infer from information contained
in sample properties of the population from which the observations are taken.
In multivariate statistical inference, we do exactly the same. The basic ideas
were introduced in Sect. 4.5 on sampling theory: we observed the values of a
multivariate random variableX and obtained a sample X D fxigniD1. Under random
sampling, these observations are considered to be realisations of a sequence of i.i.d.
random variables X1; : : : ; Xn where each Xi is a p-variate random variable which
replicates the parent or population random variableX . In this chapter, for notational
convenience, we will no longer differentiate between a random variable Xi and an
observation of it, xi , in our notation. We will simply write xi and it should be clear
from the context whether a random variable or an observed value is meant.

Statistical inference infers from the i.i.d. random sample X the properties of
the population: typically, some unknown characteristic � of its distribution. In
parametric statistics, � is a k-variate vector � 2 R

k characterising the unknown
properties of the population pdf f .xI �/: this could be the mean, the covariance
matrix, kurtosis, etc.

The aim will be to estimate � from the sample X through estimators O� which
are functions of the sample: O� D O�.X /. When an estimator O� is proposed, we must
derive its sampling distribution to analyse its properties.

In this chapter the basic theoretical tools are developed which are needed to
derive estimators and to determine their properties in general situations. We will
basically rely on the maximum likelihood theory in our presentation. In many
situations, the maximum likelihood estimators (MLEs) indeed share asymptotic
optimal properties which make their use easy and appealing.

We will illustrate the multivariate normal population and also the linear regres-
sion model where the applications are numerous and the derivations are easy to
do. In multivariate setups, the MLE is at times too complicated to be derived

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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202 6 Theory of Estimation

analytically. In such cases, the estimators are obtained using numerical methods
(nonlinear optimisation). The general theory and the asymptotic properties of
these estimators remain simple and valid. The following Chap. 7 concentrates on
hypothesis testing and confidence interval issues.

6.1 The Likelihood Function

Suppose that fxi gniD1 is an i.i.d. sample from a population with pdf f .xI �/. The
aim is to estimate � 2 R

k which is a vector of unknown parameters. The likelihood
function is defined as the joint density L.X I �/ of the observations xi considered as
a function of � :

L.X I �/ D
nY

iD1
f .xi I �/; (6.1)

where X denotes the sample of the data matrix with the observations x>1 ; : : : ; x>n in
each row. The MLE of � is defined as

O� D arg max
�
L.X I �/:

Often it is easier to maximise the log-likelihood function

`.X I �/ D logL.X I �/; (6.2)

which is equivalent since the logarithm is a monotone one-to-one function. Hence

O� D arg max
�
L.X I �/ D arg max

�
`.X I �/:

The following examples illustrate cases where the maximisation process can be
performed analytically, i.e., we will obtain an explicit analytical expression for O� .
Unfortunately, in other situations, the maximisation process can be more intricate,
involving nonlinear optimisation techniques. In the latter case, given a sample X
and the likelihood function, numerical methods will be used to determine the value
of � maximising L.X I �/ or `.X I �/. These numerical methods are typically based
on Newton–Raphson iterative techniques.

Example 6.1 Consider a sample fxi gniD1 from Np.�; I/, i.e., from the pdf

f .xI �/ D .2�/�p=2 exp




�1
2
.x � �/>.x � �/




;
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where � D � 2 R
p is the mean vector parameter. The log-likelihood is in this case

`.X I �/ D
nX

iD1
logff .xi I �/g D log .2�/�np=2 � 1

2

nX

iD1
.xi � �/>.xi � �/: (6.3)

The term .xi � �/>.xi � �/ equals

.xi � x/>.xi � x/C .x � �/>.x � �/C 2.x � �/>.xi � x/:

Summing this term over i D 1; : : : ; n we see that

nX

iD1
.xi � �/>.xi � �/ D

nX

iD1
.xi � x/>.xi � x/C n.x � �/>.x � �/:

Hence

`.X I �/ D log.2�/�np=2 � 1
2

nX

iD1
.xi � x/>.xi � x/ � n

2
.x � �/>.x � �/:

Only the last term depends on � and is obviously maximised for

O� D O� D x:

Thus x is the MLE of � for this family of pdfs f .x; �/.

A more complex example is the following one where we derive the MLEs for �
and †.

Example 6.2 Suppose fxigniD1 is a sample from a normal distribution Np.�;†/.
Here � D .�;†/ with † interpreted as a vector. Due to the symmetry of † the
unknown parameter � is in fact fp C 1

2
p.p C 1/g-dimensional. Then

L.X I �/ D j2�†j�n=2 exp

(

�1
2

nX

iD1
.xi � �/>†�1.xi � �/

)

(6.4)

and

`.X I �/ D �n
2

log j2�†j � 1
2

nX

iD1
.xi � �/>†�1.xi � �/: (6.5)

The term .xi � �/>†�1.xi � �/ equals

.xi � x/>†�1.xi � x/C .x � �/>†�1.x � �/C 2.x � �/>†�1.xi � x/:
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Summing this term over i D 1; : : : ; n we see that

nX

iD1
.xi ��/>†�1.xi ��/ D

nX

iD1
.xi � x/>†�1.xi � x/C n.x ��/>†�1.x ��/:

Note that from (2.14)

.xi � x/>†�1.xi � x/ D tr
˚
.xi � x/>†�1.xi � x/

�

D tr
˚
†�1.xi � x/.xi � x/>

�
:

Therefore, by summing over the index i we finally arrive at

nX

iD1
.xi � �/>†�1.xi � �/ D tr

(

†�1
nX

iD1
.xi � x/.xi � x/>

)

Cn.x � �/>†�1.x � �/
D trf†�1nSg C n.x � �/>†�1.x � �/:

Thus the log-likelihood function for Np.�;†/ is

`.X I �/ D �n
2

log j2�†j � n
2

trf†�1Sg � n
2
.x � �/>†�1.x � �/: (6.6)

We can easily see that the third term is maximised by � D Nx. In fact the MLEs are
given by

O� D x; O† D S:

The derivation of O† is a lot more complicated. It involves derivatives with respect
to matrices with their notational complexities and will not be presented here; for
more elaborate proof, see Mardia, Kent and Bibby (1979, pp. 103–104). Note that
the unbiased covariance estimator Su D n

n�1S is not the MLE of †!

Example 6.3 Consider the linear regression model yi D ˇ>xiC"i for i D 1; : : : ; n,
where "i is i.i.d. and N.0; �2/ and where xi 2 R

p . Here � D .ˇ>; �/ is a .p C 1/-
dimensional parameter vector. Denote

y D

0

B
@

y1
:::

yn

1

C
A ; X D

0

B
@

x>1
:::

x>n

1

C
A :
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Then

L.y;X I �/ D
nY

iD1

1p
2��

exp




� 1

2�2
.yi � ˇ>xi /2




and

`.y;X I �/ D log



1

.2�/n=2�n




� 1

2�2

nX

iD1
.yi � ˇ>xi /2

D �n
2

log.2�/� n log � � 1

2�2
.y � Xˇ/>.y � Xˇ/

D �n
2

log.2�/� n log � � 1

2�2
.y>y C ˇ>X>Xˇ � 2ˇ>X>y/:

Differentiating w.r.t. the parameters yields

@

@̌
` D � 1

2�2
.2X>Xˇ � 2X>y/

@

@�
` D �n

�
C 1

�3

˚
.y � Xˇ/>.y � Xˇ/

�
:

Note that @
@ˇ
` denotes the vector of the derivatives w.r.t. all components of ˇ (the

gradient). Since the first equation only depends on ˇ, we start with deriving Ǒ.

X>X Ǒ D X>y; hence Ǒ D .X>X /�1X>y

Plugging Ǒ into the second equation gives

n

O� D
1

O�3 .y � X Ǒ/>.y � X Ǒ/; hence O�2 D 1

n
jjy � X Ǒjj2;

where jj � jj2 denotes the Euclidean vector norm from Sect. 2.6. We see that the MLE
Ǒ is identical with the least squares estimator (3.52). The variance estimator

O�2 D 1

n

nX

iD1
.yi � Ǒ>xi /2

is nothing else than the residual sum of squares (RSS) from (3.37) generalised to the
case of multivariate xi . Note that when the xi are considered to be fixed, we have

E.y/ D Xˇ and Var.y/ D �2In:
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Then, using the properties of moments from Sect. 4.2 we have

E. Ǒ/ D .X>X /�1X> E.y/ D ˇ; (6.7)

Var. Ǒ/ D �2.X>X /�1: (6.8)

Summary
,! If fxi gniD1 is an i.i.d. sample from a distribution with pdf f .xI �/,

then L.X I �/ D Qn
iD1 f .xi I �/ is the likelihood function. The

MLE is that value of � which maximises L.X I �/. Equivalently
one can maximise the log-likelihood `.X I �/.

,! The MLEs of � and † from a Np.�;†/ distribution are O� D x

and O† D S. Note that the MLE of † is not unbiased.
,! The MLEs of ˇ and � in the linear model y D Xˇ C

"; " � Nn.0; �
2I/ are given by the least squares estimator

Ǒ D .X>X /�1X>y and O�2 D 1
n
jjy � X Ǒjj2. E. Ǒ/ D ˇ and

Var. Ǒ/ D �2.X>X /�1.

6.2 The Cramer–Rao Lower Bound

As pointed out above, an important question in estimation theory is whether an
estimator O� has certain desired properties, in particular, if it converges to the
unknown parameter � it is supposed to estimate. One typical property we want for
an estimator is unbiasedness, meaning that on the average, the estimator hits its
target: E. O�/ D � . We have seen for instance (see Example 6.2) that x is an unbiased
estimator of � and S is a biased estimator of † in finite samples. If we restrict
ourselves to unbiased estimation, then the natural question is whether the estimator
shares some optimality properties in terms of its sampling variance. Since we focus
on unbiasedness, we look for an estimator with the smallest possible variance.

In this context, the Cramer–Rao lower bound will give the minimal achievable
variance for any unbiased estimator. This result is valid under very general regularity
conditions (discussed below). One of the most important applications of the
Cramer–Rao lower bound is that it provides the asymptotic optimality property
of MLEs. The Cramer–Rao theorem involves the score function and its properties
which will be derived first.
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The score function s.X I �/ is the derivative of the log likelihood function w.r.t.
� 2 R

k

s.X I �/ D @

@�
`.X I �/ D 1

L.X I �/
@

@�
L.X I �/: (6.9)

The covariance matrix Fn D Varfs.X I �/g is called the Fisher information matrix.
In what follows, we will give some interesting properties of score functions.

Theorem 6.1 If s D s.X I �/ is the score function and if O� D t D t.X ; �/ is any
function of X and � , then under regularity conditions

E.st>/ D @

@�
E.t>/ � E

�
@t>

@�

�

� (6.10)

The proof is left as an exercise (see Exercise 6.9). The regularity conditions required
for this theorem are rather technical and ensure that the expressions (expectations
and derivations) appearing in (6.10) are well defined. In particular, the support of the
density f .xI �/ should not depend on � . The next corollary is a direct consequence.

Corollary 6.1 If s D s.X I �/ is the score function, and O� D t D t.X / is any
unbiased estimator of � (i.e., E.t/ D �), then

E.st>/ D Cov.s; t/ D Ik: (6.11)

Note that the score function has mean zero (see Exercise 6.10).

Efs.X I �/g D 0: (6.12)

Hence, E.ss>/ D Var.s/ D Fn and by setting s D t in Theorem 6.1 it follows that

Fn D �E



@2

@�@�>
`.X I �/




:

Remark 6.1 If x1; : : : ; xn are i.i.d., Fn D nF1 where F1 is the Fisher information
matrix for sample size n D 1.

Example 6.4 Consider an i.i.d. sample fxi gniD1 from Np.�; I/. In this case the
parameter � is the mean �. It follows from (6.3) that

s.X I �/ D @

@�
`.X I �/

D �1
2

@

@�

(
nX

iD1
.xi � �/>.xi � �/

)

D n.x � �/:
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Hence, the information matrix is

Fn D Varfn.x � �/g D nIp:

How well can we estimate �? The answer is given in the following theorem which
is from Cramer and Rao. As pointed out above, this theorem gives a lower bound
for unbiased estimators. Hence, all estimators, which are unbiased and attain this
lower bound, are minimum variance estimators.

Theorem 6.2 (Cramer–Rao) If O� D t D t.X / is any unbiased estimator for � ,
then under regularity conditions

Var.t/ � F�1n ; (6.13)

where

Fn D Efs.X I �/s.X I �/>g D Varfs.X I �/g (6.14)

is the Fisher information matrix.

Proof Consider the correlation �Y;Z between Y and Z where Y D a>t , Z D c>s.
Here s is the score and the vectors a, c 2 R

p. By Corollary 6.1 Cov.s; t/ D I and
thus

Cov.Y;Z/ D a> Cov.t; s/c D a>c
Var.Z/ D c> Var.s/c D c>Fnc:

Hence,

�2Y;Z D
Cov2.Y;Z/

Var.Y /Var.Z/
D .a>c/2

a> Var.t/a� c>Fnc � 1: (6.15)

In particular, this holds for any c ¤ 0. Therefore it holds also for the maximum of
the left-hand side of (6.15) with respect to c. Since

max
c

c>aa>c
c>Fnc

D max
c>FncD1

c>aa>c

and

max
c>FncD1

c>aa>c D a>F�1n a
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by our maximisation Theorem 2.5, we have

a>F�1n a

a> Var.t/a
� 1 8 a 2 R

p; a ¤ 0;

i.e.,

a>fVar.t/ � F�1n ga � 0 8 a 2 R
p; a ¤ 0;

which is equivalent to Var.t/ � F�1n . ut
MLEs attain the lower bound if the sample size n goes to infinity. The next

Theorem 6.3 states this and, in addition, gives the asymptotic sampling distribution
of the maximum likelihood estimation, which turns out to be multinormal.

Theorem 6.3 Suppose that the sample fxi gniD1 is i.i.d. If O� is the MLE for � 2 R
k ,

i.e., O� D arg max
�
L.X I �/, then under some regularity conditions, as n!1:

p
n. O� � �/ L�! Nk.0;F�11 / (6.16)

where F1 denotes the Fisher information for sample size n D 1.

As a consequence of Theorem 6.3 we see that under regularity conditions the MLE
is asymptotically unbiased, efficient (minimum variance) and normally distributed.
Also it is a consistent estimator of � .

Note that from property (5.4) of the multinormal it follows that asymptotically

n. O� � �/>F1. O� � �/ L! �2p: (6.17)

If OF1 is a consistent estimator of F1 .e:g: OF1 D F1. O�//, we have equivalently

n. O� � �/> OF1. O� � �/ L! �2p: (6.18)

This expression is sometimes useful in testing hypotheses about � and in construct-
ing confidence regions for � in a very general setup. These issues will be raised
in more detail in the next chapter, but from (6.18) it can be seen, for instance, that
when n is large,

P
n
n. O� � �/> OF1. O� � �/ � �21�˛Ip

o
	 1 � ˛;

where �2
Ip denotes the 
-quantile of a �2p random variable. So, the ellipsoid n. O� �
�/> OF1. O� � �/ � �21�˛Ip provides in R

p an asymptotic .1 � ˛/-confidence region
for � .
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Summary
,! The score function is the derivative s.X I �/ D @

@�
`.X I �/ of the

log-likelihood with respect to � . The covariance matrix of s.X I �/
is the Fisher information matrix.

,! The score function has mean zero: Efs.X I �/g D 0.

,! The Cramer–Rao bound says that any unbiased estimator O� D t D
t.X / has a variance that is bounded from below by the inverse of
the Fisher information. Thus, an unbiased estimator, which attains
this lower bound, is a minimum variance estimator.

,! For i.i.d. data fxi gniD1 the Fisher information matrix is: Fn D nF1.
,! MLEs attain the lower bound in an asymptotic sense, i.e.,

p
n. O� � �/ L�! Nk.0;F�11 /

if O� is the MLE for � 2 R
k , i.e., O� D arg max

�
L.X I �/.

6.3 Exercises

Exercise 6.1 Consider a uniform distribution on the interval Œ0; ��. What is the
MLE of �? (Hint: the maximisation here cannot be performed by means of
derivatives. Here the support of x depends on � .)

Exercise 6.2 Consider an i.i.d. sample of size n from the bivariate population with
pdf f .x1; x2/ D .�1�2/

�1 exp.�x1=�1 � x2=�2/, x1; x2 > 0. Compute the MLE of
� D .�1; �2/. Find the Cramer–Rao lower bound. Is it possible to derive a minimal
variance unbiased estimator of �?

Exercise 6.3 Show that the MLE of Example 6.1, O� D x, is a minimal variance
estimator for any finite sample size n (i.e., without applying Theorem 6.3).

Exercise 6.4 We know from Example 6.4 that the MLE of Example 6.1 has F1 D
Ip . This leads to

p
n.x � �/ L�! Np.0; I/

by Theorem 6.3. Can you give an analogous result for the square x2 for the case
p D 1?
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Exercise 6.5 Consider an i.i.d. sample of size n from the bivariate population
with pdf f .x1; x2/ D .�21 �2x2/

�1 exp.�x1=�1x2 � x2=�1�2/, x1; x2 > 0. Compute
the MLE of � D .�1; �2/. Find the Cramer–Rao lower bound and the asymptotic
variance of O� .

Exercise 6.6 Consider a sample fxigniD1 from Np.�;†0/ where †0 is known.
Compute the Cramer–Rao lower bound for �. Can you derive a minimal unbiased
estimator for �?

Exercise 6.7 Let X � Np.�;†/ where † is unknown but we know
† D diag.�11; �22; : : : ; �pp/. From an i.i.d. sample of size n, find the MLE of � and
of †.

Exercise 6.8 Reconsider the setup of the previous exercise. Suppose that

† D diag.�11; �22; : : : ; �pp/:

Can you derive in this case the Cramer–Rao lower bound for �> D
.�1 : : : �p; �11 : : : �pp/?

Exercise 6.9 Prove Theorem 6.1. Hint: start from @
@�

E.t>/ D @
@�

R
t>.X I �/

L.X I �/dX , then permute integral and derivatives and note that s.X I �/ D
1

L.X I�/
@
@�
L.X I �/.

Exercise 6.10 Prove expression (6.12).
(Hint: start from Efs.X I �/g D R

1
L.X I�/

@
@�
L.X I �/L.X I �/@X and then permute

integral and derivative.)



Chapter 7
Hypothesis Testing

In the preceding chapter, the theoretical basis of estimation theory was presented.
Now we turn our interest towards testing issues: we want to test the hypothesis H0

that the unknown parameter � belongs to some subspace of Rq . This subspace is
called the null set and will be denoted by �0 � R

q .
In many cases, this null set corresponds to restrictions which are imposed on the

parameter space:H0 corresponds to a “reduced model”. As we have already seen in
Chap. 3, the solution to a testing problem is in terms of a rejection region R which
is a set of values in the sample space which leads to the decision of rejecting the
null hypothesisH0 in favour of an alternativeH1, which is called the “full model”.

In general, we want to construct a rejection region R which controls the size of
the type I error, i.e. the probability of rejecting the null hypothesis when it is true.
More formally, a solution to a testing problem is of predetermined size ˛ if:

P.Rejecting H0 j H0 is true/ D ˛:

In fact, since H0 is often a composite hypothesis, it is achieved by finding R such
that

sup
�2�0

P.X 2 R j �/ D ˛:

In this chapter we will introduce a tool which allows us to build a rejection
region in general situations; it is based on the likelihood ratio principle. This is
a very useful technique because it allows us to derive a rejection region with an
asymptotically appropriate size ˛. The technique will be illustrated through various
testing problems and examples. We concentrate on multinormal populations and
linear models where the size of the test will often be exact even for finite sample
sizes n.

Section 7.1 gives the basic ideas and Sect. 7.2 presents the general problem of
testing linear restrictions. This allows us to propose solutions to frequent types

© Springer-Verlag Berlin Heidelberg 2015
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of analyses (including comparisons of several means, repeated measurements and
profile analysis). Each case can be viewed as a simple specific case of testing linear
restrictions. Special attention is devoted to confidence intervals and confidence
regions for means and for linear restrictions on means in a multinormal setup.

7.1 Likelihood Ratio Test

Suppose that the distribution of fxi gniD1, xi 2 R
p, depends on a parameter vector � .

We will consider two hypotheses:

H0 W � 2 �0

H1 W � 2 �1:

The hypothesisH0 corresponds to the “reduced model” andH1 to the “full model”.
This notation was already used in Chap. 3.

Example 7.1 Consider a multinormal Np.�; I/. To test if � equals a certain fixed
value �0 we construct the test problem:

H0 W � D �0
H1 W no constraints on �

or, equivalently,�0 D f�0g, �1 D R
p.

Define L�j D max
�2�j

L.X I �/, the maxima of the likelihood for each of the

hypotheses. Consider the likelihood ratio (LR)

�.X / D L�0
L�1
: (7.1)

One tends to favour H0 if the LR is high and H1 if the LR is low. The likelihood
ratio test (LRT) tells us when exactly to favour H0 over H1. A LRT of size ˛ for
testing H0 againstH1 has the rejection region

R D fX W �.X / < cg;

where c is determined so that sup
�2�0

P� .X 2 R/ D ˛. The difficulty here is to express

c as a function of ˛, because �.X / might be a complicated function of X .
Instead of � we may equivalently use the log-likelihood

�2 log� D 2.`�1 � `�0 /:
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In this case the rejection region will be R D fX W �2 log�.X / > kg: What is the
distribution of � or of �2 log� from which we need to compute c or k?

Theorem 7.1 If �1 � R
q is a q-dimensional space and if �0 � �1 is an r-

dimensional subspace, then under regularity conditions

8 � 2 �0 W �2 log�
L�! �2q�r as n!1:

An asymptotic rejection region can now be given by simply computing the 1 � ˛
quantile k D �21�˛Iq�r . The LRT rejection region is therefore

R D fX W �2 log�.X / > �21�˛Iq�r g:

Theorem 7.1 is thus very helpful: it gives a general way of building rejection regions
into many problems. Unfortunately, it is only an asymptotic result, meaning that
the size of the test is only approximately equal to ˛, although the approximation
becomes better when the sample size n increases. The question is “how large should
n be?”. There is no definite rule: we encounter here the same problem that was
already discussed with respect to the Central Limit Theorem in Chap. 4.

Fortunately, in many standard circumstances, we can derive exact tests even for
finite samples because the test statistic �2 log�.X / or a simple transformation of it
turns out to have a simple form. This is the case in most of the following standard
testing problems. All of them can be viewed as an illustration of the likelihood ratio
principle.

Test Problem 1 is an amuse-bouche: in testing the mean of a multinormal
population with a known covariance matrix the likelihood ratio statistic has a very
simple quadratic form with a known distribution underH0.

Test Problem 1. Suppose that X1; : : : ; Xn is an i.i.d. random sample from a
Np.�;†/ population.

H0 W � D �0; † known versusH1 W no constraints.

In this case H0 is a simple hypothesis, i.e. �0 D f�0g and therefore the
dimension r of�0 equals 0. Since we have imposed no constraints in H1, the space
�1 is the whole Rp which leads to q D p. From (6.6) we know that

`�0 D `.�0;†/ D �
n

2
log j2�†j � 1

2
n tr.†�1S/ � 1

2
n.x � �0/>†�1.x � �0/:
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UnderH1 the maximum of `.�;†/ is

`�1 D `.x;†/ D �
n

2
log j2�†j � 1

2
n tr.†�1S/:

Therefore,

� 2 log� D 2.`�1 � `�0 / D n.x � �0/>†�1.x � �0/ (7.2)

which, by Theorem 4.7, has a �2p-distribution underH0.

Example 7.2 Consider the bank data again. Let us test whether the population mean
of the forged bank notes is equal to

�0 D .214:9; 129:9; 129:7; 8:3; 10:1; 141:5/>:

(This is in fact the sample mean of the genuine bank notes.) The sample mean of
the forged bank notes is

x D .214:8; 130:3; 130:2; 10:5; 11:1; 139:4/>:

Suppose for the moment that the estimated covariance matrix Sf given in (3.5) is
the true covariance matrix †. We construct the LRT and obtain

�2 log� D 2.`�1 � `�0 / D n.x � �0/>†�1.x � �0/
D 7362:32;

the quantile k D �20:95I6 equals 12:592. The rejection consists of all values in the
sample space which lead to values of the LRT statistic larger than 12:592. Under
H0 the value of �2 log� is therefore highly significant. Hence, the true mean of the
forged bank notes is significantly different from �0!

Test Problem 2 is the same as the preceding one but in a more realistic situation
where the covariance matrix is unknown; here the Hotelling’s T 2-distribution will
be useful to determine an exact test and a confidence region for the unknown�.

Test Problem 2. Suppose that X1; : : : ; Xn is an i.i.d. random sample from a
Np.�;†/ population.

H0 W � D �0; † unknown versusH1 W no constraints.
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Under H0 it can be shown that

S0 D 1

n

h
x � 1n�>0 � 1nx> C 1nx>

i> h
x � 1n�>0 � 1nx> C 1nx>

i

D S C .x � �0/ .x � �0/>
`�0 D `.�0;S C dd>/; d D .x � �0/ (7.3)

and underH1 we have

`�1 D `.x;S/:

This leads after some calculation to

�2 log� D 2.`�1 � `�0 /
D �n log jSj � n tr.S�1S/ � n .x � x/> S�1 .x � x/C n log jS C dd>j
Cn tr

h�
S C dd>

��1 S
i
C n .x � �0/> .S C dd>/�1 .x � �0/

D n log

ˇ
ˇ
ˇ
ˇ
ˇ

S C dd>

S

ˇ
ˇ
ˇ
ˇ
ˇ
C n tr

�
.S C dd>/�1S

�C nd>.S C dd>/�1d � np

D n log

ˇ
ˇ
ˇ
ˇ
ˇ

S C dd>

S

ˇ
ˇ
ˇ
ˇ
ˇ
C n tr

�
.S C dd>/�1.dd> C S/

� � np

D n log

ˇ
ˇ
ˇ
ˇ
ˇ

S C dd>

S

ˇ
ˇ
ˇ
ˇ
ˇ

D n log j1C S�1=2dd>S�1=2j:

By using the result for the determinant of a partitioned matrix, it equals to

n log

ˇ
ˇ
ˇ
ˇ

1 �d>S�1=2
S�1=2d I

ˇ
ˇ
ˇ
ˇ

D n log

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 �d>S�1=21 �d>S�1=22 : : : �d>S�1=2p
S�1=2d 1 1 0 : : : 0

S�1=2d 2 0 1 0
:::

:::
: : :

S�1=2dp 0 0 : : : 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
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D n log 1C n log
pX

iD1
�d>S�1=2i .�1/1C.iC1/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

S�1=2d 1 1 0 : : : 0
S�1=2d 2 0 1 : : : 0

:::
: : :

S�1=2d i 0 0 : : : 0
:::

S�1=2dp 0 0 : : : 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D n log 1C
pX

iD1
�d>S�1=2i .�1/2CiS�1=2d i .�1/iC1

D n log.1C d>S�1d/: (7.4)

This statistic is a monotone function of .n�1/d>S�1d . This means that�2 log� >
k if and only if .n�1/d>S�1d > k0. The latter statistic has by Corollary 5.3, under
H0; a Hotelling’s T 2-distribution. Therefore,

.n � 1/. Nx � �0/>S�1. Nx � �0/ � T 2p;n�1; (7.5)

or equivalently

�
n � p
p

�

. Nx � �0/>S�1. Nx � �0/ � Fp;n�p: (7.6)

In this case an exact rejection region may be defined as

�
n � p
p

�

. Nx � �0/>S�1. Nx � �0/ > F1�˛Ip;n�p:

Alternatively, we have from Theorem 7.1 that underH0 the asymptotic distribution
of the test statistic is

�2 log�
L
�! �2p; as n!1

which leads to the (asymptotically valid) rejection region

n logf1C . Nx � �0/>S�1. Nx � �0/g > �21�˛Ip;

but of course, in this case, we would prefer to use the exact F -test provided just
above.

Example 7.3 Consider the problem of Example 7.2 again. We know that Sf is the
empirical analogue for†f , the covariance matrix for the forged banknotes. The test
statistic (7.5) has the value 1,153.4 or its equivalent for the F distribution in (7.6)
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is 182.5 which is highly significant (F0:95I6;94 D 2:1966) so that we conclude that
�f 6D �0.

Confidence Region for �

When estimating a multidimensional parameter � 2 R
k from a sample, we saw in

Chap. 6 how to determine the estimator O� D O�.X /. For the observed data we end
up with a point estimate, which is the corresponding observed value of O� . We know
O�.X / is a random variable and we often prefer to determine a confidence region for
� . A confidence region (CR) is a random subset of Rk (determined by appropriate
statistics) such that we are “confident”, at a certain given level 1�˛, that this region
contains � :

P.� 2 CR/ D 1 � ˛:

This is just a multidimensional generalisation of the basic univariate confidence
interval. Confidence regions are particularly useful when a hypothesis H0 on �
is rejected, because they eventually help in identifying which component of � is
responsible for the rejection.

There are only a few cases where confidence regions can be easily assessed, and
include most of the testing problems on mean presented in this section.

Corollary 5.3 provides a pivotal quantity which allows confidence regions for �

to be constructed. Since
�
n�p
p

�
. Nx � �/>S�1. Nx � �/ � Fp;n�p , we have

P


�
n � p
p

�

.� � Nx/>S�1.� � Nx/ < F1�˛Ip;n�p



D 1 � ˛:

Then,

CR D



� 2 R
p j .� � Nx/>S�1.�� Nx/ � p

n � pF1�˛Ip;n�p



is a confidence region at level (1-˛) for �. It is the interior of an iso-distance
ellipsoid in R

p centred at Nx, with a scaling matrix S�1 and a distance constant�
p

n�p
�
F1�˛Ip;n�p . When p is large, ellipsoids are not easy to handle for practical

purposes. One is thus interested in finding confidence intervals for �1; �2; : : : ; �p
so that simultaneous confidence on all the intervals reaches the desired level of say,
1 � ˛.

Below, we consider a more general problem. We construct simultaneous confi-
dence intervals for all possible linear combinations a>�, a 2 R

p of the elements
of �.
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Suppose for a moment that we fix a particular projection vector a. We are back
to a standard univariate problem of finding a confidence interval for the mean a>�
of a univariate random variable a>X . We can use the t-statistics and an obvious
confidence interval for a>� is given by the values a>� such that

ˇ
ˇ
ˇ
ˇ
ˇ

p
n � 1.a>� � a> Nx/p

a>Sa

ˇ
ˇ
ˇ
ˇ
ˇ
� t1� ˛

2 In�1

or equivalently

t2.a/ D .n � 1/ ˚a>.� � Nx/�2
a>Sa � F1�˛I1;n�1:

This provides the (1� ˛) confidence interval for a>�:

0

@a> Nx �
s

F1�˛I1;n�1
a>Sa
n � 1 � a

>� � a> Nx C
s

F1�˛I1;n�1
a>Sa
n � 1

1

A :

Now it is easy to prove (using Theorem 2.5) that:

max
a
t2.a/ D .n � 1/. Nx � �/>S�1. Nx � �/ � T 2p;n�1:

Therefore, simultaneously for all a 2 R
p , the interval

�
a> Nx �

p
K˛a>Sa; a> Nx C

p
K˛a>Sa

�
; (7.7)

whereK˛ D p

n�pF1�˛Ip;n�p , will contain a>� with probability (1 � ˛).
A particular choice of a are the columns of the identity matrix Ip , providing

simultaneous confidence intervals for �1; : : : ; �p . We therefore have with probabil-
ity (1 � ˛) for j D 1; : : : ; p

Nxj �
r

p

n � pF1�˛Ip;n�psjj � �j � Nxj C
r

p

n � pF1�˛Ip;n�psjj: (7.8)

It should be noted that these intervals define a rectangle inscribing the confidence
ellipsoid for � given above. They are particularly useful when a null hypothesis
H0 of the type described above is rejected and one would like to see which
component(s) are mainly responsible for the rejection.

Example 7.4 The 95% confidence region for�f , the mean of the forged banknotes,
is given by the ellipsoid:




� 2 R
6
ˇ
ˇ
ˇ.� � Nxf />S�1f .� � Nxf / � 6

94
F0:95I6;94




:
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The 95% simultaneous confidence intervals are given by (we use F0:95I6;94 D
2:1966)

214:692 � �1 � 214:954

130:205 � �2 � 130:395

130:082 � �3 � 130:304

10:108 � �4 � 10:952

10:896 � �5 � 11:370

139:242 � �6 � 139:658:

Comparing the inequalities with �0 D .214:9; 129:9; 129:7; 8:3; 10:1; 141:5/>
shows that almost all components (except the first one) are responsible for the
rejection of �0 in Examples 7.2 and 7.3.

In addition, the method can provide other confidence intervals. We have at the
same level of confidence (choosing a> D .0; 0; 0; 1; �1; 0/)

�1:211 � �4 � �5 � 0:005

showing that for the forged bills, the lower border is essentially smaller than the
upper border.

Remark 7.1 It should be noted that the confidence region is an ellipsoid whose
characteristics depend on the whole matrix S. In particular, the slope of the axis
depends on the eigenvectors of S and therefore on the covariances sij. However, the
rectangle inscribing the confidence ellipsoid provides the simultaneous confidence
intervals for �j ; j D 1; : : : ; p. They do not depend on the covariances sij, but
only on the variances sjj [see (7.8)]. In particular, it may happen that a tested value
�0 is covered by the confidence ellipsoid but not covered by the intervals (7.8). In
this case, �0 is rejected by a test based on the simultaneous confidence intervals
but not rejected by a test based on the confidence ellipsoid. The simultaneous
confidence intervals are easier to handle than the full ellipsoid but we have lost some
information, namely the covariance between the components (see Exercise 7.14).

The following problem concerns the covariance matrix in a multinormal popula-
tion: in this situation the test statistic has a slightly more complicated distribution.
We will therefore invoke the approximation of Theorem 7.1 in order to derive a test
of approximate size ˛.

Test Problem 3. Suppose that X1; : : : ; Xn is an i.i.d. random sample from a
Np.�;†/ population.

H0 W † D †0; � unknown versusH1 W no constraints:
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UnderH0 we have O� D x, and † D †0, whereas underH1 we have O� D x, and
O† D S. Hence

`�0 D `.x;†0/ D �1
2
n log j2�†0j � 1

2
n tr.†�10 S/

`�1 D `.x;S/ D �1
2
n log j2�Sj � 1

2
np

and thus

�2 log� D 2.`�1 � `�0 /
D n tr.†�10 S/ � n log j†�10 Sj � np:

Note that this statistic is a function of the eigenvalues of †�10 S. Unfortunately, the
exact finite sample distribution of �2 log� is very complicated. Asymptotically, we
have underH0

�2 log�
L! �2m as n!1

with m D 1
2
fp.p C 1/g, since a .p � p/ covariance matrix has only these m

parameters as a consequence of its symmetry.

Example 7.5 Consider the US companies data set (Table 22.5) and suppose we
are interested in the companies of the energy sector, analysing their assets .X1/
and sales .X2/. The sample is of size 15 and provides the value of S D 107 �
�
1:6635 1:2410

1:2410 1:3747

�

. We want to test if Var
�
X1
X2

� D 107 �
�
1:2248 1:1425

1:1425 1:5112

�

D †0.

(†0 is in fact the empirical variance matrix for X1 and X2 for the manufacturing
sector). The test statistic ( MVAusenergy) turns out to be �2 log� D 5:4046

which is not significant for �23 (p-value D 0:1445). So we cannot conclude that
† 6D †0.

In the next testing problem, we address a question that was already stated in
Chap. 3, Sect. 3.6: testing a particular value of the coefficients ˇ in a linear model.
The presentation is carried out in general terms so that it can be built on in the next
section where we will test linear restrictions on ˇ.

Test Problem 4. Suppose that Y1; : : : ; Yn are independent r.v.’s with
Yi � N1.ˇ>xi ; �2/; xi 2 R

p .

H0 W ˇ D ˇ0; �2 unknown versusH1 W no constraints:
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Under H0 we have ˇ D ˇ0; O�20 D 1
n
jjy � Xˇ0jj2 and under H1 we have Ǒ D

.X>X /�1X>y; O�2 D 1
n
jjy � X Ǒjj2 (see Example 6.3). Hence by Theorem 7.1

�2 log� D 2.`�1 � `�0 /

D n log

 
jjy � Xˇ0jj2
jjy � X Ǒjj2

!

L�! �2p:

We draw upon the result (3.45) which gives us

F D .n � p/
p

 
jjy � Xˇ0jj2
jjy � X Ǒjj2 � 1

!

� Fp;n�p;

so that in this case we again have an exact distribution.

Example 7.6 Let us consider our “classic blue” pullovers again. In Example 3.11
we tried to model the dependency of sales on prices. As we have seen in Fig. 3.5
the slope of the regression curve is rather small, hence we might ask if

�
˛
ˇ

� D �
211
0

�
.

Here

y D

0

B
@

y1
:::

y10

1

C
A D

0

B
@

x1;1
:::

x10;1

1

C
A ; X D

0

B
@

1 x1;2
:::

:::

1 x10;2

1

C
A :

The test statistic for the LR test is

�2 log� D 9:10

which under the �22 distribution is significant. The exact F -test statistic

F D 5:93

is also significant under the F2;8 distribution .F2;8I0:95 D 4:46/.

Summary
,! The hypotheses H0 W � 2 �0 against H1 W � 2 �1 can be tested

using the LRT. The likelihood ratio (LR) is the quotient �.X / D
L�0 =L�1 where the L�j are the maxima of the likelihood for each of
the hypotheses.
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Summary (continued)

,! The test statistic in the LRT is �.X / or equivalently its logarithm
log�.X /. If �1 is q-dimensional and �0 � �1 r-dimensional,
then the asymptotic distribution of�2 log� is �2q�r . This allowsH0

to be tested against H1 by calculating the test statistic �2 log� D
2.`�1 � `�0 / where `�j D logL�j .

,! The hypothesis H0 W � D �0 for X � Np.�;†/, where † is
known, leads to �2 log� D n.x � �0/>†�1.x � �0/ � �2p:

,! The hypothesis H0 W � D �0 for X � Np.�;†/, where †
is unknown, leads to �2 log� D n logf1 C .x � �0/>S�1.x �
�0/g �! �2p , and

.n � 1/. Nx � �0/>S�1. Nx � �0/ � T 2p;n�1:
,! The hypothesis H0 W † D †0 for X � Np.�;†/, where � is

unknown, leads to�2 log� D n tr
�
†�10 S

��n log j†�10 Sj�np �!
�2m; m D 1

2
p.p C 1/:

,! The hypothesis H0 W ˇ D ˇ0 for Yi � N1.ˇ>xi ; �2/, where �2 is

unknown, leads to �2 log� D n log
� jjy�Xˇ0jj2
jjy�X Ǒjj2

�
�! �2p .

7.2 Linear Hypothesis

In this section, we present a very general procedure which allows a linear hypothesis
to be tested, i.e. a linear restriction, either on a vector mean � or on the coefficient
ˇ of a linear model. The presented technique covers many of the practical testing
problems on means or regression coefficients.

Linear hypotheses are of the form A� D a with known matrices A.q � p/ and
a.q � 1/ with q � p.

Example 7.7 Let � D .�1; �2/>. The hypothesis that �1 D �2 can be equivalently
written as:

A� D � 1 �1 �
�
�1

�2

�

D 0 D a:

The general idea is to test a normal populationH0 W A� D a (restricted model)
against the full modelH1 where no restrictions are put on�. Due to the properties of
the multinormal, we can easily adapt the Test Problems 1 and 2 to this new situation.
Indeed we know, from Theorem 5.2, that yi D Axi � Nq.�y;†y/, where �y D
A� and †y D A†A>.
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Testing the null H0 W A� D a, is the same as testing H0 W �y D a. The
appropriate statistics are Ny and Sy which can be derived from the original statistics
Nx and S available from X :

Ny D A Nx; Sy D ASA>:

Here the difference between the translated sample mean and the tested value is d D
A Nx � a. We are now in the situation to proceed to Test Problems 5 and 6.

Test Problem 5. Suppose X1; : : : ; Xn is an i.i.d. random sample from a
Np.�;†/ population.

H0 W A� D a; † known versusH1 W no constraints.

By (7.2) we have that, underH0:

n.A Nx � a/>.A†A>/�1.A Nx � a/ � X 2
q ;

and we reject H0 if this test statistic is too large at the desired significance level.

Example 7.8 We consider hypotheses on partitioned mean vectors � D
�
�1
�2

�
. Let

us first look at

H0 W �1 D �2; versusH1 W no constraints,

for N2p.
�
�1
�2

�
;
�
†
0
0
†

�
/ with known †. This is equivalent to A D .I;�I/, a D

.0; : : : ; 0/> 2 R
p and leads to

�2 log� D n.x1 � x2/.2†/�1.x1 � x2/ � �2p:

Another example is the test whether �1 D 0, i.e.

H0 W �1 D 0; versusH1 W no constraints,

for N2p
��
�1
�2

�
;
�
†
0
0
†

� �
with known †. This is equivalent to A� D a with A D

.I; 0/, and a D .0; : : : ; 0/> 2 R
p . Hence

�2 log� D nx1†�1x1 � �2p:
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Test Problem 6. Suppose X1; : : : ; Xn is an i.i.d. random sample from a
Np.�;†/ population.

H0 W A� D a; † unknown versusH1 W no constraints.

From Corollary (5.4) and underH0 it follows immediately that

.n � 1/.Ax � a/>.ASA>/�1.Ax � a/ � T 2q;n�1 (7.9)

since indeed underH0,

Ax � Nq.a; n�1A†A>/

is independent of

nASA> � Wq.A†A>; n � 1/:

Example 7.9 Let’s come back again to the bank data set and suppose that we want
to test if �4 D �5, i.e. the hypothesis that the lower border mean equals the larger
border mean for the forged bills. In this case:

A D .0 0 0 1 � 1 0/
a D 0:

The test statistic is:

99.A Nx/>.ASfA>/�1.A Nx/ � T 21;99 D F1;99:

The observed value is 13:638 which is significant at the 5% level.

Repeated Measurements

In many situations, n independent sampling units are observed at p different times
or under p different experimental conditions (different treatments, etc.). So here we
repeat p one-dimensional measurements on n different subjects. For instance, we
observe the results from n students taking p different exams. We end up with a
.n � p/ matrix. We can thus consider the situation where we have X1; : : : ; Xn i.i.d.
from a normal distributionNp.�;†/ when there are p repeated measurements. The
hypothesis of interest in this case is that there are no treatment effects, H0 W �1 D
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�2 D � � � D �p . This hypothesis is a direct application of Test Problem 6. Indeed,
introducing an appropriate matrix transform on � we have

H0 W C� D 0 where C..p � 1/ � p/ D

0

B
B
B
@

1 –1 0 � � � 0
0 1 –1 � � � 0
:::
:::

:::
:::
:::

0 � � � 0 1 –1

1

C
C
C
A
: (7.10)

Note that in many cases one of the experimental conditions is the “control” (a
placebo, standard drug or reference condition). Suppose it is the first component.
In that case one is interested in studying differences to the control variable. The
matrix C has therefore a different form

C..p � 1/ � p/ D

0

B
B
B
@

1 –1 0 � � � 0
1 0 –1 � � � 0
:::
:::
:::
:::
:::

1 0 0 � � � –1

1

C
C
C
A
:

By (7.9) the null hypothesis will be rejected if:

.n� p C 1/
p � 1 Nx>C>.CSC>/�1C Nx > F1�˛Ip�1;n�pC1:

As a matter of fact, C� is the mean of the random variable yi D Cxi

yi � Np�1.C�; C†C>/:

Simultaneous confidence intervals for linear combinations of the mean of yi have
been derived above in (7.7). For all a 2 R

p�1, with probability .1 � ˛/ we have

a>C� 2 a>C Nx ˙
s

.p � 1/
n � p C 1F1�˛Ip�1;n�pC1a

>CSC>a:

Due to the nature of the problem here, the row sums of the elements in C are zero:
C1p D 0, therefore a>C is a vector having sum of elements equals to 0 . This is

called a contrast. Let b D C>a. We have b>1p D
pP

jD1
bj D 0. The result above

thus provides for all contrasts of �, and b>� simultaneous confidence intervals at
level .1 � ˛/

b>� 2 b> Nx ˙
s

.p � 1/
n � p C 1F1�˛Ip�1;n�pC1b

>Sb:
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Examples of contrasts for p D 4 are b> D .1 � 1 0 0/ or .1 0 0 � 1/ or even
.1 � 1

3
� 1

3
� 1

3
/ when the control is to be compared with the mean of three

different treatments.

Example 7.10 Bock (1975) considers the evolution of the vocabulary of children
from the eighth through eleventh grade. The data set contains the scores of a
vocabulary test of 40 randomly chosen children. This is a repeated measurement
situation, .n D 40; p D 4/, since the same children were observed from grades 8 to
11. The statistics of interest are:

Nx D .1:086; 2:544; 2:851; 3:420/>

S D

0

B
B
@

2:902 2:438 2:963 2:183

2:438 3:049 2:775 2:319

2:963 2:775 4:281 2:939

2:183 2:319 2:939 3:162

1

C
C
A :

Suppose we are interested in the yearly evolution of the children. Then the matrix C
providing successive differences of �j is:

C D
0

@
1 �1 0 0

0 1 �1 0

0 0 1 �1

1

A :

The value of the test statistic is Fobs D 53:134 which is highly significant for
F3:37: There are significant differences between the successive means. However,
the analysis of the contrasts shows the following simultaneous 95% confidence
intervals

�1:958 � �1 � �2 � �0:959
�0:949 � �2 � �3 � 0:335

�1:171 � �3 � �4 � 0:036:

Thus, the rejection of H0 is mainly due to the difference between the childrens’
performances in the first and second year. The confidence intervals for the following
contrasts may also be of interest:

�2:283 � �1 � 1
3
.�2 C �3 C �4/ � �1:423

�1:777 � 1
3
.�1 C �2 C �3/ � �4 � �0:742

�1:479 � �2 � �4 � �0:272:

They show that �1 is different from the average of the 3 other years (the same being
true for �4) and �4 turns out to be higher than �2 (and of course higher than �1).
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Test Problem 7 illustrates how the likelihood ratio can be applied to testing a
linear restriction on the coefficient ˇ of a linear model. It is also shown how a
transformation of the test statistic leads to an exact F test as presented in Chap. 3.

Test Problem 7. Suppose Y1; : : : ; Yn, are independent with
Yi � N1.ˇ>xi ; �2/, and xi 2 R

p .

H0 W Aˇ D a; �2 unknown versusH1 W no constraints.

To get the constrained maximum likelihood estimators under H0, let f .ˇ; �/ D
.y � xˇ/>.y � xˇ/ � �>.Aˇ � a/ where � 2 R

q and solve @f .ˇ;�/

@ˇ
D 0 and

@f .ˇ;�/

@�
D 0 (Exercise 3.24), thus we obtain:

Q̌ D Ǒ � .X>X /�1A>fA.X>X /�1A>g�1.A Ǒ � a/

for ˇ and Q�2 D 1
n
.y � X Q̌/>.y � X Q̌/. The estimate Ǒ denotes the unconstrained

MLE as before. Hence, the LR statistic is

�2 log� D 2.`�1 � `�0 /

D n log

 
jjy � X Q̌jj2
jjy � X Ǒjj2

!

L�! �2q;

where q is the number of elements of a. This problem also has an exact F -test since

n � p
q

 
jjy � X Q̌jj2
jjy � X Ǒjj2 � 1

!

D n � p
q

.A Ǒ � a/>fA.X>X /�1A>g�1.A Ǒ � a/
.y � X Ǒ/>.y � X Ǒ/ � Fq;n�p:

Example 7.11 Let us continue with the “classic blue” pullovers. We can once more
test if ˇ D 0 in the regression of sales on prices. It holds that

ˇ D 0 iff .0 1/

 
˛

ˇ

!

D 0:

The LR statistic here is

�2 log� D 0:284
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which is not significant for the �21 distribution. The F -test statistic

F D 0:231

is also not significant. Hence, we can assume independence of sales and prices
(alone). Recall that this conclusion has to be revised if we consider the prices
together with advertising costs and hours sales manager hours.

Recall the different conclusion that was made in Example 7.6 when we rejected
H0 W ˛ D 211 and ˇ D 0. The rejection there came from the fact that the pair of
values was rejected. Indeed, if ˇ D 0 the estimator of ˛ would be Ny D 172:70 and
this is too far from 211.

Example 7.12 Let us now consider the multivariate regression in the “classic blue”
pullovers example. From Example 3.15 we know that the estimated parameters in
the model

X1 D ˛ C ˇ1X2 C ˇ2X3 C ˇ3X4 C "

are

Ǫ D 65:670; Ǒ1 D �0:216; Ǒ2 D 0:485; Ǒ3 D 0:844:

Hence, we could postulate the approximate relation:

ˇ1 	 �1
2
ˇ2;

which means in practice that augmenting the price by 20 EUR requires the
advertising costs to increase by 10 EUR in order to keep the number of pullovers
sold constant. Vice versa, reducing the price by 20 EUR yields the same result as
before if we reduced the advertising costs by 10 EUR. Let us now test whether the
hypothesis

H0 W ˇ1 D �1
2
ˇ2

is valid. This is equivalent to

�

0 1
1

2
0

�

0

B
B
@

˛

ˇ1

ˇ2
ˇ3

1

C
C
A D 0:

The LR statistic in this case is equal to ( MVAlrtest)

�2 log� D 0:012;
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the F statistic is

F D 0:007:

Hence, in both cases we will not reject the null hypothesis.

Comparison of Two Mean Vectors

In many situations, we want to compare two groups of individuals for whom a set
of p characteristics has been observed. We have two random samples fxi1gn1iD1 and
fxj2gn2jD1 from two distinct p-variate normal populations. Several testing issues can
be addressed in this framework. In Test Problem 8 we will first test the hypothesis
of equal mean vectors in the two groups under the assumption of equality of the two
covariance matrices. This task can be solved by adapting Test Problem 2.

In Test Problem 9 a procedure for testing the equality of the two covariance
matrices is presented. If the covariance matrices differ, the procedure of Test
Problem 8 is no longer valid. If the equality of the covariance matrices is rejected, an
easy rule for comparing two means with no restrictions on the covariance matrices
is provided in Test Problem 10.

Test Problem 8. Assume that Xi1 � Np.�1;†/, with i D 1; : : : ; n1 and
Xj2 � Np.�2;†/, with j D 1; : : : ; n2, where all the variables are independent.

H0 W �1 D �2; versusH1 W no constraints.

Both samples provide the statistics Nxk and Sk , k D 1; 2. Let ı D �1 � �2. We
have

. Nx1 � Nx2/ � Np
�

ı;
n1 C n2
n1n2

†

�

(7.11)

n1S1 C n2S2 � Wp.†; n1 C n2 � 2/: (7.12)

Let S D .n1 C n2/�1.n1S1 C n2S2/ be the weighted mean of S1 and S2. Since the
two samples are independent and since Sk is independent of Nxk (for k D 1; 2) it
follows that S is independent of . Nx1� Nx2/: Hence, Theorem 5.8 applies and leads to
a T 2-distribution:

n1n2.n1 C n2 � 2/
.n1 C n2/2 f. Nx1 � Nx2/� ıg> S�1 f. Nx1 � Nx2/� ıg/ � T 2p;n1Cn2�2

(7.13)
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or

f. Nx1 � Nx2/� ıg> S�1 f. Nx1 � Nx2/� ıg � p.n1 C n2/2
.n1 C n2 � p � 1/n1n2 Fp;n1Cn2�p�1:

This result, as in Test Problem 2, can be used to test H0 W ı D 0 or to construct a
confidence region for ı 2 R

p . The rejection region is given by:

n1n2.n1 C n2 � p � 1/
p.n1 C n2/2 . Nx1 � Nx2/> S�1 . Nx1 � Nx2/ � F1�˛Ip;n1Cn2�p�1: (7.14)

A .1� ˛/ confidence region for ı is given by the ellipsoid centred at . Nx1 � Nx2/

fı� . Nx1�Nx2/g> S�1 fı� . Nx1�Nx2/g � p.n1 C n2/2
.n1 C n2�p�1/.n1n2/F1�˛Ip;n1Cn2�p�1;

and the simultaneous confidence intervals for all linear combinations a>ı of the
elements of ı are given by

a>ı 2 a>. Nx1 � Nx2/˙
s

p.n1 C n2/2
.n1 C n2 � p � 1/.n1n2/F1�˛Ip;n1Cn2�p�1a

>Sa:

In particular we have at the .1 � ˛/ level, for j D 1; : : : ; p,

ıj 2 . Nx1j � Nx2j /˙
s

p.n1 C n2/2
.n1 C n2 � p � 1/.n1n2/F1�˛Ip;n1Cn2�p�1sjj: (7.15)

Example 7.13 Let us come back to the questions raised in Example 7.5. We
compare the means of assets (X1) and of sales (X2) for two sectors, energy (group
1) and manufacturing (group 2). With n1 D 15, n2 D 10, and p D 2 we obtain the
statistics:

Nx1 D
�
4084:0

2580:5

�

; Nx2 D
�
4307:2

4925:2

�

and

S1 D 107
�
1:6635 1:2410

1:2410 1:3747

�

;S2 D 107
�
1:2248 1:1425

1:1425 1:5112

�

;

so that

S D 107
�
1:4880 1:2016

1:2016 1:4293

�

:
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The observed value of the test statistic (7.14) is F D 2:7036. Since F0:95I2;22 D
3:4434 the hypothesis of equal means of the two groups is not rejected although
it would be rejected at a less severe level (F > F0:90I2;22 D 2:5613). By directly
applying (7.15), the 95 % simultaneous confidence intervals for the differences (
MVAsimcidif) are obtained as:

�4628:6 � �1a � �2a � 4182:2
�6662:4 � �1s � �2s � 1973:0:

Example 7.14 In order to illustrate the presented test procedures it is interesting to
analyse some simulated data. This simulation will point out the importance of the
covariances in testing means. We created two independent normal samples in R

4 of
sizes n1 D 30 and n2 D 20 with:

�1 D .8; 6; 10; 10/>

�2 D .6; 6; 10; 13/>:

One may consider this as an example of X D .X1; : : : ; Xn/
> being the students’

scores from four tests, where the two groups of students were subjected to two
different methods of teaching. First we simulate the two samples with † D I4 and
obtain the statistics:

Nx1 D .7:607; 5:945; 10:213; 9:635/>
Nx2 D .6:222; 6:444; 9:560; 13:041/>

S1 D

0

B
B
@

0:812 �0:229 �0:034 0:073

�0:229 1:001 0:010 �0:059
�0:034 0:010 1:078 �0:098
0:073 �0:059 �0:098 0:823

1

C
C
A

S2 D

0

B
B
@

0:559 �0:057 �0:271 0:306

�0:057 1:237 0:181 0:021

�0:271 0:181 1:159 �0:130
0:306 0:021 �0:130 0:683

1

C
C
A :

The test statistic (7.14) takes the value F D 60:65 which is highly significant:
the small variance allows the difference to be detected even with these relatively
moderate sample sizes. We conclude (at the 95 % level) that:

0:6213 � ı1 � 2:2691

�1:5217 � ı2 � 0:5241

�0:3766 � ı3 � 1:6830

�4:2614 � ı4 � �2:5494

which confirms that the means for X1 and X4 are different.
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Consider now a different simulation scenario where the standard deviations are
four times larger:† D 16I4. Here we obtain:

Nx1 D .7:312; 6:304; 10:840; 10:902/>

Nx2 D .6:353; 5:890; 8:604; 11:283/>

S1 D

0

B
B
@

21:907 1:415 �2:050 2:379

1:415 11:853 2:104 �1:864
�2:050 2:104 17:230 0:905

2:379 �1:864 0:905 9:037

1

C
C
A

S2 D

0

B
B
@

20:349 �9:463 0:958 �6:507
�9:463 15:502 �3:383 �2:551
0:958 �3:383 14:470 �0:323
�6:507 �2:551 �0:323 10:311

1

C
C
A :

Now the test statistic takes the value 1.54 which is no longer significant (F0:95;4;45 D
2:58). Now we cannot reject the null hypothesis (which we know to be false!) since
the increase in variances prohibits the detection of differences of such magnitude.

The following situation illustrates once more the role of the covariances between
covariates. Suppose that † D 16I4 as above but with �14 D �41 D �3:999 (this
corresponds to a negative correlation r41 D �0:9997). We have:

Nx1 D .8:484; 5:908; 9:024; 10:459/>
Nx2 D .4:959; 7:307; 9:057; 13:803/>

S1 D

0

B
B
@

14:649 �0:024 1:248 �3:961
�0:024 15:825 0:746 4:301

1:248 0:746 9:446 1:241

�3:961 4:301 1:241 20:002

1

C
C
A

S2 D

0

B
B
@

14:035 �2:372 5:596 �1:601
�2:372 9:173 �2:027 �2:954
5:596 �2:027 9:021 �1:301
�1:601 �2:954 �1:301 9:593

1

C
C
A :

The value of F is 3:853 which is significant at the 5 % level (p-value D 0:0089).
So the null hypothesis ı D �1 � �2 D 0 is outside the 95 % confidence ellipsoid.
However, the simultaneous confidence intervals, which do not take the covariances
into account are given by:

�0:1837 � ı1 � 7:2343
�4:9452 � ı2 � 2:1466
�3:0091 � ı3 � 2:9438
�7:2336 � ı4 � 0:5450:
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They contain the null value (see Remark 7.1 above) although they are very
asymmetric for ı1 and ı4.

Example 7.15 Let us compare the vectors of means of the forged and the genuine
bank notes. The matrices Sf and Sg were given in Example 3.1 and since here
nf D ng D 100, S is the simple average of Sf and Sg W S D 1

2

�
Sf C Sg

�
.

Nxg D .214:97; 129:94; 129:72; 8:305; 10:168; 141:52/>

Nxf D .214:82; 130:3; 130:19; 10:53; 11:133; 139:45/>:

The test statistic is given by (7.14) and turns out to be F D 391:92 which is highly
significant forF6;193. The 95 % simultaneous confidence intervals for the differences
ıj D �gj � �fj ; j D 1; : : : ; p are:

�0:0443 � ı1 � 0:3363

�0:5186 � ı2 � �0:1954
�0:6416 � ı3 � �0:3044
�2:6981 � ı4 � �1:7519
�1:2952 � ı5 � �0:6348
1:8072 � ı6 � 2:3268:

All of the components (except for the first one) show significant differences in the
means. The main effects are taken by the lower border .X4/ and the diagonal .X6/.

The preceding test implicitly uses the fact that the two samples are extracted
from two different populations with common variance †. In this case, the test
statistic (7.14) measures the distance between the two centers of gravity of the two
groups w.r.t. the common metric given by the pooled variance matrix S. If†1 6D †2
no such matrix exists. There are no satisfactory test procedures for testing the
equality of variance matrices which are robust with respect to normality assumptions
of the populations. The following test extends Bartlett’s test for equality of variances
in the univariate case. But this test is known to be very sensitive to departures from
normality.

Test Problem 9 (Comparison of Covariance Matrices). LetXih � Np.�h;†h/,
i D 1; : : : ; nh, h D 1; : : : ; k be independent random variables,

H0 W †1 D †2 D � � � D †k versusH1 W no constraints.

Each sub-sample provides Sh, an estimator of †h, with

nhSh � Wp.†h; nh � 1/:
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Under H0,
Pk

hD1 nhSh � Wp.†; n � k/ (Sect. 5.2), where † is the common
covariance matrix Xih and n D Pk

hD1 nh. Let S D n1S1C���CnkSk
n

be the weighted
average of the Sh (this is in fact the MLE of † when H0 is true). The LRT leads to
the statistic

� 2 log� D n log j S j �
kX

hD1
nh log j Sh j (7.16)

which underH0 is approximately distributed as a X 2
m wherem D 1

2
.k�1/p.pC1/.

Example 7.16 Let’s come back to Example 7.13, where the mean of assets and
sales have been compared for companies from the energy and manufacturing sector
assuming that †1 D †2. The test of †1 D †2 leads to the value of the test statistic

� 2 log� D 0:9076 (7.17)

which is not significant (p-value for a �23 D 0:82). We cannot reject H0 and the
comparison of the means performed above is valid.

Example 7.17 Let us compare the covariance matrices of the forged and the genuine
bank notes (the matrices Sf and Sg are shown in Example 3.1). A first look seems
to suggest that †1 ¤ †2. The pooled variance S is given by S D 1

2

�
Sf C Sg

�

since here nf D ng . The test statistic here is �2 log� D 127:21, which is highly
significant �2 with 21 degrees of freedom. As expected, we reject the hypothesis
of equal covariance matrices, and as a result the procedure for comparing the two
means in Example 7.15 is not valid.

What can we do with unequal covariance matrices? When both n1 and n2 are large,
we have a simple solution:

Test Problem 10 (Comparison of Two Means, Unequal Covariance Matrices,
Large Samples). Assume that Xi1 � Np.�1;†1/, with i D 1; : : : ; n1 and
Xj2 � Np.�2;†2/, with j D 1; : : : ; n2 are independent random variables.

H0 W �1 D �2 versusH1 W no constraints.

Letting ı D �1 � �2, we have

. Nx1 � Nx2/ � Np
�

ı;
†1

n1
C †2

n2

�

:
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Therefore, by (5.4)

. Nx1 � Nx2/>
�
†1

n1
C †2

n2

��1
. Nx1 � Nx2/ � �2p:

Since Si is a consistent estimator of †i for i D 1; 2, we have

. Nx1 � Nx2/>
�S1
n1
C S2
n2

��1
. Nx1 � Nx2/ L! �2p: (7.18)

This can be used in place of (7.13) for testing H0, defining a confidence region for
ı or constructing simultaneous confidence intervals for ıj ; j D 1; : : : ; p.

For instance, the rejection region at the level ˛ will be

. Nx1 � Nx2/>
�S1
n1
C S2
n2

��1
. Nx1 � Nx2/ > �21�˛Ip (7.19)

and the .1 � ˛/ simultaneous confidence intervals for ıj , j D 1; : : : ; p are:

ıj 2 . Nx1 � Nx2/˙
v
u
u
t�21�˛Ip

 
s
.1/
jj

n1
C s

.2/
jj

n2

!

; (7.20)

where s.i/jj is the .j; j / element of the matrix Si . This may be compared to (7.15)
where the pooled variance was used.

Remark 7.2 We see, by comparing the statistics (7.19) with (7.14), that we measure

here the distance between Nx1 and Nx2 using the metric
�
S1
n1
C S2

n2

�
. It should be

noted that when n1 D n2, the two methods are essentially the same since then
S D 1

2
.S1 C S2/. If the covariances are different but have the same eigenvectors

(different eigenvalues), one can apply the common principal component (CPC)
technique, see Chap. 11.

Example 7.18 Let us use the last test to compare the forged and the genuine bank
notes again (n1 and n2 are both large). The test statistic (7.19) turns out to be 2,436.8
which is again highly significant. The 95 % simultaneous confidence intervals are:

�0:0389 � ı1 � 0:3309

�0:5140 � ı2 � �0:2000
�0:6368 � ı3 � �0:3092
�2:6846 � ı4 � �1:7654
�1:2858 � ı5 � �0:6442
1:8146 � ı6 � 2:3194

showing that all the components except the first are different from zero, the largest
difference coming from X6 (length of the diagonal) and X4 (lower border). The
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results are very similar to those obtained in Example 7.15. This is due to the fact
that here n1 D n2 as we already mentioned in the remark above.

Profile Analysis

Another useful application of Test Problem 6 is the repeated measurements problem
applied to two independent groups. This problem arises in practice when we
observe repeated measurements of characteristics (or measures of the same type
under different experimental conditions) on the different groups which have to be
compared. It is important that the p measures (the “profile”) are comparable, and,
in particular, are reported in the same units. For instance, they may be measures
of blood pressure at p different points in time, one group being the control group
and the other the group receiving a new treatment. The observations may be the
scores obtained from p different tests of two different experimental groups. One is
then interested in comparing the profiles of each group: the profile being just the
vectors of the means of the p responses (the comparison may be visualised in a
two-dimensional graph using the parallel coordinate plot introduced in Sect. 1.7).

We are thus in the same statistical situation as for the comparison of two means:

Xi1 � Np .�1;†/ i D 1; : : : ; n1
Xi2 � Np .�2;†/ i D 1; : : : ; n2;

where all variables are independent. Suppose the two population profiles look like
in Fig. 7.1.

The following questions are of interest:

1. Are the profiles similar in the sense of being parallel (which means no interaction
between the treatments and the groups)?

2. If the profiles are parallel, are they at the same level?
3. If the profiles are parallel, is there any treatment effect, i.e. are the profiles

horizontal (profiles remain the same no matter which treatment received)?

The above questions are easily translated into linear constraints on the means and a
test statistic can be obtained accordingly.

Parallel Profiles

Let C be a .p � 1/ � p matrix defined as C D

0

B
B
B
@

1 �1 0 � � � 0

0 1 �1 � � � 0
:::

:::
:::
:::

:::

0 � � � 0 1 �1

1

C
C
C
A
:
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1 2 3 4 5
0

1

2

3

4

5
Population Profiles

Treatment

M
ea

n

Fig. 7.1 Example of population profiles MVAprofil

The hypothesis to be tested is

H
.1/
0 W C.�1 � �2/ D 0:

From (7.11), (7.12) and Corollary 5.4 we know that underH0:

n1n2

.n1 C n2/2 .n1 C n2 � 2/ fC. Nx1 � Nx2/g
> .CSC>/�1C. Nx1 � Nx2/ � T 2p�1;n1Cn2�2;

(7.21)

where S is the pooled covariance matrix. The hypothesis is rejected if

n1n2.n1 C n1 � p/
.n1 C n2/2.p � 1/ .C Nx/

> �CSC>
��1 C Nx > F1�˛Ip�1;n1Cn2�p:

Equality of Two Levels

The question of equality of the two levels is meaningful only if the two profiles are
parallel. In the case of interactions (rejection of H.1/

0 ), the two populations react
differently to the treatments and the question of the level has no meaning.
The equality of the two levels can be formalised as

H
.2/
0 W 1>p .�1 � �2/ D 0
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since

1>p . Nx1 � Nx2/ � N1
�

1>p .�1 � �2/;
n1 C n2
n1n2

1>p †1p
�

and

.n1 C n2/1>p S1p � W1.1
>
p †1p; n1 C n2 � 2/:

Using Corollary 5.4 we have that:

n1n2

.n1 C n2/2 .n1 C n2 � 2/
n
1>p . Nx1 � Nx2/

o2

1>p S1p
� T 21;n1Cn2�2 (7.22)

D F1;n1Cn2�2:
The rejection region is

n1n2.n1 C n2 � 2/
.n1 C n2/2

n
1>p . Nx1 � Nx2/

o2

1>p S1p
> F1�˛I1;n1Cn2�2:

Treatment Effect

If it is rejected that the profiles are parallel, then two independent analyses should
be done on the two groups using the repeated measurement approach. But if it is
accepted that they are parallel, then we can exploit the information contained in
both groups (possibly at different levels) to test a treatment effect, i.e. if the two
profiles are horizontal. This may be written as:

H
.3/
0 W C.�1 C �2/ D 0:

Consider the average profile Nx

Nx D n1 Nx1 C n2 Nx2
n1 C n2 :

Clearly,

Nx � Np
�
n1�1 C n2�2
n1 C n2 ;

1

n1 C n2†
�

:
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Now it is not hard to prove that H.3/
0 with H.1/

0 implies that

C
�
n1�1 C n2�2
n1 C n2

�

D 0:

So under parallel, horizontal profiles we have

p
n1 C n2C Nx � Np.0; C†C>/:

From Corollary 5.4 we again obtain

.n1 C n2 � 2/.C Nx/>.CSC>/�1C Nx � T 2p�1;n1Cn2�2: (7.23)

This leads to the rejection region of H.3/
0 , namely

n1 C n2 � p
p � 1 .C Nx/>.CSC>/�1C Nx > F1�˛Ip�1;n1Cn2�p:

Example 7.19 Morrison (1990) proposed a test in which the results of four sub-tests
of the Wechsler Adult Intelligence Scale (WAIS) are compared for two categories of
people: group 1 contains n1 D 37 people who do not have a senile factor and group
2 contains n2 D 12 people who have a senile factor. The four WAIS sub-tests areX1
(information), X2 (similarities), X3 (arithmetic) and X4 (picture completion). The
relevant statistics are

Nx1 D .12:57; 9:57; 11:49; 7:97/>
Nx2 D .8:75; 5:33; 8:50; 4:75/>

S1 D

0

B
B
@

11:164 8:840 6:210 2:020

8:840 11:759 5:778 0:529

6:210 5:778 10:790 1:743

2:020 0:529 1:743 3:594

1

C
C
A

S2 D

0

B
B
@

9:688 9:583 8:875 7:021

9:583 16:722 11:083 8:167

8:875 11:083 12:083 4:875

7:021 8:167 4:875 11:688

1

C
C
A :

The test statistic for testing if the two profiles are parallel is F D 0:4634, which
is not significant (p-value D 0:71). Thus it is accepted that the two are parallel.
The second test statistic (testing the equality of the levels of the two profiles) is
F D 17:21, which is highly significant (p-value 	 10�4). The global level of the
test for the non-senile people is superior to the senile group. The final test (testing
the horizontality of the average profile) has the test statistic F D 53:32, which is
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also highly significant (p-value 	 10�14). This implies that there are substantial
differences among the means of the different subtests.

Summary
,! Hypotheses about � can often be written as A� D a, with matrix

A, and vector a.
,! The hypothesis H0 W A� D a for X � Np.�;†/ with † known

leads to �2 log� D n.Ax�a/>.A†A>/�1.Ax�a/ � �2q , where
q is the number of elements in a.

,! The hypothesisH0 W A� D a for X � Np.�;†/ with † unknown
leads to�2 log� D n logf1C.Ax�a/>.ASA>/�1.Ax�a/g �!
�2q , where q is the number of elements in a and we have an exact
test .n� 1/.A Nx � a/>.ASA>/�1.A Nx � a/ � T 2q;n�1:

,! The hypothesis H0 W Aˇ D a for Yi � N1.ˇ
>xi ; �2/ with �2

unknown leads to �2 log� D n
2

log
� jjy�X Q̌jj2
jjy�X Ǒjj2 � 1

�
�! �2q , with

q being the length of a and with

n � p
q

�
A Ǒ � a

� n
A
�
X>X

��1A>
o�1 �

A Ǒ � a
�

�
y � X Ǒ

�> �
y � X Ǒ

� � Fq;n�p:

7.3 Boston Housing

Returning to the Boston Housing data set, we are now in a position to test if the
means of the variables vary according to their location, for example, when they are
located in a district with high valued houses. In Chap. 1, we built two groups of
observations according to the value of X14 being less than or equal to the median of
X14 (a group of 256 districts) and greater than the median (a group of 250 districts).
In what follows, we use the transformed variables motivated in Sect. 1.9.

Testing the equality of the means from the two groups was proposed in a
multivariate setup, so we restrict the analysis to the variables X1;X5;X8;X11, and
X13 to see if the differences between the two groups that were identified in Chap. 1
can be confirmed by a formal test. As in Test Problem 8, the hypothesis to be tested is

H0 W �1 D �2; where �1 2 R
5; n1 D 256; and n2 D 250:
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† is not known. The F -statistic given in (7.13) is equal to 126.30, which is much
higher than the critical value F0:95I5;500 D 2:23. Therefore, we reject the hypothesis
of equal means.

To see which component, X1;X5;X8;X11, or X13, is responsible for this
rejection, take a look at the simultaneous confidence intervals defined in (7.14):

ı1 2 . 1:4020; 2:5499/

ı5 2 . 0:1315; 0:2383/

ı8 2 .�0:5344;�0:2222/
ı11 2 . 1:0375; 1:7384/

ı13 2 . 1:1577; 1:5818/:

These confidence intervals confirm that all of the ıj are significantly different from
zero (note there is a negative effect for X8: weighted distances to employment
centers) MVAsimcibh.

We could also check if the factor “being bounded by the river” (variable
X4) has some effect on the other variables. To do this compare the means of
.X5;X8;X9;X12; X13; X14/

>. There are two groups: n1 D 35 districts bounded
by the river and n2 D 471 districts not bounded by the river. Test Problem 8
(H0 W �1 D �2) is applied again with p D 6. The resulting test statistic, F D 5:81,
is highly significant (F0:95I6;499 D 2:12). The simultaneous confidence intervals
indicate that only X14 (the value of the houses) is responsible for the hypothesis
being rejected. At a significance level of 0.95

ı5 2 .�0:0603; 0:1919/
ı8 2 .�0:5225; 0:1527/
ı9 2 .�0:5051; 0:5938/
ı12 2 .�0:3974; 0:7481/
ı13 2 .�0:8595; 0:3782/
ı14 2 . 0:0014; 0:5084/:

Testing Linear Restrictions

In Chap. 3 a linear model was proposed that explained the variations of the priceX14
by the variations of the other variables. Using the same procedure that was shown
in Testing Problem 7, we are in a position to test a set of linear restrictions on the
vector of regression coefficients ˇ.
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The model we estimated in Sect. 3.7 provides the following ( MVAlinregbh):

Variable Ǒ
j SE . Ǒj / t p-Value

Constant 4:1769 0:3790 11:020 0:0000

X1 �0:0146 0:0117 �1:254 0:2105

X2 0:0014 0:0056 0:247 0:8051

X3 �0:0127 0:0223 �0:570 0:5692

X4 0:1100 0:0366 3:002 0:0028

X5 �0:2831 0:1053 �2:688 0:0074

X6 0:4211 0:1102 3:822 0:0001

X7 0:0064 0:0049 1:317 0:1885

X8 �0:1832 0:0368 �4:977 0:0000

X9 0:0684 0:0225 3:042 0:0025

X10 �0:2018 0:0484 �4:167 0:0000

X11 �0:0400 0:0081 �4:946 0:0000

X12 0:0445 0:0115 3:882 0:0001

X13 �0:2626 0:0161 �16:320 0:0000

Recall that the estimated residuals Y � X Ǒ did not show a big departure
from normality, which means that the testing procedure developed above can be
used.

1. First a global test of significance for the regression coefficients is performed,

H0 W .ˇ1; : : : ; ˇ13/ D 0:

This is obtained by defining A D .013; I13/ and a D 013 so thatH0 is equivalent
to Aˇ D a where ˇ D .ˇ0; ˇ1; : : : ; ˇ13/

>. Based on the observed values F D
123:20. This is highly significant (F0:95I13;492 D 1:7401), thus we rejectH0. Note
that underH0

Ǒ
H0 D .3:0345; 0; : : : ; 0/ where 3:0345 D y.

2. Since we are interested in the effect that being located close to the river has on
the value of the houses, the second test is H0 W ˇ4 D 0. This is done by fixing

A D .0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0/>

and a D 0 to obtain the equivalent hypothesisH0 W Aˇ D a. The result is again
significant: F D 9:0125 (F0:95I1;492 D 3:8604) with a p-value of 0.0028. Note
that this is the same p-value obtained in the individual test ˇ4 D 0 in Chap. 3,
computed using a different setup.

3. A third test notices the fact that some of the regressors in the full model (3.57)
appear to be insignificant (that is they have high individual p-values). It can
be confirmed from a joint test if the corresponding reduced model, formulated
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Table 7.1 Linear regression
for Boston housing data set
MVAlinreg2bh

Variable Ǒ
j SE t p-Value

Const 4:1582 0:3628 11:462 0:0000

X4 0:1087 0:0362 2:999 0:0028

X5 �0:3055 0:0973 �3:140 0:0018

X6 0:4668 0:1059 4:407 0:0000

X8 �0:1855 0:0327 �5:679 0:0000

X9 0:0492 0:0183 2:690 0:0074

X10 �0:2096 0:0446 �4:705 0:0000

X11 �0:0410 0:0078 �5:280 0:0000

X12 0:0481 0:0112 4:306 0:0000

X13 �0:2588 0:0149 �17:396 0:0000

by deleting the insignificant variables, is rejected by the data. We want to test
H0 W ˇ1 D ˇ2 D ˇ3 D ˇ7 D 0. Hence,

A D

0

B
B
@

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0

1

C
C
A

and a D 04. The test statistic is 0.9344, which is not significant for F4;492. Given
that the p-value is equal to 0.44, we cannot reject the null hypothesis nor the
corresponding reduced model. The value of Ǒ under the null hypothesis is

Ǒ
H0 D .4:16; 0; 0; 0; 0:11;�0:31; 0:47; 0;�0:19; 0:05;�0:20;�0:04; 0:05;�0:26/> :

A possible reduced model is

X14 D ˇ0 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ8X8 C � � � C ˇ13X13 C ":

Estimating this reduced model using OLS, as was done in Chap. 3, provides the
results shown in Table 7.1.

Note that the reduced model has r2 D 0:763which is very close to r2 D 0:765
obtained from the full model. Clearly, including variables X1;X2;X3, and X7
does not provide valuable information in explaining the variation of X14, the
price of the houses.
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7.4 Exercises

Exercise 7.1 Use Theorem 7.1 to derive a test for testing the hypothesis that a dice
is balanced, based on n tosses of that dice. (Hint: use the multinomial probability
function.)

Exercise 7.2 ConsiderN3.�;†/. Formulate the hypothesisH0 W �1 D �2 D �3 in
terms of A� D a.

Exercise 7.3 Simulate a normal sample with � D �
1
2

�
and † D

�
1
0:5

0:5
2

�
and test

H0 W 2�1 � �2 D 0:2 first with † known and then with † unknown. Compare the
results.

Exercise 7.4 Derive expression (7.3) for the LRT statistic in Test Problem 2.

Exercise 7.5 With the simulated data set of Example 7.14, test the hypothesis of
equality of the covariance matrices.

Exercise 7.6 In the US companies data set, test the equality of means between the
energy and manufacturing sectors, taking the full vector of observations X1 to X6.
Derive the simultaneous confidence intervals for the differences.

Exercise 7.7 Let X � N2.�;†/ where † is known to be † D
�

2 �1
�1 2

�

. We

have an i.i.d. sample of size n D 6 providing Nx> D �
1 1
2

�
. Solve the following test

problems (˛ D 0:05):

(a) H0 W � D �2; 2
3

�>
H1 W � ¤ �2; 2

3

�>

(b) H0 W �1 C �2 D 7
2

H1 W �1 C �2 ¤ 7
2

(c) H0 W �1 � �2 D 1
2

H1 W �1 � �2 ¤ 1
2

(d) H0 W �1 D 2 H1 W �1 ¤ 2
For each case, represent the rejection region graphically (comment).

Exercise 7.8 Repeat the preceding exercise with † unknown and S D
�

2 �1
�1 2

�

.

Compare the results.

Exercise 7.9 Consider X � N3.�;†/. An i.i.d. sample of size n D 10 provides:

Nx D .1; 0; 2/>

S D
0

@
3 2 1

2 3 1

1 1 4

1

A :
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(a) Knowing that the eigenvalues of S are integers, describe a 95 % confidence

region for �. (Hint: to compute eigenvalues use jS j D
3Q

jD1
�j and tr.S/ D

3P

jD1
�j .)

(b) Calculate the simultaneous confidence intervals for �1; �2 and �3.
(c) Can we assert that �1 is an average of �2 and �3?

Exercise 7.10 Consider two independent i.i.d. samples, each of size 10, from two
bivariate normal populations. The results are summarised below:

Nx1 D .3; 1/>I Nx2 D .1; 1/>

S1 D
�

4 �1
�1 2

�

I S2 D
�

2 �2
�2 4

�

:

Provide a solution to the following tests:

(a) H0 W �1 D �2 H1 W �1 6D �2
(b) H0 W �11 D �21 H1 W �11 6D �21
(c) H0 W �12 D �22 H1 W �12 6D �22

Compare the solutions and comment.

Exercise 7.11 Prove expression (7.4) in the Test Problem 2 with log-likelihoods `�0
and `�1 . [Hint: use (2.29).]

Exercise 7.12 Assume that X � Np.�;†/ where † is unknown.

(a) Derive the log LRT for testing the independence of the p components, that is
H0 W † is a diagonal matrix. (Solution: �2 log� D �n log jRj where R is the
correlation matrix, which is asymptotically a �21

2p.p�1/
underH0.)

(b) Assume that† is a diagonal matrix (all the variables are independent). Can an
asymptotic test for H0 W � D �o against H1 W � ¤ �o be derived? How would
this compare to p independent univariate t-tests on each �j ?

(c) Show an easy derivation of an asymptotic test for testing the equality of the p
means [Hint: use .C NX/>.CSC>/�1C NX ! �2p�1 where S D diag.s11; : : : ; spp/
and C is defined as in (7.10)]. Compare this to the simple ANOVA procedure used
in Sect. 3.5.

Exercise 7.13 The yields of wheat have been measured in 30 parcels that have been
randomly attributed to three lots prepared by one of three different fertiliser A, B and
C. The data are
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Fertiliser yield A B C

1 4 6 2

2 3 7 1

3 2 7 1

4 5 5 1

5 4 5 3

6 4 5 4

7 3 8 3

8 3 9 3

9 3 9 2

10 1 6 2

Using Exercise 7.12,

(a) test the independence between the three variables.
(b) test whether �> D Œ2 6 4� and compare this to the three univariate t-tests.
(c) test whether �1 D �2 D �3 using simple ANOVA and the �2 approximation.

Exercise 7.14 Consider an i.i.d. sample of size n D 5 from a bivariate normal
distribution

X � N2
�

�;

�
3 �

� 1

��

;

where � is a known parameter. Suppose Nx> D .1 0/. For what value of � would the
hypothesisH0 W �> D .0 0/ be rejected in favour of H1 W �> 6D .0 0/ (at the 5 %
level)?

Exercise 7.15 Using Example 7.14, test the last two cases described there and test
the sample number one (n1 D 30), to see if they are from a normal population with
† D 4I4 (the sample covariance matrix to be used is given by S1).

Exercise 7.16 Consider the bank data set. For the counterfeit bank notes, we want
to know if the length of the diagonal (X6) can be predicted by a linear model in X1
toX5. Estimate the linear model and test if the coefficients are significantly different
from zero.

Exercise 7.17 In Example 7.10, can you predict the vocabulary score of the
children in eleventh grade, by knowing the results from grades 8–9 and 10? Estimate
a linear model and test its significance.

Exercise 7.18 Test the equality of the covariance matrices from the two groups in
the WAIS subtest (Example 7.19).

Exercise 7.19 Prove expressions (7.21)–(7.23).
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Exercise 7.20 Using Theorem 6.3 and expression (7.16), construct an asymptotic
rejection region of size ˛ for testing, in a general model f .x; �/, with � 2 R

k;

H0 W � D �0 against H1 W � 6D �0.

Exercise 7.21 Exercise 6.5 considered the pdf f .x1; x2/ D 1

�21 �
2
2 x2
e
�
�

x1
�1x2
C x2
�1�2

�

x1; x2 > 0. Solve the problem of testing H0 W �> D .�01; �02/ from an iid sample of
size n on x D .x1; x2/>, where n is large.

Exercise 7.22 In Olkin and Veath (1980), the evolution of citrate concentrations
in plasma is observed at three different times of day, X1 (8 am), X2 (11 am) and
X3 (3 pm), for two groups of patients who follow different diets. (The patients were
randomly attributed to each group under a balanced design n1 D n2 D 5.)
The data are:

Group X1 (8 am) X2 (11 am) X3 (3 pm)

125 137 121

144 173 147

I 105 119 125

151 149 128

137 139 109

93 121 107

116 135 106

II 109 83 100

89 95 83

116 128 100

Test if the profiles of the groups are parallel, if they are at the same level and if
they are horizontal.



Part III
Multivariate Techniques



Chapter 8
Regression Models

The aim of regression models is to model the variation of a quantitative response
variable y in terms of the variation of one or several explanatory variables
.x1; : : : ; xp/

>. We have already introduced such models in Chaps. 3 and 7 where
linear models were written in (3.50) as

y D Xˇ C ";

where y.n � 1/ is the vector of observation for the response variable, X .n � p/ is
the data matrix of the p explanatory variables and " are the errors. Linear models
are not restricted to handle only linear relationships between y and x. Curvature is
allowed by including appropriate higher order terms in the design matrix X .

Example 8.1 If y represents response and x1; x2 are two factors that explain the
variation of y via the quadratic response model:

yi D ˇ0 C ˇ1xi1 C ˇ2xi2 C ˇ3x2i1 C ˇ4x2i2 C ˇ5xi1xi2 C "i ; i D 1; : : : ; n:
(8.1)

This model (8.1) belongs to the class of linear models because it is linear in ˇ. The
data matrix X is:

X D

0

B
B
B
@

1 x11 x12 x
2
11 x

2
12 x11x12

1 x21 x22 x
2
21 x

2
22 x21x22

:::
:::

:::
:::

:::
:::

1 xn1 xn2 x
2
n1 x

2
n2 xn1xn2

1

C
C
C
A

For a given value of ˇ, the response surface can be represented in a three-
dimensional plot as in Fig. 8.1 where we display y D 20 C 1x1 C 2x2 � 8x21 �
6x22 C 6x1x2, i.e. ˇ D .20; 1; 2;�8;�6;C6/>.

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 8.1 A 3-D response surface MVAresponsesurface

Note also that pure non-linear models can sometimes be rewritten as a linear
model by choosing an appropriate transformation of the coordinates of the variables.
For instance the Cobb–Douglas production function

yi D k xˇ1i1 xˇ2i2 xˇ3i3 ;

where y is the level of the production of a plant and .x1; x2; x3/> are three factors of
production (e.g. labour, capital and energy), can be transformed into a linear model
in the log scale. We have indeed

logyi D ˇ0 C ˇ1 logxi1 C ˇ2 logxi2 C ˇ3 logxi3;

where ˇ0 D log k and the ˇj ; j D 1; : : : ; 3 are the elasticities (ˇj D
@ logy=@ logxj ).

Linear models are flexible and cover a wide class of models. If X has full
rank, they can easily be estimated by least squares Ǒ D .X>X /�1X>y and linear
restrictions on the ˇ’s can be tested using the tools developed in Chap. 7.

In Chap. 3, we saw that even qualitative explanatory variables can be used by
defining appropriate coding of the nominal values of x. In this chapter, we will
extend our toolbox by showing how to code these qualitative factors in a way
which allows the introduction of several qualitative factors including the possibility
of interactions. This covers more general ANOVA models than those introduced
in Chap. 3. This includes the ANCOVA models where qualitative and quantitative
variables are both present in the explanatory variables.
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When the response variable is qualitative or categorical (for instance, an indi-
vidual can be employed or unemployed, a company may be bankrupt or not, the
opinion of one person relative to a particular issue can be “in favour”, “against” or
“indifferent to”, etc.), linear models have to be adapted to this particular situation.
The most useful models for these cases will be presented in the second part of the
chapter; this covers the log-linear models for contingency tables (where we analyse
the relations between several categorical variables) and the logit model for quantal
or binomial responses where we analyse the probability of being in one state as a
function of explanatory variables.

8.1 General ANOVA and ANCOVA Models

8.1.1 ANOVA Models

One-Factor Models

In Sect. 3.5, we introduced the example of analysing the effect of one factor (three
possible marketing strategies) on the sales of a product (a pullover), see Table 3.2.
The standard way to present one factor ANOVA models with p levels is as follows

yk` D �C ˛` C "k`; k D 1; : : : ; n`; and ` D 1; : : : ; p; (8.2)

all the "k` being independent. Here ` is the label which indicates the level of the
factor and ˛` is the effect of the `th level: it measures the deviation from �, the
global mean of y, due to this level of the factor. In this notation, we need to
impose the restriction

Pp

`D1 ˛` D 0 in order to identify � as the mean of y. This
presentation is equivalent, but slightly different, to the one presented in Chap. 3
(compare with Eq. (3.41)), but it allows for easier extension to the multiple factors
case. Note also that here we allow different sample sizes for each level of the factor
(an unbalanced design, more general than the balanced design presented in Chap. 3).

To simplify the presentation, assume as in the pullover example that p D 3. In
this case, one could be tempted to write the model (8.2) under the general form of a
linear model by using three indicator variables

yi D �C ˛1xi1 C ˛2xi2 C ˛3xi3 C "i ;

where xi` is equal to 1 or 0 according to the i th observation and belongs (or not) to
the level ` of the factor. In matrix notation and letting, for simplicity, n1 D n2 D
n3 D 2 we have with ˇ D .�; ˛1; ˛2; ˛3/>

y D Xˇ C "; (8.3)
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where the design matrix X is given by:

X D

0

B
B
B
B
B
B
B
@

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

1

C
C
C
C
C
C
C
A

:

Unfortunately, this type of coding is not useful because the matrix X is not of full
rank (the sum of each row is equal to the same constant 2) and therefore the matrix
X>X is not invertible. One way to overcome this problem is to change the coding
by introducing the additional constraint that the effects add up to zero. There are
many ways to achieve this. Noting that ˛3 D �˛1 �˛2, we do not need to introduce
˛3 explicitly in the model. The linear model could indeed be written as

yi D �C ˛1xi1 C ˛2xi2 C "i ;

with a design matrix defined as

X D

0

B
B
B
B
B
B
B
@

1 1 0

1 1 0

1 0 1

1 0 1

1 �1 �1
1 �1 �1

1

C
C
C
C
C
C
C
A

;

which automatically implies that ˛3 D �.˛1 C ˛2/. The linear model (8.3) is now
correct with ˇ D .�; ˛1; ˛2/

>. The least squares estimator Ǒ D .X>X /�1X>y
can be computed providing the estimator of the ANOVA parameters � and ˛`; ` D
1; : : : ; 3. Any linear constraint on ˇ can be tested by using the techniques described
in Chap. 7. For instance, the null hypothesis of no factor effect H0 W ˛1 D ˛2 D
˛3 D 0 can be written as H0 W Aˇ D a, where A D

�
0 1 0

0 0 1

�

and a D .0 0/>.

Multiple-Factors Models

The coding above can be extended to more general situations with many qualitative
variables (factors) and with the possibility of interactions between the factors.
Suppose that in a marketing example, the sales of a product can be explained by
two factors: the marketing strategy with three levels (as in the pullover example) but
also the location of the shop that may be either in a big shopping centre or in a less
commercial location (two levels for this factor). We might also think that there is an



8.1 General ANOVA and ANCOVA Models 257

Table 8.1 A two factor
ANOVA data set, factor A,
three levels of the marketing
strategy and factor B , two
levels for the location

B1 B2

A1 18 15

15 20

25

30

A2 5 10

8 12

8

A3 10 20

14 25

The figures represent the resulting
sales during the same period

interaction between the two factors: the marketing strategy might have a different
effect in a shopping centre than in a small quiet area. To fix the idea the data are
collected as in Table 8.1.

The general two factor model with interactions can be written as

yijk D �C ˛i C �j C .˛�/ij C "ijkI i D 1; : : : ; r; j D 1; : : : ; s; k D 1; : : : ; nij

(8.4)

where the identification constraints are:

rX

iD1
˛i D 0 and

sX

jD1
�j D 0

rX

iD1
.˛�/ij D 0; j D 1; : : : ; s

sX

jD1
.˛�/ij D 0; i D 1; : : : ; r:

(8.5)

In our example of Table 8.1 we have r D 3 and s D 2. The ˛’s measure the
effect of the marketing strategy (three levels) and the � ’s the effect of the location
(two levels). A positive (negative) value of one of these parameters would indicate
a favourable (unfavourable) effect on the expected sales; the global average of
sales being represented by the parameter �. The interactions are measured by the
parameters .˛�/ij; i D 1; : : : ; r; j D 1; : : : ; s, again identification constraints
implies the .r C s/ constraints in (8.5) on the interactions terms.

For example, a positive value of .˛�/11 would indicate that the effect of the sale
strategy A1 (advertisement in local newspaper), if any, is more favourable on the
sales in the location B1 (in a big commercial centre) than in the location B2 (not
a commercial centre) with the relation .˛�/11 D �.˛�/12. As another example,
a negative value of .˛�/31 would indicate that the marketing strategy A3 (luxury
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presentation in shop windows) has less effect, if any, in location typeB1 than in B2:
again .˛�/31 D �.˛�/32, etc.

The nice thing is that it is easy to extend the coding rule for one-factor model
to this general situation, in order to present the model a standard linear model with
the appropriate design matrix X . To build the columns of X for the effect of each
factor, we will need, as above, r � 1 (and s � 1) variables for coding a qualitative
variable with r (and s, respectively) levels with the convention defined above in
the one-factor case. For the interactions between a r between a r level factor and
a s level factor, we will need .r � 1/ � .s � 1/ additional columns that will be
obtained by performing the product, element by element, of the corresponding main
effect columns. So, at the end, for a full model with all the interactions, we have
f1C r � 1 C s � 1 C .r � 1/.s � 1/g D rs parameters where the first column of
1’s is for the intercept (the constant �). We illustrate this for our marketing example
where r D 3 and s D 2. We first describe a model without interactions.

1. Model without interactions
Without the interactions (all the .˛�/ij D 0) the model could be written with
3 D .r � 1/C .s � 1/ coded variables in a simple linear model form as in (8.3),
with the matrices:

y D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

18

15

15

20

25

30

5

8

8

10

12

10

14

20

25

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; X D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 0 1

1 1 0 1

1 1 0 �1
1 1 0 �1
1 1 0 �1
1 1 0 �1
1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 �1
1 0 1 �1
1 �1 �1 1

1 �1 �1 1

1 �1 �1 �1
1 �1 �1 �1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

and ˇ D .�; ˛1; ˛2; �1/>. Then, ˛3 D �.˛1 C ˛2/ and �2 D ��1.
2. Model with interactions

A model with interaction between A and B is obtained by adding new columns
to the design matrix. We need 2 D .r � 1/� .s � 1/ new coding variables which
are defined as the product, element-by-element, of the corresponding columns
obtained for the main effects. For instance for the interaction parameter .˛�/11,
we multiply the column used for coding ˛1 by the column defined for coding �1,
where the product is element-by-element. The same is done for the parameter
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.˛�/21. No other columns are necessary, since the remaining interactions are
derived from the identification constraints (8.5). We obtain

X D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 1 0 1 1 0

1 1 0 1 1 0

1 1 0 �1 �1 0

1 1 0 �1 �1 0

1 1 0 �1 �1 0

1 1 0 �1 �1 0

1 0 1 1 0 1

1 0 1 1 0 1

1 0 1 1 0 1

1 0 1 �1 0 �1
1 0 1 �1 0 �1
1 �1 �1 1 �1 �1
1 �1 �1 1 �1 �1
1 �1 �1 �1 1 1

1 �1 �1 �1 1 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

with ˇ D .�; ˛1; ˛2; �1; .˛�/11; .˛�/21/
>. The other interactions can indeed be

derived from (8.5)

.˛�/12 D �.˛�/11

.˛�/22 D �.˛�/21

.˛�/31 D � ..˛�/11 C .˛�/21/

.˛�/32 D �.˛�/31:

The estimation of ˇ is again simply given by the least squares solution Ǒ D
.X>X /�1X>y.

Example 8.2 Let us come back to the marketing data provided by the two-way
Table 8.1. The values of Ǒ in the full model, with interactions, are given in Table 8.2.
The p-values in the right column are for the individual tests: it appears that the
interactions do not provide additional significant explanation of y, but the effect of
the two factors seems significant.

Using the techniques of Chap. 7, we can test some reduced model corresponding
to linear constraints on the ˇ’s. The full model is the model with all the parameters,
including all the interactions. The overall fit test H0 : all the parameters, except �,
are equal to zero, gives the value Fobserved D 6:5772 with a p-value of 0.0077 for
a F5;9, so that H0 is rejected. In this case, the RSSreduced D 735:3333. So there is
some effect by the factors.
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Table 8.2 Estimation of the
two factors ANOVA model
with data from Table 8.1

Ǒ p-Values

� 15.25

˛1 4.25 0.0218

˛2 �6.25 0.0033

�1 �3.42 0.0139

.˛�/11 0.42 0.7922

.˛�/21 1.42 0.8096

RSSfull 158.00

We then test a less reduced model. We can test if the interaction terms are
significantly different to zero. This is a linear constraint on ˇ with

A D
�
0 0 0 0 1 0

0 0 0 0 0 1

�

I a D
�
0

0

�

:

Under the null we obtain:

Ǒ
H0 D

0

B
B
B
B
B
B
B
@

15:3035

4:0975

�6:0440
�3:2972

0

0

1

C
C
C
C
C
C
C
A

;

and RSSreduced D 181:8019. The observed value of F D 0:6779 which is not
significant (r D 11; f D 9) the p-valueD P.F2;9 � 0:6779/ D 0:5318, confirming
the absence of interactions.

Now taking the model without the interactions as the full model, we can test
if one of the main effects ˛ (marketing strategy) or � (location) or both are
significantly different from zero. We leave this as an exercise for the reader.

8.1.2 ANCOVA Models

ANCOVA (ANalysis of COVAriances) are mixed models where some variables are
qualitative and others are quantitative. The same coding of the ANOVA will be used
for the qualitative variable. The design matrix X is completed by the columns for
the quantitative explanatory variables x. Interactions between a qualitative variable
(a factor with r levels) and a quantitative one x is also possible, this corresponds to
situations where the effect of x on the response y is different according to the level
of the factor. This is achieved by adding into the design matrix X , a new column
obtained by the product, element-by-element, of the quantitative variable with the
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coded variables for the factor (r � 1 interaction variables if the categorical variable
has r levels).

For instance consider a simple model where a response y is explained by one
explanatory variable x and one factor with two levels (for instance the gender level
1 for men and level 2 for women), we would have in the case n1 D n2 D 3

X D

0

B
B
B
B
B
B
B
@

1 x1 1 x1
1 x2 1 x2

1 x3 1 x3
1 x4 �1 �x4
1 x5 �1 �x5
1 x6 �1 �x6

1

C
C
C
C
C
C
C
A

;

with ˇ D .ˇ1; ˇ2; ˇ3; ˇ4/>. The intercept and the slope are .ˇ1Cˇ3/ and .ˇ1Cˇ4/
for men and .ˇ1 � ˇ3/ and .ˇ1 � ˇ4/ for women. This situation is displayed in
Fig. 8.2.

Example 8.3 Consider the Car Data provided in Sect. 22.3. We want to analyse the
effect of the weight (W ), the displacement (D) on the mileage (M ). But we would
like to test if the origin of the car (the factor C ) has some effect on the response
and if the effect of the continuous variables is different for the different levels of the
factor.

From the regression results in Table 8.3, we observe that only the weight affects
the mileage, while the displacement does not. We also consider the origin of the car,
however, both the displacement and the factor are not significant. Table 8.4 is for
different factor levels.

*

*
**

*
*

*

* *

*
*

**
*
*
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*
*
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Fig. 8.2 A model with interaction
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Table 8.3 Estimation of the effects of weight and displacement on the mileage
MVAcareffect

Ǒ p-Values Q̌ p-Values

� 41.0066 0.0000 43.4031 0.0000

W �0.0073 0.0000 �0.0074 0.0000

D 0.0118 0.2250 0.0081 0.4140

C �0.9675 0.1250

Table 8.4 Different factor levels on the response MVAcareffect

� p-Values W p-Values D p-Values

c D 1 40.043 0.0000 �0.0065 0.0000 0.0058 0.3790

c D 2 47.557 0.0005 0.0081 0.3666 �0.3582 0.0160

c D 3 44.174 0.0002 0.0039 0.7556 �0.2650 0.3031

8.1.3 Boston Housing

In Chaps. 3 and 7, linear models were used to analyse if the variations of the price
(the variables were transformed in Sect. 1.9) could be explained by other variables.
A reduced model was obtained in Sect. 7.3 with the results shown in Table 7.1, with
r2 D 0:763. The model was:

X14 D ˇ0 C ˇ4X4 C ˇ5X5 C ˇ6X6 C ˇ8X8 C ˇ9X9 C ˇ10X10 C ˇ11X11
Cˇ12X12 C ˇ13X13

One factor (X4) was coded as a binary variable (1, if the house is close to the
Charles River and 0 if it is not). Taking advantage of the ANCOVA models described
above, we would like to add to a new factor built from the original quantitative
variableX9 D index of accessibility to radial highways. So we will transformX4 as
being 1 if close to the Charles River and �1 if not, and we will replace X9 by a new
factor coded X15 D 1 if X9 � median.X9/ and X15 D �1 if X9 < median.X9/. We
also want to consider the interaction of X4 with X12 (proportion of blacks) and the
interaction of X4 with the new factor X15. The results are shown in Table 8.5.

Summary
,! ANOVA models can be dividend into one-factor models and

multiple factor models.
,! Multiple factor models analyse many qualitative variables and the

interactions between them.
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Table 8.5 Estimation of the
ANCOVA model using the
Boston housing data
MVAboshousing

Ǒ p-Values Q̌ p-Values

ˇ0 32.27 0.00 27.65 0.00

ˇ4 1.54 0.00 �3.19 0.32

ˇ5 �17.59 0.00 �16.50 0.00

ˇ6 4.27 0.00 4.23 0.00

ˇ8 �1.13 0.00 �1.10 0.00

ˇ10 0.00 0.97 0.00 0.95

ˇ11 �0.97 0.00 �0.97 0.00

ˇ12 0.01 0.00 0.02 0.01

ˇ13 �0.54 0.00 �0.54 0.00

ˇ15 0.21 0.46 0.23 0.66

ˇ4�14 0.01 0.13

ˇ4�15 0.03 0.95

Summary (continued)

,! ANCOVA models are mixed models with qualitative and quantita-
tive variables, and can also incorporate the interaction between a
qualitative and a quantitative variable.

8.2 Categorical Responses

8.2.1 Multinomial Sampling and Contingency Tables

In many applications, the response variable of interest is qualitative or categorical,
in the sense that the response can take its nominal value in one of, say, K classes
or categories. Often we observe counts yk , the number of observations in category
k D 1; : : : ; K . If the total number of observations n D PK

kD1 yk is fixed and we
may assume independence of the observations, we obtain a multinomial sampling
process.

If we denote bypk the probability of observing the kth category with
PK

kD1 pk D
1, we have E.Yk/ D mk D npk . The likelihood of the sample can then be written as:

L D nŠ
QK
kD1 ykŠ

KY

kD1

�mk

n

�yk
: (8.6)
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In contingency tables, the categories are defined by several qualitative variables.
For example in a .J�K/ two-way table, the observations (counts) yjk, j D 1; : : : ; J
and k D 1; : : : ; K are reported for row j and column k. Here n DPJ

jD1
PK

kD1 yjk.
Log-linear models introduce a linear structure on the logarithms of the expected
frequenciesmjk D E.yjk/ D npjk, with

PJ
jD1

PK
kD1 pjk D 1. Log-linear structures

on mjk will impose the same structure for the pjk, the estimation of the model will
then be obtained by constrained maximum likelihood. Three-way tables .J �K�L/
may be analysed in the same way.

Sometimes additional information is available on explanatory variables x. In this
case, the logit model will be appropriate when the categorical response is binary
(K D 2). We will introduce these models when the main response of interest is
binary (for instance tables .2 � K/ or .2 � K � L/). Further, we will show how
they can be adapted to the case of contingency tables. Contingency tables are also
analysed by multivariate descriptive tools in Chap. 15.

8.2.2 Log-Linear Models for Contingency Tables

Two-Way Tables

Consider a .J � K/ two-way table, where yjk is the number of observations
having the nominal value j for the first qualitative character and nominal value
k for the second character. Since the total number of observations is fixed n DPJ

jD1
PK

kD1 yjk, there are JK�1 free cells in the table. The multinomial likelihood
can be written as in (8.6)

L D nŠ
QJ
jD1

QK
kD1 yjkŠ

JY

jD1

KY

kD1

�mjk

n

�yjk

; (8.7)

where we now introduce a log-linear structure to analyse the role of the rows and
the columns to determine the parametersmjk D E.yjk/ (or pjk).

1. Model without interaction
Suppose that there is no interaction between the rows and the columns: this
corresponds to the hypothesis of independence between the two qualitative
characters. In other words, pjk D pjpk for all j; k. This implies the log-linear
model:

logmjk D �C ˛j C �k for j D 1; : : : ; J; k D 1; : : : ; K; (8.8)

where, as in ANOVA models for identification purposes
PJ

jD1 ˛j D
PK

kD1 �k D
0. Using the same coding devices as above, the model can be written as

logm D Xˇ: (8.9)
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For a .2 � 3/ table we have:

logm D

0

B
B
B
B
B
B
B
@

logm11

logm12

logm13

logm21

logm22

logm23

1

C
C
C
C
C
C
C
A

; X D

0

B
B
B
B
B
B
B
@

1 1 1 0

1 1 0 1

1 1 �1 �1
1 �1 1 0

1 �1 0 1

1 �1 �1 �1

1

C
C
C
C
C
C
C
A

; ˇ D

0

B
B
@

ˇ0
ˇ1
ˇ2

ˇ3

1

C
C
A

where the first column of X is for the constant term, the second column is the
coded column for the 2-levels row effect and the two last columns are the coded
columns for the 3-levels column effect. The estimation is obtained by maximising
the log-likelihood which is equivalent to maximising the function L.ˇ/ in ˇ:

L.ˇ/ D
JX

jD1

KX

kD1
yjk logmjk: (8.10)

The maximisation is under the constraint
P

j;k mjk D n. In summary we have
1C .J � 1/C .K � 1/� 1 free parameters for JK � 1 free cells. The number of
degrees of freedom in the model is the number of free cells minus the number of
free parameters. It is given by

r D JK � 1 � .J � 1/� .K � 1/ D .J � 1/ .K � 1/:

In the example above, we have therefore .3�1/�.2�1/ D 2 degrees of freedom.
The original parameters of the model can then be estimated as:

˛1 D ˇ1
˛2 D �ˇ1
�1 D ˇ2
�2 D ˇ3
�3 D �.ˇ2 C ˇ3/: (8.11)

2. Model with interactions
In two-way tables the interactions between the two variables are of interest. This
corresponds to the general (full) model

logmjk D �C ˛j C �k C .˛�/jk; j D 1; : : : ; J; k D 1; : : : ; K; (8.12)
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where in addition, we have the J CK restrictions

KX

kD1
.˛�/jk D 0; for j D 1; : : : ; J

JX

jD1
.˛�/jk D 0; for k D 1; : : : ; K (8.13)

As in the ANOVA model, the interactions may be coded by adding .J�1/.K�1/
columns to X , obtained by the product of the corresponding coded variables. In
our example for the .2�3/ table the design matrix X is completed with two more
columns:

X D

0

B
B
B
B
B
B
B
@

1 1 1 0 1 0

1 1 0 1 0 1

1 1 �1 �1 �1 �1
1 �1 1 0 �1 0

1 �1 0 1 0 �1
1 �1 �1 �1 1 1

1

C
C
C
C
C
C
C
A

; ˇ D

0

B
B
B
B
B
B
B
@

ˇ0

ˇ1
ˇ2
ˇ3

ˇ4
ˇ5

1

C
C
C
C
C
C
C
A

:

Now the interactions are determined by using (8.13):

.˛�/11 D ˇ4

.˛�/12 D ˇ5

.˛�/13 D �f.˛�/11 C .˛�/12g D �.ˇ4 C ˇ5/

.˛�/21 D �.˛�/11 D �ˇ4

.˛�/22 D �.˛�/12 D �ˇ5

.˛�/23 D �.˛�/13 D ˇ4 C ˇ5
We have again a log-linear model as in (8.9) and the estimation of ˇ goes through
the maximisation in ˇ of L.ˇ/ given by (8.10) under the same constraint.

The model with all the interaction terms is called the saturated model. In
this model there are no degrees of freedom, the number of free parameters to
be estimated equals the number of free cells. The parameters of interest are the
interactions. In particular, we are interested in testing their significance. These
issues will be addressed below.
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Three-Way Tables

The models presented above for two-way tables can be extended to higher order
tables but at a cost of notational complexity. We show how to adapt to three-
way tables. This deserves special attention due to the presence of higher-order
interactions in the saturated model.

A .J �K �L/ three-way table may be constructed under multinomial sampling
as follows: each of the n observations falls in one, and only one, category of each
of three categorical variables having J;K and L modalities respectively. We end
up with a three-dimensional table with JKL cells containing the counts yjk` where
n D P

j;k;` yjk`. The expected counts depend on the unknown probabilities pjk` in
the usual way:

mjk` D npjk`; j D 1; : : : ; J; k D 1; : : : ; K; ` D 1; : : : ; L:

1. The saturated model
A full saturated log-linear model reads as follows:

logmjk` D �C ˛j C ˇk C �` C .˛ˇ/jk C .˛�/j` C .ˇ�/k` C .˛ˇ�/jk`;
j D 1; : : : ; J; k D 1; : : : ; K; ` D 1; : : : ; L: (8.14)

The restrictions are the following (using the “dot” notation for summation on the
corresponding indices):

˛.�/ D ˇ.�/ D �.�/ D 0
.˛ˇ/j� D .˛�/j� D .ˇ�/k� D 0
.˛ˇ/�k D .˛�/�` D .ˇ�/�` D 0
.˛ˇ�/jk� D .˛ˇ�/j�` D .˛ˇ�/�k` D 0

The parameters .˛ˇ/jk; .˛�/j`; .ˇ�/k` are called first-order interactions. The
second-order interactions are the parameters .˛ˇ�/jk`, they allow to take into
account heterogeneities in the interactions between two of the three variables.
For instance, let ` stand for the two gender categories .L D 2/, if we suppose
that .˛ˇ�/jk1 D �.˛ˇ�/jk2 ¤ 0; we mean that the interactions between the
variable J and K are not the same for both gender categories.

The estimation of the parameters of the saturated model are obtained through
maximisation of the log-likelihood. In the multinomial sampling scheme, it
corresponds to maximising the function:

L D
X

j;k;`

yjk` logmjk`;

under the constraint
P

j;k;` mjk` D n.
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The number of degrees of freedom in the saturated model is again zero.
Indeed, the number of free parameters in the model is

1C .J � 1/C .K � 1/C .L� 1/C .J � 1/.K � 1/C .J � 1/.L� 1/
C.K � 1/.L� 1/C .J � 1/.K � 1/.L� 1/� 1 D JKL � 1:

This is indeed equal to the number of free cells in the table and so, there is no
degree of freedom.

2. Hierarchical non-saturated models
As illustrated above, a saturated model has no degrees of freedom. Non-saturated
models correspond to reduced models where some parameters are fixed to be
equal to zero. They are thus particular cases of the saturated model (8.14). The
hierarchical non-saturated models that we will consider here, are models where
once a set of parameters is set equal to zero, all the parameters of higher-order
containing the same indices are also set equal to zero.

For instance if we suppose ˛1 D 0, we only consider non-saturated models
where also .˛�/1` D .˛ˇ/1k D .˛ˇ�/1k` D 0 for all values of k and `. If we
only suppose that .˛ˇ/12 D 0, we also assume that .˛ˇ�/12` D 0 for all `.

Hierarchical models have the advantage of being more easily interpretable.
Indeed without this hierarchy, the models would be difficult to interpret. What
would be, for instance, the meaning of the parameter .˛ˇ�/12`, if we know that
.˛ˇ/12 D 0? The estimation of the non-saturated models will be achieved by the
usual way i.e. by maximising the log-likelihood function L as above but under
the new constraints of the reduced model.

8.2.3 Testing Issues with Count Data

One of the main practical interests in regression models for contingency tables is
to test restrictions on the parameters of a more complete model. These testing ideas
are created in the same spirit as in Sect. 3.5 where we tested restrictions in ANOVA
models.

In linear models, the test statistics is based on the comparison of the goodness
of fit for the full model and for the reduced model. Goodness of fit is measured by
the residual sum of squares (RSS). The idea here will be the same here but with a
more appropriate measure for goodness of fit. Once a model has been estimated, we
can compute the predicted value under that model for each cell of the table. We will
denote, as above, the observed value in a cell by yk and Omk will denote the expected
value predicted by the model. The goodness of fit may be appreciated by measuring,
in some way, the distance between the series of observed and of predicted values.
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Two statistics are proposed: the Pearson chi-square X2 and the Deviance notedG2.
They are defined as follows:

X2 D
KX

kD1

.yk � Omk/
2

Omk

(8.15)

G2 D 2
KX

kD1
yk log

�
yk

Omk

�

(8.16)

where K is the total number of cells of the table. The deviance is directly related
to the log-likelihood ratio statistic and is usually preferred because it can be used to
compare nested models as we usually do in this context.

Under the hypothesis that the model used to compute the predicted value is true,
both statistics (for large samples) are approximately distributed as a �2 variable
with degrees of freedom d:f: depending on the model. The d:f: can be computed
as follows:

d:f: D # free cells � # free parameters estimated: (8.17)

For saturated models, the fit is perfect: X2 D G2 D 0 with d:f: D 0.
Suppose now that we want to test a reduced model which is a restricted version of

a full model. The deviance can then be used as the F statistics in linear regression.
The test procedure is straightforward:

H0 W reduced model with r degrees of freedom

H1 W full model with f degrees of freedom: (8.18)

Since, the full model contains more parameters, we expect the deviance to be
smaller. We reject the H0 if this reduction is significant, i.e. if G2

H0
� G2

H1
is large

enough. UnderH0 one has:

G2
H0
�G2

H1
� �2r�f :

We reject H0 if the p-value:

P
n
�2r�f >

�
G2
H0
�G2

H1

�o
:

is small. Suppose we want to test the independence in a .J �K/ two-way table (no
interaction). Here the full model is the saturated one with no degrees of freedom
.f D 0/ and the restricted model has r D .J � 1/ .K � 1/ degrees of freedom. We
reject H0 if the p-value of H0 Pf�2r >

�
G2
H0

�g is too small.
This test is equivalent to the Pearson chi-square test for independence in two-way

tables (G2
H0
	 X2

H0
when n is large).
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Table 8.6 A three-way contingency table: top table for men and bottom table for women
MVAdrug

M A1 A2 A3 A4 A5

DY 21 32 70 43 19

DN 683 596 705 295 99

F A1 A2 A3 A4 A5

DY 46 89 169 98 51

DN 738 700 847 336 196

Table 8.7 Coefficient estimates based on the saturated model MVAdrug

Ǒ Ǒ
Ǒ
0 intercept 5.0089 Ǒ

10 0.0205
Ǒ
1 gender: M �0.2867 Ǒ

11 0.0482
Ǒ
2 drug: DY �1.0660 Ǒ

12 drug*age �0.4983
Ǒ
3 age �0.0080 Ǒ

13 �0.1807
Ǒ
4 0.2151 Ǒ

14 0.0857
Ǒ
5 0.6607 Ǒ

15 0.2766
Ǒ
6 �0.0463 Ǒ

16 gender*drug*age �0.0134
Ǒ
7 gender*drug �0.1632 Ǒ

17 �0.0523
Ǒ
8 gender*age 0.0713 Ǒ

18 �0.0112
Ǒ
9 �0.0092 Ǒ

19 �0.0102

Example 8.4 Everitt and Dunn (1998) provide a three-dimensional .2�2�5/ count
table of n D 5;833 interviewed people. The count were on prescribed psychotropic
drugs in the fortnight prior to the interview as a function of age and gender. The
data are summarised in Table 8.6, where the categories for the three factors are M
for male, F for female, DY for “yes” having taken drugs, DN for “no” not having
taking drugs and the five age categories: A1 (16–29), A2 (30–44), A3 (45–64), A4
(65–74), A5 for over 74. The table provides the observed frequencies yjk` in each
of the cells of the three-way table: where j stands for gender, k for drug and ` for
age categories. The design matrix X for the full saturated model can be found in the
quantlet MVAdrug.

The saturated model gives the estimates displayed in Table 8.7.
We see for instance that Ǒ1 < 0, so there are fewer men than women in the study,

since Ǒ7 is also negative it seems that the tendency of men taking the drug is less
important than for women. Also, note that Ǒ12 to Ǒ15 forms an increasing sequence,
so that the age factor seems to increase the tendency to take the drug. Note that in this
saturated model, there are no degrees of freedom and the fit is perfect, Omjk` D yjk`

for all the cells of the table.
The second order interactions have a lower order of magnitude, so we want to

test if they are significantly different to zero. We consider a restricted model where
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Table 8.8 Coefficients estimates based on the maximum likelihood method MVAdrug-
3waysTab

Ǒ Ǒ
Ǒ
0 intercept 5.0051 Ǒ

8 gender*age 0.0795
Ǒ
1 gender: M �0.2919 Ǒ

9 0.0321
Ǒ
2 drug: DY �1.0717 Ǒ

10 0.0265
Ǒ
3 age �0.0030 Ǒ

11 0.0534
Ǒ
4 0.2358 Ǒ

12 drug*age �0.4915
Ǒ
5 0.6649 Ǒ

13 �0.1576
Ǒ
6 �0.0425 Ǒ

14 0.0917
Ǒ
7 gender*drug �0.1734 Ǒ

15 0.2822

.˛ˇ�/jk` are all set to zero. This can be achieved by testing H0 W ˇ16 D ˇ17 D
ˇ18 D ˇ19 D 0. The maximum likelihood estimators of the restricted model are
obtained by deleting the last four columns in the design matrix X . The results are
given in Table 8.8.

We have J D 2,K D 2 and L D 5, this makes JKL� 1 D 19 free cells. The full
model has f D 0 degrees of freedom and the reduced model has r D 4 degrees of
freedom. The G2 deviance is given by 2.3004; it has 4 degrees of freedom (the chi-
square statistics is 2:3745). The p-value of the restricted model is 0.6807, so we do
not reject the null hypothesis (the restricted model without 2nd order interaction). In
others words, age does not interfere with the interactions between gender and drugs,
or equivalently, gender does not interfere in the interactions between age and drugs.
The reader can verify that the first order interactions are significant, by taking, for
instance, the model without interactions of the second order as the new full model
and testing a reduced model where all the first order interactions are all set to zero.
MVAdrug3waysTab

8.2.4 Logit Models

Logit models are useful to analyse how explanatory variables influence a binary
response y. The response y may take the two values 1 and 0 to denote the presence
or absence of a certain qualitative trait (a person can be employed or unemployed,
a firm can be bankrupt or not, a patient can be affected by a certain disease or not,
etc.). Logit models are designed to estimate the probability of y D 1 as a logistic
function of linear combinations of x. Logit models can be adapted to the analysis of
contingency tables where one of the qualitative variables is binary. One obtains the
probability of being in one of the two states of this binary variable as a function of
the other variables. We concentrate here on .2 �K/ and .2 �K � L/ tables.
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Logit Models for Binary Response

Consider the vector y .n� 1/ of observations on a binary response variable (a value
of “1” indicating the presence of a particular qualitative trait and a value of “0”, its
absence). The logit model makes the assumption that the probability for observing
yi D 1 given a particular value of xi D .xi1; : : : ; xip/

> is given by the logistic
function of a “score”, a linear combination of x:

p .xi / D P.yi D 1 j xi/ D
exp.ˇ0 CPp

jD1 ˇj xij/

1C exp.ˇ0 CPp
jD1 ˇj xij/

: (8.19)

This entails the probability of the absence of the trait:

1 � p .xi / D P.yi D 0 j xi/ D 1

1C exp.ˇ0 CPp
jD1 ˇj xij/

;

which implies

log



p .xi /

1 � p .xi /



D ˇ0 C
pX

jD1
ˇj xij: (8.20)

This indicates that the logit model is equivalent to a log-linear model for the odds
ratio p .xi /=f1� p .xi /g. A positive value of ˇj indicates an explanatory variable
xj that will favour the presence of the trait since it improves the odds. A zero value
of ˇj corresponds to the absence of an effect of this variable on the appearance of
the qualitative trait.

For i.i.d observations the likelihood function is:

L.ˇ0; ˇ/ D
nY

iD1
p .xi /

yi f1� p .xi /g1�yi :

The maximum likelihood estimators of the ˇ’s are obtained as the solution of the
non-linear maximisation problem . Ǒ0; Ǒ/ D arg maxˇ0;ˇ logL.ˇ0; ˇ/ where

logL.ˇ0; ˇ/ D
nX

iD1
Œyi logp .xi /C .1 � yi / logf1� p .xi /g� :

The asymptotic theory of the MLE of Chap. 6 (see Theorem 6.3) applies and thus
asymptotic inference on ˇ is available (test of hypothesis or confidence intervals).

Example 8.5 In the bankruptcy data set (see Sect. 22.22), we have measures on 5
financial characteristics on 66 banks, 33 among them being bankrupt and the other
33 still being solvent. The logit model can be used to evaluate the probability of
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Table 8.9 Probabilities of
the bankruptcies with the
logit model
MVAbankrupt

Ǒ p-Values

ˇ0 3.6042 0.0660

ˇ3 �0.2031 0.0037

ˇ4 �0.0205 0.0183

Table 8.10 A .2�K/
contingency table

1 � � � k � � � K Total

1 y11 � � � y1k � � � y1K y1

2 y21 � � � y2k � � � y2K y2

Total y�1 � � � y�k � � � y�K y� D n

bankruptcy as a function of these financial ratios. We obtain the results summarised
in Table 8.9. We observe that only ˇ3 and ˇ4 are significant.

Logit Models for Contingency Tables

The logit model may contain quantitative and qualitative explanatory variables. In
the latter case, the variable may be coded according to the rules described in the
ANOVA/ANCOVA sections above. This enables a revisit to the contingency tables
where one of the variables is binary and is the variable of interest. How can the
probability of taking one of the two nominal values be evaluated as a function of
the other variables? We keep the notations of Sect. 8.1 and suppose, without loss of
generality, that the first variable with J D 2 is the binary variable of interest. In the
drug Example 8.4, we have a .2�2�5/ table and one is interested in the probability
of taking a drug as a function of age and gender.

.2 �K/ Tables with Binomial Sampling

In Table 8.10 we have displayed the situation. Let pk be the probability of falling
into the first row for the k-th column, k D 1; : : : ; K . Since we are mainly interested
in the probabilities pk as a function of k, we suppose here that y�k are fixed for k D
1; : : : ; K (or we work conditionally on the observed value of these column totals),
where y�k DPJ

jD1 yjk. Therefore, we haveK independent binomial processes with
parameters .y�k; pk/. Since the column variable is nominal we can use an ANOVA
model to analyse the effect of the column variable on pk through the logs of the
odds

log

�
pk

1 � pk
�

D �0 C �k; k D 1; : : : ; K; (8.21)
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where
PK

kD1 �k D 0. As in the ANOVA models, one of the interests will be to test
H0 W �1 D � � � D �K D 0. The log-linear model for the odds has its equivalent in a
logit formulation for pk

pk D exp.�0 C �k/
1C exp.�0 C �k/ ; k D 1; : : : ; K: (8.22)

Note that we can code the RHS of (8.21) as a linear model X� , where for instance,
for a .2 � 4/ table (K D 4) we have:

X D

0

B
B
@

1 1 0 0

1 0 1 0

1 0 0 1

1 �1 �1 �1

1

C
C
A ; � D

0

B
B
@

ˇ0
ˇ1

ˇ2
ˇ3

1

C
C
A ;

where �0 D ˇ0; �1 D ˇ1; �2 D ˇ2; �3 D ˇ3 and �4 D �.ˇ1 C ˇ2 C ˇ3/. The logit
model for pk; k D 1; : : : ; K can now be written, with some abuse of notation, as
the K-vector

p D exp.X�/
1C exp.X�/ ;

where the division has to be understood as being element-by-element. The MLE of
� is obtained by maximising the log-likelihood

L.�/ D
KX

kD1
fy1k logpk C y2k log.1 � pk/g; (8.23)

where the pk are elements of the K-vector p.
This logit model is a saturated model. Indeed the number of free parameters is

K , the dimension of � , and the number of free cells is also equal to K since we
consider the column totals y�k as being fixed. So, there are no degrees of freedom
in this model. It can be proven that this logit model is equivalent to the saturated
model for a table .2 � K/ presented in Sect. 8.2.2 where all the interactions are
present in the model. The hypothesis of all interactions .˛�/jk being equal to zero
(independence case) is equivalent to the hypothesis that the �k; k D 1; : : : ; K are
all equal to zero (no column effect on the probabilities pk).

The main interest of the logit presentation is its flexibility when the variable
defining the column categories is a quantitative variable (age group, number of
children, etc.). Indeed, when this is the case, the logit model allows to quantify
the effect of the column category by using less parameters and a more flexible
relationship than a linear relation. Suppose that we could attach a representative
value xk to each column category for this class (for instance, it could be the median
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value, or the average value of the class category). We can then choose the following
logit model for pk

pk D exp.�0 C �1xk/
1C exp.�0 C �1xk/ ; k D 1; : : : ; K; (8.24)

where we now have only two free parameters for K free cells, so we have K � 2
degrees of freedom. We could even introduce a quadratic term to allow some
curvature effect of x on the odds

pk D exp.�0 C �1xk C �2x2k/
1C exp.�0 C �1xk C �2x2k/

; k D 1; : : : ; K:

In this latter case, we would still haveK � 3 degrees of freedom.
We can follow the same idea for a three-way table when we want to model

the behaviour of the first binary variable as a function of the two other variables
defining the table. In the drug example, one is interested in analysing the tendency
of taking a psychotropic drug as a function of the gender category and of the age.
Fix the number of observations in each cell k` (i.e. y�k`), so that we have a binomial
sampling process with an unknown parameter pk` for each cell. As for the two-way
case above, we can either use ANOVA-like models for the logarithm of the odds and
ANCOVA-like models when one (or both) of the two qualitative variables defining
the K and/or L categories is a quantitative variable.

One may study the following ANOVA model for the logarithms of the odds

log

�
pk`

1 � pk`
�

D �C �k C �`; k D 1; : : : ; K; ` D 1; : : : ; L;

with � D � D 0. As another example, if x` is a representative value (like the average
age of the group) of the `th level of the third categorical variable, one might think of:

log

�
pk`

1 � pk`
�

D �C �k C �x`; k D 1; : : : ; K; ` D 1; : : : ; L; (8.25)

with the constraint � D 0. Here also, interactions and the curvature effect for x`
can be introduced, as shown in the following example. Since the cell totals y�k` are
considered as fixed, the log-likelihood to be maximised is:

KX

kD1

LX

`D1
fy1k` logpk` C y2k` log.1 � pk`/g; (8.26)

where pk` follows the appropriate logistic model.
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Example 8.6 Consider again Example 8.4. One is interested in the influence of
gender and age on drug prescription. Take the number of observations for each
“gender-age group” combination, y�k` as fixed. A logit model (8.25) can be used for
the odds-ratios of the probability of taking drugs, where the value x` is the average
age of the group. In the linear form it may be written as one of the two following
equivalent forms:

log

�
p

1 � p
�

D X�;

p D exp.X�/
1C exp.X�/ ;

where � D .ˇ0; ˇ1; ˇ2/> and the design matrix X is given by

X D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1:0 1:0 23:2

1:0 1:0 36:5

1:0 1:0 54:3

1:0 1:0 69:2

1:0 1:0 79:5

1:0 �1:0 23:2
1:0 �1:0 36:5
1:0 �1:0 54:3
1:0 �1:0 69:2
1:0 �1:0 79:5

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

The first column of X is for the intercept, the second is the coded variable for
the two gender categories and the last column is the average of the ages for the
corresponding age-group. Then we estimate ˇ by maximising the log-likelihood
function (8.26). We obtain:

Ǒ
0 D �3:5612
Ǒ
1 D �0:3426
Ǒ
2 D 0:0280;

the intercept for men is Ǒ0C Ǒ1 D �3:9038 and for women is Ǒ0 � Ǒ1 D �3:2186,
indicating a gender effect and the common slope for the positive age effect being
Ǒ
2 D 0:0280. The fit appears to be reasonably good. There are K � L D 2 �
5 D 10 free cells in the table. A saturated “full” model with ten parameters and
a zero degree of freedom would involve a constant (one parameter) plus an effect
for gender (one parameter) plus an effect for age (four parameters) and finally the
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Fig. 8.3 Fit of the log of the odds-ratios for taking drugs: linear model for age effect with a “gen-
der” effect (no interaction). Men are the stars and women are the circles MVAdruglogistic

interactions between gender and age (four parameters). The model retained above
is a “reduced model” with only three parameters that can be tested against the most
general saturated model. We obtain the value of the deviance G2

H0
D 11:5584 with

7 degrees of freedom .7 D 10 � 3/, whereas, G2
H1
D 0 with no degree of freedom.

This gives a p-valueD 0.1160, so we cannot reject the reduced model.
Figure 8.3 shows how well the model fits the data. It displays the fitted values of

the log of the odds-ratios by the linear model for the men and the women along with
the log of the odds-ratios computed from the observed corresponding frequencies.
It seems that the age effect shows a curvature. So we fit a model introducing the
square of the ages. This gives the following design matrix:

X D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1:0 1:0 23:2 538:24

1:0 1:0 36:5 1332:25

1:0 1:0 54:3 2948:49

1:0 1:0 69:2 4788:64

1:0 1:0 79:5 6320:25

1:0 �1:0 23:2 538:24

1:0 �1:0 36:5 1332:25
1:0 �1:0 54:3 2948:49
1:0 �1:0 69:2 4788:64
1:0 �1:0 79:5 6320:25

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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The maximum likelihood estimators are:

Ǒ
0 D �4:4996
Ǒ
1 D �0:3457
Ǒ
2 D 0:0697

Ǒ
3 D �0:0004:

MVAdruglogistic
The fit is better for this more flexible alternative, giving a deviance G2

H1
D

3:3251 with 6 degrees of freedom (6 D 10 � 4). If we test H0: no curvature for
the age effect againstH1: curvature for the age effect, the reduction of the deviance
is G2

H0
� G2

H1
D 11:5584 � 3:3251 D 8:2333 with one degree of freedom. The

p-value D 0.0041, so we reject the reduced model (no curvature) in favour of the
more general model with a curvature term.

We know already from Example 8.4 that second order interactions are not
significant for this data set (the influence of age on taking a drug is the same for
both gender categories), so we can keep this model as a final reasonable model to
analyse the probability of taking the drug as a function of the gender and of the
age. To summarise this analysis we end up saying that the probability of taking a
psychotropic drug can be modelled as (with some abuse of notation)

log

�
p

1 � p
�

D ˇ0 C ˇ1 
 SexC ˇ2 
 AgeC ˇ3 
 Age2: (8.27)

Summary
,! In contingency tables, the categories are defined by the qualitative

variables.
,! The saturated model has all of the interaction terms, and 0 degree

of freedom.
,! The non-saturated model is a reduced model since it fixes some

parameters to be zero.
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Summary (continued)

,! Two statistics to test for the full model and the reduced model are:

X2 D
KX

kD1
.yk � Omk/

2= Omk

G2 D 2
KX

kD1
yk log .yk= Omk/

,! The logit models allow the column categories to be a quantitative
variable, and quantify the effect of the column category by using
fewer parameters and incorporating more flexible relationships
than just a linear one.

,! The logit model is equivalent to a log-linear model.

log Œp .xi /=f1� p .xi /g� D ˇ0 C
pX

jD1
ˇj xij

8.3 Exercises

Exercise 8.1 For the one factor ANOVA model, show that if the model is “bal-
anced” .n1 D n2 D n3/, we have O� D Ny. If the model is not balanced, show that
Ny D O�C n1 Ǫ1 C n2 Ǫ2 C n3 Ǫ3:
Exercise 8.2 Redo the calculations of Example 8.2 and test if the main effects of
the marketing strategy and of the location are significant.

Exercise 8.3 Redo the calculations of Example 8.3 with the Car Data set.

Exercise 8.4 Calculate the prediction interval for “classic blue” pullover sales
(Example 3.2) corresponding to price D 120.

Exercise 8.5 Redo the calculations of the Boston housing example in Sect. 8.1.3

Exercise 8.6 We want to analyse the variations in the consumption of packs of
cigarettes per month as a function of the brand (A or B), of the price per pack
and as a function of the gender of the smoker (M or F). The data are below.
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y Price Gender Brand

30 3.5 M A

4 4 F B

20 4.1 F B

15 3.75 M A

24 3.25 F A

11 5 F B

8 4.1 F B

9 3.5 M A

17 4.5 M B

1 4 F B

23 3.65 M A

13 3.5 M A

1. In addition to the effects of brand, price and gender, test if there is an interaction
between the brand and the price.

2. How would the design matrix of a full model with all the interactions between
the variables appear? What would be the number of degrees of freedom of such
a model?

3. We would like to introduce a curvature term for the price variable. How can we
proceed? Test if this coefficient is significant.

Exercise 8.7 In the drug Example 8.4, test if the first order interactions are
significant.



Chapter 9
Variable Selection

Variable selection is very important in statistical modelling. We are frequently
not only interested in using a model for prediction but also need to correctly
identify the relevant variables, that is, to recover the correct model under given
assumptions. It is known that under certain conditions, the ordinary least squares
(OLS) method produces poor prediction results and does not yield a parsimonious
model causing overfitting. Therefore the objective of the variable selection methods
is to find the variables which are the most relevant for prediction. Such methods are
particularly important when the true underlying model has a sparse representation
(many parameters close to zero). The identification of relevant variables will reduce
the noise and therefore improve the prediction performance of the fitted model.

Some popular regularisation methods used are the ridge regression, subset
selection, L1 norm penalisation and their modifications and combinations. Ridge
regression, for instance, which minimises a penalised residual sum of squares using
the squared L2 norm penalty, is employed to improve the OLS estimate through
a bias-variance trade-off. However, ridge regression has a drawback that it cannot
yield a parsimonious model since it keeps all predictors in the model and therefore
creates an interpretability problem. It also gives prediction errors close to those from
the OLS model.

Another approach proposed for variable selection is the so-called “least absolute
shrinkage and selection operator” (Lasso), aims at combining the features of ridge
regression and subset selection either retaining (and shrinking) the coefficients or
setting them to zero. This method received several extensions such as the Elastic
net, a combination of Lasso and ridge regression or the Group Lasso used when
predictors are divided into groups. This chapter describes the application of Lasso,
Group Lasso as well as the Elastic net in linear regression model with continuous
and binary response (logit model) variables.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_9
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9.1 Lasso

Tibshirani (1996) first introduced Lasso for generalised linear models, where the
response variable y is continuous rather than categorical. Lasso has two important
characteristics. First, it has an L1-penalty term which performs shrinkage on
coefficients in a way similar to ridge regression, where an L2 penalty is used.

Second, unlike ridge regression, Lasso performs variable subset selection driving
some coefficients to exactly zero due to the nature of the constraint, where the
objective function may touch the quadratic constraint area at a corner. For this
reason, the Lasso is able to produce sparse solutions and is therefore able to combine
good features of both ridge regression and subset selection procedure. It yields
interpretable models and has the stability of ridge regression.

9.1.1 Lasso in the Linear Regression Model

The linear regression model can be written as follows:

y D Xˇ C ";

where y is an .n � 1/ vector of observations for the response variable, X D
.x>1 ; : : : ; x>n />, xi 2 R

p , i D 1; : : : ; n is a data matrix of p explanatory variables,
and " D ."1; : : : ; "n/

> is a vector of errors where E."i / D 0 and Var."i / D �2,
i D 1; : : : ; n.

In this framework, E .yjX / D Xˇ with ˇ D �ˇ1; : : : ; ˇp
�>

. Further assume that
the columns of X are standardised such that n�1

Pn
iD1 xij D 0 and n�1

Pn
iD1 x2ij D

1. The Lasso estimate Ǒ can then be defined as follows

Ǒ D arg min
ˇ

(
nX

iD1

�
yi � x>i ˇ

�2
)

; subject to
pX

jD1
jˇj j � s; (9.1)

where s � 0 is the tuning parameter which controls the amount of shrinkage. For
the OLS estimate Ǒ0 D .X>X /�1X>y a choice of tuning parameter s < s0, where
s0 D Pp

jD1 j Ǒ0j j, will cause shrinkage of the solutions towards 0, and ultimately
some coefficients may be exactly equal to 0. For values s � s0 the Lasso coefficients
are equal to the unpenalised OLS coefficients.

An alternative representation of (9.1) is:

Ǒ D arg min
ˇ

8
<

:

nX

iD1

�
yi � x>i ˇ

�2 C �
pX

jD1
jˇj j

9
=

;
; (9.2)
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with a tuning parameter � � 0. As � increases, the Lasso estimates are continuously
shrunk toward zero. Then if � is quite large, some coefficients are exactly zero. For
� D 0 the Lasso coefficients coincide with the OLS estimate. In fact, if the solution
to (9.1) is denoted as Ǒs and the solution to (9.2) as Ǒ�, then 8� > 0 and the
resulting solution Ǒ� 9s� such that Ǒ� D Ǒs� and vice versa which implies a one-to-
one correspondence between these parameters. However, this does not hold if it is
required that � � 0 only and not � > 0, because if, for instance, � D 0, then Ǒ� is
the same for any s � k Ǒk1 and the correspondence is no longer one-to-one.

Geometrical Aspects in R
2

The Lasso estimate under the least squares loss function solves a quadratic program-

ming problem with linear inequality constraints. The criterion
Pn

iD1
�
yi � x>i ˇ

�2

yields the quadratic form objective function

.ˇ � Ǒ0/>W.ˇ � Ǒ0/ (9.3)

with W D X>X . For the special case when p D 2, ˇ D .ˇ1; ˇ2/
>, the

resulting elliptical contour lines are centred around the OLS estimate and the linear
constraints are represented by square (shaded area) shown in Fig. 9.1. The Lasso
solution is the first place that the contours touch the square, and this sometimes
occurs at a corner, corresponding to a zero coefficient. The nature of the Lasso
shrinkage may not occur completely obvious. In the work by Efron, Hastie,
Johnstone, and Tibshirani (2004) the Least Angle Regression (LAR) algorithm

Fig. 9.1 Lasso in the general
design case for s D 4 and
OLS estimate Ǒ0 D .6; 7/

>
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with a Lasso modification was described which computes the whole path of Lasso
solutions and gives a better understanding of the shrinkage nature.

The LAR Algorithm and Lasso Solution Paths

The LAR algorithm may be introduced in the simple three-dimensional case as
follows (assume that the number of covariates p D 3):

• first, standardise all the covariates to have mean 0 and unit length as well as make
the response variable have mean zero;

• start with Ǒ D 0;
• initialise the algorithm with the first two covariates: let X D .x1; x2/ and

calculate the prediction vector Oy0 D X Ǒ D 0;
• calculate y2 the projection of y onto L.x1; x2/, the linear space spanned by x1

and x2;
• compute the vector of current correlations between the covariates X and the

two-dimensional current residual vector: C Oy0 D X>.y2 � Oy0/ D .c
Oy0
1 ; c

Oy0
2 /
>.

According to Fig. 9.2, the current residual y2 � Oy0 makes a smaller angle with

x1, than with x2, therefore c Oy01 > c
Oy0
2 ;

• augment Oy0 in the direction of x1 so that Oy1 D Oy0 C O�1x1 with O�1 chosen such

that c Oy01 D c
Oy0
2 which means that the new current residual y2 � Oy1 makes equal

angles (is equiangular) with x1 and x2;
• suppose that another regressor x3 enters the model: calculate a new projection y3

of y onto L.x1; x2; x3/;
• recompute the current correlations vector C Oy1 D .c

Oy1
1 ; c

Oy1
2 ; c

Oy1
3 /
> with X D

.x1; x2; x3/, y3 and Oy1;
• augment Oy1 in the equiangular direction so that Oy2 D Oy1 C O�2u2 with O�2

chosen such that c Oy11 D c
Oy1
2 D c

Oy1
3 , then the new current residual y3 � Oy2 goes

Fig. 9.2 Illustration of LARS algorithm
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equiangularly between x1, x2 and x3 (here u2 is the unit vector lying along the
equiangular direction Oy2);

• the three-dimensional algorithm is terminated with the calculation of the final
prediction vector Oy3 D Oy2 C O�3u3 with O�3 chosen such that Oy3 D y3 .

In the case of p > 3 covariates, Oy3 would be smaller than y3 initiating another
change of direction, as illustrated in Fig. 9.2.

In this setup, it is important that the covariate vectors x1, x2, x3 are linearly
independent. The LAR algorithm “moves” the variable coefficients to their least
squares values. So the Lasso adjustment necessary for the sparse solution is that
if a nonzero coefficient happens to return to zero, it should be dropped from the
current (“active”) set of variables and not be considered in further computations.
The general LAR algorithm for p predictors can be summarised as follows.

Least Angle Regression Algorithm

1. The covariates are standardised to have mean 0 and unit length 1 and the
response has mean 0:

nX

iD1
yi D 0;

nX

iD1
xij D 0;

nX

iD1
x2ij D 1I j D 1; 2; : : : ; p:

The task is to construct the fit Ǒ D . Ǒ1; : : : ; Ǒp/> by iteratively changing

the prediction vector Oy DPp
jD1 xj Ǒj D X Ǒ.

2. Denote A equal to a subset of the indices f1; 2; : : : ; pg, begin with OyA D
Oyo D 0 and calculate the vector of current correlations

Oc D X>.y � OyA/:

3. Then review the current set A D fj W j Ocj j D OC g as the set of
indices corresponding to the covariates with the greatest absolute current
correlations, where OC D max

j
fj Ocj jg; let sj D signf Ocj g for j 2 A and

compute the matrix XA D .sj xj /j2A, the scalar AA D .1>AG�1A 1A/�
1
2 with

GA D X>AXA and 1>A being a vector of ones of length jAj, and the so-called
equiangular vector uA D XAwA with wA D AAG�1A 1A which makes equal
angles, each less than 90ı, with the columns of XA.

4. Calculate the inner product vector a
defD X>uA and the direction

O� D minC
j2Ac

( OC � Ocj
AA � aj ;

OC C Ocj
AA C aj

)
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5. Define Od to be the m-vector equaling sjwAj for j 2 A and zero elsewhere

and �j D � Ǒj = Odj yielding Q� D min
�j >0

˚
�j
�

(a) If Q� < O� , calculate the next LARS step as

OyAC
D OyA C Q�uA

with AC D A � f Qj g.
(b) Else: calculate the next step as

OyAC
D OyA C O�uA

6. Iterate until all p predictors have been entered, some of which are ultimately
dropped from the active set A.

This algorithm can be implemented on a grid from 0 to 1 of the standardised
coefficients constraint s resulting in the complete paths of the Lasso coefficients
and illustrating the nature of Lasso shrinkage.

Once the Lasso solution paths have been obtained, it is important to decide on a
rule how to choose the “optimal” solution, or, equally, the regularisation parameter
�. There are several existing methods to do this and the most popular examples
are theK-fold cross-validation, generalised cross-validation, Schwartz’s (Bayesian)
Information Criterion (BIC). All these methods can be viewed as degrees-of-
freedom adjustments to the residual squared error (RSE) which underestimates the
true prediction error

RSE
defD

nX

iD1
.yi � Oyi /2:

Consider the generalised cross-validation statistic:

GCV.�/ D n�1RSE�= f1 � df.�/=ng2 ; (9.4)

where RSE� is the residual sum of squares for the constrained fit with a particular
regularisation parameter �. An alternative is the BIC

BIC D n log. O�2/C log.n/ � df.�/ (9.5)

with the estimation of error variance O�2 D n�1Pn
iD1.yi � Oyi /2.
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The degrees of freedom of the predicted vector Oy in the Lasso problem with the
linear Gaussian model with normally distributed errors having zero expectation and
variance �2, written "i � N.0; �2/, can be defined as follows:

df.�/
defD ��2

nX

iD1
Cov. Oyi ; yi /; (9.6)

which can actually be used for both linear and non-linear models. This expression
for df.�/ can be viewed as a quantitative measure of the prediction error bias
dependence on how much each yi affects its fitted value Oyi . The estimate Ǒ
minimising the GCV statistic can then be chosen. The following example shows
how to compute df.�/.

Example 9.1 (Calculation of df.�/) As no closed-form solution exists for the Lasso
problem, an approximation should be calculated. The constraint

P jˇj j � s can
be rewritten as

P
ˇ2j =jˇj j � s. Using the duality between the constrained and

unconstrained problems and one-to-one correspondence between s and �, the Lasso
solution is computed as the ridge regression estimate

Ǒ D .X>X C �B�1/�1X>y;

where B D diag.j Ǒj j/. Then it follows that

Oy D X Ǒ;
D X .X>X C �B�1/�1X>y:

Then, to calculate Cov. Oyi ; yi /, one could use Cov. Oyi ; yi / D Cov.e>i Oy; e>i y/ D
e>i Cov. Oy; y/ei , where ei is a vector where the i 0th entry is 1 and the rest are zero.
Furthermore, each entry in the sum of (9.6) can be calculated to be

Cov. Oyi ; yi / D e>i Cov. Oy; y/ei (9.7)

D e>i X .X>X C �B�1/�1X> Cov.y; y/ei (9.8)

D �2.X>ei />.X>X C �B�1/�1.X>ei / (9.9)

D �2x>i .X>X C �B�1/�1xi : (9.10)

Using the fact that (9.10) are scalars for all i as well as the properties of the trace of
a matrix and matrix multiplication rules mentioned in Chap. 2, one obtains the final
closed-form expression for the effective degrees of freedom in the Lasso problem:

df.�/ D 1

�2

nX

iD1
tr
˚
�2x>i .X>X C �B�1/�1xi

�
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D
nX

iD1
tr
˚
xix
>
i .X>X C �B�1/�1

�

D tr

( 
nX

iD1
xi x
>
i

!

.X>X C �B�1/�1
)

D tr
˚
X>X .X>X C �B�1/�1�

D tr
˚
X .X>X C �B�1/�1X>� :

It should be noted that the formula for the effective degrees of freedom derived
above is valid in the case of the underlying model with non-random regressors.
When the random design is used and the set of nonzero predictors is not fixed,
another estimator should be used.

Orthonormal Design Case

A computationally convenient special case is the so-called orthonormal design
framework. In the orthonormal design case X>X is a diagonal matrix that X>X D
I. Here the explicit Lasso estimate is

Ǒ
j D sign

� Ǒ0
j

� �
j Ǒ0j j � �

�C
; (9.11)

� D �

2
subject to

pX

jD1
j Ǒj j D s: (9.12)

The formula shows what was already mentioned in the beginning, namely that the
Lasso estimate is a compromise between subset selection and ridge regression, the
estimate is either shrunk by � or is set to zero. As a consequence Lasso coefficients
can take values between zero and Ǒ0j .

Example 9.2 (Orthonormal Design Case for p D 2) Let Ǒ D
�
b̌
1; b̌2

�>

w.l.o.g. be in the first quadrant, i.e. b̌1 � 0 and b̌
2 � 0. This gives us

the first condition. The orthonormal design ensures that the elliptical contour
lines describe circles around the OLS estimate. Thus we get a linear function
going through the point Ǒ0 and being orthogonal (if possible) to the first
condition. Equalising both conditions

Ǒ
1 C Ǒ2 D s (9.13)

Ǒ
2 D Ǒ1 C

� Ǒ0
2 � Ǒ01

�
(9.14)
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the Lasso estimate can now be accurately determined:

Ǒ
1 D

 
s

2
C
Ǒ0
1 � Ǒ02
2

!C
(9.15)

Ǒ
2 D

 
s

2
�
Ǒ0
1 � Ǒ02
2

!C
: (9.16)

For cases in which

�
s
2
C Ǒ0

1� Ǒ02
2

�

� 0 or

�
s
2
� Ǒ01� Ǒ02

2

�

� 0 the corresponding Lasso

estimates will always be zero as the position of the Ǒ01 and corresponding contour
lines do not make it possible to get the orthogonality condition mentioned above.
Let Ǒ0 D .6; 7/> and tuning parameter s D 4. In this case the Lasso estimator is
given by, as shown in Fig. 9.3:

Ǒ
1 D 4

2
C 6 � 7

2
D 1:5; (9.17)

Ǒ
2 D 4

2
� 6 � 7

2
D 2:5: (9.18)
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Fig. 9.3 Lasso in the orthonormal design case for s D 4 and OLS estimate Ǒ0 D .6; 7/
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In terms of �, the Lasso solution (9.11) in the orthonormal design case can be
calculated in a usual unconstrained minimisation problem. Note that in this case the
least squares solution is given by

Ǒ0 D .X>X /�1X>y D X>y:

Then the minimisation problem is written as

Ǒ D arg min
ˇ2Rpky � Xˇk22 C �kˇk1

D arg min
ˇ2Rp.y � Xˇ/>.y � Xˇ/C �

pX

jD1
jˇj j

D arg min
ˇ2Rp � 2y

>Xˇ C ˇ>ˇ C �
pX

jD1
jˇj j

D arg min
ˇ2Rp � 2

Ǒ0>ˇ C ˇ>ˇ C �
pX

jD1
jˇj j

D arg min
ˇ2Rp

pX

jD1

�
�2 Ǒ0j ˇj C ˇ2j C �jˇj j

�
:

The objective function can now be minimised by separate minimisation of its j th
element. To solve

min
ˇ
.�2 Ǒ0ˇ C ˇ2 � �jˇj/; (9.19)

where the index j was dropped for simplicity, let’s first assume that Ǒ0 > 0,
then ˇ � 0, because a lower value for the objective function may be obtained by
changing the sign. Then the solution for the modified problem

min
ˇ
.�2 Ǒ0ˇ C ˇ2 C �ˇ/ (9.20)

is, obviously, Ǒ D Ǒ0 � � , where � D �=2, as in (9.11). To ensure the sign
consistency for this case, one could see that the solution is

Ǒ D . Ǒ0 � �/C D sign. Ǒ0/.j Ǒ0j � �/C: (9.21)

Now let us take Ǒ0 � 0, then ˇ � 0 as well and the solution for the new problem

min
ˇ
.�2 Ǒ0ˇ C ˇ2 � �ˇ/ (9.22)
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is Ǒ D Ǒ0 C � , but the sign consistency requires that

Ǒ D . Ǒ0 C �/�

D �.� Ǒ0 � �/C

D sign. Ǒ0/.j Ǒ0j � �/C:

As the solutions are the same in both cases, the expression sign. Ǒ0/.j Ǒ0j � �/C is
indeed the solution to the original Lasso problem.

General Lasso Solution

For a fixed s � 0 the Lasso estimation problem is a least squares problem
subjected to 2p linear inequality constraints as there are 2p different possible signs

for ˇ D �
ˇ1; : : : ; ˇp

�>
. Lawson and Hansen (1974) suggested solving the least

squares problem subject to a general linear inequality constraint Gˇ � h where
G.m � p/ corresponds to the m D 2p constraints and h D s1m. As m could be
very large, this procedure is not very fast computationally. Therefore Lawson and
Hansen (1974) introduced the inequality constraints sequentially in their algorithm,
seeking a feasible solution.

Let g.ˇ/ DPn
iD1

�
yi � x>i ˇ

�2
and let ık; k D 1; : : : ; 2p , be column vectors of

p-tuples of the form .˙1; : : : ;˙1/. It follows that the linear inequality condition
can be equivalently described as ı>k ˇ � s; k D 1; : : : ; 2p. Now let E D fkjı>k ˇ D
sg the equality set, mE the number of elements of E and GE D

�
ı>k
�

k2E a matrix
whose rows are all ık’s for k 2 E . Now the algorithm works as follows, see
Tibshirani (1996):

1. Find OLS estimate Ǒ0 and let ık0 D sign. Ǒ0/, E D fk0g.
2. Find Ǒ to minimise g.ˇ/ subject to GEˇ � s1mE .
3. If

Pp
jD1 j Ǒj j � s the computation is complete.

4. If
Pp

jD1 j Ǒj j > s add k to the set E where ık D sign. Ǒ/ and go back to step 2.
5. The final iteration is a solution to the original problem.

As the number of steps is limited by m D 2p , the algorithm has to converge
in finite time. The average number of iterations in practice is between 0:5p and
0:75p.

Example 9.3 Let us consider the car data set (Table 22.3) where n D 74. We
want to study in-what way the price .X1/ depends on the 12 other variables
.X2/; : : : ; .X13/, which are represented by j D 1; 2; : : : ; 12, using Lasso regres-
sion. In Fig. 9.4 one can clearly see that coefficients become nonzero one at a
time, that means the variables enter the regression equation sequentially as the
scaled shrinkage parameter Os D s=k Ǒ0k1 increases, in order j D 6; 11; 9; 3; : : :
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Fig. 9.4 Lasso estimates of standardised regression Ǒj for car data with n D 74 and p D 12
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(representing X7;X12; X10; X4; : : :), hence the L1 penalty results in variable selec-
tion and the variables which are most relevant are shrunk less. In this example,
an optimal Os can be found such that the fitted model gives the smallest residual
(see Exercise 9.3).

9.1.2 Lasso in High Dimensions

The problem with the algorithm by Tibshirani to calculate the Lasso solutions is that
it is initialised from an OLS solution of the unconstrained problem which does not
correspond to the true model. Another problem is that for the case of p > n, this
computation is infeasible. Therefore it may be optimal to start with a small initial
guess for ˇ and iterate through a different kind of an algorithm to obtain the Lasso
solutions. Such an algorithm is based on the properties of the Lasso problem as
a convex programming one. Osborne et al. (2000) showed that the original Lasso
estimate problem (9.1) can be rewritten as:

Ǒ D arg min
ˇ2Rp

1

2
.y � Xˇ/> .y � Xˇ/ defD 1

2
r>r; subject to s � kˇk1 � 0;

(9.23)

where r
defD .y � Xˇ/. Let J D fi1; : : : ; ipg be the set of indices such that

j.X>r/ij j D kX>rk1, for j D 1; : : : ; p; so indices in J correspond to nonzero
elements of ˇ. Also let P be the permutation matrix that permutes the elements
of the coefficient vector ˇ so that the first elements are the nonzero elements:
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ˇ D P> .ˇJ ; 0/>. Denote �J D sign.ˇJ / be equal to 1 if the correspond-
ing element of ˇJ is positive and �1 otherwise. Further denoting f .ˇ/ D
.y � Xˇ/> .y � Xˇ/ the following optimisation algorithm is based on the local
linearisation of (9.1) around ˇ:

Ǒ D arg min
h
f .ˇ C h/; subject to �>J .ˇJ C hJ /� s and hDP> .hJ ; 0/> ;

(9.24)

the solution for which can be shown to be equal to

hJ D .X>J XJ /�1fX>J .y � XJˇJ /� ��J g;

where

� D max

(

0;
�>J .X>J XJ /�1X>J y � s
�>J .X>J XJ /�1�J

)

:

The procedure as a whole is implemented as shown in the “Lasso solution-path
optimisation” algorithm. As shown in the algorithm, indices may enter and leave the
set J , which makes the Lasso problem similar to other subset selection techniques.
Moreover, one can compute the whole path of Lasso solutions for 0 � s � s0, each
time taking the solution for the previous s as a starting point for the next one.

9.1.3 Lasso in Logit Model

The Lasso model can be extended to generalised linear models, one of the most
common of which is the logistic regression (logit) model. Coefficients in the logit
model have probabilistic interpretation. In the logit model, the linear predictor Xˇ
is related to the conditional mean � of the response variable y via the logit link
logf�=.1 � �/g. As the response variable is binary, it is binomial-distributed and
� D p.xi /. Therefore, as defined in (9.25), the logit model for y 2 f0; 1g of .n� 1/
observations on a binary response variable and xi D .xi1; : : : ; xip/> is,

log



p .xi /

1 � p .xi /



D
pX

jD1
ˇj xij;

where

p .xi / D P.yi D 1 j xi/ D
exp.

Pp
jD1 ˇj xij/

1C exp.
Pp

jD1 ˇj xij/
: (9.25)
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Algorithm Lasso solution-path optimisation
1: procedure FIND(optimal ˇ)
2: Choose initial ˇ and J (e.g. ˇ 0, J  ;)
3: repeat
4: Solve (9.23) to obtain h
5: Set Ǒ  ˇC h
6: if sign. ǑJ / D �J then
7: Obtain the solution ˇ D Ǒ
8: else
9: repeat

10: Find the smallest � , 0 < � < 1, k 2 J such that 0D ˇk C �hk
11: Set ˇ D ˇC �h
12: Set �k D ��k
13: Solve (9.23) again to obtain a new h

14: if �>
J .ˇJ C hJ / � s then

15: Ǒ D ˇC h
16: else
17: Update J  J�k

18: Recompute ˇJ , �J , h
19: end if
20: until sign. ǑJ / D �J
21: end if
22: Compute Ov X> Or=kX>

J Ork1 D P> . Ov1; Ov2/> F here Or D y � X Ǒ
23: if �1 � . Ov2/{ � 1 for 1 � { � p � jJ j then
24: Ǒ is a solution
25: else
26: Find | such that j. Ov2/| j is maximised
27: Update J  .J ; | /
28: Update ǑJ  . ǑJ ; 0/>
29: Update �J  .�J ; sign. Ov2/| />
30: end if
31: Set ˇ Ǒ
32: until �1 � . Ov2/{ � 1 for 1 � { � p � jJ j
33: end procedure

The Lasso estimate for the logit model is obtained by solving the following
optimisation problem:

Ǒ D arg min
ˇ

(
nX

iD1
g
��yix>i ˇ

�
)

; subject to
pX

jD1
jˇj j � s; (9.26)

with tuning parameter s � 0 and log-loss function g.u/ D log f1C exp.u/g. An
alternative representation of the Lasso estimate Ǒ in the logit model is:

arg min
ˇ

8
<

:

nX

iD1
g
��yix>i ˇ

�C �
pX

jD1
jˇj j

9
=

;
: (9.27)
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Shevade and Keerthi (2003) developed a simple and efficient algorithm to solve
the optimisation in (9.27) based on the Gauss–Seidel method using coordinate-
wise descent approach. The algorithm is asymptotically convergent and easy to
implement. Firstly, define the following terms,

ui D �yix>i ˇ;

Fj D
nX

iD1

exp.ui /

exp.1C ui /
yixij: (9.28)

The first order optimality conditions for (9.27) are:

Fj D 0 if j D 0;
Fj D � if ˇj > 0; j > 0;

Fj D �� if ˇj < 0; j > 0;

�� � Fj � � if ˇj D 0; j > 0:

A new variable is defined

vj D jFj j if j D 0;
D j� � Fj j if ˇj > 0; j > 0;

D j�C Fj j if ˇj < 0; j > 0;

D  j if ˇj D 0; j > 0:

where j D maxf.Fj��/; .���Fj /; 0g. Thus, the first-order optimality conditions
can be written as

vj D 0 8j: (9.29)

It is difficult to obtain exact optimality condition, so the stopping criterion for (9.27)
is defined as follows (for some small "),

vj � " 8j: (9.30)

To write the algorithm, let us define Iz D fj W ˇj D 0; j > 0g and Inz D
fj W ˇj ¤ 0; j > 0g for sets of zero estimates and sets of nonzero estimates,
respectively, and I D Iz [ Inz. The algorithm consists of two loops. The first loop
runs over the variables in Iz to choose the maximum violator, v. In the second loop
W is optimised with respect to ˇv , therefore the set Inz is modified and maximum
violator in Inz is obtained. The second loop is repeated until no violators are found
in Inz. The algorithm alternates between the first and second loop until no violators
exist in both Iz and Inz.
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Algorithm Lasso in logit model

1: procedure FIND(optimal Lasso estimate Ǒ)
2: Set ˇj D 0 for all j
3: while an optimality violator exists in Iz do
4: Find the maximum violator (v) in Iz

5: repeat
6: Optimise W with respect to ˇv
7: Find the maximum violator (v) in Inz

8: until no violator exists in Inz

9: end while
10: end procedure

Another way to obtain the lasso estimate in the logit model is by maximising the
likelihood function of logit model with lasso constraint. The log-likelihood function
of logit model is written as

logL.ˇ/ D
nX

iD1
Œyi logp .xi /C .1 � yi / logf1 � p .xi /g� : (9.31)

Suppose `.ˇ/ D logL.ˇ/, with ˇ D .ˇ1; : : : ; ˇp/
>, the Lasso estimates are

obtained by maximising the penalised log likelihood for logit model as follows

Ǒ D arg max
ˇ

(

n�1
nX

iD1
`.ˇ/

)

; subject to
pX

jD1
jˇj j � s: (9.32)

It can solved by a general non-linear programming procedure or by using iteratively
reweighted least squares (IRLS). Friedman, Hastie, and Tibshirani (2010) developed
an algorithm to solve the problem in (9.32). An alternative representation of the
Lasso problem is defined as follows:

Ǒ D arg max
ˇ

8
<

:
n�1

nX

iD1
`.ˇ/ � �

pX

jD1
jˇj j

9
=

;
: (9.33)

Example 9.4 Following Example 9.3, the price .X1/ of car data set (Table 22.3) has
average 6;192:28. We now define a new categorical variable which takes the value
0 if X1 � 6,000 and otherwise is equal to 1. We want to study in what way the price
.X1/ depends on the 12 other variables .X2; : : : ; X13/ using Lasso in logit model.

In Fig. 9.5 one can see that coefficients’ dynamics depends on the shrinkage
parameter s D k Ǒ.�/k1, the L1 norm of estimated coefficients. An optimal s can be
chosen such that the fitted model gives the smallest residual (see Exercise 9.4).
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Fig. 9.5 Lasso estimates Ǒj of logit model for car data with n D 74 and p D 12
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9.2 Elastic Net

Although the Lasso is widely used in variable selection, it has several drawbacks.
Zou and Hastie (2005) stated that:

1. if p > n, the Lasso selects at most n variables before it saturates;
2. if there is a group of variables which has very high correlation, then the Lasso

tends to select only one variable from this group;
3. for usual n > p condition, if there are high correlations between predictors,

the prediction performance of the Lasso is dominated by ridge regression, see
Tibshirani (1996).

Zou and Hastie (2005) introduced the Elastic net which combines good features
of the L1-norm and L2-norm penalties. The Elastic net is a regularised regression
method which overcomes the limitations of the Lasso. This method is very useful
when p � n or there are many correlated variables. The advantages are: (1) a group
of correlated variables can be selected without arbitrary omissions, (2) the number
of selected variables is no longer limited by the sample size.
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9.2.1 Elastic Net in Linear Regression Model

We describe the Elastic net in linear regression model. For simplicity reason we
assume that the xij are standardised such that

Pn
iD1 xij D 0 and n�1

Pn
iD1 x2ij D 1.

The Elastic net penalty P˛.ˇ/ leads to the following modification of the problem to
obtain the estimator Ǒ

arg min
ˇ

(

.2n/�1
nX

iD1

�
yi � x>i ˇ

�2 C �P˛.ˇ/
)

; (9.34)

where

P˛.ˇ/ D 1

2
.1 � ˛/ kˇk22 C ˛ kˇk1

D
pX

jD1



1

2
.1 � ˛/ˇ2j C ˛jˇj j




: (9.35)

The penalty P˛.ˇ/ is a compromise between ridge regression and the Lasso. If
˛ D 0 then the criterion is the ridge regression and if ˛ D 1 the method will be the
Lasso. Practically, for small " > 0, the Elastic net with ˛ D 1 � " performs like the
Lasso, but removes degeneracies and erratic variable selection behaviour caused by
extreme correlation. Given a specific �, as ˛ increases from 0 to 1, the sparsity of
the Elastic net solutions increases monotonically from 0 to the sparsity of the Lasso
solutions.

The Elastic net optimisation problem can be represented as the usual Lasso
problem, using modified X and y vectors, as shown in the following example.

Example 9.5 To turn the Elastic net optimisation problem into the usual Lasso
one, one should first augment y with p additional zeros to obtain Qy D .y; 0/>.
Then, augment X with the multiple of the p � p identity matrix

p
�˛I to get

QX D
�
X>;
p
�˛I

�>
. Next, define Q� D �.1 � ˛/ and solve the original Lasso

minimisation problem in terms of the new input Qy, QX and Q�. This new problem is
equivalent to the original Elastic net problem:

k Qy � QXˇk22 C Q�kˇk1 D
	
	
	
	

�
y

0

�

�
�

Xˇp
�˛Iˇ

�	
	
	
	

2

2

C �.1 � ˛/kˇk1;

D ky � Xˇk22 � �˛kˇk22 C �kˇk1 � �˛kˇk1;
D ky � Xˇk22 C �

˚
˛kˇk22 C .1� ˛/kˇk1

�
;

which is equivalent to the original Elastic net problem.

We follow the idea of Friedman et al. (2010) who used a coordinate descent
algorithm to solve the optimisation problem in (9.34). Let us suppose to have
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estimates Q̌k for k ¤ j . Then we optimise (9.34) partially with respect to ˇj by
computing the gradient at ˇj D Q̌j , which only exists if Q̌j ¤ 0. Having the soft-
thresholding operator S.z; �/ as

sign.z/ .jzj � �/C D

8
ˆ̂
<

ˆ̂
:

z� � if z > 0 and � < jzj;
zC � if z < 0 and � < jzj;
0 if � � jzj:

(9.36)

it can be shown that the coordinate-wise update has the following form

f̌
j D

S
n
n�1

Pn
iD1 xij

�
yi � Qy.j /i

�
; �˛

o

1C �.1 � ˛/ ; (9.37)

where Qy.j /i D P
k¤j xik

Q̌
k is a fitted value which excludes the contribution xij,

therefore yi � Qy.j /i is partial residual for fitting ˇj .
The algorithm computes the least square estimate for the partial residual yi �
Qy.j /i , then applies the soft-thresholding rule to perform the Lasso contribution to
the penalty P˛.ˇ/. Afterwards, a proportional shrinkage is applied to ridge penalty.
There are several methods used to update the current estimate Q̌. We describe the
simplest updating method, the so-called naive update.

The partial residual can be rewritten as follows:

yi � Qy.j /i D yi � Oyi C xij
f̌
j

D ri C xij
f̌
j ; (9.38)

with byi being the current fit and ri the current residual. As xj is standardised,
therefore

1

n

nX

iD1
xij

�
yi � Qy.j /i

�
D 1

n

nX

iD1
xijri C f̌j : (9.39)

Note that the first term on the right-hand side of the new partial residual is the
gradient of the loss with respect to ˇj .

9.2.2 Elastic Net in Logit Model

The Elastic net penalty can similarly be applied to the logit model. Recall the log-
likelihood function of the logit model in (9.31),

logL.ˇ/ D
nX

iD1
Œyi logp .xi /C .1 � yi / logf1 � p .xi /g� :
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Penalised log-likelihood for the logit model using Elastic net has the following form

max
ˇ

(

n�1
nX

iD1
`.ˇ/ � �P˛.ˇ/

)

; (9.40)

with `.ˇ/ D logL.ˇ/. The solution of (9.40) can be found by means of a
Newton algorithm. For a fixed � and given a current parameter Q̌, the quadratic
approximation (Taylor expansion) is updated about current estimates Q̌ as follows:

`Q.ˇ/ D �.2n/�1
nX

iD1
wi .zi � x>i ˇ/2 C C. Q̌/2; (9.41)

where working response and weight, respectively, are:

zi D x>i Q̌ C
yi � Qp.xi /

Qp.xi /f1 � Qp.xi /g ;

wi D Qp.xi / f1 � Qp.xi /g :

A Newton update is obtained by minimising `Q.ˇ/.
Friedman et al. (2010) proposed similar approach creating an outer loop for

each value of �, which computes a quadratic approximation in (9.41) about current
estimates Q̌. Afterwards, a coordinate descent algorithm is used to solve the
following penalised weighted least squares problem (PWLS)

min
ˇ

˚�`Q.ˇ/C �P˛.ˇ/
�
: (9.42)

This inner coordinate descent loop continues until the maximum change in (9.42) is
less than a very small threshold.

9.3 Group Lasso

The Group Lasso was first introduced by Yuan and Lin (2006) and was motivated
by the fact that the predictor variables can occur in several groups and one could
want a parsimonious model which uses only a few of these groups. That is, assume
that there are K groups and the vector of coefficients is structured as follows

ˇG D .ˇ>1 ; : : : ; ˇ>K/> 2 R

P
k pk ;

where pk is the coefficient vector dimension of the kth group, k D 1; : : : ; K . A
sparse set of groups is produced, although within each group either all entries of ˇk ,
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k D 1; : : : ; K , a corresponding element of the whole vector ˇG are zero or all of
them are nonzero. The Group Lasso problem can be formulated in general as

arg min
ˇ2R

P
k pk

n�1
	
	
	
	
	
y �

KX

kD1
Xkˇk

	
	
	
	
	

2

2

C �
KX

kD1

p
pkkˇkk2; (9.43)

where Xk is the kth component of the matrix X with columns corresponding to
the predictors in the group k, ˇk is the coefficient vector for that group and pk is
the cardinality of the group, i.e. the size of the coefficient vector which serves as
a balancing weight in the case of widely differing group sizes. It is obvious that if
groups consist of single elements, i.e. pk D 1 8k, then the Group Lasso problem is
reduced to the usual Lasso one.

The computation of the Group Lasso solution involves calculating the necessary
and sufficient subgradient KKT conditions for ǑG D . Ǒ>1 ; : : : ; Ǒ>K/> to be a
solution for (9.43)

� X>k

 

y �
KX

kD1
Xkˇk

!

C �ˇk
p
pk

kˇkk D 0; (9.44)

if ˇk ¤ 0; otherwise, for ˇk D 0, it holds that

	
	
	
	
	
	
X>k

0

@y �
X

l¤k
Xl Ǒl

1

A

	
	
	
	
	
	
� �ppk: (9.45)

Expressions (9.44) and (9.45) allow to calculate the solution, the so-called update
step which can be used to implement an iterative algorithm to solve the prob-
lem (9.43). The solution resulting from the KKT conditions is readily shown to
be the following:

Ǒ
k D


�
�
p
pkk Ǒkk�1 C X>k Xk

��1
C
X>k Ork; (9.46)

where the residual Ork is defined as Ork defD y�Pl¤k Xl Ǒl . As a special (orthonormal)

case, when X>l Xl D I, the solution is simplified to the Ǒk D .�
p
pkk Ǒkk�1 C

1/X>k Ork. To obtain a full solution to this problem, Yuan and Lin (2006) suggest
using a blockwise coordinate descent algorithm which iteratively applies the
estimate (9.46) to k D 1; : : : ; K .

Meier, van de Geer, and Bühlmann (2008) extended the Group Lasso to the case
of logistic regression and demonstrated convergence of several algorithms for the
computation of the solution as well as outlined consistency results for the Group
Lasso logit estimator. The general setup for that model involves a binary response
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variable yi 2 f0; 1g and K groups predictor variable xi D .x>i1 ; : : : ; x>ik />, both
xi and yi are i.i.d., i D 1; : : : ; n. Then the logistic linear regression model may be
written as before:

log



p.xi /

1 � p.xi /



D �.xi / defD ˇ0 C
KX

kD1
x>ik ˇk; (9.47)

where the conditional probability p.xi / D P.yi D 1jxi/. The Group Lasso logit
estimator Ǒ then minimises the objective function

Ǒ D arg min
ˇ2RpC1

(

�`.ˇ/C �
KX

kD1

p
pkkˇkk2

)

; (9.48)

where `.�/ is the log-likelihood function

`.ˇ/ D
nX

iD1
yi�.xi / � logŒ1C expf�.xi /g�:

The problem is solved through a group-wise minimisation of the penalised objective
function by, for example, the block-coordinate descent method.

Example 9.6 The Group Lasso results can be illustrated by an application to the
MEMset Donor dataset of human donor splice sites with a sequence length of 7
base pairs. The full dataset (training and test parts) consists of 12.623 true (yi D 1)
and 269.155 false (yi D 0) human donor sites. Each element of data represents a
sequence of DNA within a window of the splice site which consists of the last three
positions of the exon and first 4 positions of the intron; so the strings of length 7
are made up of 4 characters A, C, T, G and therefore the predictor variables are 7
factors, each having 4 levels. False splice sites are sequences on the DNA which
match the consensus sequence at position four and five. Figure 9.6 shows how the
Group Lasso does shrinkage on the level of groups built by DNA letters.

As is seen from Example 9.6, the solution to the Group Lasso problem yields a
sparse solution only regarding the “between” case, that is, it excludes some of the
groups from the model but then all coefficients in the remaining groups are nonzero.
To ensure both the sparsity of groups and within each group, Simon, Friedman,
Hastie, and Tibshirani (2013) proposed the so-called “sparse Group Lasso” which
uses a more general penalty which yields sparsity an both inter- and intragroup level.
The sparse Group Lasso estimate solves the problem

Ǒ D arg min
ˇ2Rp

	
	
	
	
	
y �

KX

kD1
Xkˇk

	
	
	
	
	

2

2

C �1
KX

kD1
kˇkk2 C �2kˇk1; (9.49)

where ˇ D .ˇ1; ˇ2; : : : ; ˇK/> is the entire parameter vector.
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Fig. 9.6 Lasso estimates of standardised regression Ǒj for car data with n D 74 and p D 12

MVAgrouplasso

Summary
,! Lasso gives a sparse solution. Lasso estimate combines best of both

ridge regression and subset regression.
,! If there is a group of variables which has very high correlation, then

the Lasso tends to select only one variable from the group.
,! The LARS algorithm computes the whole path of Lasso solutions

and is feasible for the high-dimensional case p � n.
,! Elastic net combines good features of L1-norm and L2-norm

penalties.
,! The Elastic net is very useful when p � n or there are many

correlated variables.
,! The Sparse Group Lasso can perform shrinkage both on inter- and

intragroup level.
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9.4 Exercises

Exercise 9.1 Derive the explicit Lasso estimate in (9.11) for the orthonormal
design case.

Exercise 9.2 Compare Lasso orthonormal design case for p D 2 graphically to

ridge regression, i.e. to the problem Ǒ D argmin
nPn

iD1
�
yi � x>i ˇ

�2
o

subject to
Pp

jD1 ˇj
2 � s.

Why does Lasso produce variable selection and ridge regression does not?

Exercise 9.3 Optimise the value of s such that the fitted model in Example 9.3
produces the smallest residual.

Exercise 9.4 Optimise the value of s such that the fitted model in Example 9.4
produces the smallest residual.



Chapter 10
Decomposition of Data Matrices by Factors

In Chap. 1 basic descriptive techniques were developed which provided tools
for “looking” at multivariate data. They were based on adaptations of bivariate
or univariate devices used to reduce the dimensions of the observations. In the
following three chapters, issues of reducing the dimension of a multivariate data
set will be discussed. The perspectives will be different but the tools will be related.

In this chapter, we take a descriptive perspective and show how using a
geometrical approach provides a “best” way of reducing the dimension of a data
matrix. It is derived with respect to a least-squares criterion. The result will be low
dimensional graphical pictures of the data matrix. This involves the decomposition
of the data matrix into “factors”. These “factors” will be sorted in decreasing
order of importance. The approach is very general and is the core idea of many
multivariate techniques. We deliberately use the word “factor” here as a tool or
transformation for structural interpretation in an exploratory analysis. In practice,
the matrix to be decomposed will be some transformation of the original data
matrix and as shown in the following chapters, these transformations provide easier
interpretations of the obtained graphs in lower dimensional spaces.

Chapter 11 addresses the issue of reducing the dimensionality of a multivariate
random variable by using linear combinations (the principal components). The
identified principal components are ordered in decreasing order of importance.
When applied in practice to a data matrix, the principal components will turn out to
be the factors of a transformed data matrix (the data will be centred and eventually
standardised).

Factor analysis is discussed in Chap. 12. The same problem of reducing the
dimension of a multivariate random variable is addressed but in this case the
number of factors is fixed from the start. Each factor is interpreted as a latent
characteristic of the individuals revealed by the original variables. The non-
uniqueness of the solutions is dealt with by searching for the representation with
the easiest interpretation for the analysis.

Summarising, this chapter can be seen as a foundation since it develops a basic
tool for reducing the dimension of a multivariate data matrix.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_10
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10.1 The Geometric Point of View

As a matter of introducing certain ideas, assume that the data matrix X .n � p/ is
composed of n observations (or individuals) of p variables.

There are in fact two ways of looking at X , row by row or column by column:

1. Each row (observation) is a vector x>i D .xi1; : : : ; xip/ 2 R
p .

From this point of view our data matrix X is representable as a cloud of n
points in R

p as shown in Fig. 10.1.
2. Each column (variable) is a vector xŒj � D .x1j ; : : : ; xnj/

> 2 R
n.

From this point of view the data matrix X is a cloud of p points in R
n as

shown in Fig. 10.2.

When n and/or p are large (larger than 2 or 3), we cannot produce interpretable
graphs of these clouds of points. Therefore, the aim of the factorial methods to be
developed here is twofold. We shall try to simultaneously approximate the column
spaceC.X / and the row spaceC.X>/with smaller subspaces. The hope is of course
that this can be done without losing too much information about the variation and
structure of the point clouds in both spaces. Ideally, this will provide insights into
the structure of X through graphs in R, R2 or R3. The main focus then is to find the
dimension reducing factors.

Fig. 10.1 Cloud of n points in R
p

Fig. 10.2 Cloud of p points in R
n
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Summary
,! Each row (individual) of X is a p-dimensional vector. From this

point of view X can be considered as a cloud of n points in R
p.

,! Each column (variable) of X is a n-dimensional vector. From this
point of view X can be considered as a cloud of p points in R

n.

10.2 Fitting the p-Dimensional Point Cloud

Subspaces of Dimension 1

In this section X is represented by a cloud of n points in R
p (considering each row).

The question is how to project this point cloud onto a space of lower dimension. To
begin consider the simplest problem, namely finding a subspace of dimension 1. The
problem boils down to finding a straight line F1 through the origin. The direction of
this line can be defined by a unit vector u1 2 R

p. Hence, we are searching for the
vector u1 which gives the “best” fit of the initial cloud of n points. The situation is
depicted in Fig. 10.3.

The representation of the i th individual xi 2 R
p on this line is obtained by the

projection of the corresponding point onto u1, i.e. the projection point pxi . We know
from (2.42) that the coordinate of xi on F1 is given by

pxi D x>i
u1
ku1k D x

>
i u1: (10.1)

Fig. 10.3 Projection of point cloud onto u space of lower dimension
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We define the best line F1 in the following “least-squares” sense: Find u1 2 R
p

which minimises

nX

iD1
kxi � pxi k2: (10.2)

Since kxi � pxi k2 D kxik2 � kpxi k2 by Pythagoras’s theorem, the problem of
minimising (10.2) is equivalent to maximising

Pn
iD1 kpxi k2. Thus the problem is

to find u1 2 R
p that maximises

Pn
iD1 kpxi k2 under the constraint ku1k D 1.

With (10.1) we can write

0

B
B
B
@

px1
px2
:::

pxn

1

C
C
C
A
D

0

B
B
B
@

x>1 u1
x>2 u1
:::

x>n u1

1

C
C
C
A
D Xu1

and the problem can finally be reformulated as: find u1 2 R
p with ku1k D 1 that

maximises the quadratic form .Xu1/>.Xu1/ or

max
u>
1 u1D1

u>1 .X>X /u1: (10.3)

The solution is given by Theorem 2.5 (using A D X>X and B D I in the
theorem).

Theorem 10.1 The vector u1 which minimises (10.2) is the eigenvector of X>X
associated with the largest eigenvalue �1 of X>X .

Note that if the data have been centred, i.e. x D 0, then X D Xc , where Xc is
the centred data matrix, and 1

n
X>X is the covariance matrix. Thus Theorem 10.1

says that we are searching for a maximum of the quadratic form (10.3) w.r.t. the
covariance matrix SX D n�1X>X .

Representation of the Cloud on F1

The coordinates of the n individuals on F1 are given by Xu1. Xu1 is called the first
factorial variable or the first factor and u1 the first factorial axis. The n individuals,
xi , are now represented by a new factorial variable z1 D Xu1. This factorial variable
is a linear combination of the original variables .xŒ1�; : : : ; xŒp�/ whose coefficients
are given by the vector u1, i.e.

z1 D u11xŒ1� C � � � C up1xŒp�: (10.4)
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Fig. 10.4 Representation of the individuals x1; : : : ; xn as a two-dimensional point cloud

Subspaces of Dimension 2

If we approximate the n individuals by a plane (dimension 2), it can be shown via
Theorem 2.5 that this space contains u1. The plane is determined by the best linear
fit (u1) and a unit vector u2 orthogonal to u1 which maximises the quadratic form
u>2 .X>X /u2 under the constraints

ku2k D 1; and u>1 u2 D 0:

Theorem 10.2 The second factorial axis, u2, is the eigenvector of X>X corre-
sponding to the second largest eigenvalue �2 of X>X .

The unit vector u2 characterises a second line, F2, on which the points are
projected. The coordinates of the n individuals on F2 are given by z2 D Xu2.
The variable z2 is called the second factorial variable or the second factor. The
representation of the n individuals in two-dimensional space (z1 D Xu1 vs.
z2 D Xu2) is shown in Fig. 10.4.

Subspaces of Dimension q .q � p/

In the case of q dimensions the task is again to minimise (10.2) but with projection
points in a q-dimensional subspace. Following the same argument as above, it can
be shown via Theorem 2.5 that this best subspace is generated by u1; u2; : : : ; uq , the
orthonormal eigenvectors of X>X associated with the corresponding eigenvalues
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�1 � �2 � � � � � �q . The coordinates of the n individuals on the kth factorial
axis, uk , are given by the kth factorial variable zk D Xuk for k D 1; : : : ; q. Each
factorial variable zk D .z1k; z2k ; : : : ; znk/

> is a linear combination of the original
variables xŒ1�; xŒ2�; : : : ; xŒp� whose coefficients are given by the elements of the kth
vector uk W zik DPp

mD1 ximumk.

Summary
,! The p-dimensional point cloud of individuals can be graphically

represented by projecting each element into spaces of smaller
dimensions.

,! The first factorial axis is u1 and defines a line F1 through the origin.
This line is found by minimising the orthogonal distances (10.2).
The factor u1 equals the eigenvector of X>X corresponding to its
largest eigenvalue. The coordinates for representing the point cloud
on a straight line are given by z1 D Xu1.

,! The second factorial axis is u2, where u2 denotes the eigenvector
of X>X corresponding to its second largest eigenvalue. The
coordinates for representing the point cloud on a plane are given
by z1 D Xu1 and z2 D Xu2.

,! The factor directions 1; : : : ; q are u1; : : : ; uq , which denote the
eigenvectors of X>X corresponding to the q largest eigenvalues.
The coordinates for representing the point cloud of individuals on
a q-dimensional subspace are given by z1 D Xu1; : : : ; zq D Xuq .

10.3 Fitting the n-Dimensional Point Cloud

Subspaces of Dimension 1

Suppose that X is represented by a cloud of p points (variables) in R
n (considering

each column). How can this cloud be projected into a lower dimensional space? We
start as before with one dimension. In other words, we have to find a straight line
G1, which is defined by the unit vector v1 2 R

n, and which gives the best fit of the
initial cloud of p points.

Algebraically, this is the same problem as above (replace X by X> and follow
Sect. 10.2): the representation of the j th variable xŒj � 2 R

n is obtained by the
projection of the corresponding point onto the straight line G1 or the direction v1.
Hence we have to find v1 such that

Pp
jD1 kpxŒj �k2 is maximised, or equivalently, we

have to find the unit vector v1 which maximises .X>v1/>.Xv1/ D v>1 .XX>/v1.
The solution is given by Theorem 2.5.
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Theorem 10.3 v1 is the eigenvector of XX> corresponding to the largest eigen-
value �1 of XX>:

Representation of the Cloud on G1

The coordinates of the p variables onG1 are given by w1 D X>v1, the first factorial
axis. The p variables are now represented by a linear combination of the original
individuals x1; : : : ; xn, whose coefficients are given by the vector v1, i.e. for j D
1; : : : ; p

w1j D v11x1j C � � � C v1nxnj: (10.5)

Subspaces of Dimension q .q � n/

The representation of the p variables in a subspace of dimension q is done in the
same manner as for the n individuals above. The best subspace is generated by the
orthonormal eigenvectors v1; v2; : : : ; vq of XX> associated with the eigenvalues
�1 � �2 � � � � � �q . The coordinates of the p variables on the kth factorial
axis are given by the factorial variables wk D X>vk; k D 1; : : : ; q. Each
factorial variable wk D .wk1;wk2; : : : ;wkp/

> is a linear combination of the original
individuals x1; x2; : : : ; xn whose coefficients are given by the elements of the kth
vector vk W wkj D Pn

mD1 vkmxmj. The representation in a subspace of dimension
q D 2 is depicted in Fig. 10.5.

Fig. 10.5 Representation of the variables xŒ1�; : : : ; xŒp� as a two-dimensional point cloud
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Summary
,! The n-dimensional point cloud of variables can be graphically

represented by projecting each element into spaces of smaller
dimensions.

,! The first factor direction is v1 and defines a line G1 through the
origin. The vector v1 equals the eigenvector ofXX> corresponding
to the largest eigenvalue of XX>. The coordinates for representing
the point cloud on a straight line are w1 D X>v1.

,! The second factor direction is v2, where v2 denotes the eigenvector
of XX> corresponding to its second largest eigenvalue. The
coordinates for representing the point cloud on a plane are given
by w1 D X>v1 and w2 D X>v2.

,! The factor directions 1; : : : ; q are v1; : : : ; vq , which denote the
eigenvectors of XX> corresponding to the q largest eigenvalues.
The coordinates for representing the point cloud of variables on a q-
dimensional subspace are given by w1 D X>v1; : : : ;wq D X>vq .

10.4 Relations Between Subspaces

The aim of this section is to present a duality relationship between the two
approaches shown in Sects. 10.2 and 10.3. Consider the eigenvector equations in R

n

.XX>/vk D �kvk (10.6)

for k � r , where r D rank.XX>/ D rank.X / � min.p; n/. Multiplying by X>,
we have

X>.XX>/vk D �kX>vk (10.7)

or .X>X /.X>vk/ D �k.X>vk/ (10.8)

so that each eigenvector vk of XX> corresponds to an eigenvector .X>vk/ of X>X
associated with the same eigenvalue �k . This means that every nonzero eigenvalue
of XX> is an eigenvalue of X>X . The corresponding eigenvectors are related by

uk D ckX>vk;

where ck is some constant.
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Now consider the eigenvector equations in R
p:

.X>X /uk D �kuk (10.9)

for k � r: Multiplying by X , we have

.XX>/.Xuk/ D �k.Xuk/; (10.10)

i.e. each eigenvector uk of X>X corresponds to an eigenvector Xuk of XX>
associated with the same eigenvalue �k. Therefore, every nonzero eigenvalue of
.X>X / is an eigenvalue of XX>. The corresponding eigenvectors are related by

vk D dkXuk;

where dk is some constant. Now, since u>k uk D v>k vk D 1we have ck D dk D 1p
�k

.
This lead to the following result:

Theorem 10.4 (Duality Relations) Let r be the rank of X . For k � r , the
eigenvalues �k of X>X and XX> are the same and the eigenvectors (uk and vk ,
respectively) are related by

uk D 1p
�k

X>vk (10.11)

vk D 1p
�k

Xuk: (10.12)

Note that the projection of the p variables on the factorial axis vk is given by

wk D X>vk D 1p
�k

X>Xuk D
p
�k uk: (10.13)

Therefore, the eigenvectors vk do not have to be explicitly recomputed to get wk .
Note that uk and vk provide the SVD of X (see Theorem 2.2). Letting

U D Œu1 u2 : : : ur �; V D Œv1 v2 : : : vr � and ƒ D diag.�1; : : : ; �r / we have

X D V ƒ1=2 U>

so that

xij D
rX

kD1
�
1=2

k vik ujk: (10.14)

In the following section this method is applied in analysing consumption
behaviour across different household types.
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Summary
,! The matrices X>X and XX> have the same nonzero eigenvalues

�1; : : : ; �r , where r D rank.X /.
,! The eigenvectors of X>X can be calculated from the eigenvectors

of XX> and vice versa:

uk D 1p
�k

X>vk and vk D 1p
�k

Xuk:

,! The coordinates representing the variables (columns) of X in a
q-dimensional subspace can be easily calculated by wk D

p
�kuk.

10.5 Practical Computation

The practical implementation of the techniques introduced begins with the compu-
tation of the eigenvalues �1 � �2 � � � � � �p and the corresponding eigenvectors
u1; : : : ; up of X>X . (Since p is usually less than n, this is numerically less
involved than computing vk directly for k D 1; : : : ; p.) The representation of the
n individuals on a plane is then obtained by plotting z1 D Xu1 versus z2 D Xu2
(z3 D Xu3 may eventually be added if a third dimension is helpful). Using the
Duality Relation (10.13) representations for the p variables can easily be obtained.
These representations can be visualised in a scatterplot of w1 D

p
�1 u1 against

w2 D
p
�2u2 (and eventually against w3 D

p
�3 u3). Higher dimensional factorial

resolutions can be obtained (by computing zk and wk for k > 3) but, of course,
cannot be plotted.

A standard way of evaluating the quality of the factorial representations in a
subspace of dimension q is given by the ratio

�q D �1 C �2 C � � � C �q
�1 C �2 C � � � C �p ; (10.15)

where 0 � �q � 1. In general, the scalar product y>y is called the inertia of y 2 R
n

w.r.t. the origin. Therefore, the ratio �q is usually interpreted as the percentage of
the inertia explained by the first q factors. Note that �j D .Xuj />.Xuj / D z>j zj .
Thus, �j is the inertia of the j th factorial variable w.r.t. the origin. The denominator
in (10.15) is a measure of the total inertia of the p variables, xŒj �. Indeed, by (2.3)

pX

jD1
�j D tr.X>X / D

pX

jD1

nX

iD1
x2ij D

pX

jD1
x>Œj �xŒj �:
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Remark 10.1 It is clear that the sum
Pq

jD1 �j is the sum of the inertia of the first q
factorial variables z1; z2; : : : ; zq .

Example 10.1 We consider the data set in Table 22.6 which gives the food
expenditures of various French families (manual workersDMA, employeesDEM,
managersDCA) with varying numbers of children (2, 3, 4 or 5 children). We are
interested in investigating whether certain household types prefer certain food types.
We can answer this question using the factorial approximations developed here.

The correlation matrix corresponding to the data is

R D

0

B
B
B
B
B
B
B
B
B
@

1:00 0:59 0:20 0:32 0:25 0:86 0:30

0:59 1:00 0:86 0:88 0:83 0:66 �0:36
0:20 0:86 1:00 0:96 0:93 0:33 �0:49
0:32 0:88 0:96 1:00 0:98 0:37 �0:44
0:25 0:83 0:93 0:98 1:00 0:23 �0:40
0:86 0:66 0:33 0:37 0:23 1:00 0:01

0:30 �0:36 �0:49 �0:44 �0:40 0:01 1:00

1

C
C
C
C
C
C
C
C
C
A

�

We observe a rather high correlation (0.98) between meat and poultry, whereas
the correlation for expenditure for milk and wine (0.01) is rather small. Are there
household types that prefer, say, meat over bread?

We shall now represent food expenditures and households simultaneously using
two factors. First, note that in this particular problem the origin has no specific
meaning (it represents a “zero” consumer). So it makes sense to compare the
consumption of any family to that of an “average family” rather than to the origin.
Therefore, the data is first centred (the origin is translated to the centre of gravity,
x). Furthermore, since the dispersions of the seven variables are quite different each
variable is standardised so that each has the same weight in the analysis (mean
0 and variance 1). Finally, for convenience, we divide each element in the matrix
by
p
n D p12. (This will only change the scaling of the plots in the graphical

representation.)
The data matrix to be analysed is

X� D 1p
n
HXD�1=2;

where H is the centering matrix and D D diag.sXiXi / (see Sect. 3.3). Note that by
standardising by

p
n, it follows that X>� X� D R where R is the correlation matrix

of the original data. Calculating

� D .4:33; 1:83; 0:63; 0:13; 0:06; 0:02; 0:00/>

shows that the directions of the first two eigenvectors play a dominant role (�2 D
88%), whereas the other directions contribute less than 15 % of inertia. A two-
dimensional plot should suffice for interpreting this data set.
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Fig. 10.6 Representation of food expenditures and family types in two dimensions
MVAdecofood

The coordinates of the projected data points are given in the two lower windows
of Fig. 10.6. Let us first examine the food expenditure window. In this window we
see the representation of the p D 7 variables given by the first two factors. The
plot shows the factorial variables w1 and w2 in the same fashion as Fig. 10.4. We
see that the points for meat, poultry, vegetables and fruits are close to each other in
the lower left of the graph. The expenditures for bread and milk can be found in the
upper left, whereas wine stands alone in the upper right. The first factor, w1, may
be interpreted as the meat/fruit factor of consumption, the second factor, w2, as the
bread/wine component.

In the lower window on the right-hand side, we show the factorial variables z1 and
z2 from the fit of the n D 12 household types. Note that by the Duality Relations
of Theorem 10.4, the factorial variables zj are linear combinations of the factors
wk from the left window. The points displayed in the consumer window (graph on
the right) are plotted relative to an average consumer represented by the origin.
The manager families are located in the lower left corner of the graph whereas the
manual workers and employees tend to be in the upper right. The factorial variables
for CA5 (managers with five children) lie close to the meat/fruit factor. Relative to
the average consumer this household type is a large consumer of meat/poultry and
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fruits/vegetables. In Chap. 11, we will return to these plots interpreting them in a
much deeper way. At this stage, it suffices to notice that the plots provide a graphical
representation in R

2 of the information contained in the original, high-dimensional
(12 � 7) data matrix.

Summary
,! The practical implementation of factor decomposition of matrices

consists of computing the eigenvalues�1; : : : ; �p and the eigenvec-
tors u1; : : : ; up of X>X . The representation of the n individuals is
obtained by plotting z1 D Xu1 vs. z2 D Xu2 (and, if necessary,
vs. z3 D Xu3). The representation of the p variables is obtained
by plotting w1 D

p
�1u1 vs. w2 D

p
�2u2 (and, if necessary, vs.

w3 D
p
�3u3).

,! The quality of the factorial representation can be evaluated using �q
which is the percentage of inertia explained by the first q factors.

10.6 Exercises

Exercise 10.1 Prove that n�1Z>Z is the covariance of the centred data matrix,
where Z is the matrix formed by the columns zk D Xuk .

Exercise 10.2 Compute the SVD of the French food data (Table 22.6).

Exercise 10.3 Compute �3; �4; : : : for the French food data (Table 22.6).

Exercise 10.4 Apply the factorial techniques to the Swiss bank notes (Sect. 22.2).

Exercise 10.5 Apply the factorial techniques to the time budget data (Table 22.14).

Exercise 10.6 Assume that you wish to analyse p independent identically dis-
tributed random variables. What is the percentage of the inertia explained by the
first factor? What is the percentage of the inertia explained by the first q factors?

Exercise 10.7 Assume that you have p i.i.d. r.v.’s. What does the eigenvector,
corresponding to the first factor, look like.

Exercise 10.8 Assume that you have two random variables, X1 and X2 D 2X1.
What do the eigenvalues and eigenvectors of their correlation matrix look like? How
many eigenvalues are nonzero?
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Exercise 10.9 What percentage of inertia is explained by the first factor in the
previous exercise?

Exercise 10.10 How do the eigenvalues and eigenvectors in Example 10.1 change
if we take the prices in USD instead of in EUR? Does it make a difference if some
of the prices are in EUR and others in USD?



Chapter 11
Principal Components Analysis

Chapter 10 presented the basic geometric tools needed to produce a lower dimen-
sional description of the rows and columns of a multivariate data matrix. Principal
components analysis (PCA) has the same objective with the exception that the rows
of the data matrix X will now be considered as observations from a p-variate
random variable X . The principle idea of reducing the dimension of X is achieved
through linear combinations. Low dimensional linear combinations are often easier
to interpret and serve as an intermediate step in a more complex data analysis. More
precisely one looks for linear combinations which create the largest spread among
the values of X . In other words, one is searching for linear combinations with the
largest variances.

Section 11.1 introduces the basic ideas and technical elements behind principal
components. No particular assumption will be made on X except that the mean
vector and the covariance matrix exist. When reference is made to a data matrix X
in Sect. 11.2, the empirical mean and covariance matrix will be used. Section 11.3
shows how to interpret the principal components by studying their correlations
with the original components of X . Often analyses are performed in practice by
looking at two-dimensional scatterplots. Section 11.4 develops inference techniques
on principal components. This is particularly helpful in establishing the appropriate
dimension reduction and thus in determining the quality of the resulting lower
dimensional representations. Since principal component analysis is performed on
covariance matrices, it is not scale invariant. Often, the measurement units of
the components of X are quite different, so it is reasonable to standardise the
measurement units. The normalised version of principal components is defined in
Sect. 11.5. In Sect. 11.6 it is discovered that the empirical principal components are
the factors of appropriate transformations of the data matrix. The classical way
of defining principal components through linear combinations with respect to the
largest variance is described here in geometric terms, i.e. in terms of the optimal fit
within subspaces generated by the columns and/or the rows of X as was discussed
in Chap. 10. Section 11.9 concludes with additional examples.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_11
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11.1 Standardised Linear Combination

The main objective of PCA is to reduce the dimension of the observations. The
simplest way of dimension reduction is to take just one element of the observed
vector and to discard all others. This is not a very reasonable approach, as we have
seen in the earlier chapters, since strength may be lost in interpreting the data. In
the bank notes example we have seen that just one variable (e.g. X1 D length)
had no discriminatory power in distinguishing counterfeit from genuine bank notes.
An alternative method is to weight all variables equally, i.e. to consider the simple
average p�1

Pp
jD1 Xj of all the elements in the vector X D .X1; : : : ; Xp/

>. This
again is undesirable, since all of the elements of X are considered with equal
importance (weight).

A more flexible approach is to study a weighted average, namely

ı>X D
pX

jD1
ıjXj ; such that

pX

jD1
ı2j D 1: (11.1)

The weighting vector ı D .ı1; : : : ; ıp/
> can then be optimised to investigate

and to detect specific features. We call (11.1) a standardised linear combination
(SLC). Which SLC should we choose? One aim is to maximise the variance of the
projection ı>X , i.e. to choose ı according to

max
fıWkıkD1g

Var.ı>X/ D max
fıWkıkD1g

ı> Var.X/ı: (11.2)

The interesting “directions” of ı are found through the spectral decomposition of
the covariance matrix. Indeed, from Theorem 2.5, the direction ı is given by the
eigenvector �1 corresponding to the largest eigenvalue �1 of the covariance matrix
† D Var.X/.

Figures 11.1 and 11.2 show two such projections (SLCs) of the same data set
with zero mean. In Fig. 11.1 an arbitrary projection is displayed. The upper window
shows the data point cloud and the line onto which the data are projected. The
middle window shows the projected values in the selected direction. The lower
window shows the variance of the actual projection and the percentage of the total
variance that is explained.

Figure 11.2 shows the projection that captures the majority of the variance in the
data. This direction is of interest and is located along the main direction of the point
cloud. The same line of thought can be applied to all data orthogonal to this direction
leading to the second eigenvector. The SLC with the highest variance obtained from
maximising (11.2) is the first principal component (PC) y1 D �>1 X . Orthogonal to
the direction �1 we find the SLC with the second highest variance: y2 D �>2 X , the
second PC.
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Fig. 11.1 An arbitrary SLC MVApcasimu
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Proceeding in this way and writing in matrix notation, the result for a random
variable X with E.X/ D � and Var.X/ D † D 	ƒ	> is the PC transformation
which is defined as

Y D 	>.X � �/: (11.3)

Here we have centred the variable X in order to obtain a zero mean PC variable Y .
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Example 11.1 Consider a bivariate normal distribution N.0;†/ with † D
�
1
�
�
1

�

and � > 0 (see Example 3.13). Recall that the eigenvalues of this matrix are �1 D
1C � and �2 D 1 � � with corresponding eigenvectors

�1 D 1p
2

�
1

1

�

; �2 D 1p
2

�
1

�1
�

:

The PC transformation is thus

Y D 	>.X � �/ D 1p
2

�
1 1

1 �1
�

X

or �
Y1
Y2

�

D 1p
2

�
X1 CX2
X1 � X2

�

:

So the first principal component is

Y1 D 1p
2
.X1 CX2/

and the second is

Y2 D 1p
2
.X1 � X2/:

Let us compute the variances of these PCs using formulas (4.22)–(4.26):

Var.Y1/ D Var


1p
2
.X1 CX2/




D 1

2
Var.X1 CX2/

D 1

2
fVar.X1/C Var.X2/C 2Cov.X1;X2/g

D 1

2
.1C 1C 2�/ D 1C �

D �1:

Similarly we find that

Var.Y2/ D �2:

This can be expressed more generally and is given in the next theorem.
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Theorem 11.1 For a given X � .�;†/ let Y D 	>.X � �/ be the PC
transformation. Then

EYj D 0; j D 1; : : : ; p (11.4)

Var.Yj / D �j ; j D 1; : : : ; p (11.5)

Cov.Yi ; Yj / D 0; i ¤ j (11.6)

Var.Y1/ � Var.Y2/ � � � � � Var.Yp/ � 0 (11.7)

pX

jD1
Var.Yj / D tr.†/ (11.8)

pY

jD1
Var.Yj / D j†j: (11.9)

Proof To prove (11.6), we use �i to denote the i th column of 	 . Then

Cov.Yi ; Yj / D �>i Var.X � �/�j D �>i Var.X/�j :

As Var.X/ D † D 	ƒ	>; 	>	 D I; we obtain via the orthogonality of 	:

�>i 	ƒ	>�j D
(
0 i ¤ j;
�i i D j:

In fact, as Yi D �>i .X � �/ lies in the eigenvector space corresponding to �i , and
eigenvector spaces corresponding to different eigenvalues are orthogonal to each
other, we can directly see Yi and Yj are orthogonal to each other, so their covariance
is 0. ut

The connection between the PC transformation and the search for the best SLC is
made in the following theorem, which follows directly from (11.2) and Theorem 2.5.

Theorem 11.2 There exists no SLC that has larger variance than �1 D Var.Y1/.

Theorem 11.3 If Y D a>X is an SLC that is not correlated with the first k PCs of
X , then the variance of Y is maximised by choosing it to be the .k C 1/-st PC.

Summary
,! An SLC is a weighted average ı>X D Pp

jD1 ıjXj where ı is a
vector of length 1.
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Summary (continued)

,! Maximising the variance of ı>X leads to the choice ı D �1, the
eigenvector corresponding to the largest eigenvalue �1 of † D
Var.X/.
This is a projection of X into the one-dimensional space, where
the components of X are weighted by the elements of �1. Y1 D
�>1 .X � �/
is called the first principal component (PC).

,! This projection can be generalised for higher dimensions. The PC
transformation is the linear transformation Y D 	>.X��/, where
† D Var.X/ D 	ƒ	> and � D EX .
Y1; Y2; : : : ; Yp are called the first, second,. . . , and p-th PCs.

,! The PCs have zero means, variance Var.Yj / D �j , and zero
covariances. From �1 � � � � � �p it follows that Var.Y1/ �
� � � � Var.Yp/. It holds that

Pp
jD1 Var.Yj / D tr.†/ and

Qp
jD1 Var.Yj / D j†j.

,! If Y D a>X is an SLC which is not correlated with the first k PCs
of X , then the variance of Y is maximised by choosing it to be the
.k C 1/-st PC.

11.2 Principal Components in Practice

In practice the PC transformation has to be replaced by the respective estimators: �
becomes x, † is replaced by S, etc. If g1 denotes the first eigenvector of S, the first
principal component is given by y1 D .X �1nx>/g1. More generally if S D GLG>
is the spectral decomposition of S, then the PCs are obtained by

Y D .X � 1nx>/G: (11.10)

Note that with the centering matrix H D I � .n�11n1>n / and H1nx> D 0 we can
write

SY D n�1Y>HY D n�1G>.X � 1nx>/>H.X � 1nx>/G
D n�1G>X>HXG D G>SG D L (11.11)

where L D diag.`1; : : : ; `p/ is the matrix of eigenvalues of S. Hence the variance
of yi equals the eigenvalue `i !

The PC technique is sensitive to scale changes. If we multiply one variable by a
scalar we obtain different eigenvalues and eigenvectors. This is due to the fact that
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Fig. 11.3 Principal components of the bank data MVApcabank

an eigenvalue decomposition is performed on the covariance matrix and not on the
correlation matrix (see Sect. 11.5). The following warning is therefore important:

!
The PC transformation should be applied to data that have approximately

the same scale in each variable.

Example 11.2 Let us apply this technique to the bank data set. In this example we
do not standardise the data. Figure 11.3 shows some PC plots of the bank data set.
The genuine and counterfeit bank notes are marked by “o” and “+”, respectively.

Recall that the mean vector of X is

x D .214:9; 130:1; 129:9; 9:4; 10:6; 140:5/> :

The vector of eigenvalues of S is

` D .2:985; 0:931; 0:242; 0:194; 0:085; 0:035/> :



326 11 Principal Components Analysis

The eigenvectors gj are given by the columns of the matrix

G D

0

B
B
B
B
B
B
B
@

�0:044 0:011 0:326 0:562 �0:753 0:098

0:112 0:071 0:259 0:455 0:347 �0:767
0:139 0:066 0:345 0:415 0:535 0:632

0:768 �0:563 0:218 �0:186 �0:100 �0:022
0:202 0:659 0:557 �0:451 �0:102 �0:035
�0:579 �0:489 0:592 �0:258 0:085 �0:046

1

C
C
C
C
C
C
C
A

:

The first column of G is the first eigenvector and gives the weights used in the linear
combination of the original data in the first PC.

Example 11.3 To see how sensitive the PCs are to a change in the scale of the
variables, assume that X1;X2;X3 and X6 are measured in cm and that X4 and X5
remain in mm in the bank data set. This leads to:

Nx D .21:49; 13:01; 12:99; 9:41; 10:65; 14:05/>:

The covariance matrix can be obtained from S in (3.4) by dividing rows 1, 2, 3, 6
and columns 1, 2, 3, 6 by 10. We obtain:

` D .2:101; 0:623; 0:005; 0:002; 0:001; 0:0004/>

which clearly differs from Example 11.2. Only the first two eigenvectors are given:

g1 D .�0:005; 0:011; 0:014; 0:992; 0:113; �0:052/>

g2 D .�0:001; 0:013; 0:016; �0:117; 0:991; �0:069/>:

Comparing these results to the first two columns of G from Example 11.2, a
completely different story is revealed. Here the first component is dominated by X4
(lower margin) and the second byX5 (upper margin), while all of the other variables
have much less weight. The results are shown in Fig. 11.4. Section 11.5 will show
how to select a reasonable standardisation of the variables when the scales are too
different.

Summary
,! The scale of the variables should be roughly the same for PC

transformations.
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Summary (continued)

,! For the practical implementation of PCA we replace� by the mean
x and † by the empirical covariance S. Then we compute the
eigenvalues `1; : : : ; `p and the eigenvectors g1; : : : ; gp of S. The
graphical representation of the PCs is obtained by plotting the first
PC vs. the second (and eventually vs. the third).

,! The components of the eigenvectors gi are the weights of the
original variables in the PCs.
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Fig. 11.4 Principal components of the rescaled bank data MVApcabankr

11.3 Interpretation of the PCs

Recall that the main idea of PC transformations is to find the most informative
projections that maximise variances. The most informative SLC is given by the
first eigenvector. In Sect. 11.2 the eigenvectors were calculated for the bank data.
In particular, with centred x’s, we had:

y1 D �0:044x1 C 0:112x2 C 0:139x3 C 0:768x4 C 0:202x5 � 0:579x6
y2 D 0:011x1 C 0:071x2 C 0:066x3 � 0:563x4 C 0:659x5 � 0:489x6
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and

x1 D length
x2 D left height
x3 D right height
x4 D bottom frame
x5 D top frame
x6 D diagonal:

Hence, the first PC is essentially the difference between the bottom frame
variable and the diagonal. The second PC is best described by the difference between
the top frame variable and the sum of bottom frame and diagonal variables.

The weighting of the PCs tells us in which directions, expressed in original
coordinates, the best variance explanation is obtained. A measure of how well the
first q PCs explain variation is given by the relative proportion:

 q D

qX

jD1
�j

pX

jD1
�j

D

qX

jD1
Var.Yj /

pX

jD1
Var.Yj /

: (11.12)

Referring to the bank data Example 11.2, the (cumulative) proportions of
explained variance are given in Table 11.1. The first PC .q D 1/ already explains
67 % of the variation. The first three .q D 3/ PCs explain 93 % of the variation.
Once again it should be noted that PCs are not scale invariant, e.g. the PCs derived
from the correlation matrix give different results than the PCs derived from the
covariance matrix (see Sect. 11.5).

A good graphical representation of the ability of the PCs to explain the variation
in the data is given by the scree plot shown in the lower right-hand window of
Fig. 11.3. The screeplot can be modified by using the relative proportions on the
y-axis, as is shown in Fig. 11.5 for the bank data set.

Table 11.1 Proportion of
variance of PC’s

Eigenvalue Proportion of variance Cumulated proportion

2:985 0:67 0:67

0:931 0:21 0:88

0:242 0:05 0:93

0:194 0:04 0:97

0:085 0:02 0:99

0:035 0:01 1:00
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The covariance between the PC vector Y and the original vector X is calculated
with the help of (11.4) as follows:

Cov.X; Y / D E.XY >/ � EX EY > D E.XY >/

D E.XX>	/� ��>	 D Var.X/	

D †	 (11.13)

D 	ƒ	>	
D 	ƒ:

Hence, the correlation, �XiYj , between variable Xi and the PC Yj is

�XiYj D
�ij�j

.�XiXi �j /
1=2
D �ij

�
�j

�XiXi

�1=2

: (11.14)

Using actual data, this of course translates into

rXiYj D gij

�
`j

sXiXi

�1=2

: (11.15)

The correlations can be used to evaluate the relations between the PCs Yj where
j D 1; : : : ; q, and the original variables Xi where i D 1; : : : ; p. Note that

pX

jD1
r2XiYj D

Pp
jD1 `j g2ij
sXiXi

D sXiXi
sXiXi

D 1: (11.16)
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Fig. 11.6 The correlation of
the original variable with the
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Indeed,
Pp

jD1 `j g2ij D g>i Lgi is the .i; i/-element of the matrix GLG> D S, so
that r2XiYj may be seen as the proportion of variance of Xi explained by Yj .

In the space of the first two PCs we plot these proportions, i.e. rXiY1 versus rXiY2 .
Figure 11.6 shows this for the bank notes example. This plot shows which of the
original variables are most strongly correlated with PC Y1 and Y2.

From (11.16) it obviously follows that r2XiY1 C r2XiY2 � 1 so that the points are
always inside the circle of radius 1. In the bank notes example, the variablesX4, X5
and X6 correspond to correlations near the periphery of the circle and are thus well
explained by the first two PCs. Recall that we have interpreted the first PC as being
essentially the difference betweenX4 andX6. This is also reflected in Fig. 11.6 since
the points corresponding to these variables lie on different sides of the vertical axis.
An analogous remark applies to the second PC. We had seen that the second PC is
well described by the difference between X5 and the sum of X4 and X6. Now we
are able to see this result again from Fig. 11.6 since the point corresponding to X5
lies above the horizontal axis and the points corresponding to X4 and X6 lie below.

The correlations of the original variables Xi and the first two PCs are given
in Table 11.2 along with the cumulated percentage of variance of each variable
explained by Y1 and Y2. This table confirms the above results. In particular, it
confirms that the percentage of variance of X1 (and X2; X3) explained by the first
two PCs is relatively small and so are their weights in the graphical representation
of the individual bank notes in the space of the first two PCs (as can be seen in
the upper left plot in Fig. 11.3). Looking simultaneously at Fig. 11.6 and the upper
left plot of Fig. 11.3 shows that the genuine bank notes are roughly characterised by
large values of X6 and smaller values of X4. The counterfeit bank notes show larger
values of X5 (see Example 7.15).
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Table 11.2 Correlation
between the original variables
and the PCs

rXi Y1 rXi Y2 r2XiY1 C r2Xi Y2
X1 length �0:201 0:028 0:041

X2 left h. 0:538 0:191 0:326

X3 right h. 0:597 0:159 0:381

X4 lower 0:921 �0:377 0:991

X5 upper 0:435 0:794 0:820

X6 diagonal �0:870 �0:410 0:926

Summary
,! The weighting of the PCs tells us in which directions, expressed

in original coordinates, the best explanation of the variance is
obtained. Note that the PCs are not scale invariant.

,! A measure of how well the first q PCs explain variation is given
by the relative proportion  q D Pq

jD1 �j =
Pp

jD1 �j . A good
graphical representation of the ability of the PCs to explain the
variation in the data is the scree plot of these proportions.

,! The correlation between PC Yj and an original variable Xi is

�XiYj D �ij

�
�j

�Xi Xi

�1=2
. For a data matrix this translates into

r2Xi Yj D
`j g

2
ij

sXi Xi
. r2XiYj can be interpreted as the proportion of variance

of Xi explained by Yj . A plot of rXiY1 vs. rXiY2 shows which of
the original variables are most strongly correlated with the PCs,
namely those that are close to the periphery of the circle of radius 1.

11.4 Asymptotic Properties of the PCs

In practice, PCs are computed from sample data. The following theorem yields
results on the asymptotic distribution of the sample PCs.

Theorem 11.4 Let † > 0 with distinct eigenvalues, and let U � m�1Wp.†;m/

with spectral decompositions† D 	ƒ	>, and U D GLG>. Then

(a)
p
m.` � �/ L�! Np.0; 2ƒ

2/,
where ` D .`1; : : : ; `p/

> and � D .�1; : : : ; �p/
> are the diagonals of L and

ƒ,

(b)
p
m.gj � �j / L�! Np.0;Vj /,

with Vj D �j
X

k¤j

�k

.�k � �j /2 �k�
>
k ,
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(c) Cov.gj ; gk/ D Vjk,

where the .r; s/-element of the matrix Vjk.p � p/ is � �j�k�rk�sj

m.�j � �k/2 ,

(d) the elements in ` are asymptotically independent of the elements in G.

Example 11.4 Since nS � Wp.†; n � 1/ if X1; : : : ; Xn are drawn from N.�;†/,
we have that

p
n � 1.`j � �j / L�! N.0; 2�2j /; j D 1; : : : ; p: (11.17)

Since the variance of (11.17) depends on the true mean �j a log transformation
is useful. Consider f .`j / D log.`j /. Then d

d`j
f j`jD�j D 1

�j
and by the

Transformation Theorem 4.11 we have from (11.17) that

p
n � 1.log `j � log�j /

L�! N.0; 2/: (11.18)

Hence,

r
n � 1
2

�
log `j � log�j

� L�! N.0; 1/

and a two-sided confidence interval at the 1 � ˛ D 0:95 significance level is given
by

log.`j /� 1:96
r

2

n � 1 � log�j � log.`j /C 1:96
r

2

n� 1 :

In the bank data example we have that

`1 D 2:98:

Therefore,

log.2:98/˙ 1:96
r

2

199
D log.2:98/˙ 0:1965:

It can be concluded for the true eigenvalue that

P f�1 2 .2:448; 3:62/g 	 0:95:
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Variance Explained by the First q PCs

The variance explained by the first q PCs is given by

 D �1 C � � � C �q
pP

jD1
�j

�

In practice this is estimated by

O D `1 C � � � C `q
pP

jD1
`j

�

From Theorem 11.4 we know the distribution of
p
n � 1.` � �/. Since  is a non-

linear function of �, we can again apply the Transformation Theorem 4.11 to obtain
that

p
n � 1. O �  / L�! N.0;D>VD/

where V D 2ƒ2 (from Theorem 11.4) and D D .d1; : : : ; dp/> with

dj D @ 

@�j
D

8

<̂

:̂

1 �  
tr.†/

for 1 � j � q;
� 

tr.†/
for q C 1 � j � p:

Given this result, the following theorem can be derived.

Theorem 11.5

p
n � 1. O �  / L�! N.0; !2/;

where

!2 D D>VD D 2

ftr.†/g2
n
.1 �  /2.�21 C � � � C �2q/C  2.�2qC1 C � � � C �2p/

o

D 2 tr.†2/

ftr.†/g2 . 
2 � 2ˇ C ˇ/

and

ˇ D �21 C � � � C �2q
�21 C � � � C �2p

:
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Example 11.5 From Sect. 11.3 it is known that the first PC for the Swiss bank notes
resolves 67 % of the variation. It can be tested whether the true proportion is actually
75 %. Computing

Ǒ D `21
`21 C � � � C `2p

D .2:985/2

.2:985/2 C .0:931/2 C � � � .0:035/2 D 0:902

tr.S/ D 4:472

tr.S2/ D
pX

jD1
`2j D 9:883

O!2 D 2 tr.S2/
ftr.S/g2 .

O 2 � 2 Ǒ O C Ǒ/

D 2 � 9:883
.4:472/2

f.0:668/2 � 2.0:902/.0:668/C 0:902g D 0:142:

Hence, a confidence interval at a significance of level 1 � ˛ D 0.95 is given by

0:668˙ 1:96
r
0:142

199
D .0:615; 0:720/:

Clearly the hypothesis that  D 75 % can be rejected!

Summary
,! The eigenvalues `j and eigenvectors gj are asymptotically, nor-

mally distributed, in particular
p
n � 1.` � �/ L�! Np.0; 2ƒ

2/.

,! For the eigenvalues it holds that
q

n�1
2

�
log `j � log�j

� L�!
N.0; 1/.

,! Given an asymptotic, normal distribution approximate confidence
intervals and tests can be constructed for the proportion of variance
which is explained by the first q PCs. The two-sided confidence

interval at the 1�˛ D 0:95 level is given by log.`j /�1:96
q

2
n�1 �

log�j � log.`j /C 1:96
q

2
n�1 :
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Summary (continued)

,! It holds for O , the estimate of  (the proportion of the variance

explained by the first q PCs) that
p
n � 1. O �  / L�! N.0; !2/,

where ! is given in Theorem 11.5.

11.5 Normalised Principal Components Analysis

In certain situations the original variables can be heterogeneous w.r.t. their vari-
ances. This is particularly true when the variables are measured on heterogeneous
scales (such as years, kilograms, dollars, . . . ). In this case a description of the
information contained in the data needs to be provided which is robust w.r.t. the
choice of scale. This can be achieved through a standardisation of the variables,
namely

XS D HXD�1=2 (11.19)

whereD D diag.sX1X1 ; : : : ; sXpXp /. Note that xS D 0 and SXS D R, the correlation
matrix of X . The PC transformations of the matrix XS are referred to as the
Normalised Principal Components (NPCs). The spectral decomposition of R is

R D GRLRG>R; (11.20)

where LR D diag.`R1 ; : : : ; `
R
p / and `R1 � � � � � `Rp are the eigenvalues of R with

corresponding eigenvectors gR1 ; : : : ; g
R
p (note that here

Pp
jD1 `Rj D tr.R/ D p).

The NPCs, Zj , provide a representation of each individual, and is given by

Z D XSGR D .z1; : : : ; zp/: (11.21)

After transforming the variables, once again, we have that

z D 0; (11.22)

SZ D G>RSXSGR D G>RRGR D LR: (11.23)

!
The NPCs provide a perspective similar to that of the PCs, but in terms of

the relative position of individuals, NPC gives each variable the same weight (with
the PCs the variable with the largest variance received the largest weight).
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Computing the covariance and correlation betweenXi andZj is straightforward:

SXS ;Z D
1

n
X>S Z D GRLR; (11.24)

RXS ;Z D GRLRL�1=2R D GRL1=2R : (11.25)

The correlations between the original variablesXi and the NPCs Zj are:

rXiZj D
q

`j gR;ij (11.26)

pX

jD1
r2XiZj D 1 (11.27)

(compare this to (11.15) and (11.16)). The resulting NPCs, the Zj , can be
interpreted in terms of the original variables and the role of each PC in explaining
the variation in variable Xi can be evaluated.

11.6 Principal Components as a Factorial Method

The empirical PCs (normalised or not) turn out to be equivalent to the factors that
one would obtain by decomposing the appropriate data matrix into its factors (see
Chap. 10). It will be shown that the PCs are the factors representing the rows
of the centred data matrix and that the NPCs correspond to the factors of the
standardised data matrix. The representation of the columns of the standardised
data matrix provides (at a scale factor) the correlations between the NPCs and the
original variables. The derivation of the (N)PCs presented above will have a nice
geometric justification here since they are the best fit in subspaces generated by the
columns of the (transformed) data matrix X . This analogy provides complementary
interpretations of the graphical representations shown above.

Assume, as in Chap. 10, that we want to obtain representations of the individuals
(the rows of X ) and of the variables (the columns of X ) in spaces of smaller
dimension. To keep the representations simple, some prior transformations are
performed. Since the origin has no particular statistical meaning in the space of
individuals, we will first shift the origin to the centre of gravity, x, of the point
cloud. This is the same as analysing the centred data matrix XC D HX . Now all of
the variables have zero means, thus the technique used in Chap. 10 can be applied
to the matrix XC . Note that the spectral decomposition of X>C XC is related to that
of SX , namely

X>C XC D X>H>HX D nSX D nGLG>: (11.28)
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The factorial variables are obtained by projecting XC on G,

Y D XCG D .y1; : : : ; yp/: (11.29)

These are the same principal components obtained above, see formula (11.10).
(Note that the y’s here correspond to the z’s in Sect. 10.2.) Since HXC D XC , it
immediately follows that

y D 0; (11.30)

SY D G>SXG D L D diag.`1; : : : ; `p/: (11.31)

The scatterplot of the individuals on the factorial axes are thus centred around the
origin and are more spread out in the first direction (first PC has variance `1) than
in the second direction (second PC has variance `2).

The representation of the variables can be obtained using the Duality Rela-
tions (10.11), and (10.12). The projections of the columns of XC onto the eigen-
vectors vk of XCX>C are

X>C vk D
1p
n`k

X>C XC gk D
p
n`kgk: (11.32)

Thus the projections of the variables on the first p axes are the columns of the matrix

X>C V D pnGL1=2: (11.33)

Considering the geometric representation, there is a nice statistical interpretation of
the angle between two columns of XC . Given that

x>CŒj �xC Œk� D nsXjXk ; (11.34)

jjxCŒj �jj2 D nsXjXj ; (11.35)

where xCŒj � and xCŒk� denote the j -th and k-th column of XC , it holds that in the
full space of the variables, if �jk is the angle between two variables, xCŒj � and xCŒk�,
then

cos �jk D
x>CŒj �xC Œk�

kxCŒj �k kxCŒk�k D rXjXk : (11.36)

(Example 2.11 shows the general connection that exists between the angle and
correlation of two variables). As a result, the relative positions of the variables in
the scatterplot of the first columns of X>C V may be interpreted in terms of their
correlations; the plot provides a picture of the correlation structure of the original
data set. Clearly, one should take into account the percentage of variance explained
by the chosen axes when evaluating the correlation.
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The NPCs can also be viewed as a factorial method for reducing the dimension.
The variables are again standardised so that each one has mean zero and unit
variance and is independent of the scale of the variables. The factorial analysis of
XS provides the NPCs. The spectral decomposition of X>S XS is related to that of
R, namely

X>S XS D D�1=2X>HXD�1=2 D nR D nGRLRG>R:

The NPCs Zj , given by (11.21), may be viewed as the projections of the rows of
XS onto GR.

The representation of the variables are again given by the columns of

X>S VR D
p
nGRL1=2R : (11.37)

Comparing (11.37) and (11.25) we see that the projections of the variables in the
factorial analysis provide the correlation between the NPCs Zk and the original
variables xŒj � (up to the factor

p
n which could be the scale of the axes).

This implies that a deeper interpretation of the representation of the individuals
can be obtained by looking simultaneously at the graphs plotting the variables. Note
that

x>SŒj �xSŒk� D nrXjXk ; (11.38)

kxSŒj �k2 D n; (11.39)

where xSŒj � and xSŒk� denote the j -th and k-th column of XS . Hence, in the full
space, all the standardised variables (columns of XS ) are contained within the
“sphere” in R

n, which is centred at the origin and has radius
p
n (the scale of the

graph). As in (11.36), given the angle �jk between two columns xSŒj � and xSŒk�, it
holds that

cos �jk D rXjXk : (11.40)

Therefore, when looking at the representation of the variables in the spaces of
reduced dimension (for instance the first two factors), we have a picture of the
correlation structure between the original Xi ’s in terms of their angles. Of course,
the quality of the representation in those subspaces has to be taken into account,
which is presented in the next section.
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Quality of the Representations

As said before, an overall measure of the quality of the representation is given by

 D `1 C `2 C � � � C `q
pP

jD1
`j

:

In practice, q is chosen to be equal to 1, 2 or 3. Suppose for instance that  D 0:93
for q D 2. This means that the graphical representation in two dimensions captures
93 % of the total variance. In other words, there is minimal dispersion in a third
direction (no more than 7 %).

It can be useful to check if each individual is well represented by the PCs. Clearly,
the proximity of two individuals on the projected space may not necessarily coincide
with the proximity in the full original space R

p, which may lead to erroneous
interpretations of the graphs. In this respect, it is worth computing the angle #ik

between the representation of an individual i and the k-th PC or NPC axis. This can
be done using (2.40), i.e.

cos#ik D y>i ek
kyikkekk D

yik

kxCik
for the PCs or analogously

cos �ik D z>i ek
kzikkekk D

zik

kxSik

for the NPCs, where ek denotes the k-th unit vector ek D .0; : : : ; 1; : : : ; 0/>. An
individual i will be represented on the k-th PC axis if its corresponding angle is
small, i.e. if cos2 #ik for k D 1; : : : ; p is close to one. Note that for each individual i ,

pX

kD1
cos2 #ik D y>i yi

x>CixCi
D x>CiGG>xCi

x>CixCi
D 1:

The values cos2 #ik are sometimes called the relative contributions of the k-th axis
to the representation of the i -th individual, e.g. if cos2 #i1 C cos2 #i2 is large (near
one), we know that the individual i is well represented on the plane of the first two
principal axes since its corresponding angle with the plane is close to zero.

We already know that the quality of the representation of the variables can be
evaluated by the percentage of Xi ’s variance that is explained by a PC, which is
given by r2XiYj or r2XiZj according to (11.16) and (11.27) respectively.
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Fig. 11.7 Representation of the individuals MVAnpcafood

Example 11.6 Let us return to the French food expenditure example, see Sect. 22.6.
This yields a two-dimensional representation of the individuals as shown in
Fig. 11.7.

Calculating the matrix GR we have

GR D

0

B
B
B
B
B
B
B
B
B
@

�0:240 0:622 �0:011 �0:544 0:036 0:508

�0:466 0:098 �0:062 �0:023 �0:809 �0:301
�0:446 �0:205 0:145 0:548 �0:067 0:625

�0:462 �0:141 0:207 �0:053 0:411 �0:093
�0:438 �0:197 0:356 �0:324 0:224 �0:350
�0:281 0:523 �0:444 0:450 0:341 �0:332
0:206 0:479 0:780 0:306 �0:069 �0:138

1

C
C
C
C
C
C
C
C
C
A

;

which gives the weights of the variables (milk, vegetables, etc.). The eigenvalues `j
and the proportions of explained variance are given in Table 11.3.

The interpretation of the principal components are best understood when looking
at the correlations between the original Xi ’s and the PCs. Since the first two PCs
explain 88.1 % of the variance, we limit ourselves to the first two PCs. The results
are shown in Table 11.4. The two-dimensional graphical representation of the
variables in Fig. 11.8 is based on the first two columns of Table 11.4.

The plots are the projections of the variables into R
2. Since the quality of the

representation is good for all the variables (except maybe X7), their relative angles
give a picture of their original correlation: wine is negatively correlated with the
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Table 11.3 Eigenvalues and
explained variance

Eigenvalues Proportion of variance Cumulated proportion

4:333 0:6190 61:9

1:830 0:2620 88:1

0:631 0:0900 97:1

0:128 0:0180 98:9

0:058 0:0080 99:7

0:019 0:0030 99:9

0:001 0:0001 100:0

Table 11.4 Correlations
with PCs

rXiZ1 rXiZ2 r2XiZ1 C r2XiZ2
X1: bread �0:499 0:842 0:957

X2: vegetables �0:970 0:133 0:958

X3: fruits �0:929 �0:278 0:941

X4: meat �0:962 �0:191 0:962

X5: poultry �0:911 �0:266 0:901

X6: milk �0:584 0:707 0:841

X7: wine 0:428 0:648 0:604

Fig. 11.8 Representation of
the variables
MVAnpcafood
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vegetables, fruits, meat and poultry groups (� > 90ı), whereas taken individually
this latter grouping of variables are highly positively correlated with each other (� 	
0). Bread and milk are positively correlated but poorly correlated with meat, fruits
and poultry (� 	 90ı).

Now the representation of the individuals in Fig. 11.7 can be interpreted
better. From Fig. 11.8 and Table 11.4 we can see that the first factor Z1 is a
vegetable–meat–poultry–fruit factor (with a negative sign), whereas the second
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factor is a milk–bread–wine factor (with a positive sign). Note that this corresponds
to the most important weights in the first columns of GR. In Fig. 11.7 lines were
drawn to connect families of the same size and families of the same professional
types. A grid can clearly be seen (with a slight deformation by the manager families)
that shows the families with higher expenditures (higher number of children) on
the left.

Considering both figures together explains what types of expenditures are respon-
sible for similarities in food expenditures. Bread, milk and wine expenditures are
similar for manual workers and employees. Families of managers are characterised
by higher expenditures on vegetables, fruits, meat and poultry. Very often when
analysing NPCs (and PCs), it is illuminating to use such a device to introduce
qualitative aspects of individuals in order to enrich the interpretations of the graphs.

Summary
,! NPCs are PCs applied to the standardised (normalised) data matrix

XS .
,! The graphical representation of NPCs provides a similar type of

picture as that of PCs, the difference being in the relative position
of individuals, i.e. each variable in NPCs has the same weight (in
PCs, the variable with the largest variance has the largest weight).

,! The quality of the representation is evaluated by  D
.
Pp

jD1 `j /�1.`1 C `2 C � � � C `q/:
,! The quality of the representation of a variable can be evaluated by

the percentage ofXi ’s variance that is explained by a PC, i.e. r2Xi Yj .

11.7 Common Principal Components

In many applications a statistical analysis is simultaneously done for groups of data.
In this section a technique is presented that allows us to analyse group elements that
have common PCs. From a statistical point of view, estimating PCs simultaneously
in different groups will result in a joint dimension reducing transformation. This
multi-group PCA, the so-called common principle components analysis (CPCA),
yields the joint eigenstructure across groups.

In addition to traditional PCA, the basic assumption of CPCA is that the space
spanned by the eigenvectors is identical across several groups, whereas variances
associated with the components are allowed to vary.
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More formally, the hypothesis of common principle components can be stated in
the following way (Flury, 1988):

HCPC W †i D 	ƒi	
>; i D 1; : : : ; k

where †i is a positive definite p � p population covariance matrix for every
i , 	 D .�1; : : : ; �p/ is an orthogonal p � p transformation matrix and ƒi D
diag

�
�i1; : : : ; �ip

�
is the matrix of eigenvalues. Moreover, assume that all �i are

distinct.
Let S be the (unbiased) sample covariance matrix of an underlying p-variate

normal distribution Np.�;†/ with sample size n. Then the distribution of nS has
n�1 degrees of freedom and is known as the Wishart distribution (Muirhead, 1982,
p. 86):

nS �Wp.†; n � 1/:

The density is given in (5.16). Hence, for a given Wishart matrix Si with sample
size ni , the likelihood function can be written as

L.†1; : : : ; †k/ D C
kY

iD1
exp

h
tr




�1
2
.ni � 1/†�1i Si


i
j†i j� 12 .ni�1/ (11.41)

where C is a constant independent of the parameters†i . Maximising the likelihood
is equivalent to minimising the function

g.†1; : : : ; †k/ D
kX

iD1
.ni � 1/

n
log j†i j C tr.†�1i Si /

o
:

Assuming that HCPC holds, i.e. in replacing †i by 	ƒi	
>, after some manipu-

lations one obtains

g.	;ƒ1; : : : ; ƒk/ D
kX

iD1
.ni � 1/

pX

jD1

 

log�ij C
�>j Si �j
�ij

!

:

As we know from Sect. 2.2, the vectors �j in 	 have to be orthogonal.
Orthogonality of the vectors �j is achieved using the Lagrange method, i.e. we
impose the p constraints �>j �j D 1 using the Lagrange multipliers �j ; and the

remaining p.p � 1/=2 constraints �>h �j D 0 for h ¤ j using the multiplier 2�hj

(Flury, 1988). This yields

g�.	;ƒ1; : : : ; ƒk/ D g.�/�
pX

jD1
�j .�

>
j �j � 1/� 2

pX

hD1

pX

jDhC1
�hj�

>
h �j :
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Taking partial derivatives with respect to all �im and �m, it can be shown that the
solution of the CPC model is given by the generalised system of characteristic
equations

�>m

(
kX

iD1
.ni � 1/�im � �ij

�im�ij
Si

)

�j D 0; m; j D 1; : : : ; p; m ¤ j:
(11.42)

This system can be solved using

�im D �>m Si �m; i D 1; : : : ; k; m D 1; : : : ; p

under the constraints

�>m �j D
(
0 m ¤ j
1 m D j :

Flury (1988) proves existence and uniqueness of the maximum of the likelihood
function, and Flury and Gautschi (1986) provide a numerical algorithm.

Example 11.7 As an example we provide the data sets XFGvolsurf01,
XFGvolsurf02 and XFGvolsurf03 that have been used in Fengler, Härdle, and
Villa (2003) to estimate common principle components for the implied volatility
surfaces of the DAX 1999. The data has been generated by smoothing an implied
volatility surface day by day. Next, the estimated grid points have been grouped into
maturities of � D 1, � D 2 and � D 3 months and transformed into a vector of time
series of the “smile”, i.e. each element of the vector belongs to a distinct moneyness
ranging from 0.85 to 1.10.

Figure 11.9 shows the first three eigenvectors in a parallel coordinate plot. The
basic structure of the first three eigenvectors is not altered. We find a shift, a slope
and a twist structure. This structure is common to all maturity groups, i.e. when
exploiting PCA as a dimension reducing tool, the same transformation applies to
each group! However, by comparing the size of eigenvalues among groups we find
that variability is decreasing across groups as we move from the short-term contracts
to long-term contracts.

Before drawing conclusions we should convince ourselves that the CPC model
is truly a good description of the data. This can be done by using a likelihood ratio
test. The likelihood ratio statistic for comparing a restricted (the CPC) model against
the unrestricted model (the model where all covariances are treated separately) is
given by

T.n1;n2;:::;nk/ D �2 log
L. O†1; : : : ; O†k/
L.S1; : : : ;Sk/

:
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Fig. 11.9 Factor loadings of
the first (thick), the second
(medium), and the third (thin)
PC MVAcpcaiv
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Inserting the likelihood function, we find that this is equivalent to

T.n1;n2;:::;nk/ D
kX

iD1
.ni � 1/det . O†i/

det .Si /
;

which has a �2 distribution as min.ni / tends to infinity with

k
n1

2
p.p � 1/C 1

o
�
n1

2
p.p � 1/C kp

o
D 1

2
.k � 1/p.p � 1/

degrees of freedom. This test is included in the quantlet MVAcpcaiv.
The calculations yield T.n1;n2;:::;nk/ D 31:836, which corresponds to the p-value

p D 0:37512 for the �2.30/ distribution. Hence we cannot reject the CPC model
against the unrestricted model, where PCA is applied to each maturity separately.

Using the methods in Sect. 11.3, we can estimate the amount of variability, �l ,
explained by the first l principal components: (only a few factors, three at the
most, are needed to capture a large amount of the total variability present in the
data). Since the model now captures the variability in both the strike and maturity
dimensions, this is a suitable starting point for a simplified VaR calculation for
delta-gamma neutral option portfolios using Monte Carlo methods, and is hence
a valuable insight in risk management.
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11.8 Boston Housing

A set of transformations were defined in Chap. 1 for the Boston Housing data set that
resulted in “regular” marginal distributions. The usefulness of principal component
analysis with respect to such high-dimensional data sets will now be shown. The
variable X4 is dropped because it is a discrete 0–1 variable. It will be used later,
however, in the graphical representations. The scale difference of the remaining 13
variables motivates a NPCA based on the correlation matrix.

The eigenvalues and the percentage of explained variance are given in
Table 11.5.

The first principal component explains 56 % of the total variance and the first
three components together explain more than 75 %. These results imply that it is
sufficient to look at 2, maximum 3, principal components.

Table 11.6 provides the correlations between the first three PCs and the original
variables. These can be seen in Fig. 11.10.

The correlations with the first PC show a very clear pattern. The variables
X2;X6;X8;X12, and X14 are strongly positively correlated with the first PC,
whereas the remaining variables are highly negatively correlated. The minimal
correlation in the absolute value is 0.5. The first PC axis could be interpreted as
a quality of life and house indicator. The second axis, given the polarities of X11
and X13 and of X6 and X14, can be interpreted as a social factor explaining only
10 % of the total variance. The third axis is dominated by a polarity betweenX2 and
X12.

The set of individuals from the first two PCs can be graphically interpreted
if the plots are colour coded with respect to some particular variable of interest.

Table 11.5 Eigenvalues and
percentage of explained
variance for Boston Housing
data MVAnpcahousi

Eigenvalue Percentages Cumulated percentages

7:2852 0:5604 0:5604

1:3517 0:1040 0:6644

1:1266 0:0867 0:7510

0:7802 0:0600 0:8111

0:6359 0:0489 0:8600

0:5290 0:0407 0:9007

0:3397 0:0261 0:9268

0:2628 0:0202 0:9470

0:1936 0:0149 0:9619

0:1547 0:0119 0:9738

0:1405 0:0108 0:9846

0:1100 0:0085 0:9931

0:0900 0:0069 1:0000
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Table 11.6 Correlations of
the first three PC’s with the
original variables
MVAnpcahous

PC1 PC2 PC3

X1 �0:9076 0:2247 0:1457

X2 0:6399 �0:0292 0:5058

X3 �0:8580 0:0409 �0:1845
X5 �0:8737 0:2391 �0:1780
X6 0:5104 0:7037 0:0869

X7 �0:7999 0:1556 �0:2949
X8 0:8259 �0:2904 0:2982

X9 �0:7531 0:2857 0:3804

X10 �0:8114 0:1645 0:3672

X11 �0:5674 �0:2667 0:1498

X12 0:4906 �0:1041 �0:5170
X13 �0:7996 �0:4253 �0:0251
X14 0:7366 0:5160 �0:1747
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Fig. 11.10 NPCA for the Boston housing data, correlations of first three PCs with the original
variables MVAnpcahousi

Figure 11.11 colour codes X14 > median as red points. Clearly the first and second
PCs are related to house value. The situation is less clear in Fig. 11.12 where the
colour code corresponds toX4, the Charles River indicator, i.e. houses near the river
are coloured red.
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Fig. 11.11 NPC analysis for
the Boston housing data,
scatterplot of the first two
PCs. More expensive houses
are marked with red colour
MVAnpcahous
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Fig. 11.12 NPC analysis for
the Boston housing data,
scatterplot of the first two
PCs. Houses close to the
Charles River are indicated
with red squares
MVAnpcahous
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11.9 More Examples

Example 11.8 Let us now apply the PCA to the standardised bank data set
(Sect. 22.2). Figure 11.13 shows some PC plots of the bank data set. The genuine
and counterfeit bank notes are marked by “o” and “+”, respectively.

The vector of eigenvalues of R is

` D .2:946; 1:278; 0:869; 0:450; 0:269; 0:189/> :
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Fig. 11.13 Principal components of the standardised bank data MVAnpcabank

Table 11.7 Eigenvalues and
proportions of explained
variance

`j Proportion of variances Cumulated proportion

2:946 0:491 49:1

1:278 0:213 70:4

0:869 0:145 84:9

0:450 0:075 92:4

0:264 0:045 96:9

0:189 0:032 100:0

The eigenvectors gj are given by the columns of the matrix

G D

0

B
B
B
B
B
B
B
@

�0:007 �0:815 0:018 0:575 0:059 0:031

0:468 �0:342 �0:103 �0:395 �0:639 �0:298
0:487 �0:252 �0:123 �0:430 0:614 0:349

0:407 0:266 �0:584 0:404 0:215 �0:462
0:368 0:091 0:788 0:110 0:220 �0:419
�0:493 �0:274 �0:114 �0:392 0:340 �0:632

1

C
C
C
C
C
C
C
A

:

Each original variable has the same weight in the analysis and the results are
independent of the scale of each variable.

The proportions of explained variance are given in Table 11.7. It can be
concluded that the representation in two dimensions should be sufficient. The
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Fig. 11.14 The correlations
of the original variable with
the PCs MVAnpcabanki
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Table 11.8 Correlations
with PCs

rXiZ1 rXiZ2 r2XiZ1 C r2XiZ2
X1: length �0:012 �0:922 0:85

X2: left height 0:803 �0:387 0:79

X3: right height 0:835 �0:285 0:78

X4: lower 0:698 0:301 0:58

X5: upper 0:631 0:104 0:41

X6: diagonal �0:847 �0:310 0:81

correlations leading to Fig. 11.14 are given in Table 11.8. The picture is different
from the one obtained in Sect. 11.3 (see Table 11.2). Here, the first factor is mainly
a left–right vs. diagonal factor and the second one is a length factor (with negative
weight). Take another look at Fig. 11.13, where the individual bank notes are
displayed. In the upper left graph it can be seen that the genuine bank notes are for
the most part in the south-eastern portion of the graph featuring a larger diagonal,
smaller height (Z1 < 0) and also a larger length (Z2 < 0). Note also that Fig. 11.14
gives an idea of the correlation structure of the original data matrix.

Example 11.9 Consider the data of 79 US companies given in Table 22.5. The data
is first standardised by subtracting the mean and dividing by the standard deviation.
Note that the data set contains six variables: assets .X1/, sales .X2/, market value
.X3/, profits .X4/, cash flow .X5/, number of employees .X6/.

Calculating the corresponding vector of eigenvalues gives

` D .5:039; 0:517; 0:359; 0:050; 0:029; 0:007/>
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Fig. 11.15 Principal components of the US company data MVAnpcausco

and the matrix of eigenvectors is

G D

0

B
B
B
B
B
B
B
@

0:340 �0:849 �0:339 0:205 0:077 �0:006
0:423 �0:170 0:379 �0:783 �0:006 �0:186
0:434 0:190 �0:192 0:071 �0:844 0:149

0:420 0:364 �0:324 0:156 0:261 �0:703
0:428 0:285 �0:267 �0:121 0:452 0:667

0:397 0:010 0:726 0:548 0:098 0:065

1

C
C
C
C
C
C
C
A

:

Using this information the graphical representations of the first two principal
components are given in Fig. 11.15. The different sectors are marked by the
following symbols:

H . . . Hi Tech and Communication
E . . . Energy
F . . . Finance

M . . . Manufacturing
R . . . Retail
? . . . all other sectors.

The two outliers in the right-hand side of the graph are IBM and General Electric
(GE), which differ from the other companies with their high market values. As can
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Fig. 11.16 Principal components of the US company data (without IBM and General Electric)
MVAnpcausco2

be seen in the first column of G, market value has the largest weight in the first
PC, adding to the isolation of these two companies. If IBM and GE were to be
excluded from the data set, a completely different picture would emerge, as shown
in Fig. 11.16. In this case the vector of eigenvalues becomes

` D .3:191; 1:535; 0:791; 0:292; 0:149; 0:041/> ;

and the corresponding matrix of eigenvectors is

G D

0

B
B
B
B
B
B
B
@

0:263 �0:408 �0:800 �0:067 0:333 0:099

0:438 �0:407 0:162 �0:509 �0:441 �0:403
0:500 �0:003 �0:035 0:801 �0:264 �0:190
0:331 0:623 �0:080 �0:192 0:426 �0:526
0:443 0:450 �0:123 �0:238 �0:335 0:646

0:427 �0:277 0:558 0:021 0:575 0:313

1

C
C
C
C
C
C
C
A

:

The percentage of variation explained by each component is given in Table 11.9.
The first two components explain almost 79 % of the variance. The interpretation of
the factors (the axes of Fig. 11.16) is given in the table of correlations (Table 11.10).
The first two columns of this table are plotted in Fig. 11.17.
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Table 11.9 Eigenvalues and
proportions of explained
variance

`j Proportion of variance Cumulated proportion

3:191 0:532 0:532

1:535 0:256 0:788

0:791 0:132 0:920

0:292 0:049 0:968

0:149 0:025 0:993

0:041 0:007 1:000

Table 11.10 Correlations
with PCs

rXiZ1 rXiZ2 r2XiZ1 C r2XiZ2
X1: assets 0:47 �0:510 0:48

X2: sales 0:78 �0:500 0:87

X3: market value 0:89 �0:003 0:80

X4: profits 0:59 0:770 0:95

X5: cash flow 0:79 0:560 0:94

X6: employees 0:76 �0:340 0:70
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Fig. 11.17 The correlation of the original variables with the PCs MVAnpcausco2i

From Fig. 11.17 (and Table 11.10) it appears that the first factor is a “size effect”,
it is positively correlated with all the variables describing the size of the activity of
the companies. It is also a measure of the economic strength of the firms. The second
factor describes the “shape” of the companies (“profit-cash flow” vs. “assets-sales”
factor), which is more difficult to interpret from an economic point of view.
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Example 11.10 Volle (1985) analyses data on 28 individuals (Table 22.14). For
each individual, the time spent (in hours) on 10 different activities has been recorded
over 100 days, as well as informative statistics such as the individual’s sex, country
of residence, professional activity and matrimonial status. The results of a NPCA
are given below.

The eigenvalues of the correlation matrix are given in Table 11.11. Note that the
last eigenvalue is exactly zero since the correlation matrix is singular (the sum of all
the variables is always equal to 2;400 D 24� 100). The results of the 4 first PCs are
given in Tables 11.12 and 11.13.

From these tables (and Figs. 11.18 and 11.19), it appears that the professional
and household activities are strongly contrasted in the first factor. Indeed on the
horizontal axis of Fig. 11.18 it can be seen that all the active men are on the right
and all the inactive women are on the left. Active women and/or single women are
in between. The second factor contrasts meal/sleeping vs. toilet/shopping (note the
high correlation between meal and sleeping). Along the vertical axis of Fig. 11.18
we see near the bottom of the graph the people from Western-European countries,
who spend more time on meals and sleeping than people from the US (who can be
found close to the top of the graph). The other categories are in between.

Table 11.11 Eigenvalues of
correlation matrix for the
time budget data

`j Proportion of variance Cumulated proportion

4:59 0:459 0:460

2:12 0:212 0:670

1:32 0:132 0:800

1:20 0:120 0:920

0:47 0:047 0:970

0:20 0:020 0:990

0:05 0:005 0:990

0:04 0:004 0:999

0:02 0:002 1:000

0:00 0:000 1:000

Table 11.12 Correlation of
variables with PCs

rXiW1 rXiW2 rXiW3 rXiW4

X1: prof 0:9772 �0:1210 �0:0846 0:0669

X2: tran 0:9798 0:0581 �0:0084 0:4555

X3: hous �0:8999 0:0227 0:3624 0:2142

X4: kids �0:8721 0:1786 0:0837 0:2944

X5: shop �0:5636 0:7606 �0:0046 �0:1210
X6: pers �0:0795 0:8181 �0:3022 �0:0636
X7: eati �0:5883 �0:6694 �0:4263 0:0141

X8: slee �0:6442 �0:5693 �0:1908 �0:3125
X9: tele �0:0994 0:1931 �0:9300 0:1512

X10: leis �0:0922 0:1103 0:0302 �0:9574
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Table 11.13 PCs for time
budget data

Z1 Z2 Z3 Z4

maus 0:0633 0:0245 �0:0668 0:0205

waus 0:0061 0:0791 �0:0236 0:0156

wnus �0:1448 0:0813 �0:0379 �0:0186
mmus 0:0635 0:0105 �0:0673 0:0262

wmus �0:0934 0:0816 �0:0285 0:0038

msus 0:0537 0:0676 �0:0487 �0:0279
wsus 0:0166 0:1016 �0:0463 �0:0053
mawe 0:0420 �0:0846 �0:0399 �0:0016
wawe �0:0111 �0:0534 �0:0097 0:0337

wnwe �0:1544 �0:0583 �0:0318 �0:0051
mmwe 0:0402 �0:0880 �0:0459 0:0054

wmwe �0:1118 �0:0710 �0:0210 0:0262

mswe 0:0489 �0:0919 �0:0188 �0:0365
wswe �0:0393 �0:0591 �0:0194 �0:0534
mayo 0:0772 �0:0086 0:0253 �0:0085
wayo 0:0359 0:0064 0:0577 0:0762

wnyo �0:1263 �0:0135 0:0584 �0:0189
mmyo 0:0793 �0:0076 0:0173 �0:0039
wmyo �0:0550 �0:0077 0:0579 0:0416

msyo 0:0763 0:0207 0:0575 �0:0778
wsyo 0:0120 0:0149 0:0532 �0:0366
maes 0:0767 �0:0025 0:0047 0:0115

waes 0:0353 0:0209 0:0488 0:0729

wnes �0:1399 0:0016 0:0240 �0:0348
mmes 0:0742 �0:0061 �0:0152 0:0283

wmes �0:0175 0:0073 0:0429 0:0719

mses 0:0903 0:0052 0:0379 �0:0701
fses 0:0020 0:0287 0:0358 �0:0346

In Fig. 11.19 the variables television and other leisure activities hardly play
any role (look at Table 11.12). The variable television appears in Z3 (negatively
correlated). Table 11.13 shows that this factor contrasts people from Eastern
countries and Yugoslavia with men living in the US The variable other leisure
activities is the factor Z4. It merely distinguishes between men and women in
Eastern countries and in Yugoslavia. These last two factors are orthogonal to
the preceding axes and of course their contribution to the total variation is less
important.
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Fig. 11.18 Representation of the individuals MVAnpcatime
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11.10 Exercises

Exercise 11.1 Prove Theorem 11.1. (Hint: use (4.23).)

Exercise 11.2 Interpret the results of the PCA of the US companies. Use the
analysis of the bank notes in Sect. 11.3 as a guide. Compare your results with those
in Example 11.9.

Exercise 11.3 Test the hypothesis that the proportion of variance explained by the
first two PCs for the US companies is  D 0:75.

Exercise 11.4 Apply the PCA to the car data (Table 22.7). Interpret the first two
PCs. Would it be necessary to look at the third PC?

Exercise 11.5 Take the athletic records for 55 countries (Sect. 22.18) and apply the
NPCA. Interpret your results.

Exercise 11.6 Apply a PCA to † D
�
1 �

� 1

�

, where � > 0. Now change the scale

ofX1, i.e. consider the covariance of cX1 andX2. How do the PC directions change
with the screeplot?

Exercise 11.7 Suppose that we have standardised some data using the Maha-
lanobis transformation. Would it be reasonable to apply a PCA?

Exercise 11.8 Apply a NPCA to the US CRIME data set (Table 22.10). Interpret the
results. Would it be necessary to look at the third PC? Can you see any difference
between the four regions? Redo the analysis excluding the variable “area of the
state”.

Exercise 11.9 Repeat Exercise 11.8 using the US HEALTH data set (Table 22.16).

Exercise 11.10 Do a NPCA on the GEOPOL data set (see Table 22.15) which
compares 41 countries w.r.t. different aspects of their development. Why or why
not would a PCA be reasonable here?

Exercise 11.11 Let U be an uniform r.v. on Œ0; 1�. Let a 2 R
3 be a vector of

constants. Suppose that X D Ua> D .X1;X2;X3/. What do you expect the NPCs
of X to be?

Exercise 11.12 Let U1 and U2 be two independent uniform random variables on
Œ0; 1�. Suppose that X D .X1;X2;X3;X4/

> where X1 D U1, X2 D U2, X3 D
U1 C U2 and X4 D U1 � U2. Compute the correlation matrix P of X . How many

PCs are of interest? Show that �1 D
�

1p
2
; 1p

2
; 1; 0

�>
and �2 D

�
1p
2
; �1p

2
; 0; 1

�>

are eigenvectors of P corresponding to the non trivial �‘s. Interpret the first two
NPCs obtained.

Exercise 11.13 Simulate a sample of size n D 50 for the r.v. X in Exercise 11.12
and analyse the results of a NPCA.
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Exercise 11.14 Bouroche and Saporta (1980) reported the data on the state
expenses of France from the period 1872 to 1971 (24 selected years) by noting the
percentage of 11 categories of expenses. Do a NPCA of this data set. Do the three
main periods (before WWI, between WWI and WWII, and after WWII) indicate a
change in behaviour w.r.t. state expenses?



Chapter 12
Factor Analysis

A frequently applied paradigm in analysing data from multivariate observations is to
model the relevant information (represented in a multivariate variableX ) as coming
from a limited number of latent factors. In a survey on household consumption, for
example, the consumption levels, X , of p different goods during 1 month could be
observed. The variations and covariations of the p components of X throughout the
survey might in fact be explained by two or three main social behaviour factors
of the household. For instance, a basic desire of comfort or the willingness to
achieve a certain social level or other social latent concepts might explain most of
the consumption behaviour. These unobserved factors are much more interesting to
the social scientist than the observed quantitative measures (X ) themselves, because
they give a better understanding of the behaviour of households. As shown in the
examples below, the same kind of factor analysis is of interest in many fields such
as psychology, marketing, economics, and politic sciences.

How can we provide a statistical model addressing these issues and how
can we interpret the obtained model? This is the aim of factor analysis. As in
Chaps. 10 and 11, the driving statistical theme of this chapter is to reduce the
dimension of the observed data. The perspective used, however, is different: we
assume that there is a model (it will be called the “Factor Model”) stating that most
of the covariances between the p elements of X can be explained by a limited
number of latent factors. Section 12.1 defines the basic concepts and notations
of the orthogonal factor model, stressing the non-uniqueness of the solutions. We
show how to take advantage of this non-uniqueness to derive techniques which
lead to easier interpretations. This will involve (geometric) rotations of the factors.
Section 12.2 presents an empirical approach to factor analysis. Various estimation
procedures are proposed and an optimal rotation procedure is defined. Many
examples are used to illustrate the method.

© Springer-Verlag Berlin Heidelberg 2015
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12.1 The Orthogonal Factor Model

The aim of factor analysis is to explain the outcome of p variables in the data
matrix X using fewer variables, the so-called factors. Ideally all the information in
X can be reproduced by a smaller number of factors. These factors are interpreted
as latent (unobserved) common characteristics of the observed x 2 R

p . The case
just described occurs when every observed x D .x1; : : : ; xp/> can be written as

xj D
kX

`D1
qj`f` C �j ; j D 1; : : : ; p: (12.1)

Here f`, for ` D 1; : : : ; k denotes the factors. The number of factors, k, should
always be much smaller than p. For instance, in psychology x may represent p
results of a test measuring intelligence scores. One common latent factor explaining
x 2 R

p could be the overall level of “intelligence”. In marketing studies, x may
consist of p answers to a survey on the levels of satisfaction of the customers. These
p measures could be explained by common latent factors like the attraction level of
the product or the image of the brand, and so on. Indeed it is possible to create a
representation of the observations that is similar to the one in (12.1) by means of
principal components, but only if the last p � k eigenvalues corresponding to the
covariance matrix are equal to zero. Consider a p-dimensional random vector X
with mean � and covariance matrix Var.X/ D †. A model similar to (12.1) can be
written for X in matrix notation, namely

X D QF C �; (12.2)

where F is the k-dimensional vector of the k factors. When using the factor
model (12.2) it is often assumed that the factors F are centred, uncorrelated and
standardised: E.F / D 0 and Var.F / D Ik . We will now show that if the last
p � k eigenvalues of † are equal to zero, we can easily express X by the factor
model (12.2).

The spectral decomposition of† is given by 	ƒ	>. Suppose that only the first k
eigenvalues are positive, i.e. �kC1 D � � � D �p D 0. Then the (singular) covariance
matrix can be written as

† D
kX

`D1
�`�`�

>̀ D .	1	2/
�
ƒ1 0

0 0

� 
	>1
	>2

!

:

In order to show the connection to the factor model (12.2), recall that the PCs are
given by Y D 	>.X � �/. Rearranging we have X � � D 	Y D 	1Y1 C 	2Y2,
where the components of Y are partitioned according to the partition of 	 above,
namely
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Y D
�
Y1
Y2

�

D
�
	>1
	>2

�

.X � �/; where

�
	>1
	>2

�

.X � �/ �
�

0;

�
ƒ1 0

0 0

��

:

In other words, Y2 has a singular distribution with mean and covariance matrix equal
to zero. Therefore,X �� D 	1Y1C	2Y2 implies that X �� is equivalent to 	1Y1,
which can be written as

X D 	1ƒ1=2
1 ƒ

�1=2
1 Y1 C �:

Defining Q D 	1ƒ1=2
1 and F D ƒ�1=21 Y1, we obtain the factor model (12.2).

Note that the covariance matrix of model (12.2) can be written as

† D E.X � �/.X � �/> D QE.FF>/Q> D QQ> D
kX

jD1
�j �j �

>
j : (12.3)

We have just shown how the variableX can be completely determined by a weighted
sum of k (where k < p) uncorrelated factors. The situation used in the derivation,
however, is too idealistic. In practice the covariance matrix is rarely singular.

It is a common praxis in factor analysis to split the influences of the factors into
common and specific ones. There are, for example, highly informative factors that
are common to all of the components of X and factors that are specific to certain
components. The factor analysis model used in praxis is a generalisation of (12.2):

X D QF C U C �; (12.4)

where Q is a .p � k/ matrix of the (non-random) loadings of the common factors
F.k�1/ andU is a .p�1/matrix of the (random) specific factors. It is assumed that
the factor variables F are uncorrelated random vectors and that the specific factors
are uncorrelated and have zero covariance with the common factors. More precisely,
it is assumed that:

EF D 0;
Var.F / D Ik;

EU D 0; (12.5)

Cov.Ui ; Uj / D 0; i ¤ j
Cov.F; U / D 0:

Define

Var.U / D ‰ D diag. 11; : : : ;  pp/:
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The generalised factor model (12.4) together with the assumptions given in (12.5)
constitute the orthogonal factor model.

Orthogonal Factor Model
X D Q F C U C �

(p � 1) (p � k) (k � 1) (p � 1) (p � 1)
�j D mean of variable j
Uj D j th specific factor
F` D `th common factor
qj` D loading of the j th variable on the `th factor

The random vectors F and U are unobservable and uncorrelated.

Note that (12.4) implies for the components of X D .X1; : : : ; Xp/> that

Xj D
kX

`D1
qj`F` C Uj C �j ; j D 1; : : : ; p: (12.6)

Using (12.5) we obtain �XjXj D Var.Xj / D Pk
`D1 q2j` C  jj. The quantity

h2j D
Pk

`D1 q2j` is called the communality and  jj the specific variance. Thus the
covariance of X can be rewritten as

† D E.X � �/.X � �/> D E.QF C U /.QF C U />
D QE.FF>/Q> C E.UU>/ D QVar.F /Q> C Var.U /

D QQ> C‰: (12.7)

In a sense, the factor model explains the variations ofX for the most part by a small
number of latent factors F common to its p components and entirely explains all
the correlation structure between its components, plus some “noise”U which allows
specific variations of each component to enter. The specific factors adjust to capture
the individual variance of each component. Factor analysis relies on the assumptions
presented above. If the assumptions are not met, the analysis could be spurious.
Although principal components analysis and factor analysis might be related (this
was hinted at in the derivation of the factor model), they are quite different in nature.
PCs are linear transformations of X arranged in decreasing order of variance and
used to reduce the dimension of the data set, whereas in factor analysis, we try to
model the variations of X using a linear transformation of a fixed, limited number
of latent factors. The objective of factor analysis is to find the loadings Q and
the specific variance ‰. Estimates of Q and ‰ are deduced from the covariance
structure (12.7).
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Interpretation of the Factors

Assume that a factor model with k factors was found to be reasonable, i.e. most
of the (co)variations of the p measures in X were explained by the k fixed latent
factors. The next natural step is to try to understand what these factors represent. To
interpret F`, it makes sense to compute its correlations with the original variables
Xj first. This is done for ` D 1; : : : ; k and for j D 1; : : : ; p to obtain the matrix
PXF. The sequence of calculations used here are in fact the same that were used to
interpret the PCs in the principal components analysis.

The following covariance between X and F is obtained via (12.5),

†XF D Ef.QF C U /F>g D Q:

The correlation is

PXF D D�1=2Q; (12.8)

where D D diag.�X1X1 ; : : : ; �XpXp/. Using (12.8) it is possible to construct a
figure analogous to Fig. 11.6 and thus to consider which of the original variables
X1; : : : ; Xp play a role in the unobserved common factors F1; : : : ; Fk .

Returning to the psychology example where X are the observed scores to p
different intelligence tests (the WAIS data set in Table 22.12 provides an example),
we would expect a model with one factor to produce a factor that is positively
correlated with all of the components in X . For this example the factor represents
the overall level of intelligence of an individual. A model with two factors could
produce a refinement in explaining the variations of the p scores. For example,
the first factor could be the same as before (overall level of intelligence), whereas
the second factor could be positively correlated with some of the tests, Xj , that
are related to the individual’s ability to think abstractly and negatively correlated
with other tests, Xi , that are related to the individual’s practical ability. The second
factor would then concern a particular dimension of the intelligence stressing the
distinctions between the “theoretical” and “practical” abilities of the individual.
If the model is true, most of the information coming from the p scores can be
summarised by these two latent factors. Other practical examples are given below.

Invariance of Scale

What happens if we change the scale of X to Y D CX with C D diag.c1; : : : ; cp/?
If the k-factor model (12.6) is true for X with Q D QX , ‰ D ‰X , then, since

Var.Y / D C†C> D CQXQ>XC> C C‰XC>;
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the same k-factor model is also true for Y with QY D CQX and ‰Y D C‰XC>.
In many applications, the search for the loadings Q and for the specific variance
‰ will be done by the decomposition of the correlation matrix of X rather than the
covariance matrix†. This corresponds to a factor analysis of a linear transformation
of X (i.e. Y D D�1=2.X � �//. The goal is to try to find the loadings QY and the
specific variance ‰Y such that

P D QY Q>Y C‰Y : (12.9)

In this case the interpretation of the factorsF immediately follows from (12.8) given
the following correlation matrix:

PXF D PYF D QY : (12.10)

Because of the scale invariance of the factors, the loadings and the specific variance
of the model, where X is expressed in its original units of measure, are given by

QX D D1=2QY

‰X D D1=2‰YD
1=2:

It should be noted that although the factor analysis model (12.4) enjoys the scale
invariance property, the actual estimated factors could be scale dependent. We will
come back to this point later when we discuss the method of principal factors.

Non-uniqueness of Factor Loadings

The factor loadings are not unique! Suppose that G is an orthogonal matrix. Then X
in (12.4) can also be written as

X D .QG/.G>F /C U C �:

This implies that, if a k-factor of X with factors F and loadings Q is true, then
the k-factor model with factors G>F and loadings QG is also true. In practice, we
will take advantage of this non-uniqueness. Indeed, referring back to Sect. 2.6 we
can conclude that premultiplying a vector F by an orthogonal matrix corresponds
to a rotation of the system of axis, the direction of the first new axis being given by
the first row of the orthogonal matrix. It will be shown that choosing an appropriate
rotation will result in a matrix of loadings QG that will be easier to interpret. We
have seen that the loadings provide the correlations between the factors and the
original variables; therefore, it makes sense to search for rotations that give factors
that are maximally correlated with various groups of variables.
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From a numerical point of view, the non-uniqueness is a drawback. We have
to find loadings Q and specific variances ‰ satisfying the decomposition † D
QQ> C‰, but no straightforward numerical algorithm can solve this problem due
to the multiplicity of the solutions. An acceptable technique is to impose some
chosen constraints in order to get—in the best case—an unique solution to the
decomposition. Then, as suggested above, once we have a solution we will take
advantage of the rotations in order to obtain a solution that is easier to interpret.

An obvious question is: what kind of constraints should we impose in order to
eliminate the non-uniqueness problem? Usually, we impose additional constraints
where

Q>‰�1Q is diagonal (12.11)

or

Q>D�1Q is diagonal. (12.12)

How many parameters does the model (12.7) have without constraints?

Q.p � k/ has p � k parameters, and

‰.p � p/ has p parameters.

Hence we have to determine pk C p parameters! Conditions (12.11) respec-
tively (12.12) introduce 1

2
fk.k � 1/g constraints, since we require the matrices to

be diagonal. Therefore, the degrees of freedom of a model with k factors is:

d D (# parameters for † unconstrained)� (# parameters for † constrained)

D 1
2
p.p C 1/� .pkC p � 1

2
k.k � 1//

D 1
2
.p � k/2 � 1

2
.p C k/:

If d < 0, then the model is undetermined: there are infinitely many solutions
to (12.7). This means that the number of parameters of the factorial model is larger
than the number of parameters of the original model, or that the number of factors
k is “too large” relative to p. In some cases d D 0: there is a unique solution to
the problem (except for rotation). In practice we usually have that d > 0: there are
more equations than parameters, thus an exact solution does not exist. In this case
approximate solutions are used. An approximation of†, for example, is QQ>C‰.
The last case is the most interesting since the factorial model has less parameters
than the original one. Estimation methods are introduced in the next section.

Evaluating the degrees of freedom,d , is particularly important, because it already
gives an idea of the upper bound on the number of factors we can hope to identify in
a factor model. For instance, if p D 4, we could not identify a factor model with two
factors (this results in d D �1 which has infinitely many solutions). With p D 4,
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only a one factor model gives an approximate solution (d D 2). When p D 6,
models with 1 and 2 factors provide approximate solutions and a model with three
factors results in an unique solution (up to the rotations) since d D 0. A model with
four or more factors would not be allowed, but of course, the aim of factor analysis
is to find suitable models with a small number of factors, i.e. smaller than p. The
next two examples give more insights into the notion of degrees of freedom.

Example 12.1 Let p D 3 and k D 1, then d D 0 and

† D
0

@
�11 �12 �13

�21 �22 �23
�31 �32 �33

1

A D
0

@
q21 C  11 q1q2 q1q3

q1q2 q22 C  22 q2q3
q1q3 q2q3 q23 C  33

1

A

with Q D
0

@
q1
q2

q3

1

A and ‰ D
0

@
 11 0 0

0  22 0

0 0  33

1

A. Note that here the constraint (12.11)

is automatically verified since k D 1. We have

q21 D
�12�13

�23
I q22 D

�12�23

�13
I q23 D

�13�23

�12

and

 11 D �11 � q21 I  22 D �22 � q22 I  33 D �33 � q23:

In this particular case (k D 1), the only rotation is defined by G D �1, so the other
solution for the loadings is provided by �Q.

Example 12.2 Suppose now p D 2 and k D 1, then d < 0 and

† D
�
1 �

� 1

�

D
�
q21 C  11 q1q2
q1q2 q22 C  22

�

:

We have infinitely many solutions: for any ˛ .� < ˛ < 1/, a solution is provided by

q1 D ˛I q2 D �=˛I  11 D 1 � ˛2I  22 D 1 � .�=˛/2:

The solution in Example 12.1 may be unique (up to a rotation), but it is not proper
in the sense that it cannot be interpreted statistically. Exercise 12.5 gives an example
where the specific variance  11 is negative.

!
Even in the case of a unique solution .d D 0/, the solution may be

inconsistent with statistical interpretations.
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Summary
,! The factor analysis model aims to describe how the original p vari-

ables in a data set depend on a small number of latent factors k <p,
i.e. it assumes that X DQF CU C�. The (k-dimensional) ran-
dom vector F contains the common factors, the (p-dimensional)
U contains the specific factors and Q.p � k/ contains the factor
loadings.

,! It is assumed that F and U are uncorrelated and have zero means,
i.e. F � .0; I/, U � .0;‰/ where ‰ is diagonal matrix and
Cov.F; U / D 0.
This leads to the covariance structure† D QQ> C‰.

,! The interpretation of the factor F is obtained through the correla-
tion PXF D D�1=2Q.

,! A normalised analysis is obtained by the model P D QQ> C ‰.
The interpretation of the factors is given directly by the loadings
Q W PXF D Q.

,! The factor analysis model is scale invariant. The loadings are not
unique (only up to multiplication by an orthogonal matrix).

,! Whether a model has an unique solution or not is determined by
the degrees of freedom d D 1=2.p � k/2 � 1=2.pC k/.

12.2 Estimation of the Factor Model

In practice, we have to find estimates OQ of the loadings Q and estimates O‰ of the
specific variances‰ such that analogously to (12.7)

S D OQ OQ> C O‰;

where S denotes the empirical covariance of X . Given an estimate OQ of Q, it is
natural to set

O jj D sXj Xj �
kX

`D1
Oq2j`:

We have that Oh2j D
Pk

`D1 Oq2j` is an estimate for the communality h2j .
In the ideal case d D 0, there is an exact solution. However, d is usually greater

than zero, therefore we have to find OQ and O‰ such that S is approximated by OQ OQ>C
O‰. As mentioned above, it is often easier to compute the loadings and the specific
variances of the standardised model.
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Define Y D HXD�1=2, the standardisation of the data matrix X , where D D
diag.sX1X1 ; : : : ; sXpXp/ and the centering matrix H D I � n�11n1>n (recall from

Chap. 2 that S D 1
n
X>HX ). The estimated factor loading matrix OQY and the

estimated specific variance O‰Y of Y are

OQY D D�1=2 OQX and O‰Y D D�1 O‰X:

For the correlation matrix R of X , we have that

R D OQY
OQ>Y C O‰Y :

The interpretations of the factors are formulated from the analysis of the loadings
OQY .

Example 12.3 Let us calculate the matrices just defined for the car data given in
Table 22.7. This data set consists of the averaged marks (from 1 Dlow to 6 Dhigh)
for 24 car types. Considering the three variables price, security and easy handling,
we get the following correlation matrix:

R D
0

@
1 0:975 0:613

0:975 1 0:620

0:613 0:620 1

1

A :

We will first look for one factor, i.e. k D 1. Note that (# number of parameters of†
unconstrained – # parameters of† constrained) is equal to 1

2
.p�k/2� 1

2
.pCk/ D

1
2
.3� 1/2� 1

2
.3C 1/ D 0. This implies that there is an exact solution! The equation

0

@
1 rX1X2 rX1X3

rX1X2 1 rX2X3
rX1X3 rX2X3 1

1

A D R D
0

@
Oq21 C O 11 Oq1 Oq2 Oq1 Oq3
Oq1 Oq2 Oq22 C O 22 Oq2 Oq3
Oq1 Oq3 Oq2 Oq3 Oq23 C O 33

1

A

yields the communalities Oh2i D Oq2i , where

Oq21 D
rX1X2rX1X3
rX2X3

; Oq22 D
rX1X2rX2X3
rX1X3

and Oq23 D
rX1X3rX2X3
rX1X2

:

Combining this with the specific variances O 11 D 1 � Oq21 , O 22 D 1 � Oq22 and
O 33 D 1 � Oq23 , we obtain the following solution

Oq1 D 0:982 Oq2 D 0:993 Oq3 D 0:624
O 11 D 0:035 O 22 D 0:014 O 33 D 0:610:
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Since the first two communalities ( Oh2i D Oq2i ) are close to one, we can conclude that
the first two variables, namely price and security, are explained by the single factor
quite well. This factor can be interpreted as a “price+security” factor.

The Maximum Likelihood Method

Recall from Chap. 6 the log-likelihood function ` for a data matrixX of observations
of X � Np.�;†/:

`.X I�;†/ D �n
2

log j 2�† j �1
2

nX

iD1
.xi � �/†�1.xi � �/>

D �n
2

log j 2�† j �n
2

tr.†�1S/ � n
2
.x � �/†�1.x � �/>:

This can be rewritten as

`.X I O�;†/ D �n
2

˚
log j 2�† j C tr.†�1S/

�
:

Replacing � by O� D x and substituting† D QQ> C‰ this becomes

`.X I O�;Q; ‰/ D �n
2

�
logfj 2�.QQ> C‰/ jg C trf.QQ> C‰/�1Sg� :

(12.13)

Even in the case of a single factor (k D 1), these equations are rather complicated
and iterative numerical algorithms have to be used [for more details see Mardia,
Kent & Bibby, 1979, p. 263]. A practical computation scheme is also given in
Supplement 9A of Johnson and Wichern (1998).

Likelihood Ratio Test for the Number of Common Factors

Using the methodology of Chap. 7, it is easy to test the adequacy of the factor
analysis model by comparing the likelihood under the null (factor analysis) and
alternative (no constraints on covariance matrix) hypotheses.

Assuming that OQ and O‰ are the maximum likelihood estimates corresponding
to (12.13), we obtain the following LR test statistic:

� 2 log

�
maximised likelihood underH0

maximised likelihood

�

D n log

 
j OQ OQ> C O‰j
jSj

!

; (12.14)

which asymptotically has the �21
2 f.p�k/2�p�kg

distribution.
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The �2 approximation can be improved if we replace n by n�1�.2pC4kC5/=6
in (12.14) (Bartlett, 1954). Using Bartlett’s correction, we reject the factor analysis
model at the ˛ level if

fn� 1� .2pC 4kC 5/=6g log

 
j OQ OQ> C O‰j
jSj

!

> �2
1�˛If.p�k/2�p�kg=2; (12.15)

and if the number of observations n is large and the number of common factors k is
such that the �2 statistic has a positive number of degrees of freedom.

The Method of Principal Factors

The method of principal factors concentrates on the decomposition of the correla-
tion matrix R or the covariance matrix S. For simplicity, only the method for the
correlation matrix R will be discussed. As pointed out in Chap. 11, the spectral
decompositions of R and S yield different results and therefore, the method of
principal factors may result in different estimators. The method can be motivated as
follows: Suppose we know the exact ‰, then the constraint (12.12) implies that the
columns of Q are orthogonal since D D I and it implies that they are eigenvectors
of QQ> D R�‰. Furthermore, assume that the first k eigenvalues are positive. In
this case we could calculate Q by means of a spectral decomposition of QQ> and
k would be the number of factors.

The principal factors algorithm is based on good preliminary estimators Oh2j of the
communalities h2j , for j D 1; : : : ; p. There are two traditional proposals:

• Oh2j , defined as the square of the multiple correlation coefficient of Xj with .Xl/,

for l 6D j , i.e. �2.V;W Ǒ/ with V D Xj , W D .X`/`¤j and where Ǒ is the least
squares regression parameter of a regression of V on W .

• Oh2j D max
`¤j
jrXjX` j, where R D .rXjX`/ is the correlation matrix of X .

Given Q jj D 1 � Qh2j we can construct the reduced correlation matrix, R � O‰. The
Spectral Decomposition Theorem says that

R � O‰ D
pX

`D1
�`�`�

>̀;

with eigenvalues �1 � � � � � �p . Assume that the first k eigenvalues �1; : : : ; �k are
positive and large compared to the others. Then we can set

Oq` D
p
�` �` ; ` D 1; : : : ; k
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or

OQ D 	1ƒ1=2
1

with

	1 D .�1; : : : ; �k/ and ƒ1 D diag.�1; : : : ; �k/:

In the next step set

O jj D 1 �
kX

`D1
Oq2j` ; j D 1; : : : ; p:

Note that the procedure can be iterated: from O jj we can compute a new reduced
correlation matrix R� O‰ following the same procedure. The iteration usually stops
when the O jj have converged to a stable value.

Example 12.4 Consider once again the car data given in Table 22.7. From Exer-
cise 11.4 we know that the first PC is mainly influenced by X2–X7. Moreover, we
know that most of the variance is already captured by the first PC. Thus we can
conclude that the data are mainly determined by one factor (k D 1).

The eigenvalues of R� O‰ for O‰ D .max
j¤i
jrXiXj j/ are

.4:628; 1:340; 1:201; 1:045; 1:007; 0:993; 0:980;�4:028/> :

It would suffice to choose only one factor. Nevertheless, we have computed two
factors. The result (the factor loadings for two factors) is shown in Fig. 12.1.
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Fig. 12.1 Loadings of the evaluated car qualities, factor analysis with k D 2 MVAfactcarm
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We can clearly see a cluster of points to the right, which contain the factor
loadings for the variables X2–X7. This shows, as did the PCA, that these variables
are highly dependent and are thus more or less equivalent. The factor loadings for
X1 (economy) and X8 (easy handling) are separate, but note the different scales on
the horizontal and vertical axes! Although there are two or three sets of variables
in the plot, the variance is already explained by the first factor, the “price+security”
factor.

The Principal Component Method

The principal factor method (PFM) involves finding an approximation Q‰ of ‰, the
matrix of specific variances, and then correcting R, the correlation matrix of X ,
by Q‰. The principal component method (PCM) starts with an approximation OQ
of Q, the factor loadings matrix. The sample covariance matrix is diagonalised,
S D 	ƒ	>. Then the first k eigenvectors are retained to build

OQ D .
p
�1�1; : : : ;

p
�k�k/: (12.16)

The estimated specific variances are provided by the diagonal elements of the
matrix S � OQ OQ>,

O‰ D

0

B
B
B
@

O 11 0
O 22

: : :

0 O pp

1

C
C
C
A

with O jj D sXjXj �
kX

`D1
Oq2j`: (12.17)

By definition, the diagonal elements of S are equal to the diagonal elements of
OQ OQ>C O‰. The off-diagonal elements are not necessarily estimated. How good then

is this approximation? Consider the residual matrix

S � . OQ OQ> C O‰/

resulting from the principal component solution. Analytically we have that

X

i;j

.S � OQ OQ> � O‰/2ij � �2kC1 C � � � C �2p:

This implies that a small value of the neglected eigenvalues can result in a small
approximation error. A heuristic device for selecting the number of factors is to
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consider the proportion of the total sample variance due to the j th factor. This
quantity is in general equal to

(a) �j =
Pp

jD1 sjj for a factor analysis of S,
(b) �j =p for a factor analysis of R.

Example 12.5 This example uses a consumer-preference study from Johnson
and Wichern (1998). Customers were asked to rate several attributes of a new
product. The responses were tabulated and the following correlation matrix R was
constructed:

Attribute (Variable)
Taste 1
Good buy for money 2
Flavor 3
Suitable for snack 4
Provides lots of energy 5

0

B
B
B
B
B
@

1:00 0:02 0:96 0:42 0:01
0:02 1:00 0:13 0:71 0:85
0:96 0:13 1:00 0:50 0:11

0:42 0:71 0:50 1:00 0:79
0:01 0:85 0:11 0:79 1:00

1

C
C
C
C
C
A

The bold entries of R show that variables 1 and 3 and variables 2 and 5 are highly
correlated. Variable 4 is more correlated with variables 2 and 5 than with variables
1 and 3. Hence, a model with 2 (or 3) factors seems to be reasonable.

The first two eigenvalues�1 D 2:85 and �2 D 1:81 of R are the only eigenvalues
greater than one. Moreover, k D 2 common factors account for a cumulative
proportion

�1 C �2
p

D 2:85C 1:81
5

D 0:93

of the total (standardised) sample variance. Using the PCM, the estimated
factor loadings, communalities, and specific variances are calculated from
formulas (12.16) and (12.17), and the results are given in Table 12.1.

Table 12.1 Estimated factor loadings, communalities, and specific variances

Estimated factor Specific

loadings Communalities variances

Variable Oq1 Oq2 Oh2j O jj D 1� Oh2j
1. Taste 0.56 0:82 0.98 0.02

2. Good buy for money 0.78 �0:53 0.88 0.12

3. Flavor 0.65 0:75 0.98 0.02

4. Suitable for snack 0.94 �0:11 0.89 0.11

5. Provides lots of energy 0.80 �0:54 0.93 0.07

Eigenvalues 2.85 1:81

Cumulative proportion of total
(standardised) sample variance

0.571 0:932
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Take a look at:

OQ OQ> C O‰ D

0

B
B
B
B
B
@

0:56 0:82

0:78 �0:53
0:65 0:75

0:94 �0:11
0:80 �0:54

1

C
C
C
C
C
A

�
0:56 0:78 0:65 0:94 0:80

0:82 �0:53 0:75 �0:11 �0:54
�

C

0

B
B
B
B
B
@

0:02 0 0 0 0

0 0:12 0 0 0

0 0 0:02 0 0

0 0 0 0:11 0

0 0 0 0 0:07

1

C
C
C
C
C
A

D

0

B
B
B
B
B
@

1:00 0:01 0:97 0:44 0:00

0:01 1:00 0:11 0:79 0:91

0:97 0:11 1:00 0:53 0:11

0:44 0:79 0:53 1:00 0:81

0:00 0:91 0:11 0:81 1:00

1

C
C
C
C
C
A

:

This nearly reproduces the correlation matrix R. We conclude that the two-
factor model provides a good fit of the data. The communalities .0:98; 0:88; 0:98;
0:89; 0:93/ indicate that the two factors account for a large percentage of the
sample variance of each variable. Due to the nonuniqueness of factor loadings, the
interpretation might be enhanced by rotation. This is the topic of the next subsection.

Rotation

The constraints (12.11) and (12.12) are given as a matter of mathematical con-
venience (to create unique solutions) and can therefore complicate the problem
of interpretation. The interpretation of the loadings would be very simple if the
variables could be split into disjoint sets, each being associated with one factor.
A well-known analytical algorithm to rotate the loadings is given by the varimax
rotation method proposed by Kaiser (1985). In the simplest case of k D 2 factors, a
rotation matrix G is given by

G.�/ D
�

cos � sin �
� sin � cos �

�

;

representing a clockwise rotation of the coordinate axes by the angle � . The
corresponding rotation of loadings is calculated via OQ� D OQG.�/. The idea of
the varimax method is to find the angle � that maximises the sum of the variances
of the squared loadings Oq�ij within each column of OQ�. More precisely, defining

Qq�jl D Oq�jl = Oh�j , the varimax criterion chooses � so that
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V D 1

p

kX

`D1

2

6
4

pX

jD1

� Oq�jl
�4 �

8
<

:

1

p

pX

jD1

� Oq�jl
�2

9
=

;

2
3

7
5

is maximised.

Example 12.6 Let us return to the marketing example of Johnson and Wichern
(1998) (Example 12.5). The basic factor loadings given in Table 12.1 of the
first factor and a second factor are almost identical making it difficult to inter-
pret the factors. Applying the varimax rotation we obtain the loadings Qq1 D
.0:02; 0:94; 0:13; 0:84; 0:97/> and Qq2 D .0:99;�0:01; 0:98; 0:43;�0:02/>. The
high loadings, indicated as bold entries, show that variables 2, 4, 5 define factor 1,
a nutritional factor. Variables 1 and 3 define factor 2 which might be referred to as a
taste factor.

Summary
,! In practice, Q and ‰ have to be estimated from S D OQ OQ> C O‰.

The number of parameters is d D 1
2
.p � k/2 � 1

2
.p C k/.

,! If d D 0, then there exists an exact solution. In practice, d is
usually greater than 0, thus approximations must be considered.

,! The maximum-likelihood method assumes a normal distribution
for the data. A solution can be found using numerical algorithms.

,! The method of principal factors is a two-stage method which
calculates OQ from the reduced correlation matrix R � O‰, where
O‰ is a pre-estimate of ‰. The final estimate of ‰ is found by
O ii D 1 �Pk

jD1 Oq2ij.
,! The PCM is based on an approximation, OQ, of Q.

,! Often a more informative interpretation of the factors can be found
by rotating the factors.

,! The varimax rotation chooses a rotation � that maximises

V D 1
p

Pk
`D1

"
Pp

jD1
�
Qq�jl
�4 �



1
p

Pp
jD1

�
Qq�jl
�2

 2
#

.
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12.3 Factor Scores and Strategies

Up to now strategies have been presented for factor analysis that have concentrated
on the estimation of loadings and communalities and on their interpretations. This
was a logical step since the factors F were considered to be normalised random
sources of information and were explicitly addressed as nonspecific (common
factors). The estimated values of the factors, called the factor scores, may also be
useful in the interpretation as well as in the diagnostic analysis. To be more precise,
the factor scores are estimates of the unobserved random vectors Fl , l D 1; : : : ; k,
for each individual xi , i D 1; : : : ; n. Johnson and Wichern (1998) describe three
methods which in practice yield very similar results. Here, we present the regression
method which has the advantage of being the simplest technique and is easy to
implement.

The idea is to consider the joint distribution of .X��/ andF , and then to proceed
with the regression analysis presented in Chap. 5. Under the factor model (12.4), the
joint covariance matrix of .X � �/ and F is:

Var
�
X � �
F

�

D
�
QQ> C‰ Q

Q> Ik

�

: (12.18)

Note that the upper left entry of this matrix equals † and that the matrix has size
.p C k/ � .p C k/.

Assuming joint normality, the conditional distribution of F jX is multinormal,
see Theorem 5.1, with

E.F jX D x/ D Q>†�1.X � �/ (12.19)

and using (5.7) the covariance matrix can be calculated:

Var.F jX D x/ D Ik �Q>†�1Q: (12.20)

In practice, we replace the unknown Q, † and � by corresponding estimators,
leading to the estimated individual factor scores:

Ofi D OQ>S�1.xi � x/: (12.21)

We prefer to use the original sample covariance matrix S as an estimator of †,
instead of the factor analysis approximation OQ OQ> C O‰, in order to be more robust
against incorrect determination of the number of factors.

The same rule can be followed when using R instead of S. Then (12.18) remains
valid when standardised variables, i.e.Z D D�1=2† .X ��/, are considered if D† D
diag.�11; : : : ; �pp/. In this case the factors are given by

Ofi D OQ>R�1.zi /; (12.22)
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where zi D D�1=2S .xi � x/, OQ is the loading obtained with the matrix R, and DS D
diag.s11; : : : ; spp/.

If the factors are rotated by the orthogonal matrix G, the factor scores have to be
rotated accordingly, that is

Of �i D G> Ofi : (12.23)

A practical example is presented in Sect. 12.4 using the Boston Housing data.

Practical Suggestions

No one method outperforms another in the practical implementation of factor
analysis. However, by applying a tâtonnement process, the factor analysis view of
the data can be stabilised. This motivates the following procedure.

1. Fix a reasonable number of factors, say k D 2 or 3, based on the correlation
structure of the data and/or screeplot of eigenvalues.

2. Perform several of the presented methods, including rotation. Compare the
loadings, communalities, and factor scores from the respective results.

3. If the results show significant deviations, check for outliers (based on factor
scores), and consider changing the number of factors k.

For larger data sets, cross-validation methods are recommended. Such methods
involve splitting the sample into a training set and a validation data set. On the
training sample one estimates the factor model with the desired methodology and
uses the obtained parameters to predict the factor scores for the validation data set.
The predicted factor scores should be comparable to the factor scores obtained using
only the validation data set. This stability criterion may also involve the loadings and
communalities.

Factor Analysis Versus PCA

Factor analysis and principal component analysis use the same set of mathematical
tools (spectral decomposition, projections, : : : ). One could conclude, on first sight,
that they share the same view and strategy and therefore yield very similar results.
This is not true. There are substantial differences between these two data analysis
techniques that we would like to describe here.

The biggest difference between PCA and factor analysis comes from the model
philosophy. Factor analysis imposes a strict structure of a fixed number of common
(latent) factors whereas the PCA determines p factors in decreasing order of
importance. The most important factor in PCA is the one that maximises the
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projected variance. The most important factor in factor analysis is the one that (after
rotation) gives the maximal interpretation. Often this is different from the direction
of the first principal component.

From an implementation point of view, the PCA is based on a well-defined,
unique algorithm (spectral decomposition), whereas fitting a factor analysis model
involves a variety of numerical procedures. The non-uniqueness of the factor
analysis procedure opens the door for subjective interpretation and yields therefore
a spectrum of results. This data analysis philosophy makes factor analysis difficult
especially if the model specification involves cross-validation and a data-driven
selection of the number of factors.

12.4 Boston Housing

To illustrate how to implement factor analysis we will use the Boston Housing data
set and the by now well-known set of transformations. Once again, the variable X4
(Charles River indicator) will be excluded. As before, standardised variables are
used and the analysis is based on the correlation matrix.

In Sect. 12.3, we described a practical implementation of factor analysis. Based
on principal components, three factors were chosen and factor analysis was applied
using the maximum likelihood method (MLM), the PFM, and the PCM. For
illustration, the MLM will be presented with and without varimax rotation.

Table 12.2 gives the MLM factor loadings without rotation and Table 12.3 gives
the varimax version of this analysis. The corresponding graphical representations
of the loadings are displayed in Figs. 12.2 and 12.3. We can see that the varimax

Table 12.2 Estimated factor loadings, communalities, and specific variances, MLM
MVAfacthous

Estimated factor Specific

loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 Crime 0:9295 0:1653 0:1107 0.9036 0.0964

2 Large lots �0:5823 0:0379 0:2902 0.4248 0.5752

3 Nonretail acres 0:8192 �0:0296 �0:1378 0.6909 0.3091

5 Nitric oxides 0:8789 0:0987 �0:2719 0.8561 0.1439

6 Rooms �0:4447 0:5311 �0:0380 0.4812 0.5188

7 Prior 1940 0:7837 �0:0149 �0:3554 0.7406 0.2594

8 Empl. centers �0:8294 �0:1570 0:4110 0.8816 0.1184

9 Accessibility 0:7955 0:3062 0:4053 0.8908 0.1092

10 Tax-rate 0:8262 0:1401 0:2906 0.7867 0.2133

11 Pupil/teacher 0:5051 �0:1850 0:1553 0.3135 0.6865

12 African American 0:4701 �0:0227 �0:1627 0.2480 0.7520

13 Lower status 0:7601 �0:5059 �0:0070 0.8337 0.1663

14 Value �0:6942 0:5904 �0:1798 0.8628 0.1371
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Table 12.3 Estimated factor loadings, communalities, and specific variances, MLM, varimax
rotation MVAfacthous

Estimated factor Specific

loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 Crime 0:7247 �0:2705 �0:5525 0.9036 0.0964

2 Large lots �0:1570 0:2377 0:5858 0.4248 0.5752

3 Nonretail acres 0:4195 �0:3566 �0:6287 0.6909 0.3091

5 Nitric oxides 0:4141 �0:2468 �0:7896 0.8561 0.1439

6 Rooms �0:0799 0:6691 0:1644 0.4812 0.5188

7 Prior 1940 0:2518 �0:2934 �0:7688 0.7406 0.2594

8 Empl. centers �0:3164 0:1515 0:8709 0.8816 0.1184

9 Accessibility 0:8932 �0:1347 �0:2736 0.8908 0.1092

10 Tax-rate 0:7673 �0:2772 �0:3480 0.7867 0.2133

11 Pupil/teacher 0:3405 �0:4065 �0:1800 0.3135 0.6865

12 African American �0:3917 0:2483 0:1813 0.2480 0.7520

13 Lower status 0:2586 �0:7752 �0:4072 0.8337 0.1663

14 Value �0:3043 0:8520 0:2111 0.8630 0.1370
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Fig. 12.2 Factor analysis for Boston housing data, MLM MVAfacthous
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Fig. 12.3 Factor analysis for Boston housing data, MLM after varimax rotation
MVAfacthous

does not significantly change the interpretation of the factors obtained by the MLM.
Factor 1 can be roughly interpreted as a “quality of life factor” because it is
positively correlated with variables like X11 and negatively correlated withX8, both
having low specific variances. The second factor may be interpreted as a “residential
factor”, since it is highly correlated with variables X6, and X13. The most striking
difference between the results with and without varimax rotation can be seen by
comparing the lower left corners of Figs. 12.2 and 12.3. There is a clear separation
of the variables in the varimax version of the MLM. Given this arrangement of the
variables in Fig. 12.3, we can interpret factor 3 as an employment factor, since we
observe high correlations with X8 and X5.

We now turn to the PCM and PFM analyses. The results are presented in
Tables 12.4 and 12.5 and in Figs. 12.4 and 12.5. We would like to focus on the
PCM, because this three-factor model yields only one specific variance (unexplained
variation) above 0.5. Looking at Fig. 12.4, it turns out that factor 1 remains a “quality
of life factor” which is clearly visible from the clustering of X5, X3, X10 and X1
on the right-hand side of the graph, while the variables X8, X2, X14, X12 and X6
are on the left-hand side. Again, the second factor is a “residential factor”, clearly
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Table 12.4 Estimated factor loadings, communalities, and specific variances, PCM, varimax
rotation MVAfacthous

Estimated factor Specific

loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 Crime 0:6034 �0:2456 0:6864 0.8955 0.1045

2 Large lots �0:7722 0:2631 0:0270 0.6661 0.3339

3 Nonretail acres 0:7183 �0:3701 0:3449 0.7719 0.2281

5 Nitric oxides 0:7936 �0:2043 0:4250 0.8521 0.1479

6 Rooms �0:1601 0:8585 0:0218 0.7632 0.2368

7 Prior 1940 0:7895 �0:2375 0:2670 0.7510 0.2490

8 Empl. centers �0:8562 0:1318 �0:3240 0.8554 0.1446

9 Accessibility 0:3681 �0:1268 0:8012 0.7935 0.2065

10 Tax-rate 0:3744 �0:2604 0:7825 0.8203 0.1797

11 Pupil/teacher 0:1982 �0:5124 0:3372 0.4155 0.5845

12 African American 0:1647 0:0368 �0:7002 0.5188 0.4812

13 Lower status 0:4141 �0:7564 0:2781 0.8209 0.1791

14 Value �0:2111 0:8131 �0:3671 0.8394 0.1606

Table 12.5 Estimated factor loadings, communalities, and specific variances, PFM, varimax
rotation MVAfacthous

Estimated factor Specific

loadings Communalities variances

Oq1 Oq2 Oq3 Oh2j O jj D 1� Oh2j
1 Crime 0:5477 �0:2558 �0:7387 0.9111 0.0889

2 Large lots �0:6148 0:2668 0:1281 0.4655 0.5345

3 Nonretail acres 0:6523 �0:3761 �0:3996 0.7266 0.2734

5 Nitric oxides 0:7723 �0:2291 �0:4412 0.8439 0.1561

6 Rooms �0:1732 0:6783 0:1296 0.0699 0.5046

7 Prior 1940 0:7390 �0:2723 �0:2909 0.7049 0.2951

8 Empl. centers �0:8565 0:1485 0:3395 0.8708 0.1292

9 Accessibility 0:2855 �0:1359 �0:8460 0.8156 0.1844

10 Tax-rate 0:3062 �0:2656 �0:8174 0.8325 0.1675

11 Pupil/teacher 0:2116 �0:3943 �0:3297 0.3090 0.6910

12 African American 0:1994 0:0666 0:4217 0.2433 0.7567

13 Lower status 0:4005 �0:7743 �0:2706 0.8333 0.1667

14 Value �0:1885 0:8400 0:3473 0.8611 0.1389
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Fig. 12.4 Factor analysis for Boston housing data, PCM after varimax rotation MVAfacthous

demonstrated by the location of variablesX6, X14, X11, and X13. The interpretation
of the third factor is more difficult because all of the loadings (except for X12) are
very small.

12.5 Exercises

Exercise 12.1 In Example 12.4 we have computed OQ and O‰ using the method of
principal factors. We used a two-step iteration for O‰. Perform the third iteration step
and compare the results (i.e. use the given OQ as a pre-estimate to find the final ‰).

Exercise 12.2 Using the bank data set, how many factors can you find with the
Method of Principal Factors?

Exercise 12.3 Repeat Exercise 12.2 with the US company data set!

Exercise 12.4 Generalise the two-dimensional rotation matrix in Sect. 12.2 to
n-dimensional space.
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Fig. 12.5 Factor analysis for Boston housing data, PFM after varimax rotation MVAfacthous

Exercise 12.5 Compute the orthogonal factor model for

† D
0

@
1 0:9 0:7

0:9 1 0:4

0:7 0:4 1

1

A :

[Solution:  11 D �0:575; q11 D 1:255]

Exercise 12.6 Perform a factor analysis on the type of families in the French food
data set. Rotate the resulting factors in a way which provides the most reasonable
interpretation. Compare your result with the varimax method.

Exercise 12.7 Perform a factor analysis on the variables X3 to X9 in the US crime
data set (Table 22.10). Would it make sense to use all of the variables for the
analysis?

Exercise 12.8 Analyse the athletic records data set (Table 22.18). Can you recog-
nise any patterns if you sort the countries according to the estimates of the factor
scores?
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Exercise 12.9 Perform a factor analysis on the US health data set (Table 22.16)
and estimate the factor scores.

Exercise 12.10 Redo Exercise 12.9 using the US crime data in Table 22.10.
Compare the estimated factor scores of the two data sets.

Exercise 12.11 Analyse the vocabulary data given in Table 22.17.



Chapter 13
Cluster Analysis

The next two chapters address classification issues from two varying perspectives.
When considering groups of objects in a multivariate data set, two situations can
arise. Given a data set containing measurements on individuals, in some cases we
want to see if some natural groups or classes of individuals exist, and in other
cases, we want to classify the individuals according to a set of existing groups.
Cluster analysis develops tools and methods concerning the former case, that is,
given a data matrix containing multivariate measurements on a large number of
individuals (or objects), the objective is to build some natural sub-groups or clusters
of individuals. This is done by grouping individuals that are “similar” according to
some appropriate criterion. Once the clusters are obtained, it is generally useful to
describe each group using some descriptive tool from Chaps. 1, 10 or 11 to create a
better understanding of the differences that exist among the formulated groups.

Cluster analysis is applied in many fields such as the natural sciences, the medical
sciences, economics, marketing, etc. In marketing, for instance, it is useful to
build and describe the different segments of a market from a survey on potential
consumers. An insurance company, on the other hand, might be interested in the
distinction among classes of potential customers so that it can derive optimal prices
for its services. Other examples are provided below.

Discriminant analysis presented in Chap. 14 addresses the other issue of clas-
sification. It focuses on situations where the different groups are known a priori.
Decision rules are provided in classifying a multivariate observation into one of the
known groups.

Section 13.1 states the problem of cluster analysis where the criterion chosen to
measure the similarity among objects clearly plays an important role. Section 13.2

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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shows how to precisely measure the proximity between objects. Finally, Sect. 13.3
provides some algorithms. We will concentrate on hierarchical algorithms only
where the number of clusters is not known in advance.

13.1 The Problem

Cluster analysis is a set of tools for building groups (clusters) from multivariate
data objects. The aim is to construct groups with homogeneous properties out of
heterogeneous large samples. The groups or clusters should be as homogeneous as
possible and the differences among the various groups as large as possible. Cluster
analysis can be divided into two fundamental steps.

1. Choice of a proximity measure:
One checks each pair of observations (objects) for the similarity of their values.
A similarity (proximity) measure is defined to measure the “closeness” of the
objects. The “closer” they are, the more homogeneous they are.

2. Choice of group-building algorithm:
On the basis of the proximity measures the objects assigned to groups so that
differences between groups become large and observations in a group become as
close as possible.

In marketing, for example, cluster analysis is used to select test markets. Other
applications include the classification of companies according to their organisational
structures, technologies and types. In psychology, cluster analysis is used to find
types of personalities on the basis of questionnaires. In archaeology, it is applied
to classify art objects in different time periods. Other scientific branches that use
cluster analysis are medicine, sociology, linguistics and biology. In each case a
heterogeneous sample of objects are analysed with the aim to identify homogeneous
sub-groups.

Summary
,! Cluster analysis is a set of tools for building groups (clusters) from

multivariate data objects.
,! The methods used are usually divided into two fundamental steps:

The choice of a proximity measure and the choice of a group-
building algorithm.
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13.2 The Proximity Between Objects

The starting point of a cluster analysis is a data matrix X .n � p/ with n

measurements (objects) of p variables. The proximity (similarity) among objects
is described by a matrix D.n � n/

D D

0

B
B
B
B
B
B
B
B
B
B
@

d11 d12 : : : : : : : : : d1n
::: d22

:::
:::

:::
: : :

:::
:::

:::
: : :

:::
:::

:::
: : :

:::

dn1 dn2 : : : : : : : : : dnn

1

C
C
C
C
C
C
C
C
C
C
A

: (13.1)

The matrixD contains measures of similarity or dissimilarity among the n objects. If
the values dij are distances, then they measure dissimilarity. The greater the distance,
the less similar are the objects. If the values dij are proximity measures, then the
opposite is true, i.e. the greater the proximity value, the more similar are the objects.
A distance matrix, for example, could be defined by the L2-norm: dij D kxi �xjk2,
where xi and xj denote the rows of the data matrix X . Distance and similarity are of
course dual. If dij is a distance, then d 0ij D maxi;j fdijg � dij is a proximity measure.

The nature of the observations plays an important role in the choice of proximity
measure. Nominal values (like binary variables) lead in general to proximity values,
whereas metric values lead (in general) to distance matrices. We first present
possibilities for D in the binary case and then consider the continuous case.

Similarity of Objects with Binary Structure

In order to measure the similarity between objects we always compare pairs of
observations .xi ; xj /where x>i D .xi1; : : : ; xip/, x>j D .xj1; : : : ; xjp/, and xik; xjk 2
f0; 1g. Obviously there are four cases:

xik D xjk D 1;
xik D 0; xjk D 1;
xik D 1; xjk D 0;
xik D xjk D 0:
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Define

a1 D
pX

kD1
I.xik D xjk D 1/;

a2 D
pX

kD1
I.xik D 0; xjk D 1/;

a3 D
pX

kD1
I.xik D 1; xjk D 0/;

a4 D
pX

kD1
I.xik D xjk D 0/:

Note that each al ; l D 1; : : : ; 4, depends on the pair .xi ; xj /.
The following proximity measures are used in practice:

dij D a1 C ıa4
a1 C ıa4 C �.a2 C a3/ (13.2)

where ı and � are weighting factors. Table 13.1 shows some similarity measures for
given weighting factors.

These measures provide alternative ways of weighting mismatching and positive
(presence of a common character) or negative (absence of a common character)
matchings. In principle, we could also consider the Euclidean distance. However,
the disadvantage of this distance is that it treats the observations 0 and 1 in the same
way. If xik D 1 denotes, say, knowledge of a certain language, then the contrary,
xik D 0 (not knowing the language) should eventually be treated differently.

Example 13.1 Let us consider binary variables computed from the car data set
(Table 22.7). We define the new binary data by

yik D


1 if xik > xk;

0 otherwise,

Table 13.1 The common
similarity coefficients

Name ı � Definition

Jaccard 0 1 a1
a1 C a2 C a3

Tanimoto 1 2 a1 C a4
a1 C 2.a2 C a3/C a4

Simple matching (M) 1 1 a1 C a4
p

Russel and Rao (RR) – – a1
p

Dice 0 0.5 2a1
2a1 C .a2 C a3/

Kulczynski – – a1
a2 C a3
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for i D 1; : : : ; n and k D 1; : : : ; p. This means that we transform the observations
of the k-th variable to 1 if it is larger than the mean value of all observations of the
k-th variable. Let us only consider the data points 17 to 19 (Renault 19, Rover and
Toyota Corolla) which lead to .3� 3/ distance matrices. The Jaccard measure gives
the similarity matrix

D D
0

@
1:000 0:000 0:400

1:000 0:167

1:000

1

A ;

the Tanimoto measure yields

D D
0

@
1:000 0:000 0:455

1:000 0:231

1:000

1

A ;

whereas the Simple Matching measure gives

D D
0

@
1:000 0:000 0:625

1:000 0:375

1:000

1

A :

Distance Measures for Continuous Variables

A wide variety of distance measures can be generated by the Lr -norms, r � 1,

dij D jjxi � xj jjr D
(

pX

kD1
jxik � xjkjr

) 1=r

: (13.3)

Here xik denotes the value of the k-th variable on object i . It is clear that dii D 0 for
i D 1; : : : ; n. The class of distances (13.3) for varying r measures the dissimilarity
of different weights. The L1-metric, for example, gives less weight to outliers than
the L2-norm (Euclidean norm). It is common to consider the squared L2-norm.

Example 13.2 Suppose we have x1 D .0; 0/; x2 D .1; 0/ and x3 D .5; 5/. Then the
distance matrix for the L1-norm is

D1 D
0

@
0 1 10

1 0 9

10 9 0

1

A ;
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and for the squared L2- or Euclidean norm

D2 D
0

@
0 1 50

1 0 41

50 41 0

1

A :

One can see that the third observation x3 receives much more weight in the squared
L2-norm than in the L1-norm.

An underlying assumption in applying distances based on Lr -norms is that the
variables are measured on the same scale. If this is not the case, a standardisation
should first be applied. This corresponds to using a more general L2- or Euclidean
norm with a metric A, where A > 0 (see Sect. 2.6):

d2ij D kxi � xj kA D .xi � xj />A.xi � xj /: (13.4)

L2-norms are given by A D Ip , but if a standardisation is desired, then the
weight matrix A D diag.s�1X1X1 ; : : : ; s

�1
XpXp

/ may be suitable. Recall that sXkXk is
the variance of the k-th component. Hence we have

d2ij D
pX

kD1

.xik � xjk/
2

sXkXk
: (13.5)

Here each component has the same weight in the computation of the distances and
the distances do not depend on a particular choice of the units of measure.

Example 13.3 Consider the French Food expenditures (Table 22.6). The Euclidean
distance matrix (squared L2-norm) is

D D 104�

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0:00 5:82 58:19 3:54 5:15 151:44 16:91 36:15 147:99 51:84 102:56 271:83

0:00 41:73 4:53 2:93 120:59 13:52 25:39 116:31 43:68 76:81 226:87

0:00 44:14 40:10 24:12 29:95 8:17 25:57 20:81 20:30 88:62

0:00 0:76 127:85 5:62 21:70 124:98 31:21 72:97 231:57

0:00 121:05 5:70 19:85 118:77 30:82 67:39 220:72

0:00 96:57 48:16 1:80 60:52 28:90 29:56

0:00 9:20 94:87 11:07 42:12 179:84

0:00 46:95 6:17 18:76 113:03

0:00 61:08 29:62 31:86

0:00 15:83 116:11

0:00 53:77

0:00

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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Taking the weight matrixA D diag.s�1X1X1 ; : : : ; s
�1
X7X7

/, we obtain the distance matrix
(squared L2-norm)

D D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0:00 6:85 10:04 1:68 2:66 24:90 8:28 8:56 24:61 21:55 30:68 57:48

0:00 13:11 6:59 3:75 20:12 13:13 12:38 15:88 31:52 25:65 46:64

0:00 8:03 7:27 4:99 9:27 3:88 7:46 14:92 15:08 26:89

0:00 0:64 20:06 2:76 3:82 19:63 12:81 19:28 45:01

0:00 17:00 3:54 3:81 15:76 14:98 16:89 39:87

0:00 17:51 9:79 1:58 21:32 11:36 13:40

0:00 1:80 17:92 4:39 9:93 33:61

0:00 10:50 5:70 7:97 24:41

0:00 24:75 11:02 13:07

0:00 9:13 29:78

0:00 9:39

0:00

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

(13.6)

When applied to contingency tables, a �2-metric is suitable to compare (and
cluster) rows and columns of a contingency table.

If X is a contingency table, row i is characterised by the conditional frequency
distribution xij

xi�
, where xi� D Pp

jD1 xij indicates the marginal distributions over
the rows: xi�

x��
; x�� D Pn

iD1 xi�. Similarly, column j of X is characterised by the

conditional frequencies xij

x�j
, where x�j D Pn

iD1 xij. The marginal frequencies of

the columns are x�j

x��
.

The distance between two rows, i1 and i2, corresponds to the distance between
their respective frequency distributions. It is common to define this distance using
the �2-metric:

d2.i1; i2/ D
pX

jD1

1
�
x�j

x��

�

�
xi1j

xi1�
� xi2j
xi2�

�2

: (13.7)

Note that this can be expressed as a distance between the vectors x1 D
�
xi1j
x��

�
and

x2 D
�
xi2j

x��

�
as in (13.4) with weighting matrix A D

n
diag

�
x�j

x��

�o�1
. Similarly, if

we are interested in clusters among the columns, we can define:

d2.j1; j2/ D
nX

iD1

1
�
xi�
x��

�

�
xij1

x�j1
� xij2

x�j2

�2

:
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Apart from the Euclidean and the Lr -norm measures one can use a proximity
measure such as the Q-correlation coefficient

dij D
Pp

kD1.xik � xi /.xjk � xj /
˚Pp

kD1.xik � xi /2Pp

kD1.xjk � xj /2
�1=2 : (13.8)

Here xi denotes the mean over the variables .xi1; : : : ; xip/.

Summary
,! The proximity between data points is measured by a distance

or similarity matrix D whose components dij give the similarity
coefficient or the distance between two points xi and xj .

,! A variety of similarity (distance) measures exist for binary data
(e.g. Jaccard, Tanimoto, Simple Matching coefficients) and for
continuous data (e.g. Lr -norms).

,! The nature of the data could impose the choice of a particular
metric A in defining the distances (standardisation, �2-metric etc.).

13.3 Cluster Algorithms

There are essentially two types of clustering methods: hierarchical algorithms and
partitioning algorithms. The hierarchical algorithms can be divided into agglomer-
ative and splitting procedures. The first type of hierarchical clustering starts from
the finest partition possible (each observation forms a cluster) and groups them. The
second type starts with the coarsest partition possible: one cluster contains all of the
observations. It proceeds by splitting the single cluster up into smaller sized clusters.

The partitioning algorithms start from a given group definition and proceed by
exchanging elements between groups until a certain score is optimised. The main
difference between the two clustering techniques is that in hierarchical clustering
once groups are found and elements are assigned to the groups, this assignment
cannot be changed. In partitioning techniques, on the other hand, the assignment of
objects into groups may change during the algorithm application.
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Hierarchical Algorithms, Agglomerative Techniques

Agglomerative algorithms are used quite frequently in practice. The algorithm
consists of the following steps:

Algorithm Hierarchical algorithms-agglomerative technique
1: Construct the finest partition
2: Compute the distance matrix D.
3: repeat
4: Find the two clusters with the closest distance
5: Put those two clusters into one cluster
6: Compute the distance between the new groups and obtain a reduced distance matrix D
7: until all clusters are agglomerated into X

If two objects or groups say, P and Q, are united, one computes the distance
between this new group (object) P CQ and group R using the following distance
function:

d.R;P CQ/ D ı1d.R;P /C ı2d.R;Q/C ı3d.P;Q/C ı4jd.R;P /� d.R;Q/j:
(13.9)

The ıj ’s are weighting factors that lead to different agglomerative algorithms as
described in Table 13.2. Here nP D Pn

iD1 I.xi 2 P/ is the number of objects in
group P . The values of nQ and nR are defined analogously.

For the most common used Single and Complete linkages, below are the modified
agglomerative algorithm steps:

As instead of computing new distance matrixes every step, a linear search in the
original distance matrix is enough for clustering in the modified algorithm, it is more
efficient in practice.

Table 13.2 Computations of group distances

Name ı1 ı2 ı3 ı4

Single linkage 1/2 1/2 0 �1/2

Complete linkage 1/2 1/2 0 1/2

Average linkage (unweighted) 1/2 1/2 0 0

Average linkage (weighted) nP
nP C nQ

nQ
nP C nQ 0 0

Centroid nP
nP C nQ

nQ
nP C nQ � nP nQ

.nP C nQ/2 0

Median 1/2 1/2 �1=4 0

Ward nR C nP
nR C nP C nQ

nR C nQ
nR C nP C nQ � nR

nR C nP C nQ 0
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Algorithm Modified hierarchical algorithms-agglomerative technique
1: Construct the finest partition
2: Compute the distance matrix D.
3: repeat
4: Find the smallest (Single linkage)/ largest (Complete linkage) value d (between objects m

and n) in D
5: Ifm and n are not in the same cluster, combine the clusters m and n belonging to together,

and delete the smallest value
6: until all clusters are agglomerated into X or the value d exceeds the preset level

Example 13.4 Let us examine the agglomerative algorithm for the three points in
Example 13.2, x1 D .0; 0/, x2 D .1; 0/ and x3 D .5; 5/, and the squared Euclidean
distance matrix with single linkage weighting. The algorithm starts with N D 3

clusters: P D fx1g, Q D fx2g and R D fx3g. The distance matrix D2 is given in
Example 13.2. The smallest distance in D2 is the one between the clusters P and
Q. Therefore, applying step 4 in the above algorithm we combine these clusters to
form P C Q D fx1; x2g. The single linkage distance between the remaining two
clusters is from Table 13.2 and (13.9) equal to

d.R;P CQ/ D 1

2
d.R;P /C 1

2
d.R;Q/� 1

2
jd.R;P / � d.R;Q/j

D 1

2
d13 C 1

2
d23 � 1

2
� jd13 � d23j

D 50

2
C 41

2
� 1
2
� j50� 41j

D 41: (13.10)

The reduced distance matrix is then
�
0
41
41
0

�
. The next and last step is to unite the

clusters R and P CQ into a single cluster X , the original data matrix.

When there are more data points than in the example above, a visualisation of
the implication of clusters is desirable. A graphical representation of the sequence
of clustering is called a dendrogram. It displays the observations, the sequence of
clusters and the distances between the clusters. The vertical axis displays the indices
of the points, whereas the horizontal axis gives the distance between the clusters.
Large distances indicate the clustering of heterogeneous groups. Thus, if we choose
to “cut the tree” at a desired level, the branches describe the corresponding clusters.
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Fig. 13.1 The 8-point
example MVAclus8p
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Example 13.5 Here we describe the single linkage algorithm for the eight data
points displayed in Fig. 13.1. The distance matrix (L2-norms) is

D D

0

B
B
B
B
B
B
B
B
B
B
B
@

0 10 53 73 50 98 41 65

0 25 41 20 80 37 65

0 2 1 25 18 34

0 5 17 20 32

0 36 25 45

0 13 9

0 4

0

1

C
C
C
C
C
C
C
C
C
C
C
A

and the dendrogram is shown in Fig. 13.2.
If we decide to cut the tree at the level 10, three clusters are defined: f1; 2g,

f3; 4; 5g and f6; 7; 8g.
The single linkage algorithm defines the distance between two groups as the

smallest value of the individual distances. Table 13.2 shows that in this case

d.R;P CQ/ D minfd.R;P /; d.R;Q/g: (13.11)

This algorithm is also called the Nearest Neighbour algorithm. As a consequence
of its construction, single linkage tends to build large groups. Groups that differ but
are not well separated may thus be classified into one group as long as they have
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Fig. 13.2 The dendrogram
for the 8-point example,
single linkage algorithm
MVAclus8p
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two approximate points. The complete linkage algorithm tries to correct this kind
of grouping by considering the largest (individual) distances. Indeed, the complete
linkage distance can be written as

d.R;P CQ/ D maxfd.R;P /; d.R;Q/g: (13.12)

It is also called the Farthest Neighbour algorithm. This algorithm will cluster
groups where all the points are proximate, since it compares the largest distances.
The average linkage algorithm (weighted or unweighted) proposes a compromise
between the two preceding algorithms, in that it computes an average distance:

d.R;P CQ/ D nP

nP C nQ d.R;P /C
nQ

nP C nQ d.R;Q/: (13.13)

The centroid algorithm is quite similar to the average linkage algorithm and uses
the natural geometrical distance between R and the weighted centre of gravity of P
andQ (see Fig. 13.3):

d.R;P CQ/ D nP

nP C nQ d.R;P /C
nQ

nP C nQ d.R;Q/�
nP nQ

.nP C nQ/2 d.P;Q/:
(13.14)

The Ward clustering algorithm computes the distance between groups according
to the formula in Table 13.2. The main difference between this algorithm and the
linkage procedures is in the unification procedure. The Ward algorithm does not put
together groups with smallest distance. Instead, it joins groups that do not increase
a given measure of heterogeneity “too much”. The aim of the Ward procedure is
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Fig. 13.3 The centroid
algorithm

to unify groups such that the variation inside these groups does not increase too
drastically: the resulting groups are as homogeneous as possible.

The heterogeneity of group R is measured by the inertia inside the group. This
inertia is defined as follows:

IR D 1

nR

nRX

iD1
d 2.xi ; xR/ (13.15)

where xR is the centre of gravity (mean) over the groups. IR clearly provides a
scalar measure of the dispersion of the group around its centre of gravity. If the
usual Euclidean distance is used, then IR represents the sum of the variances of the
p components of xi inside groupR.

When two objects or groups P and Q are joined, the new group P CQ has a
larger inertia IPCQ. It can be shown that the corresponding increase of inertia is
given by


.P;Q/ D nP nQ

nP C nQ d2.P;Q/: (13.16)

In this case, the Ward algorithm is defined as an algorithm that “joins the groups
that give the smallest increase in 
.P;Q/”. It is easy to prove that when P and Q
are joined, the new criterion values are given by (13.9) along with the values of ıi
given in Table 13.2, when the centroid formula is used to modify d2.R;P C Q/.
So, the Ward algorithm is related to the centroid algorithm, but with an “inertial”
distance 
 rather than the “geometric” distance d2.

As pointed out in Sect. 13.2, all the algorithms above can be adjusted by the
choice of the metric A defining the geometric distance d2. If the results of a
clustering algorithm are illustrated as graphical representations of individuals in
spaces of low dimension (using principal components (normalised or not) or using
a correspondence analysis for contingency tables), it is important to be coherent in
the choice of the metric used.
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Fig. 13.4 PCA for 20
randomly chosen bank notes
MVAclusbank
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Fig. 13.5 The dendrogram
for the 20 bank notes, Ward
algorithm MVAclusbank
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Example 13.6 As an example we randomly select 20 observations from the bank
notes data and apply the Ward technique using Euclidean distances. Figure 13.4
shows the first two PCs of these data, Fig. 13.5 displays the dendrogram.

Example 13.7 Consider the French food expenditures. As in Chap. 11 we use
standardised data which is equivalent to using A D diag.s�1X1X1 ; : : : ; s

�1
X7X7

/ as
the weight matrix in the L2-norm. The NPCA plot of the individuals was given
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Fig. 13.6 The dendrogram
for the French food
expenditures, Ward algorithm
MVAclusfood
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in Fig. 11.7. The Euclidean distance matrix is of course given by (13.6). The
dendrogram obtained by using the Ward algorithm is shown in Fig. 13.6.

If the aim was to have only two groups, as can be seen in Fig. 13.6, they would
be fCA2, CA3, CA4, CA5, EM5g and fMA2, MA3, MA4, MA5, EM2, EM3,
EM4g. Clustering three groups is somewhat arbitrary (the levels of the distances
are too similar). If we were interested in four groups, we would obtain fCA2,
CA3, CA4g, fEM2, MA2, EM3, MA3g, fEM4, MA4, MA5g and fEM5, CA5g.
This grouping shows a balance between socio-professional levels and size of the
families in determining the clusters. The four groups are clearly well represented in
the NPCA plot in Fig. 11.7.

Summary
,! The class of clustering algorithms can be divided into two types:

hierarchical and partitioning algorithms. Hierarchical algorithms
start with the finest (coarsest) possible partition and put groups
together (split groups apart) step by step. Partitioning algorithms
start from a preliminary clustering and exchange group elements
until a certain score is reached.

,! Hierarchical agglomerative techniques are frequently used in prac-
tice. They start from the finest possible structure (each data point
forms a cluster), compute the distance matrix for the clusters
and join the clusters that have the smallest distance. This step is
repeated until all points are united in one cluster.
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Summary (continued)

,! The agglomerative procedure depends on the definition of the
distance between two clusters. Single linkage, complete linkage,
and Ward distance are frequently used distances.

,! The process of the unification of clusters can be graphically
represented by a dendrogram.

13.4 Boston Housing

Presented multivariate techniques are now applied to the Boston Housing data. We
focus our attention to 14 transformed and standardised variables, see e.g. Fig. 13.7
that provides descriptive statistics via boxplots for two clusters, as discussed in the
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Fig. 13.7 Boxplots of the 14 standardised variables of the Boston housing data MVAclusbh
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Fig. 13.8 Dendrogram of the
Boston housing data using the
Ward algorithm
MVAclusbh
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Table 13.3 Means and
standard errors of the 13
standardised variables for
Cluster 1 (251 observations)
and Cluster 2 (255
observations)
MVAclusbh

Variable Mean C1 SE C1 Mean C2 SE C2

1 �0:7105 0:0332 0:6994 0:0535

2 0:4848 0:0786 �0:4772 0:0047

3 �0:7665 0:0510 0:7545 0:0279

5 �0:7672 0:0365 0:7552 0:0447

6 0:4162 0:0571 �0:4097 0:0576

7 �0:7730 0:0429 0:7609 0:0378

8 0:7140 0:0472 �0:7028 0:0417

9 �0:5429 0:0358 0:5344 0:0656

10 �0:6932 0:0301 0:6823 0:0569

11 �0:5464 0:0469 0:5378 0:0582

12 0:3547 0:0080 �0:3491 0:0824

13 �0:6899 0:0401 0:6791 0:0509

14 0:5996 0:0431 �0:5902 0:0570

sequel. A dendrogram for 13 variables(excluding the dummy variable QX4—Charles
River indicator) using the Ward method is displayed in Fig. 13.8. One observes two
dominant clusters. A further refinement of say, four clusters, could be considered at
a lower level of distance.

To interpret the two clusters, we present the mean values and their respective
standard errors of the 13 QX variables by groups in Table 13.3. Comparison of
the mean values for both groups shows that all the differences in the means are
individually significant. Moreover, cluster one corresponds to housing districts with
better living quality and higher house prices, whereas cluster two corresponds to less
favored districts in Boston. This can be confirmed, for instance, by a lower crime
rate, a higher proportion of residential land, lower proportion of African American,
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Fig. 13.9 Scatterplot matrix for variables QX1 to QX7 of the Boston housing data MVAclusbh

etc. for cluster one. Cluster two is identified by a higher proportion of older houses,
a higher pupil/teacher ratio and a higher percentage of the lower status population.

This interpretation is underlined by visual inspection of all the variables via
scatterplot matrices, see e.g. Figs. 13.9 and 13.10. For example, the lower right
boxplot of Fig. 13.7 and the correspondingly coloured clusters in the last row
of Fig. 13.10 confirm the role of each variable in determining the clusters. This
interpretation perfectly coincides with the previous PC analysis (Fig. 11.11). The
quality of life factor is clearly visible in Fig. 13.11, where cluster membership is
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distinguished by the shape and colour of the points graphed according to the first
two principal components. Clearly, the first PC completely separates the two clusters
and corresponds, as we have discussed in Chap. 11, to a quality of life and house
indicator.
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Fig. 13.11 Scatterplot of the
first two PCs displaying the
two clusters MVAclusbh
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13.5 Exercises

Exercise 13.1 Prove formula (13.16).

Exercise 13.2 Prove that IR D tr.SR/, where SR denotes the empirical covariance
matrix of the observations contained in R.

Exercise 13.3 Prove that


.R;P CQ/ D nR C nP
nR C nP C nQ 
.R;P /C nR C nQ

nR C nP C nQ 
.R;Q/

� nR

nR C nP C nQ 
.P;Q/;

when the centroid formula is used to define d2.R;P CQ/.
Exercise 13.4 Repeat the 8-point example (Example 13.5) using the complete
linkage and the Ward algorithm. Explain the difference to single linkage.

Exercise 13.5 Explain the differences between various proximity measures by
means of an example.

Exercise 13.6 Repeat the bank notes example (Example 13.6) with another random
sample of 20 notes.

Exercise 13.7 Repeat the bank notes example (Example 13.6) with another cluster-
ing algorithm.
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Exercise 13.8 Repeat the bank notes example (Example 13.6) or the 8-point
example (Example 13.5) with the L1-norm.

Exercise 13.9 Analyse the US companies example (Table 22.5) using the Ward
algorithm and the L2-norm.

Exercise 13.10 Analyse the US crime data set (Table 22.10) with the Ward algo-
rithm and the L2-norm on standardised variables (use only the crime variables).

Exercise 13.11 Repeat Exercise 13.10 with the US health data set (use only the
number of deaths variables).

Exercise 13.12 Redo Exercise 13.10 with the �2-metric. Compare the results.

Exercise 13.13 Redo Exercise 13.11 with the �2-metric and compare the results.



Chapter 14
Discriminant Analysis

Discriminant analysis is used in situations where the clusters are known a priori. The
aim of discriminant analysis is to classify an observation, or several observations,
into these known groups. For instance, in credit scoring, a bank knows from
past experience that there are good customers (who repay their loan without any
problems) and bad customers (who showed difficulties in repaying their loan). When
a new customer asks for a loan, the bank has to decide whether or not to give the
loan. The past records of the bank provides two data sets: multivariate observations
xi on the two categories of customers (including for example age, salary, marital
status, the amount of the loan, etc.). The new customer is a new observation x with
the same variables. The discrimination rule has to classify the customer into one of
the two existing groups and the discriminant analysis should evaluate the risk of a
possible “bad decision”.

Many other examples are described below, and in most applications, the groups
correspond to natural classifications or to groups known from history (like in the
credit scoring example). These groups could have been formed by a cluster analysis
performed on past data.

Section 14.1 presents the allocation rules when the populations are known, i.e.
when we know the distribution of each population. As described in Sect. 14.2
in practice the population characteristics have to be estimated from history. The
methods are illustrated in several examples.

14.1 Allocation Rules for Known Distributions

Discriminant analysis is a set of methods and tools used to distinguish between
groups of populations …j and to determine how to allocate new observations into
groups. In one of our running examples we are interested in discriminating between
counterfeit and true bank notes on the basis of measurements of these bank notes,

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_14
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see Sect. 22.2. In this case we have two groups (counterfeit and genuine bank
notes) and we would like to establish an algorithm (rule) that can allocate a new
observation (a new bank note) into one of the groups.

Another example is the detection of “fast” and “slow” consumers of a newly
introduced product. Using a consumer’s characteristics like education, income,
family size, amount of previous brand switching, we want to classify each consumer
into the two groups just identified.

In poetry and literary studies the frequencies of spoken or written words and
lengths of sentences indicate profiles of different artists and writers. It can be of
interest to attribute unknown literary or artistic works to certain writers with a
specific profile. Anthropological measures on ancient sculls help in discriminating
between male and female bodies. Good and poor credit risk ratings constitute a
discrimination problem that might be tackled using observations on income, age,
number of credit cards, family size, etc.

In general we have populations …j ; j D 1; 2; : : : ; J and we have to allocate
an observation x to one of these groups. A discriminant rule is a separation of the
sample space (in general Rp) into sets Rj such that if x 2 Rj , it is identified as a
member of population…j .

The main task of discriminant analysis is to find “good” regionsRj such that the
error of misclassification is small. In the following we describe such rules when the
population distributions are known.

Maximum Likelihood Discriminant Rule

Denote the densities of each population …j by fj .x/. The maximum likelihood
discriminant rule (ML rule) is given by allocating x to …j maximising the
likelihood Lj .x/ D fj .x/ D arg maxi fi .x/.

If several fi give the same maximum then any of them may be selected.
Mathematically, the sets Rj given by the ML discriminant rule are defined as

Rj D fx W Lj .x/ > Li.x/ for i D 1; : : : ; J; i ¤ j g: (14.1)

By classifying the observation into a certain group we may encounter a misclas-
sification error. For J D 2 groups the probability of putting x into group 2 although
it is from population 1 can be calculated as

p21 D P.X 2 R2j…1/ D
Z

R2

f1.x/dx: (14.2)
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Similarly the conditional probability of classifying an object as belonging to the first
population…1 although it actually comes from…2 is

p12 D P.X 2 R1j…2/ D
Z

R1

f2.x/dx: (14.3)

The misclassified observations create a cost C.i jj / when a …j observation is
assigned to Ri . In the credit risk example, this might be the cost of a “sour” credit.
The cost structure can be pinned down in a cost matrix:

Classified population

…1 …2

…1 0 C.2j1/
True population

…2 C.1j2/ 0

Let �j be the prior probability of population …j , where “prior” means the a
priori probability that an individual selected at random belongs to …j (i.e. before
looking to the value x). Prior probabilities should be considered if it is clear ahead
of time that an observation is more likely to stem from a certain population…j : An
example is the classification of musical tunes. If it is known that during a certain
period of time a majority of tunes were written by a certain composer, then there is
a higher probability that a certain tune was composed by this composer. Therefore,
he should receive a higher prior probability when tunes are assigned to a specific
group.

The expected cost of misclassification .ECM/ is given by

ECM D C.2j1/p21�1 C C.1j2/p12�2: (14.4)

We will be interested in classification rules that keep the ECM small or minimise
it over a class of rules. The discriminant rule minimising the ECM (14.4) for two
populations is given below.

Theorem 14.1 For two given populations, the rule minimising the ECM is given by

R1 D



x W f1.x/
f2.x/

�
�
C.1j2/
C.2j1/

��
�2

�1

�


R2 D



x W f1.x/
f2.x/

<

�
C.1j2/
C.2j1/

��
�2

�1

�
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The ML discriminant rule is thus a special case of the ECM rule for equal
misclassification costs and equal prior probabilities. For simplicity the unity cost
case, C.1j2/ D C.2j1/ D 1, and equal prior probabilities, �2 D �1, are assumed in
the following.

Theorem 14.1 will be proven by an example from credit scoring.

Example 14.1 Suppose that …1 represents the population of bad clients who create
the cost C.2j1/ if they are classified as good clients. Analogously, define C.1j2/ as
the cost of loosing a good client classified as a bad one. Let � denote the gain of the
bank for the correct classification of a good client. The total gain of the bank is then

G.R2/ D �C.2j1/�1
Z

I.x 2 R2/f1.x/dx

�C.1j2/�2
Z

f1 � I.x 2 R2/gf2.x/dxC � �2
Z

I.x 2 R2/f2.x/dx

D �C.1j2/�2 C
Z

I.x 2 R2/f�C.2j1/�1f1.x/

C.C.1j2/C �/�2f2.x/gdx

Since the first term in this equation is constant, the maximum is obviously obtained
for

R2 D f x W �C.2j1/�1f1.x/C fC.1j2/C �g�2f2.x/ � 0 g:

This is equivalent to

R2 D



x W f2.x/
f1.x/

� C.2j1/�1
fC.1j2/C �g�2




;

which corresponds to the set R2 in Theorem 14.1 for a gain of � D 0:
Example 14.2 Suppose x 2 f0; 1g and

…1 W P.X D 0/ D P.X D 1/ D 1

2

…2 W P.X D 0/ D 1

4
D 1 � P.X D 1/:

The sample space is the set f0; 1g. The ML discriminant rule is to allocate x D 0 to
…1 and x D 1 to …2, defining the sets R1 D f0g, R2 D f1g and R1 [R2 D f0; 1g.
Example 14.3 Consider two normal populations

…1 W N.�1; �21 /;
…2 W N.�2; �22 /:
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Then

Li.x/ D .2��2i /�1=2 exp

(

�1
2

�
x � �i
�i

�2
)

:

Hence x is allocated to …1 (x 2 R1) if L1.x/ � L2.x/. Note that L1.x/ � L2.x/
is equivalent to

�2

�1
exp

"

�1
2

(�
x � �1
�1

�2

�
�
x � �2
�2

�2
)#

� 1

or

x2
�
1

�21
� 1

�22

�

� 2x
�
�1

�21
� �2
�22

�

C
�
�21
�21
� �

2
2

�22

�

� 2 log
�2

�1
: (14.5)

Suppose that �1 D 0, �1 D 1 and �2 D 1, �2 D 1
2
. Formula (14.5) leads to

R1 D



x W x � 1

3

�
4 �p4C 6 log.2/

�
or x � 1

3

�
4Cp4C 6 log.2/

�


;

R2 D R n R1:

This situation is shown in Fig. 14.1.
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The situation simplifies in the case of equal variances �1 D �2. The discriminant
rule (14.5) is then (for �1 < �2)

x ! …1; if x 2 R1 D fx W x � 1
2
.�1 C �2/g;

x ! …2; if x 2 R2 D fx W x > 1
2
.�1 C �2/g: (14.6)

Theorem 14.2 shows that the ML discriminant rule for multinormal observations
is intimately connected with the Mahalanobis distance. The discriminant rule is
based on linear combinations and belongs to the family of linear discriminant
analysis (LDA) methods.

Theorem 14.2 Suppose…i D Np.�i ;†/.
(a) The ML rule allocates x to …j , where j 2 f1; : : : ; J g is the value minimising

the square Mahalanobis distance between x and �i :

ı2.x; �i / D .x � �i/>†�1.x � �i/ ; i D 1; : : : ; J :

(b) In the case of J D 2,

x 2 R1 ” ˛>.x � �/ � 0 ;

where ˛ D †�1.�1 � �2/ and � D 1
2
.�1 C �2/.

Proof Part (a) of the theorem follows directly from comparison of the likelihoods.
For J D 2, part (a) says that x is allocated to …1 if

.x � �1/>†�1.x � �1/ � .x � �2/>†�1.x � �2/

Rearranging terms leads to

�2�>1 †�1x C 2�>2 †�1x C �>1 †�1�1 � �>2 †�1�2 � 0;

which is equivalent to

2.�2 � �1/>†�1x C .�1 � �2/>†�1.�1 C �2/ � 0;

.�1 � �2/>†�1



x � 1
2
.�1 C �2/




� 0;

˛>.x � �/ � 0:

ut
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Bayes Discriminant Rule

We have seen an example where prior knowledge on the probability of classifi-
cation into …j was assumed. Denote the prior probabilities by �j and note that
PJ

jD1 �j D 1. The Bayes rule of discrimination allocates x to the…j that gives the
largest value of �ifi .x/, �j fj .x/ D maxi �ifi .x/. Hence, the discriminant rule is
defined by Rj D fx W �j fj .x/ � �ifi .x/ for i D 1; : : : ; J g. Obviously the Bayes
rule is identical to the ML discriminant rule for �j D 1=J .

A further modification is to allocate x to …j with a certain probability �j .x/,
such that

PJ
jD1 �j .x/ D 1 for all x. This is called a randomised discriminant rule.

A randomised discriminant rule is a generalisation of deterministic discriminant
rules since

�j .x/ D


1 if �j fj .x/ D maxi �i fi .x/;
0 otherwise

reflects the deterministic rules.
Which discriminant rules are good? We need a measure of comparison. Denote

pij D
Z

�i .x/fj .x/dx (14.7)

as the probability of allocating x to …i if it in fact belongs to …j . A discriminant
rule with probabilitiespij is as good as any other discriminant rule with probabilities
p0ij if

pii � p0ii for all i D 1; : : : ; J: (14.8)

We call the first rule better if the strict inequality in (14.8) holds for at least one i . A
discriminant rule is called admissible if there is no better discriminant rule.

Theorem 14.3 All Bayes discriminant rules (including the ML rule) are admissible.

Probability of Misclassification for the ML Rule (J D 2)

Suppose that …i D Np.�i ;†/. In the case of two groups, it is not difficult to
derive the probabilities of misclassification for the ML discriminant rule. Consider
for instance p12 D P.x 2 R1 j …2/. By part (b) in Theorem 14.2 we have

p12 D Pf˛>.x � �/ > 0 j …2g:
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If X 2 R2, ˛>.X � �/ � N
�� 1

2
ı2; ı2

�
where ı2 D .�1 � �2/>†�1.�1 � �2/ is

the squared Mahalanobis distance between the two populations, we obtain

p12 D ˆ
�

�1
2
ı

�

:

Similarly, the probability of being classified into population 2 although x stems from
…1 is equal to p21 D ˆ

�� 1
2
ı
�
.

Classification with Different Covariance Matrices

The minimum ECM depends on the ratio of the densities f1.x/

f2.x/
or equivalently on the

difference logff1.x/g� logff2.x/g. When the covariance for both density functions
differ, the allocation rule becomes more complicated:

R1 D



x W �1
2
x>.†�11 �†�12 /x C .�>1 †�11 � �>2 †�12 /x � k

� log

��
C.1j2/
C.2j1/

��
�2

�1

��


;

R2 D



x W �1
2
x>.†�11 �†�12 /x C .�>1 †�11 � �>2 †�12 /x � k

< log

��
C.1j2/
C.2j1/

��
�2

�1

��


;

where k D 1
2

log
� j†1j
j†2j

�
C 1

2
.�>1 †�11 �1 � �>2 †�12 �2/. The classification regions

are defined by quadratic functions. Therefore they belong to the family of quadratic
discriminant analysis (QDA) methods. This quadratic classification rule coincides
with the rules used when †1 D †2, since the term 1

2
x>.†�11 �†�12 /x disappears.

Summary
,! Discriminant analysis is a set of methods used to distinguish among

groups in data and to allocate new observations into the existing
groups.

,! Given that data are from populations …j with densities fj , j D
1; : : : ; J , the maximum likelihood discriminant rule (ML rule)
allocates an observation x to that population …j which has the
maximum likelihood Lj .x/ D fj .x/ D maxi fi .x/.
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Summary (continued)

,! Given prior probabilities �j for populations …j , Bayes discrim-
inant rule allocates an observation x to the population …j that
maximises �ifi .x/ with respect to i . All Bayes discriminant rules
(incl. the ML rule) are admissible.

,! For the ML rule and J D 2 normal populations, the probabilities
of misclassification are given by p12 D p21 D ˆ

�� 1
2
ı
�

where ı is
the Mahalanobis distance between the two populations.

,! Classification of two normal populations with different covariance
matrices (ML rule) leads to regions defined by a quadratic function.

,! Desirable discriminant rules have a low ECM.

14.2 Discrimination Rules in Practice

The ML rule is used if the distribution of the data is known up to parameters.
Suppose for example that the data come from multivariate normal distributions
Np.�j ;†/. If we have J groups with nj observations in each group, we use xj
to estimate �j , and Sj to estimate†. The common covariance may be estimated by

Su D
JX

jD1
nj

� Sj
n � J

�

; (14.9)

with n D PJ
jD1 nj . Thus the empirical version of the ML rule of Theorem 14.2 is

to allocate a new observation x to …j such that j minimises

.x � xi />S�1u .x � xi / for i 2 f1; : : : ; J g:

Example 14.4 Let us apply this rule to the Swiss bank notes. The 20 randomly
chosen bank notes which we had clustered into two groups in Example 13.6 are
used. First the covariance † is estimated by the average of the covariances of …1

(cluster 1) and …2 (cluster 2). The hyperplane Ǫ>.x � x/ D 0 which separates the
two populations is given by

Ǫ D S�1u .x1 � x2/ D .�12:18; 20:54;�19:22;�15:55;�13:06; 21:43/> ;

x D 1

2
.x1 C x2/ D .214:79; 130:05; 129:92; 9:23; 10:48; 140:46/> :
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Now let us apply the discriminant rule to the entire bank notes data set. Counting
the number of misclassifications by

100X

iD1
If Ǫ>.xi � x/ < 0g;

200X

iD101
If Ǫ>.xi � x/ > 0g;

we obtain 1 misclassified observation for the counterfeit bank notes and 0 misclas-
sification for the genuine bank notes.

When J D 3 groups, the allocation regions can be calculated using

h12.x/ D .x1 � x2/>S�1u




x � 1
2
.x1 C x2/




h13.x/ D .x1 � x3/>S�1u




x � 1
2
.x1 C x3/




h23.x/ D .x2 � x3/>S�1u




x � 1
2
.x2 C x3/




:

The rule is to allocate x to

8
<

:

…1 if h12.x/ � 0 and h13.x/ � 0
…2 if h12.x/ < 0 and h23.x/ � 0
…3 if h13.x/ < 0 and h23.x/ < 0:

Estimation of the Probabilities of Misclassifications

Misclassification probabilities are given by (14.7) and can be estimated by replacing
the unknown parameters by their corresponding estimators.

For the ML rule for two normal populations we obtain

Op12 D Op21 D ˆ
�

�1
2
Oı
�

where Oı2 D . Nx1 � Nx2/>S�1u . Nx1 � Nx2/ is the estimator for ı2.

The probabilities of misclassification may also be estimated by the re-substitution
method. We reclassify each original observation xi , i D 1; : : : ; n into …1; : : : ;…J

according to the chosen rule. Then denoting the number of individuals coming from
…j which have been classified into …i by nij, we have Opij D nij

nj
, an estimator of

pij. Clearly, this method leads to too optimistic estimators of pij, but it provides a
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rough measure of the quality of the discriminant rule. The matrix . Opij/ is called the
confusion matrix in Johnson and Wichern (1998).

Example 14.5 In the above classification problem for the Swiss bank notes
(Sect. 22.2), we have the following confusion matrix: MVAaper

true membership

genuine (˘1) counterfeit (˘2)
˘1 100 1

predicted

˘2 0 99

The apparent error rate (APER) is defined as the fraction of observations that
are misclassified. The APER, expressed as a percentage, is

APER D
�
1

200

�

100% D 0:5%:

For the calculation of the APER we use the observations twice: the first time to
construct the classification rule and the second time to evaluate this rule. An APER
of 0:5% might therefore be too optimistic. An approach that corrects for this bias
is based on the holdout procedure of Lachenbruch and Mickey (1968). For two
populations this procedure is as follows:

1. Start with the first population …1. Omit one observation and develop the
classification rule based on the remaining n1 � 1; n2 observations.

2. Classify the “holdout” observation using the discrimination rule in Step 1.
3. Repeat steps 1 and 2 until all of the …1 observations are classified. Count the

number n021 of misclassified observations.
4. Repeat steps 1 through 3 for population…2. Count the number n012 of misclassi-

fied observations.

Estimates of the misclassification probabilities are given by

Op012 D
n012
n2

and

Op021 D
n021
n1
:

A more realistic estimator of the actual error rate (AER) is given by

n012 C n021
n2 C n1 : (14.10)
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Statisticians favor the AER (for its unbiasedness) over the APER. In large samples,
however, the computational costs might counterbalance the statistical advantage.
This is not a real problem since the two misclassification measures are asymptoti-
cally equivalent.

Fisher’s Linear Discrimination Function

Another approach stems from R.A. Fisher. His idea was to base the discriminant rule
on a projection a>x such that a good separation was achieved. This LDA projection
method is called Fisher’s linear discrimination function. If

Y D Xa

denotes a linear combination of observations, then the total sum of squares of y,Pn
iD1.yi � Ny/2, is equal to

Y>HY D a>X>HXa D a>T a (14.11)

with the centering matrix H D I � n�11n1>n and T D X>HX .
Suppose we have samples Xj , j D 1; : : : ; J , from J populations. Fisher’s

suggestion was to find the linear combination a>x which maximises the ratio of
the between-group-sum of squares to the within-group-sum of squares.

The within-group-sum of squares is given by

JX

jD1
Y>j HjYj D

JX

jD1
a>X>j HjXj a D a>Wa; (14.12)

where Yj denotes the j -th sub-matrix of Y corresponding to observations of group
j and Hj denotes the .nj �nj / centering matrix. The within-group-sum of squares
measures the sum of variations within each group.

The between-group-sum of squares is

JX

jD1
nj .yj � y/2 D

JX

jD1
nj fa>.xj � x/g2 D a>Ba; (14.13)

where yj and xj denote the means of Yj and Xj and y and x denote the sample
means of Y and X . The between-group-sum of squares measures the variation of
the means across groups.
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The total sum of squares (14.11) is the sum of the within-group-sum of squares
and the between-group-sum of squares, i.e.

a>T a D a>WaC a>Ba:

Fisher’s idea was to select a projection vector a that maximises the ratio

a>Ba
a>Wa

: (14.14)

The solution is found by applying Theorem 2.5.

Theorem 14.4 The vector a that maximises (14.14) is the eigenvector of W�1B
that corresponds to the largest eigenvalue.

Now a discrimination rule is easy to obtain:
classify x into group j where a> Nxj is closest to a>x, i.e.

x ! …j where j D arg min
i
ja>.x � Nxi /j:

When J D 2 groups, the discriminant rule is easy to compute. Suppose that
group 1 has n1 elements and group 2 has n2 elements. In this case

B D
�n1n2

n

�
dd>;

where d D .x1 � x2/. W�1B has only one eigenvalue which equals

tr.W�1B/ D
�n1n2

n

�
d>W�1d;

and the corresponding eigenvector is a D W�1d . The corresponding discriminant
rule is

x ! …1 if a>fx � 1
2
.x1 C x2/g > 0;

x ! …2 if a>fx � 1
2
.x1 C x2/g � 0: (14.15)

The Fisher LDA is closely related to projection pursuit (Chap. 20) since the
statistical technique is based on a one-dimensional index a>x.

Example 14.6 Consider the bank notes data again. Let us use the subscript “g” for
the genuine and “f ” for the counterfeit bank notes, e.g. Xg denotes the first hundred
observations of X and Xf the second hundred. In the context of the bank data set
the “between-group-sum of squares” is defined as

100
˚
.yg � y/2 C .yf � y/2

� D a>Ba (14.16)
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for some matrix B. Here, yg and yf denote the means for the genuine and
counterfeit bank notes and y D 1

2
.yg C yf /. The “within-group-sum of squares” is

100X

iD1
f.yg/i � ygg2 C

100X

iD1
f.yf /i � yf g2 D a>Wa; (14.17)

with .yg/i D a>xi and .yf /i D a>xiC100 for i D 1; : : : ; 100.
The resulting discriminant rule consists of allocating an observation x0 to the

genuine sample space if

a>.x0 � x/ > 0;

with a DW�1.xg � xf / (see Exercise 14.8) and of allocating x0 to the counterfeit
sample space when the opposite is true. In our case

a D .0:000; 0:029;�0:029;�0:039;�0:041; 0:054/> �

One genuine and no counterfeit bank notes are misclassified. Figure 14.2 shows the
estimated densities for yg D a>Xg and yf D a>Xf . They are separated better than
those of the diagonals in Fig. 1.9.

Note that the allocation rule (14.15) is exactly the same as the ML rule for J D 2
groups and for normal distributions with the same covariance. For J D 3 groups
this rule will be different, except for the special case of collinear sample means.

Fig. 14.2 Densities of
projections of genuine and
counterfeit bank notes by
Fisher’s discrimination rule
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Summary
,! A discriminant rule is a separation of the sample space into setsRj .

An observation x is classified as coming from population …j if it
lies in Rj .

,! The ECM for two populations is given by ECM D C.2j1/p21�1 C
C.1j2/p12�2.

,! The ML rule is applied if the distributions in the populations are
known up to parameters, e.g. for normal distributionsNp.�j ;†/.

,! The ML rule allocates x to the population that exhibits the smallest
Mahalanobis distance

ı2.xI�i / D .x � �i/>†�1.x � �i/:

,! The probability of misclassification is given by

p12 D p21 D ˆ
�

�1
2
ı

�

;

where ı is the Mahalanobis distance between �1 and �2.
,! Classification for different covariance structures in the two popula-

tions leads to quadratic discrimination rules.
,! A different approach is Fisher’s linear discrimination rule which

finds a linear combination a>x that maximises the ratio of the
“between-group-sum of squares” and the “within-group-sum of
squares”. This rule turns out to be identical to the ML rule when
J D 2 for normal populations.

14.3 Boston Housing

One interesting application of discriminant analysis with respect to the Boston
housing data is the classification of the districts according to the house values.
The rationale behind this is that certain observable must determine the value of a
district, as in Sect. 3.7 where the house value was regressed on the other variables.
Two groups are defined according to the median value of houses QX14: in group …1

the value of QX14 is greater than or equal to the median of QX14 and in group …2 the
value of QX14 is less than the median of QX14.
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Table 14.1 APER for price
of Boston houses
MVAdiscbh

True

…1 …2

…1 216 40

Predicted

…2 34 216

Table 14.2 AER for price of
Boston houses MVAaerbh

True

…1 …2

…1 211 42

Predicted

…2 39 214

Table 14.3 APER for
clusters of Boston houses
MVAdiscbh

True

…1 …2

…1 244 13

Predicted

…2 7 242

Table 14.4 AER for clusters
of Boston houses
MVAaerbh

True

…1 …2

…1 244 14

Predicted

…2 7 241

The linear discriminant rule, defined on the remaining 12 variables (excluding QX4
and QX14) is applied. After reclassifying the 506 observations, we obtain an APER
of 0.146. The details are given in Table 14.1. The more appropriate error rate, given
by the AER, is 0.160 (see Table 14.2).

Let us now turn to a group definition suggested by the Cluster Analysis in
Sect. 13.4. Group …1 was defined by higher quality of life and house. We define
the linear discriminant rule using the 13 variables from eX excluding QX4. Then
we reclassify the 506 observations and we obtain an APER of 0.0395. Details are
summarised in Table 14.3. The AER turns out to be 0.0415 (see Table 14.4).

Figure 14.3 displays the values of the linear discriminant scores (see Theo-
rem 14.2) for all of the 506 observations, coloured by groups. One can clearly see
the APER is derived from the seven observations from group …1 with a negative
score and the 13 observations from group…2 with positive score.
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Fig. 14.3 Discrimination scores for the two clusters created from the Boston housing data
MVAdiscbh

14.4 Exercises

Exercise 14.1 Prove Theorem 14.2 (a) and 14.2 (b).

Exercise 14.2 Apply the rule from Theorem 14.2 (b) for p D 1 and compare the
result with that of Example 14.3.

Exercise 14.3 Calculate the ML discrimination rule based on observations of a
one-dimensional variable with an exponential distribution.

Exercise 14.4 Calculate the ML discrimination rule based on observations of a
two-dimensional random variable, where the first component has an exponential
distribution and the other has an alternative distribution. What is the difference
between the discrimination rule obtained in this exercise and the Bayes discrimina-
tion rule?

Exercise 14.5 Apply the Bayes rule to the car data (Table 22.3) in order to
discriminate between Japanese, European and US cars, i.e. J D 3. Consider
only the “miles per gallon” variable and take the relative frequencies as prior
probabilities.

Exercise 14.6 Compute Fisher’s linear discrimination function for the 20 bank
notes from Example 13.6. Apply it to the entire bank data set. How many obser-
vations are misclassified?

Exercise 14.7 Use the Fisher’s linear discrimination function on the WAIS data
set (Table 22.12) and evaluate the results by re-substitution the probabilities of
misclassification.

Exercise 14.8 Show that in Example 14.6

(a) W D 100 �Sg C Sf
�
, where Sg and Sf denote the empirical covariances (3.6)

and (3.5) w.r.t. the genuine and counterfeit bank notes,
(b) B D 100

˚
.xg � x/.xg � x/> C .xf � x/.xf � x/>

�
; where x D 1

2
.xg C

xf /,
(c) a DW�1.xg � xf /:
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Exercise 14.9 Recalculate Example 14.3 with the prior probability �1 D 1
3

and
C.2j1/ D 2C.1j2/.
Exercise 14.10 Explain the effect of changing�1 or C.1j2/ on the relative location
of the region Rj ; j D 1; 2.

Exercise 14.11 Prove that Fisher’s linear discrimination function is identical to the
ML rule when the covariance matrices are identical .J D 2/.
Exercise 14.12 Suppose that x 2 f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10g and

…1 W X � Bi.10; 0:2/ with the prior probability �1 D 0:5I
…2 W X � Bi.10; 0:3/ with the prior probability �2 D 0:3I
…3 W X � Bi.10; 0:5/ with the prior probability �3 D 0:2:

Determine the sets R1, R2 and R3. (Use the Bayes discriminant rule.)



Chapter 15
Correspondence Analysis

Correspondence analysis provides tools for analysing the associations between rows
and columns of contingency tables. A contingency table is a two-entry frequency
table where the joint frequencies of two qualitative variables are reported. For
instance a .2�2/ table could be formed by observing from a sample of n individuals
two qualitative variables: the individual’s sex and whether the individual smokes.
The table reports the observed joint frequencies. In general .n � p/ tables may be
considered.

The main idea of correspondence analysis is to develop simple indices that will
show the relations between the row and the columns categories. These indices will
tell us simultaneously which column categories have more weight in a row category
and vice versa. Correspondence analysis is also related to the issue of reducing the
dimension of the table, similar to principal component analysis in Chap. 11, and to
the issue of decomposing the table into its factors as discussed in Chap. 10. The
idea is to extract the indices in decreasing order of importance so that the main
information of the table can be summarised in spaces with smaller dimensions. For
instance, if only two factors (indices) are used, the results can be shown in two-
dimensional graphs, showing the relationship between the rows and the columns of
the table.

Section 15.1 defines the basic notation and motivates the approach and Sect. 15.2
gives the basic theory. The indices will be used to describe the �2 statistic measuring
the associations in the table. Several examples in Sect. 15.3 show how to provide
and interpret, in practice, the two-dimensional graphs displaying the relationship
between the rows and the columns of a contingency table.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_15
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15.1 Motivation

The aim of correspondence analysis is to develop simple indices that show relations
between the row and columns of a contingency tables. Contingency tables are very
useful to describe the association between two variables in very general situations.
The two variables can be qualitative (nominal), in which case they are also referred
to as categorical variables. Each row and each column in the table represents one
category of the corresponding variable. The entry xij in the table X (with dimension
.n� p/) is the number of observations in a sample which simultaneously fall in the
i th row category and the j th column category, for i D 1; : : : ; n and j D 1; : : : ; p.
Sometimes a “category” of a nominal variable is also called a “modality” of the
variable.

The variables of interest can also be discrete quantitative variables, such as the
number of family members or the number of accidents an insurance company had to
cover during 1 year, etc. Here, each possible value that the variable can have defines
a row or a column category. Continuous variables may be taken into account by
defining the categories in terms of intervals or classes of values which the variable
can take on. Thus contingency tables can be used in many situations, implying that
correspondence analysis is a very useful tool in many applications.

The graphical relationships between the rows and the columns of the table X
that result from correspondence analysis are based on the idea of representing all
the row and column categories and interpreting the relative positions of the points
in terms of the weights corresponding to the column and the row. This is achieved
by deriving a system of simple indices providing the coordinates of each row and
each column. These row and column coordinates are simultaneously represented in
the same graph. It is then clear to see which column categories are more important
in the row categories of the table (and the other way around).

As was already eluded to, the construction of the indices is based on an idea sim-
ilar to that of PCA. Using PCA the total variance was partitioned into independent
contributions stemming from the principal components. Correspondence analysis,
on the other hand, decomposes a measure of association, typically the total �2 value
used in testing independence, rather than decomposing the total variance.

Example 15.1 The French “baccalauréat” frequencies have been classified into
regions and different baccalauréat categories, see Chap. 22, Table 22.8. Altogether
n D 202;100 baccalauréats were observed. The joint frequency of the region
Ile-de-France and the modality Philosophy, for example, is 9,724. That is, 9,724
baccalauréats were in Ile-de-France and the category Philosophy.

The question is whether certain regions prefer certain baccalauréat types. If we
consider, for instance, the region Lorraine, we have the following percentages:

A B C D E F G H

20.5 7.6 15.3 19.6 3.4 14.5 18.9 0.2
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The total percentages of the different modalities of the variable baccalauréat are
as follows:

A B C D E F G H

22.6 10.7 16.2 22.8 2.6 9.7 15.2 0.2

One might argue that the region Lorraine seems to prefer the modalities E, F,
G and dislike the specialisations A, B, C, D relative to the overall frequency of
baccalauréat type.

In correspondence analysis we try to develop an index for the regions so that
this over- or underrepresentation can be measured in just one single number.
Simultaneously we try to weight the regions so that we can see in which region
certain baccalauréat types are preferred.

Example 15.2 Consider n types of companies and p locations of these companies.
Is there a certain type of company that prefers a certain location? Or is there a
location index that corresponds to a certain type of company?

Assume that n D 3, p D 3, and that the frequencies are as follows:

X D
0

@
4 0 2

0 1 1

1 1 4

1

A
 Finance

 Energy

 HiTech

" Frankfurt

" Berlin

" Munich

The frequencies imply that four type three companies (HiTech) are in location 3
(Munich), and so on. Suppose there is a (company) weight vector r D .r1; : : : ; rn/>
such that a location index sj could be defined as

sj D c
nX

iD1
ri
xij

x�j
; (15.1)

where x�j DPn
iD1 xij is the number of companies in location j and c is a constant.

s1, for example, would give the average weighted frequency (by r) of companies in
location 1 (Frankfurt).

Given a location weight vector s� D
�
s�1 ; : : : ; s�p

�>
, we can define a company

index in the same way as

r�i D c�
pX

jD1
s�j
xij

xi�
; (15.2)
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where c� is a constant and xi� D Pp
jD1 xij is the sum of the i th row of X , i.e. the

number of type i companies. Thus r�2 , for example, would give the average weighted
frequency (by s�) of energy companies.

If (15.1) and (15.2) can be solved simultaneously for a “row weight” vector
r D .r1; : : : ; rn/

> and a “column weight” vector s D .s1; : : : ; sp/
>, we may

represent each row category by ri ; i D 1; : : : ; n and each column category by
sj ; j D 1; : : : ; p in a one-dimensional graph. If in this graph ri and sj are in
close proximity (far from the origin), this would indicate that the i th row category
has an important conditional frequency xij=x�j in (15.1) and that the j th column
category has an important conditional frequency xij=xi� in (15.2). This would
indicate a positive association between the i th row and the j th column. A similar
line of argument could be used if ri was very far away from sj (and far from
the origin). This would indicate a small conditional frequency contribution, or a
negative association between the i th row and the j th column.

Summary
,! The aim of correspondence analysis is to develop simple indices

that show relations among qualitative variables in a contingency
table.

,! The joint representation of the indices reveals relations among the
variables.

15.2 Chi-Square Decomposition

An alternative way of measuring the association between the row and column
categories is a decomposition of the value of the �2-test statistic. The well-
known �2-test for independence in a two-dimensional contingency table consists
of two steps. First the expected value of each cell of the table is estimated under
the hypothesis of independence. Second, the corresponding observed values are
compared to the expected values using the statistic

t D
nX

iD1

pX

jD1
.xij � Eij/

2=Eij; (15.3)

where xij is the observed frequency in cell .i; j / and Eij is the corresponding
estimated expected value under the assumption of independence, i.e.

Eij D xi� x�j
x��

: (15.4)
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Here x�� D Pn
iD1 xi�. Under the hypothesis of independence, t has a �2.n�1/.p�1/

distribution. In the industrial location example introduced above the value of t D
6:26 is almost significant at the 5 % level. It is therefore worth investigating the
special reasons for departure from independence.

The method of �2 decomposition consists of finding the SVD of the matrix C .n�
p/ with elements

cij D .xij � Eij/=E
1=2
ij : (15.5)

The elements cij may be viewed as measuring the (weighted) departure between the
observed xij and the theoretical values Eij under independence. This leads to the
factorial tools of Chap. 10 which describe the rows and the columns of C.

For simplification define the matrices A .n � n/ and B .p � p/ as

A D diag.xi�/ and B D diag.x�j /: (15.6)

These matrices provide the marginal row frequencies a.n � 1/ and the marginal
column frequencies b.p � 1/:

a D A1n and b D B1p: (15.7)

It is easy to verify that

C
p
b D 0 and C>

p
a D 0; (15.8)

where the square root of the vector is taken element by element andR D rank.C/ �
minf.n� 1/; .p � 1/g. From (10.14) of Chap. 10, the SVD of C yields

C D 	ƒ
>; (15.9)

where 	 contains the eigenvectors of CC>, 
 the eigenvectors of C>C and ƒ D
diag.�1=21 ; : : : ; �

1=2
R / with �1 � �2 � � � � � �R (the eigenvalues of CC>).

Equation (15.9) implies that

cij D
RX

kD1
�
1=2

k �ikıjk: (15.10)

Note that (15.3) can be rewritten as

tr.CC>/ D
RX

kD1
�k D

nX

iD1

pX

jD1
c2ij D t: (15.11)
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This relation shows that the SVD of C decomposes the total �2 value rather than,
as in Chap. 10, the total variance.

The duality relations between the row and the column space (10.11) are now for
k D 1; : : : ; R given by

ık D 1p
�k
C>�k;

�k D 1p
�k
Cık:

(15.12)

The projections of the rows and the columns of C are given by

Cık D
p
�k�k;

C>�k D
p
�kık:

(15.13)

Note that the eigenvectors satisfy

ı>k
p
b D 0; �>k

p
a D 0: (15.14)

From (15.10) we see that the eigenvectors ık and �k are the objects of interest when
analysing the correspondence between the rows and the columns. Suppose that the
first eigenvalue in (15.10) is dominant so that

cij 	 �1=21 �i1ıj1: (15.15)

In this case when the coordinates �i1 and ıj1 are both large (with the same sign)
relative to the other coordinates, then cij will be large as well, indicating a positive
association between the i th row and the j th column category of the contingency
table. If �i1 and ıj1 were both large with opposite signs, then there would be a
negative association between the i th row and j th column.

In many applications, the first two eigenvalues, �1 and �2, dominate and the
percentage of the total �2 explained by the eigenvectors �1 and �2 and ı1 and ı2 is
large. In this case (15.13) and .�1; �2/ can be used to obtain a graphical display of the
n rows of the table (.ı1; ı2/ play a similar role for the p columns of the table). The
interpretation of the proximity between row and column points will be interpreted
as above with respect to (15.10).

In correspondence analysis, we use the projections of weighted rows of C and
the projections of weighted columns of C for graphical displays. Let rk.n � 1/ be
the projections of A�1=2C on ık and sk.p � 1/ be the projections of B�1=2C> on �k
(k D 1; : : : ; R):

rk D A�1=2Cık D
p
�kA�1=2�k;

sk D B�1=2C>�k D
p
�kB�1=2ık:

(15.16)
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These vectors have the property that

r>k a D 0;
s>k b D 0:

(15.17)

The obtained projections on each axis k D 1; : : : ; R are centred at zero with the
natural weights given by a (the marginal frequencies of the rows of X ) for the row
coordinates rk and by b (the marginal frequencies of the columns of X ) for the
column coordinates sk (compare this to expression (15.14)). As a result, the origin
is the centre of gravity for all of the representations. We also know from (15.16) and
the SVD of C that

r>k Ark D �k;
s>k Bsk D �k:

(15.18)

From the duality relation between ık and �k (see (15.12)) we obtain

rk D 1p
�k
A�1=2CB1=2sk;

sk D 1p
�k
B�1=2C>A1=2rk;

(15.19)

which can be simplified to

rk D
q

x��

�k
A�1X sk;

sk D
q

x��

�k
B�1X>rk:

(15.20)

These vectors satisfy the relations (15.1) and (15.2) for each k D 1; : : : ; R

simultaneously.
As in Chap. 10, the vectors rk and sk are referred to as factors (row factor and

column factor respectively). They have the following means and variances:

rk D 1
x��
r>k a D 0;

sk D 1
x��
s>k b D 0;

(15.21)

Var.rk/ D 1
x��

Pn
iD1 xi�r2ki D r>

k Ark
x��

D �k
x��
;

Var.sk/ D 1
x��

Pp
jD1 x�j s2kj D s>k Bsk

x��
D �k

x��
:

(15.22)

Hence, �k=
Pj

kD1 �j , which is the part of the kth factor in the decomposition of the
�2 statistic t , may also be interpreted as the proportion of the variance explained by
the factor k. The proportions

Ca.i; rk/ D xi�r2ki

�k
; for i D 1; : : : ; n; k D 1; : : : ; R (15.23)
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are called the absolute contributions of row i to the variance of the factor rk. They
show which row categories are most important in the dispersion of the kth row
factors. Similarly, the proportions

Ca.j; sk/ D
x�j s2kj
�k

; for j D 1; : : : ; p; k D 1; : : : ; R (15.24)

are called the absolute contributions of column j to the variance of the column
factor sk . These absolute contributions may help to interpret the graph obtained by
correspondence analysis.

15.3 Correspondence Analysis in Practice

The graphical representations on the axes k D 1; 2; : : : ; R of the n rows and of the p
columns of X are provided by the elements of rk and sk . Typically, two-dimensional
displays are often satisfactory if the cumulated percentage of variance explained by
the first two factors, ‰2 D �1C�2PR

kD1 �k
, is sufficiently large.

The interpretation of the graphs may be summarised as follows:

– The proximity of two rows (two columns) indicates a similar profile in these
two rows (two columns), where “profile” refers to the conditional frequency
distribution of a row (column); those two rows (columns) are almost proportional.
The opposite interpretation applies when the two rows (two columns) are far
apart.

– The proximity of a particular row to a particular column indicates that this row
(column) has a particularly important weight in this column (row). In contrast to
this, a row that is quite distant from a particular column indicates that there are
almost no observations in this column for this row (and vice versa). Of course, as
mentioned above, these conclusions are particularly true when the points are far
away from 0.

– The origin is the average of the factors rk and sk . Hence, a particular point (row
or column) projected close to the origin indicates an average profile.

– The absolute contributions are used to evaluate the weight of each row (column)
in the variances of the factors.

– All the interpretations outlined above must be carried out in view of the quality of
the graphical representation which is evaluated, as in PCA, using the cumulated
percentage of variance.

Remark 15.1 Note that correspondence analysis can also be applied to more general
.n � p/ tables X which in a “strict sense” are not contingency tables.

As long as statistical (or natural) meaning can be given to sums over rows and
columns, Remark 15.1 holds. This implies, in particular, that all of the variables
are measured in the same units. In that case, x�� constitutes the total frequency
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of the observed phenomenon, and is shared between individuals (n rows) and
between variables (p columns). Representations of the rows and columns of X , rk
and sk , have the basic property (15.19) and show which variables have important
weights for each individual and vice versa. This type of analysis is used as an
alternative to PCA. PCA is mainly concerned with covariances and correlations,
whereas correspondence analysis analyses a more general kind of association. (See
Exercises 15.3 and 15.11.)

Example 15.3 A survey of Belgium citizens who regularly read a newspaper was
conducted in the 1980s. They were asked where they lived. The possible answers
were ten regions: seven provinces (Antwerp, Western Flanders, Eastern Flan-
ders, Hainant, Liège, Limbourg, Luxembourg) and three regions around Brussels
(Flemish-Brabant, Wallon-Brabant and the city of Brussels). They were also asked
what kind of newspapers they read on a regular basis. There were 15 possible
answers split up into three classes: Flemish newspapers (label begins with the letter
v), French newspapers (label begins with f ) and both languages together (label
begins with b). The data set is given in Table 22.9. The eigenvalues of the factorial
correspondence analysis are given in Table 15.1.

Two-dimensional representations will be quite satisfactory since the first two
eigenvalues account for 81 % of the variance. Figure 15.1 shows the projections
of the rows (the 15 newspapers) and of the columns (the ten regions).

As expected, there is a high association between the regions and the type
of newspapers which is read. In particular, vb (Gazet van Antwerp) is almost
exclusively read in the province of Antwerp (this is an extreme point in the graph).
The points on the left all belong to Flanders, whereas those on the right all belong to
Wallonia. Notice that the Wallon-Brabant and the Flemish-Brabant are not far from
Brussels. Brussels is close to the centre (average) and also close to the bilingual
newspapers. It is shifted a little to the right of the origin due to the majority of
French speaking people in the area.

The absolute contributions of the first three factors are listed in Tables 15.2
and 15.3. The row factors rk are in Table 15.2 and the column factors sk are in
Table 15.3.

Table 15.1 Eigenvalues and
percentages of the variance
(Example 15.3)

�j Percentage of variance Cumulated percentage

183.40 0:653 0:653

43.75 0:156 0:809

25.21 0:090 0:898

11.74 0:042 0:940

8.04 0:029 0:969

4.68 0:017 0:985

2.13 0:008 0:993

1.20 0:004 0:997

0.82 0:003 1:000

0.00 0:000 1:000
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Fig. 15.1 Projection of rows (the 15 newspapers) and columns (the ten regions)
MVAcorrjourn

Table 15.2 Absolute
contributions of row factors
rk

Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

va 0:0563 0:0008 0:0036

vb 0:1555 0:5567 0:0067

vc 0:0244 0:1179 0:0266

vd 0:1352 0:0952 0:0164

ve 0:0253 0:1193 0:0013

ff 0:0314 0:0183 0:0597

fg 0:0585 0:0162 0:0122

fh 0:1086 0:0024 0:0656

fi 0:1001 0:0024 0:6376

bj 0:0029 0:0055 0:0187

bk 0:0236 0:0278 0:0237

bl 0:0006 0:0090 0:0064

vm 0:1000 0:0038 0:0047

fn 0:0966 0:0059 0:0269

f0 0:0810 0:0188 0:0899

Total 1:0000 1:0000 1:0000

They show, for instance, the important role of Antwerp and the newspaper
vb in determining the variance of both factors. Clearly, the first axis expresses
linguistic differences between the three parts of Belgium. The second axis shows
a larger dispersion between the Flemish region than the French speaking regions.
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Table 15.3 Absolute
contributions of column
factors sk

Ca.j; s1/ Ca.j; s2/ Ca.j; s3/

brw 0:0887 0:0210 0:2860

bxl 0:1259 0:0010 0:0960

anv 0:2999 0:4349 0:0029

brf 0:0064 0:2370 0:0090

foc 0:0729 0:1409 0:0033

for 0:0998 0:0023 0:0079

hai 0:1046 0:0012 0:3141

lig 0:1168 0:0355 0:1025

lim 0:0562 0:1162 0:0027

lux 0:0288 0:0101 0:1761

Total 1:0000 1:0000 1:0000
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Fig. 15.2 Correspondence analysis including Corsica MVAcorrbac

Note also that the third axis shows an important role of the category “fi” (other
French newspapers) with the Wallon-Brabant “brw” and the Hainant “hai” showing
the most important contributions. The coordinate of “fi” on this axis is negative
(not shown here) so are the coordinates of “brw” and “hai”. Apparently, these
two regions also seem to feature a greater proportion of readers of more local
newspapers.

Example 15.4 Applying correspondence analysis to the French baccalauréat data
(Table 22.8) leads to Fig. 15.2. Excluding Corsica we obtain Fig. 15.3. The different
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Fig. 15.3 Correspondence analysis excluding Corsica MVAcorrbac

Table 15.4 Eigenvalues and percentages of explained variance (including Corsica)

Eigenvalues � Percentage of variances Cumulated percentage

2,436.2 0:5605 0:561

1,052.4 0:2421 0:803

341.8 0:0786 0:881

229.5 0:0528 0:934

152.2 0:0350 0:969

109.1 0:0251 0:994

25.0 0:0058 1:000

0.0 0:0000 1:000

modalities are labeled A, . . . , H and the regions are labeled ILDF, . . . , CORS.
The results of the correspondence analysis are given in Table 15.4 and Fig. 15.2.

The first two factors explain 80 % of the total variance. It is clear from Fig. 15.2
that Corsica (in the upper left) is an outlier. The analysis is therefore redone without
Corsica and the results are given in Table 15.5 and Fig. 15.3. Since Corsica has such
a small weight in the analysis, the results have not changed much.

The projections on the first three axes, along with their absolute contribution
to the variance of the axis, are summarised in Table 15.6 for the regions and in
Table 15.7 for baccalauréats.

The interpretation of the results may be summarised as follows. Table 15.7 shows
that the baccalauréats B on one side and F on the other side are most strongly
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Table 15.5 Eigenvalues and percentages of explained variance (excluding Corsica)

Eigenvalues � Percentage of variances Cumulated percentage

2,408.6 0:5874 0:587

909.5 0:2218 0:809

318.5 0:0766 0:887

195.9 0:0478 0:935

149.3 0:0304 0:971

96.1 0:0234 0:994

22.8 0:0056 1:000

0.0 0:0000 1:000

Table 15.6 Coefficients and absolute contributions for regions, Example 15.4

Region r1 r2 r3 Ca.i; r1/ Ca.i; r2/ Ca.i; r3/

ILDF 0:1464 0:0677 0:0157 0:3839 0:2175 0:0333

CHAM �0:0603 �0:0410 �0:0187 0:0064 0:0078 0:0047

PICA 0:0323 �0:0258 �0:0318 0:0021 0:0036 0:0155

HNOR �0:0692 0:0287 0:1156 0:0096 0:0044 0:2035

CENT �0:0068 �0:0205 �0:0145 0:0001 0:0030 0:0043

BNOR �0:0271 �0:0762 0:0061 0:0014 0:0284 0:0005

BOUR �0:1921 0:0188 0:0578 0:0920 0:0023 0:0630

NOPC �0:1278 0:0863 �0:0570 0:0871 0:1052 0:1311

LORR �0:2084 0:0511 0:0467 0:1606 0:0256 0:0608

ALSA �0:2331 0:0838 0:0655 0:1283 0:0439 0:0767

FRAC �0:1304 �0:0368 �0:0444 0:0265 0:0056 0:0232

PAYL �0:0743 �0:0816 �0:0341 0:0232 0:0743 0:0370

BRET 0:0158 0:0249 �0:0469 0:0011 0:0070 0:0708

PCHA �0:0610 �0:1391 �0:0178 0:0085 0:1171 0:0054

AQUI 0:0368 �0:1183 0:0455 0:0055 0:1519 0:0643

MIDI 0:0208 �0:0567 0:0138 0:0018 0:0359 0:0061

LIMO �0:0540 0:0221 �0:0427 0:0033 0:0014 0:0154

RHOA �0:0225 0:0273 �0:0385 0:0042 0:0161 0:0918

AUVE 0:0290 �0:0139 �0:0554 0:0017 0:0010 0:0469

LARO 0:0290 �0:0862 �0:0177 0:0383 0:0595 0:0072

PROV 0:0469 �0:0717 0:0279 0:0142 0:0884 0:0383

responsible for the variation on the first axis. The second axis mostly characterises
an opposition between baccalauréats A and C. Regarding the regions, Ile de France
plays an important role on each axis. On the first axis, it is opposed to Lorraine
and Alsace, whereas on the second axis, it is opposed to Poitou-Charentes and
Aquitaine. All of this is confirmed in Fig. 15.3.

On the right side are the more classical baccalauréats and on the left, more
technical ones. The regions on the left side have thus larger weights in the technical
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Table 15.7 Coefficients and absolute contributions for baccalauréats, Example 15.4

Baccal s1 s2 s3 Ca.j; s1/ Ca.j; s2/ Ca.j; s3/

A 0:0447 �0:0679 0:0367 0:0376 0:2292 0:1916

B 0:1389 0:0557 0:0011 0:1724 0:0735 0:0001

C 0:0940 0:0995 0:0079 0:1198 0:3556 0:0064

D 0:0227 �0:0495 �0:0530 0:0098 0:1237 0:4040

E �0:1932 0:0492 �0:1317 0:0825 0:0141 0:2900

F �0:2156 0:0862 0:0188 0:3793 0:1608 0:0219

G �0:1244 �0:0353 0:0279 0:1969 0:0421 0:0749

H �0:0945 0:0438 �0:0888 0:0017 0:0010 0:0112

Table 15.8 Eigenvalues and
explained proportion of
variance, Example 15.5

�j Percentage of variance Cumulated percentage

4,399.0 0:4914 0:4914

2,213.6 0:2473 0:7387

1,382.4 0:1544 0:8932

870.7 0:0973 0:9904

51.0 0:0057 0:9961

34.8 0:0039 1:0000

0.0 0:0000 0:0000

baccalauréats. Note also that most of the southern regions of France are concentrated
in the lower part of the graph near the baccalauréat A.

Finally, looking at the third axis, we see that it is dominated by the baccalauréat
E (negative sign) and to a lesser degree by H (negative) (as opposed to A (positive
sign)). The dominating regions are HNOR (positive sign), opposed to NOPC and
AUVE (negative sign). For instance, HNOR is particularly poor in baccalauréat D.

Example 15.5 The US crime data set (Table 22.10) gives the number of crimes in
the 50 states of the US classified in 1985 for each of the following seven categories:
murder, rape, robbery, assault, burglary, larceny and auto-theft. The analysis of the
contingency table, limited to the first two factors, provides the following results (see
Table 15.8).

Looking at the absolute contributions (not reproduced here, see Exercise 15.6), it
appears that the first axis is robbery (C) versus larceny (�) and auto-theft (�) axis
and that the second factor contrasts assault (�) to auto-theft (C). The dominating
states for the first axis are the North-Eastern States MA (C) and NY (C) contrasting
the Western States WY (�) and ID (�). For the second axis, the differences are
seen between the Northern States (MA (C) and RI (C)) and the Southern States
AL (�), MS (�) and AR (�). These results can be clearly seen in Fig. 15.4 where
all the states and crimes are reported. The figure also shows in which states the
proportion of a particular crime category is higher or lower than the national average
(the origin).
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Fig. 15.4 Projection of rows (the 50 states) and columns (the seven crime categories)
MVAcorrcrime

Biplots

The biplot is a low-dimensional display of a data matrix X where the rows and
columns are represented by points. The interpretation of a biplot is specifically
directed towards the scalar products of lower dimensional factorial variables and
is designed to approximately recover the individual elements of the data matrix in
these scalar products. Suppose that we have a (10�5) data matrix with elements xij.
The idea of the biplot is to find 10 row points qi 2 R

k (k < p; i D 1; : : : ; 10) and
5 column points tj 2 R

k (j D 1; : : : ; 5) such that the 50 scalar products between
the row and the column vectors closely approximate the 50 corresponding elements
of the data matrix X . Usually we choose k D 2. For example, the scalar product
between q7 and t4 should approximate the data value x74 in the seventh row and
the fourth column. In general, the biplot models the data xij as the sum of a scalar
product in some low-dimensional subspace and a residual “error” term:

xij D q>i tj C eij

D
X

k

qiktjk C eij: (15.25)
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To understand the link between correspondence analysis and the biplot, we need to
introduce a formula which expresses xij from the original data matrix (see (15.3)) in
terms of row and column frequencies. One such formula, known as the “reconstitu-
tion formula”, is (15.10):

xij D Eij

0

B
@1C

PR
kD1 �

1
2

k �ikıjk
q

xi�x�j

x��

1

C
A (15.26)

Consider now the row profiles xij=xi� (the conditional frequencies) and the average
row profile xi�=x��. From (15.26) we obtain the difference between each row profile
and this average:

�
xij

xi�
� xi�
x��

�

D
RX

kD1
�
1
2

k �ik

�r
x�j
xi�x��

�

ıjk: (15.27)

By the same argument we can also obtain the difference between each column
profile and the average column profile:

�
xij

x�j
� x�j
x��

�

D
RX

kD1
�
1
2

k �ik

�r
xi�

x�j x��

�

ıjk: (15.28)

Now, if �1 � �2 � �3 : : :, we can approximate these sums by a finite number of
K terms (usuallyK D 2) using (15.16) to obtain

�
xij

x�j
� xi�
x��

�

D
KX

kD1

�
x�ip
�kx��

rki

�

skj C eij; (15.29)

�
xij

xi�
� x�j
x��

�

D
KX

kD1

�
x�jp
�kx��

skj

�

rki C e0ij; (15.30)

where eij and e0ij are error terms. Equation (15.30) shows that if we consider
displaying the differences between the row profiles and the average profile, then
the projection of the row profile rk and a rescaled version of the projections of the
column profile sk constitute a biplot of these differences. Equation (15.29) implies
the same for the differences between the column profiles and this average.
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Summary
,! Correspondence analysis is a factorial decomposition of contin-

gency tables. The p-dimensional individuals and the n-dimensional
variables can be graphically represented by projecting onto spaces
of smaller dimension.

,! The practical computation consists of first computing a spectral
decomposition of A�1XB�1X> andB�1X>A�1X which have the
same first p eigenvalues. The graphical representation is obtained
by plotting

p
�1r1 vs.

p
�2r2 and

p
�1s1 vs.

p
�2s2. Both plots

maybe displayed in the same graph taking into account the appro-
priate orientation of the eigenvectors ri ; sj .

,! Correspondence analysis provides a graphical display of the asso-
ciation measure cij D .xij � Eij/

2=Eij.

,! Biplot is a low-dimensional display of a data matrix where the rows
and columns are represented by points

15.4 Exercises

Exercise 15.1 Show that the matrices A�1XB�1X> and B�1X>A�1X have an
eigenvalue equal to 1 and that the corresponding eigenvectors are proportional to
.1; : : : ; 1/>.

Exercise 15.2 Verify the relations in (15.8), (15.14) and (15.17).

Exercise 15.3 Do a correspondence analysis for the car marks data (Table 22.7)!
Explain how this table can be considered as a contingency table.

Exercise 15.4 Compute the �2-statistic of independence for the French baccalau-
réat data.

Exercise 15.5 Prove that C D A�1=2.X � E/B�1=2px�� and E D ab>

x��
and

verify (15.20).

Exercise 15.6 Do the full correspondence analysis of the US crime data
(Table 22.10), and determine the absolute contributions for the first three axes.
How can you interpret the third axis? Try to identify the states with one of the four
regions to which it belongs. Do you think the four regions have a different behaviour
with respect to crime?

Exercise 15.7 Repeat Exercise 15.6 with the US health data (Table 22.16). Only
analyse the columns indicating the number of deaths per state.
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Exercise 15.8 Consider a .n � n/ contingency table being a diagonal matrix X .
What do you expect the factors rk; sk to be like?

Exercise 15.9 Assume that after some reordering of the rows and the columns, the
contingency table has the following structure:

X D
J1 J2

I1 
 0

I2 0 


That is, the rows Ii only have weights in the columns Ji , for i D 1; 2. What do you
expect the graph of the first two factors to look like?

Exercise 15.10 Redo Exercise 15.9 using the following contingency table:

X D
J1 J2 J3

I1 
 0 0

I2 0 
 0

I3 0 0 


Exercise 15.11 Consider the French food data (Table 22.6). Given that all of the
variables are measured in the same units (Francs), explain how this table can be
considered as a contingency table. Perform a correspondence analysis and compare
the results to those obtained in the NPCA analysis in Chap. 11.



Chapter 16
Canonical Correlation Analysis

Complex multivariate data structures are better understood by studying low-
dimensional projections. For a joint study of two data sets, we may ask what type
of low-dimensional projection helps in finding possible joint structures for the two
samples. The canonical correlation analysis (CCA) is a standard tool of multivariate
statistical analysis for discovery and quantification of associations between two sets
of variables.

The basic technique is based on projections. One defines an index (projected
multivariate variable) that maximally correlates with the index of the other variable
for each sample separately. The aim of CCA is to maximise the association
(measured by correlation) between the low-dimensional projections of the two data
sets. The canonical correlation vectors are found by a joint covariance analysis
of the two variables. The technique is applied to a marketing example where the
association of a price factor and other variables (like design, sportiness etc.) is
analysed. Tests are given on how to evaluate the significance of the discovered
association.

16.1 Most Interesting Linear Combination

The associations between two sets of variables may be identified and quantified by
CCA. The technique was originally developed by Hotelling (1935) who analysed
how arithmetic speed and arithmetic power are related to reading speed and reading
power. Other examples are the relation between governmental policy variables
and economic performance variables and the relation between job and company
characteristics.

© Springer-Verlag Berlin Heidelberg 2015
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Suppose we are given two random variablesX 2 R
q and Y 2 R

p . The idea is to
find an index describing a (possible) link betweenX and Y . CCA is based on linear
indices, i.e. linear combinations

a>X and b>Y

of the random variables. CCA searches for vectors a and b such that the relation
of the two indices a>x and b>y is quantified in some interpretable way. More
precisely, one is looking for the “most interesting” projections a and b in the sense
that they maximise the correlation

�.a; b/ D �a>X b>Y (16.1)

between the two indices.
Let us consider the correlation �.a; b/ between the two projections in more detail.

Suppose that

 
X

Y

!

�
  

�




!

;

�
†XX

†YX

†XY

†YY

� !

where the sub-matrices of this covariance structure are given by

Var.X/ D †XX .q � q/
Var.Y / D †YY .p � p/

Cov.X; Y / D E.X � �/.Y � 
/> D †XY D †>YX .q � p/:

Using (3.7) and (4.26),

�.a; b/ D a>†XYb

.a>†XXa/1=2 .b>†YYb/1=2
� (16.2)

Therefore, �.ca; b/ D �.a; b/ for any c 2 R
C. Given the invariance of scale we

may rescale projections a and b and thus we can equally solve

max
a;b

a>†XYb

under the constraints

a>†XXa D 1

b>†YYb D 1:
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For this problem, define

K D †�1=2XX †XY†
�1=2
YY : (16.3)

Recall the singular value decomposition of K.q�p/ from Theorem 2.2. The matrix
K may be decomposed as

K D 	ƒ
>

with

	 D .�1; : : : ; �k/

 D .ı1; : : : ; ık/ (16.4)

ƒ D diag.�1=21 ; : : : ; �
1=2

k /

where by (16.3) and (2.15),

k D rank.K/ D rank.†XY/ D rank.†YX/ ;

and �1 � �2 � � � ��k are the nonzero eigenvalues of N1 D KK> and N2 D K>K
and �i and ıj are the standardised eigenvectors of N1 and N2 respectively.

Define now for i D 1; : : : ; k the vectors

ai D †�1=2XX �i ; (16.5)

bi D †�1=2YY ıi ; (16.6)

which are called the canonical correlation vectors. Using these canonical correla-
tion vectors we define the canonical correlation variables

�i D a>i X (16.7)

'i D b>i Y: (16.8)

The quantities �i D �
1=2
i for i D 1; : : : ; k are called the canonical correlation

coefficients.
From the properties of the singular value decomposition given in (16.4) we have

Cov.�i ; �j / D a>i †XXaj D �>i �j D


1 i D j;
0 i ¤ j: (16.9)

The same is true for Cov.'i ; 'j /. The following theorem tells us that the canonical
correlation vectors are the solution to the maximisation problem of (16.1).
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Theorem 16.1 For any given r , 1 � r � k, the maximum

C.r/ D max
a;b

a>†XYb (16.10)

subject to

a>†XXa D 1; b>†YYb D 1

and

a>i †XXa D 0 for i D 1; : : : ; r � 1

is given by

C.r/ D �r D �1=2r
and is attained when a D ar and b D br .
Proof The proof is given in three steps.

(i) Fix a and maximise over b, i.e. solve:

max
b

�
a>†XYb

�2 D max
b

�
b>†YXa

� �
a>†XYb

�

subject to b>†YYb D 1. By Theorem 2.5 the maximum is given by the largest
eigenvalue of the matrix

†�1YY†YXaa
>†XY :

By Corollary 2.2, the only nonzero eigenvalue equals

a>†XY†
�1
YY†YXa: (16.11)

(ii) Maximise (16.11) over a subject to the constraints of the theorem. Put � D
†
1=2
XX a and observe that (16.11) equals

�>†�1=2XX †XY†
�1
YY†YX†

�1=2
XX � D �>K>K�:

Thus, solve the equivalent problem

max
�
�>N1� (16.12)

subject to �>� D 1, �>i � D 0 for i D 1; : : : ; r � 1.
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Note that the �i ’s are the eigenvectors of N1 corresponding to its first r � 1
largest eigenvalues. Thus, as in Theorem 11.3, the maximum in (16.12) is
obtained by setting � equal to the eigenvector corresponding to the r th largest
eigenvalue, i.e. � D �r or equivalently a D ar . This yields

C2.r/ D �>r N1�r D �r�>r � D �r :

(iii) Show that the maximum is attained for a D ar and b D br . From the SVD of
K we conclude that Kır D �r�r and hence

a>r †XYbr D �>r Kır D �r�>r �r D �r :
ut

Let

�
X

Y

�

�
��

�




�

;

�
†XX †XY

†YX †YY

��

:

The canonical correlation vectors

a1 D †�1=2XX �1;

b1 D †�1=2YY ı1

maximise the correlation between the canonical variables

�1 D a>1 X;
'1 D b>1 Y:

The covariance of the canonical variables � and ' is given in the next theorem.

Theorem 16.2 Let �i and 'i be the i th canonical correlation variables (i D
1; : : : ; k). Define � D .�1; : : : ; �k/ and ' D .'1; : : : ; 'k/. Then

Var
�
�

'

�

D
�
Ik ƒ
ƒ Ik

�

with ƒ given in (16.4).

This theorem shows that the canonical correlation coefficients, �i D �
1=2
i , are

the covariances between the canonical variables �i and 'i and that the indices �1 D
a>1 X and '1 D b>1 Y have the maximum covariance

p
�1 D �1.

The following theorem shows that canonical correlations are invariant w.r.t. linear
transformations of the original variables.
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Theorem 16.3 Let X� D U>X C u and Y � D V>Y C v where U and V are
nonsingular matrices. Then the canonical correlations between X� and Y � are the
same as those between X and Y . The canonical correlation vectors of X� and Y �
are given by

a�i D U�1ai ;

b�i D V�1bi : (16.13)

Summary
,! CCA aims to identify possible links between two (sub-)sets of

variables X 2 R
q and Y 2 R

p . The idea is to find indices a>X
and b>Y such that the correlation �.a; b/ D �a>Xb>Y is maximal.

,! The maximum correlation (under constraints) is attained by setting
ai D †�1=2XX �i and bi D †�1=2YY ıi , where �i and ıi denote the eigen-

vectors of KK> and K>K, K D †�1=2XX †XY†
�1=2
YY respectively.

,! The vectors ai and bi are called canonical correlation vectors.

,! The indices �i D a>i X and 'i D b>i Y are called canonical
correlation variables.

,! The values �1 D
p
�1; : : : ; �k D

p
�k , which are the square

roots of the nonzero eigenvalues of KK> and K>K, are called
the canonical correlation coefficients. The covariance between
the canonical correlation variables is Cov.�i ; 'i / D

p
�i , i D

1; : : : ; k.
,! The first canonical variables, �1 D a>1 X and '1 D b>1 Y , have the

maximum covariance
p
�1.

,! Canonical correlations are invariant w.r.t. linear transformations of
the original variablesX and Y .

16.2 Canonical Correlation in Practice

In practice we have to estimate the covariance matrices †XX, †XY and †YY . Let us
apply the CCA to the car marks data (see Table 22.7). In the context of this data
set one is interested in relating price variables with variables such as sportiness
and safety. In particular, we would like to investigate the relation between the two
variables non-depreciation of value and price of the car and all other variables.
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Example 16.1 We perform the CCA on the data matrices X and Y that correspond
to the set of values fPrice, Value Stabilityg and fEconomy, Service, Design, Sporty
car, Safety, Easy handlingg, respectively. The estimated covariance matrix S is
given by

Price Value Econ. Serv. Design Sport. Safety Easy h.

S D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1:41 �1:11 j 0:78 �0:71 �0:90 �1:04 �0:95 0:18

�1:11 1:19 j �0:42 0:82 0:77 0:90 1:12 0:11

� �� � �� j � � � � �� � �� � �� � � � �� �
0:78 �0:42 j 0:75 �0:23 �0:45 �0:42 �0:28 0:28

�0:71 0:82 j �0:23 0:66 0:52 0:57 0:85 0:14

�0:90 0:77 j �0:45 0:52 0:72 0:77 0:68 �0:10
�1:04 0:90 j �0:42 0:57 0:77 1:05 0:76 �0:15
�0:95 1:12 j �0:28 0:85 0:68 0:76 1:26 0:22

0:18 0:11 j 0:28 0:14 �0:10 �0:15 0:22 0:32

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Hence,

SXX D
�

1:41 �1:11
�1:11 1:19

�

; SXY D
�

0:78 �0:71 �0:90 �1:04 �0:95 0:18
�0:42 0:82 0:77 0:90 1:12 0:11

�

;

SYY D

0

B
B
B
B
B
B
B
@

0:75 �0:23 �0:45 �0:42 �0:28 0:28

�0:23 0:66 0:52 0:57 0:85 0:14

�0:45 0:52 0:72 0:77 0:68 �0:10
�0:42 0:57 0:77 1:05 0:76 �0:15
�0:28 0:85 0:68 0:76 1:26 0:22

0:28 0:14 �0:10 �0:15 0:22 0:32

1

C
C
C
C
C
C
C
A

:

It is interesting to see that value stability and price have a negative covariance. This
makes sense since highly priced vehicles tend to loose their market value at a faster
pace than medium priced vehicles.

Now we estimate K D †�1=2XX †XY †
�1=2
YY by

OK D S�1=2XX SXY S�1=2YY

and perform a singular value decomposition of OK:

OK D GLD> D .g1; g2/ diag.`1=21 ; `
1=2
2 / .d1; d2/

>
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Fig. 16.1 The second canonical variables for the car marks data textttMVAcancarm

where the `i ’s are the eigenvalues of OK OK> and OK> OK with rank. OK/ D 2, and gi and
di are the eigenvectors of OK OK> and OK> OK, respectively. The canonical correlation
coefficients are

r1 D `1=21 D 0:98; r2 D `1=22 D 0:89:

The high correlation of the second two canonical variables can be seen in Fig. 16.1.
The second canonical variables are

O�1 D Oa>1 x D 1:602 x1 C 1:686 x2
O'1 D Ob>1 y D 0:568 y1 C 0:544 y2 � 0:012 y3 � 0:096 y4 � 0:014 y5 C 0:915 y6:

Note that the variables y1 (economy), y2 (service) and y6 (easy handling) have
positive coefficients on O'1. The variables y3 (design), y4 (sporty car) and y5 (safety)
have a negative influence on O'1.

The canonical variable �1 may be interpreted as a price and value index. The
canonical variable '1 is mainly formed from the qualitative variables economy,
service and handling with negative weights on design, safety and sportiness. These
variables may therefore be interpreted as an appreciation of the value of the car. The
sportiness has a negative effect on the price and value index, as do the design and
the safety features.
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Testing the Canonical Correlation Coefficients

The hypothesis that the two sets of variablesX and Y are uncorrelated may be tested
(under normality assumptions) with Wilks likelihood ratio statistic (Gibbins, 1985):

T 2=n D ˇˇI � S�1YY SYXS
�1
XX SXY

ˇ
ˇ D

kY

iD1
.1 � `i /:

This statistic unfortunately has a rather complicated distribution. Bartlett (1939)
provides an approximation for large n:

� fn� .p C q C 3/=2g log
kY

iD1
.1� `i / � �2pq: (16.14)

A test of the hypothesis that only s of the canonical correlation coefficients are
nonzero may be based (asymptotically) on the statistic

� fn� .p C q C 3/=2g log
kY

iDsC1
.1 � `i / � �2.p�s/.q�s/: (16.15)

Example 16.2 Consider Example 16.1 again. There are n D 40 persons that have
rated the cars according to different categories with p D 2 and q D 6. The canonical
correlation coefficients were found to be r1 D 0:98 and r2 D 0:89. Bartlett’s
statistic (16.14) is therefore

�f40 � .2C 6C 3/=2g logf.1 � 0:982/.1� 0:892/g D 165:59 � �212
which is highly significant (the 99 % quantile of the �212 is 26.23). The hypothesis
of no correlation between the variables X and Y is therefore rejected.

Let us now test whether the second canonical correlation coefficient is different
from zero. We use Bartlett’s statistic (16.15) with s D 1 and obtain

�f40 � .2C 6C 3/=2g logf.1 � 0:892/g D 54:19 � �25
which is again highly significant with the �25 distribution.

CCA with Qualitative Data

The canonical correlation technique may also be applied to qualitative data.
Consider for example the contingency table N of the French baccalauréat data. The
dataset is given in Table 22.8 in Chap. 22. The CCA cannot be applied directly to
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this contingency table since the table does not correspond to the usual data matrix
structure. We may wish, however, to explain the relationship between the row r and
column c categories. It is possible to represent the data in a .n�.rCc// data matrix
Z D .X ;Y/ where n is the total number of frequencies in the contingency table N
and X and Y are matrices of zero-one dummy variables. More precisely, let

xki D


1 if the kth individual belongs to the i th row category
0 otherwise

and

ykj D


1 if the kth individual belongs to the j th column category
0 otherwise

where the indices range from k D 1; : : : ; n, i D 1; : : : ; r and j D 1; : : : ; c. Denote
the cell frequencies by nij so that N D .nij/ and note that

x>.i/y.j / D nij;

where x.i/ (y.j /) denotes the i th (j th) column of X (Y).

X D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; Y D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0

1 0

1 0

0 1

0 1

1 0

0 1

0 1

0 1

0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; Z D .X ;Y/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

0 1 1 0

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Example 16.3 Consider the following example where

N D
�
3 2

1 4

�

:

The matrices X , Y and Z are therefore
The element n12 of N may be obtained by multiplying the first column of X with

the second column of Y to yield

x>.1/y.2/ D 2:
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The purpose is to find the canonical variables � D a>x and ' D b>y that are
maximally correlated. Note, however, that x has only one nonzero component and
therefore an “individual” may be directly associated with its canonical variables
or score .ai ; bj /. There will be nij points at each .ai ; bj / and the correlation
represented by these points may serve as a measure of dependence between the
rows and columns of N .

Let Z D .X ;Y/ denote a data matrix constructed from a contingency table N .
Similar to Chap. 14 define

c D xi� D
cX

jD1
nij;

d D x�j D
rX

iD1
nij;

and define C D diag.c/ and D D diag.d/. Suppose that xi� > 0 and x�j > 0 for all
i and j . It is not hard to see that

nS D Z>HZ D Z>Z � nNzNz> D
�

nSXX nSXY

nSYX nSYY

�

D
� n

n � 1
��C � n�1cc> N � ON

N> ON> D � n�1dd>
�

where ON D cd>=n is the estimated value of N under the assumption of
independence of the row and column categories.

Note that

.n � 1/SXX1r D C1r � n�1cc>1r D c � c.n�1c>1r/ D c � c.n�1n/ D 0

and therefore S�1XX does not exist. The same is true for S�1YY . One way out of this
difficulty is to drop one column from both X and Y , say the first column. Let Nc and
Nd denote the vectors obtained by deleting the first component of c and d .

Define NC, ND and NSXX , NSYY , NSXY accordingly and obtain

.n NSXX/
�1 D NC�1 C n�1i� 1r1>r

.n NSYY /
�1 D ND�1 C n�1�j 1c1>c

so that (16.3) exists. The score associated with an individual contained in the first
row (column) category of N is 0.

The technique described here for purely qualitative data may also be used when
the data is a mixture of qualitative and quantitative characteristics. One has to “blow
up” the data matrix by dummy zero-one values for the qualitative data variables.
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Summary
,! In practice we estimate †XX, †XY , †YY by the empirical covari-

ances and use them to compute estimates `i , gi , di for �i , �i , ıi
from the SVD of OK D S�1=2XX SXYS�1=2YY .

,! The signs of the coefficients of the canonical variables tell us the
direction of the influence of these variables.

16.3 Exercises

Exercise 16.1 Show that the eigenvalues of KK> and K>K are identical. (Hint:
Use Theorem 2.6.)

Exercise 16.2 Perform the CCA for the following subsets of variables: X corre-
sponding to fpriceg and Y corresponding to feconomy, easy handlingg from the car
marks data (Table 22.7).

Exercise 16.3 Calculate the first canonical variables for Example 16.1. Interpret
the coefficients.

Exercise 16.4 Use the SVD of matrix K to show that the canonical variables �1
and �2 are not correlated.

Exercise 16.5 Verify that the number of nonzero eigenvalues of matrix K is equal
to rank.†XY/.

Exercise 16.6 Express the singular value decomposition of matrices K and K>
using eigenvalues and eigenvectors of matrices K>K and KK>.

Exercise 16.7 What will be the result of CCA for Y D X?

Exercise 16.8 What will be the results of CCA for Y D 2X and for Y D �X?

Exercise 16.9 What results do you expect if you perform CCA for X and Y such
that †XY D 0? What if †XY D Ip?



Chapter 17
Multidimensional Scaling

One major aim of multivariate data analysis is dimension reduction. For data
measured in Euclidean coordinates, Factor Analysis and Principal Component
Analysis are dominantly used tools. In many applied sciences data is recorded as
ranked information. For example, in marketing, one may record “product A is better
than product B”. High-dimensional observations therefore often have mixed data
characteristics and contain relative information (w.r.t. a defined standard) rather
than absolute coordinates that would enable us to employ one of the multivariate
techniques presented so far.

Multidimensional scaling (MDS) is a method based on proximities between
objects, subjects, or stimuli used to produce a spatial representation of these
items. Proximities express the similarity or dissimilarity between data objects. It
is a dimension reduction technique since the aim is to find a set of points in
low dimension (typically two dimensions) that reflect the relative configuration
of the high-dimensional data objects. The metric MDS is concerned with such a
representation in Euclidean coordinates. The desired projections are found via an
appropriate spectral decomposition of a distance matrix.

The metric MDS solution may result in projections of data objects that conflict
with the ranking of the original observations. The nonmetric MDS solves this
problem by iterating between a monotising algorithmic step and a least squares
projection step. The examples presented in this chapter are based on reconstructing
a map from a distance matrix and on marketing concerns such as ranking of the
outfit of cars.

17.1 The Problem

MDS is a mathematical tool that uses proximities between objects, subjects or
stimuli to produce a spatial representation of these items. The proximities are
defined as any set of numbers that express the amount of similarity or dissimilarity

© Springer-Verlag Berlin Heidelberg 2015
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between pairs of objects, subjects or stimuli. In contrast to the techniques considered
so far, MDS does not start from the raw multivariate data matrix X , but from a
.n�n/ dissimilarity or distance matrix, D, with the elements ıij and dij respectively.
Hence, the underlying dimensionality of the data under investigation is in general
not known .

MDS is a data reduction technique because it is concerned with the problem of
finding a set of points in low dimension that represents the “configuration” of data
in high dimension. The “configuration” in high dimension is represented by the
distance or dissimilarity matrix D.

MDS-techniques are often used to understand how people perceive and evaluate
certain signals and information. For instance, political scientists use MDS tech-
niques to understand why political candidates are perceived by voters as being
similar or dissimilar. Psychologists use MDS to understand the perceptions and
evaluations of speech, colours and personality traits, among other things. Last but
not least, in marketing researchers use MDS techniques to shed light on the way
consumers evaluate brands and to assess the relationship between product attributes.

In short, the primary purpose of all MDS-techniques is to uncover structural
relations or patterns in the data and to represent it in a simple geometrical model
or picture. One of the aims is to determine the dimension of the model (the goal is a
low-dimensional, easily interpretable model) by finding the d -dimensional space in
which there is maximum correspondence between the observed proximities and the
distances between points measured on a metric scale.

MDS based on proximities is usually referred to as metric MDS, whereas the
more popular nonmetric MDS is used when the proximities are measured on an
ordinal scale.

Example 17.1 A good example of how MDS works is given by Dillon and
Goldstein (1984) (page 108). Suppose one is confronted with a map of Germany
and asked to measure, with the use of a ruler and the scale of the map, some inter-
city distances. Admittedly this is quite an easy exercise. However, let us now reverse
the problem: One is given a set of distances, as in Table 17.1, and is asked to recreate
the map itself. This is a far more difficult exercise, though it can be solved with a

Table 17.1 Inter-city distances

Berlin Dresden Hamburg Koblenz Munich Rostock

Berlin 0 214 279 610 596 237

Dresden 0 492 533 496 444

Hamburg 0 520 772 140

Koblenz 0 521 687

Munich 0 771

Rostock 0
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Fig. 17.1 Metric MDS
solution for the inter-city
road distances
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Fig. 17.2 Metric MDS
solution for the inter-city road
distances after reflection and
90ı rotation
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ruler and a compass in two dimensions. MDS is a method for solving this reverse
problem in arbitrary dimensions. In Figure 17.1 and 17.2 you can see the graphical
representation of the metric MDS solution to Table 17.1 after rotating and reflecting
the points representing the cities. Note that the distances given in Table 17.1 are
road distances that in general do not correspond to Euclidean distances. In real-life
applications, the problems are exceedingly more complex: there are usually errors
in the data and the dimensionality is rarely known in advance.
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Table 17.2 Dissimilarities for cars

Audi 100 BMW 5 Citroen AX Ferrari . . .

Audi 100 0 2.232 3.451 3.689 . . .

BMW 5 2.232 0 5.513 3.167 . . .

Citroen AX 3.451 5.513 0 6.202 . . .

Ferrari 3.689 3.167 6.202 0 . . .
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

: : :

Fig. 17.3 MDS solution on
the car data MVAmdscarm
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Example 17.2 A further example is given in Table 17.2 where consumers noted
their impressions of the dissimilarity of certain cars. The dissimilarities in this table
were in fact computed from Table 22.7 as Euclidean distances

dij D
v
u
u
t

8X

lD1
.xil � xjl/2:

MDS produces Fig. 17.3 which shows a non-linear relationship for all the cars in the
projection. This enables us to build a non-linear (quadratic) index with the Wartburg
and the Trabant on the left and the Ferrari and the Jaguar on the right. We can
construct an order or ranking of the cars based on the subjective impression of the
consumers.
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Fig. 17.4 Correlation
between the MDS direction
and the variables
MVAmdscarm
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What does the ranking describe? The answer is given by Fig. 17.4 which shows
the correlation between the MDS projection and the variables. Apparently, the
first MDS direction is highly correlated with service(�), value(�), design(�),
sportiness(�), safety(�) and price(C). We can interpret the first direction as the
price direction since a bad mark in price (“high price”) obviously corresponds with
a good mark, say, in sportiness (“very sportive”). The second MDS direction is
highly positively correlated with practicability. We observe from this data an almost
orthogonal relationship between price and practicability.

In MDS a map is constructed in Euclidean space that corresponds to given
distances. Which solution can we expect? The solution is determined only up to
rotation, reflection and shifts. In general, if P1; : : : ; Pn with coordinates xi D
.xi1; : : : ; xip/

> for i D 1; : : : ; n represents a MDS solution in p dimensions, then
yi D Axi C b with an orthogonal matrix A and a shift vector b also represents a
MDS solution. A comparison of Figs. 17.1 and 17.2 illustrates this fact.

Solution methods that use only the rank order of the distances are termed
nonmetric methods of MDS. Methods aimed at finding the points Pi directly from a
distance matrix like the one in the Table 17.2 are called metric methods.
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Summary
,! MDS is a set of techniques which use distances or dissimilarities

to project high-dimensional data into a low-dimensional space
essential in understanding respondents perceptions and evaluations
for all sorts of items.

,! MDS starts with a .n � n/ proximity matrix D consisting of
dissimilarities ıi;j or distances dij.

,! MDS is an explorative technique and focuses on data reduction.

,! The MDS-solution is indeterminate with respect to rotation, reflec-
tion and shifts.

,! The MDS-techniques are divided into metric MDS and nonmetric
MDS.

17.2 Metric MDS

Metric MDS begins with a .n�n/ distance matrix D with elements dij where i; j D
1; : : : ; n. The objective of metric MDS is to find a configuration of points in p-
dimensional space from the distances between the points such that the coordinates
of the n points along the p dimensions yield a Euclidean distance matrix whose
elements are as close as possible to the elements of the given distance matrix D.

The Classical Solution

The classical solution is based on a distance matrix that is computed from a
Euclidean geometry.

Definition 17.1 A .n�n/ distance matrix D D .dij/ is Euclidean if for some points
x1; : : : ; xn 2 R

pI d2ij D .xi � xj />.xi � xj /.
The following result tells us whether a distance matrix is Euclidean or not.

Theorem 17.1 Define A D .aij/; aij D � 12d 2ij and B D HAH where H is the
centering matrix. D is Euclidean if and only if B is positive semidefinite. If D is
the distance matrix of a data matrix X , then B D HXX>H. B is called the inner
product matrix.
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Recovery of Coordinates

The task of MDS is to find the original Euclidean coordinates from a given distance
matrix. Let the coordinates of n points in a p dimensional Euclidean space be given
by xi (i D 1; : : : ; n) where xi D .xi1; : : : ; xip/

>. Call X D .x1; : : : ; xn/
> the

coordinate matrix and assume x D 0. The Euclidean distance between the i th and
j th points is given by:

d2ij D
pX

kD1
.xik � xjk/

2: (17.1)

The general bij term of B is given by:

bij D
pX

kD1
xikxjk D x>i xj : (17.2)

It is possible to derive B from the known squared distances dij, and then from B the
unknown coordinates.

d2ij D x>i xi C x>j xj � 2x>i xj
D bii C bjj � 2bij: (17.3)

Centering of the coordinate matrix X implies that
Pn

iD1 bij D 0. Summing (17.3)
over i and j , we find:

1

n

nX

iD1
d 2ij D

1

n

nX

iD1
bii C bjj

1

n

nX

jD1
d 2ij D bii C 1

n

nX

jD1
bjj

1

n2

nX

iD1

nX

jD1
d 2ij D

2

n

nX

iD1
bii: (17.4)

Solving (17.3) and (17.4) gives:

bij D �1
2
.d2ij � d2i� � d2�j C d2��/: (17.5)
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With aij D � 12d 2ij , and

ai� D 1

n

nX

jD1
aij

a�j D 1

n

nX

iD1
aij

a�� D 1

n2

nX

iD1

nX

jD1
aij (17.6)

we get:

bij D aij � ai� � a�j C a��: (17.7)

Define the matrix A as .aij/, and observe that:

B D HAH: (17.8)

The inner product matrix B can be expressed as:

B D XX>; (17.9)

where X D .x1; : : : ; xn/
> is the .n � p/ matrix of coordinates. The rank of B is

then

rank.B/ D rank.XX>/ D rank.X / D p: (17.10)

As required in Theorem 17.1 the matrix B is symmetric, positive semidefinite and
of rank p, and hence it has p non-negative eigenvalues and n� p zero eigenvalues.
B can now be written as:

B D 	ƒ	> (17.11)

where ƒ D diag.�1; : : : ; �p/, the diagonal matrix of the eigenvalues of B, and
	 D .�1; : : : ; �p/, the matrix of corresponding eigenvectors. Hence the coordinate
matrix X containing the point configuration in R

p is given by:

X D 	ƒ1
2 : (17.12)
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How Many Dimensions?

The number of desired dimensions is small in order to provide practical interpreta-
tions, and is given by the rank of B or the number of nonzero eigenvalues �i . If B is
positive semidefinite, then the number of nonzero eigenvalues gives the number of
eigenvalues required for representing the distances dij.

The proportion of variation explained by p dimensions is given by

Pp
iD1 �i

Pn�1
iD1 �i

: (17.13)

It can be used for the choice of p. If B is not positive semidefinite we can
modify (17.13) to

Pp
iD1 �iP

.“positive eigenvalues”/
: (17.14)

In practice the eigenvalues �i are almost always unequal to zero. To be able to
represent the objects in a space with dimensions as small as possible we may modify
the distance matrix to:

D� D d�ij (17.15)

with

d�ij D


0 I i D j
dij C e � 0 I i ¤ j (17.16)

where e is determined such that the inner product matrix B becomes positive
semidefinite with a small rank.

Similarities

In some situations we do not start with distances but with similarities. The standard
transformation (see Chap. 13) from a similarity matrix C to a distance matrix D is:

dij D .cii � 2cij C cjj/
1
2 : (17.17)

Theorem 17.2 If C � 0, then the distance matrix D defined by (17.17) is Euclidean
with centred inner product matrix B D HCH.
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Relation to Factorial Analysis

Suppose that the (n � p) data matrix X is centred so that X>X equals a multiple
of the covariance matrix nS. Suppose that the p eigenvalues �1; : : : ; �p of nS are
distinct and non zero. Using the duality Theorem 10.4 of factorial analysis we see
that �1; : : : ; �p are also eigenvalues of XX> D B when D is the Euclidean distance
matrix between the rows of X . The k-dimensional solution to the metric MDS
problem is thus given by the k first principal components of X .

Optimality Properties of the Classical MDS Solution

Let X be a .n � p/ data matrix with some inter-point distance matrix D. The
objective of MDS is thus to find X1, a representation of X in a lower dimensional
Euclidean space R

k whose inter-point distance matrix D1 is not far from D. Let
L D .L1;L2/ be a .p � p/ orthogonal matrix where L1 is .p � k/. X1 D XL1
represents a projection of X on the column space of L1; in other words, X1 may be
viewed as a fitted configuration of X in R

k . A measure of discrepancy between D
and D1 D .d .1/ij / is given by

� D
nX

i;jD1
.dij � d .1/ij /

2: (17.18)

Theorem 17.3 Among all projections XL1 of X onto k-dimensional subspaces
of Rp the quantity � in (17.18) is minimised when X is projected onto its first k
principal factors.

We see therefore that the metric MDS is identical to principal factor analysis as we
have defined it in Chap. 10.

Summary
,! Metric MDS starts with a distance matrix D.

,! The aim of metric MDS is to construct a map in Euclidean space
that corresponds to the given distances.
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Summary (continued)

,! A practical algorithm is given as:

1. start with distances dij

2. define A D � 1
2
d 2ij

3. put B D �aij � ai� � a�j C a��
�

4. find the eigenvalues �1; : : : ; �p and the associated eigenvec-
tors �1; : : : ; �p where the eigenvectors are normalised so that
�>i �i D 1.

5. Choose an appropriate number of dimensions p (ideally p D 2)
6. The coordinates of the n points in the Euclidean space are given

by xij D �ij�
1=2
j for i D 1; : : : ; n and j D 1; : : : ; p.

,! Metric MDS is identical to principal components analysis.

17.3 Nonmetric MDS

The object of nonmetric MDS, as well as of metric MDS, is to find the coordinates
of the points in p-dimensional space, so that there is a good agreement between the
observed proximities and the inter-point distances. The development of nonmetric
MDS was motivated by two main weaknesses in the metric MDS (Fahrmeir &
Hamerle, 1984, p. 679):

1. the definition of an explicit functional connection between dissimilarities and
distances in order to derive distances out of given dissimilarities, and

2. the restriction to Euclidean geometry in order to determine the object configura-
tions.

The idea of a nonmetric MDS is to demand a less rigid relationship between the
dissimilarities and the distances. Suppose that an unknown monotonic increasing
function f ,

dij D f .ıij/; (17.19)

is used to generate a set of distances dij as a function of given dissimilarities ıij. Here
f has the property that if ıij < ırs, then f .ıij/ < f .ırs/. The scaling is based on the
rank order of the dissimilarities. Nonmetric MDS is therefore ordinal in character.

The most common approach used to determine the elements dij and to obtain
the coordinates of the objects x1; x2; : : : ; xn given only rank order information is an
iterative process commonly referred to as the Shepard–Kruskal algorithm.
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Shepard–Kruskal Algorithm

In a first step, called the initial phase, we calculate Euclidean distances d .0/ij from
an arbitrarily chosen initial configuration X0 in dimension p�, provided that all
objects have different coordinates. One might use metric MDS to obtain these
initial coordinates. The second step or nonmetric phase determines disparities Od .0/ij

from the distances d .0/ij by constructing a monotone regression relationship between

the d .0/ij ’s and ıij’s, under the requirement that if ıij < ırs , then Od .0/ij � Od .0/rs .

This is called the weak monotonicity requirement. To obtain the disparities Od .0/ij ,
a useful approximation method is the pool-adjacent violators (PAV) algorithm (see
Fig. 17.5). Let

.i1; j1/ > .i2; j2/ > � � � > .ik; jk/ (17.20)

be the rank order of dissimilarities of the k D n.n � 1/=2 pairs of objects. This
corresponds to the points in Fig. 17.6. The PAV algorithm is described as follows:
“beginning with the lowest ranked value of ıij, the adjacent d .0/ij values are compared
for each ıij to determine if they are monotonically related to the ıij’s. Whenever

a block of consecutive values of d .0/ij are encountered that violate the required

monotonicity property the d .0/ij values are averaged together with the most recent

non-violator d .0/ij value to obtain an estimator. Eventually this value is assigned to
all points in the particular block”.

Fig. 17.5 Pool-adjacent
violators algorithm
MVAMDSpooladj
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Fig. 17.6 Ranks and
distances
MVAMDSnonmstart
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Table 17.3 Dissimilarities
ıij for car marks

1 2 3 4

i j Mercedes Jaguar Ferrari VW

1 Mercedes –

2 Jaguar 3 –

3 Ferrari 2 1 –

4 VW 5 4 6 –

In a third step, called the metric phase, the spatial configuration of X0 is altered to
obtain X1. From X1 the new distances d .1/ij can be obtained which are more closely

related to the disparities Od .0/ij from step two.

Example 17.3 Consider a small example with 4 objects based on the car marks data
set, see (Table 17.3). Our aim is to find a representation with p� D 2 via MDS.
Suppose that we choose as an initial configuration (Fig. 17.7) of X0 the coordinates
given in Table 17.4. The corresponding distances dij D

p
.xi � xj />.xi � xj / are

calculated in Table 17.5
A plot of the dissimilarities of Table 17.5 against the distance yields Fig. 17.8.

This relation is not satisfactory since the ranking of the ıij did not result in a
monotone relation of the corresponding distances dij. We apply therefore the PAV
algorithm.

The first violator of monotonicity is the second point .1; 3/. Therefore we average
the distances d13 and d23 to obtain the disparities

Od13 D Od23 D d13 C d23
2

D 2:2C 4:1
2

D 3:17:



468 17 Multidimensional Scaling

Fig. 17.7 Initial
configuration of the MDS
of the car data
MVAnmdscar1
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Table 17.4 Initial
coordinates for MDS

i xi1 xi2

1 Mercedes 3 2

2 Jaguar 2 7

3 Ferrari 1 3

4 VW 10 4

Table 17.5 Ranks and
distances

i; j dij rank.dij/ ıij

1,2 5.1 3 3

1,3 2.2 1 2

1,4 7.3 4 5

2,3 4.1 2 1

2,4 8.5 5 4

3,4 9.1 6 6

Applying the same procedure to .2; 4/ and .1; 4/ we obtain Od24 D Od14 D 7:9. The
plot of ıij versus the disparities Odij represents a monotone regression relationship.

In the initial configuration (Fig. 17.7), the third point (Ferrari) could be moved
so that the distance to object 2 (Jaguar) is reduced. This procedure however also
alters the distance between objects 3 and 4. Care should be given when establishing
a monotone relation between ıij and dij.

In order to assess how well the derived configuration fits the given dissimilarities
Kruskal suggests a measure called STRESS1 that is given by

STRESS1 D
 P

i<j .dij � Odij/
2

P
i<j d

2
ij

! 1
2

: (17.21)
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Fig. 17.8 Scatterplot of dissimilarities against distances MVAnmdscar2

Table 17.6 STRESS calculations for car marks example

.i; j / ıij dij Odij .dij � Odij/
2 d2ij .dij � Nd/2

(2,3) 1 4.1 3.15 0.9 16.8 3.8

(1,3) 2 2.2 3.15 0.9 4.8 14.8

(1,2) 3 5.1 5.1 0 26.0 0.9

(2,4) 4 8.5 7.9 0.4 72.3 6.0

(1,4) 5 7.3 7.9 0.4 53.3 1.6

(3,4) 6 9.1 9.1 0 82.8 9.3

† 36.3 2.6 256.0 36.4

An alternative stress measure is given by

STRESS2 D
 P

i<j .dij � Odij/
2

P
i<j .dij � Nd/2

! 1
2

; (17.22)

where Nd denotes the average distance.

Example 17.4 Table 17.6 presents the STRESS calculations for the car example.
The average distance is Nd D 36:4=6 D 6:1. The corresponding STRESS

measures are:

STRESS1 D
p
2:6=256D 0:1

STRESS2 D p2:6=36:4 D 0:27:
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The goal is to find a point configuration that balances the effects STRESS and
non monotonicity. This is achieved by an iterative procedure. More precisely, one
defines a new position of object i relative to object j by

xNEW
il D xil C ˛

 

1 �
Odij

dij

!

.xjl � xil/; l D 1; : : : ; p�: (17.23)

Here ˛ denotes the step width of the iteration.
By (17.23) the configuration of object i is improved relative to object j . In order

to obtain an overall improvement relative to all remaining points one uses:

xNEW
il D xil C ˛

n � 1
nX

jD1;j¤i

 

1 �
Odij

dij

!

.xjl � xil/; l D 1; : : : ; p�: (17.24)

The choice of step width ˛ is crucial. Kruskal proposes a starting value of ˛ D 0:2.
The iteration is continued by a numerical approximation procedure, such as steepest
descent or the Newton–Raphson procedure.

In a fourth step, the evaluation phase, the STRESS measure is used to evaluate
whether or not its change as a result of the last iteration is sufficiently small that
the procedure is terminated. At this stage the optimal fit has been obtained for a
given dimension. Hence, the whole procedure needs to be carried out for several
dimensions.

Example 17.5 Let us compute the new point configuration for i D 3 (Ferrari)
(Fig. 17.9). The initial coordinates from Table 17.4 are

x31 D 1 and x32 D 3:

Applying (17.24) yields (for ˛ D 3):

xNEW
31 D 1C 3

4 � 1
4X

jD1;j¤3

 

1 �
Od3j
d3j

!

.xj1 � 1/

D 1C
�

1 � 3:15
2:2

�

.3 � 1/C
�

1 � 3:15
4:1

�

.2 � 1/C
�

1 � 9:1
9:1

�

.10 � 1/

D 1 � 0:86C 0:23C 0
D 0:37:

Similarly we obtain xNEW
32 D 4:36.

To find the appropriate number of dimensions, p�, a plot of the minimum
STRESS value as a function of the dimensionality is made. One possible criterion
in selecting the appropriate dimensionality is to look for an elbow in the plot. A rule
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Fig. 17.9 First iteration for Ferrari using Shepard-Kruskal algorithm MVAnmdscar3

of thumb that can be used to decide if a STRESS value is sufficiently small or not is
provided by Kruskal:

S > 20%; poorI S D 10%; fairI S < 5%; goodI S D 0; perfect: (17.25)

Summary
,! Nonmetric MDS is only based on the rank order of dissimilarities.

,! The object of nonmetric MDS is to create a spatial representation
of the objects with low dimensionality.

,! A practical algorithm is given as:

1. Choose an initial configuration.
2. Find dij from the configuration.
3. Fit Odij, the disparities, by the PAV algorithm.
4. Find a new configuration XnC1 by using the steepest descent.
5. Go to 2.
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17.4 Exercises

Exercise 17.1 Apply the MDS method to the Swiss bank note data. What do you
expect to see?

Exercise 17.2 Using (17.6), show that (17.7) can be written in the form (17.2).

Exercise 17.3 Show that

1. bii D a�� � 2ai�I bij D aij � ai� � a�j C a��I i 6D j
2. B DPp

iD1 xi x>i
3.
Pn

iD1 �i D
Pn

iD1 bii D 1

2n
Pn
i;jD1 d

2
ij

.

Exercise 17.4 Redo a careful analysis of the car marks data based on the following
dissimilarity matrix:

j 1 2 3 4

i Nissan Kia BMW Audi

1 Nissan –

2 Kia 2 –

3 BMW 4 6 –

4 Audi 3 5 1 –

Exercise 17.5 Apply the MDS method to the US health data. Is the result in
accordance with the geographic location of the US states?

Exercise 17.6 Redo Exercise 17.5 with the US crime data.

Exercise 17.7 Perform the MDS analysis on the Athletic Records data in
Sect. 22.18. Can you see which countries are “close to each other”?



Chapter 18
Conjoint Measurement Analysis

Conjoint Measurement Analysis plays an important role in marketing. In the design
of new products it is valuable to know which components carry what kind of utility
for the customer. Marketing and advertisement strategies are based on the perception
of the new product’s overall utility. It can be valuable information for a car producer
to know whether a change in sportiness or a change in safety or comfort equipment is
perceived as a higher increase in overall utility. The Conjoint Measurement Analysis
is a method for attributing utilities to the components (part worths) on the basis of
ranks given to different outcomes (stimuli) of the product. An important assumption
is that the overall utility is decomposed as a sum of the utilities of the components.

In Sect. 18.1 we introduce the idea of Conjoint Measurement Analysis. We give
two examples from the food and car industries. In Sect. 18.2 we shed light on the
problem of designing questionnaires for ranking different product outcomes. In
Sect. 18.3 we see that the metric solution of estimating the part-worths is given
by solving a least squares problem. The estimated preference ordering may be
nonmonotone. The nonmetric solution strategy takes care of this inconsistency by
iterating between a least squares solution and the pool adjacent violators algorithm.

18.1 Introduction

In the design and perception of new products it is important to specify the contri-
butions made by different facets or elements. The overall utility and acceptance of
such a new product can then be estimated and understood as a possibly additive
function of the elementary utilities. Examples are the design of cars, a food article
or the program of a political party. For a new type of margarine one may ask

© Springer-Verlag Berlin Heidelberg 2015
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whether a change in taste or presentation will enhance the overall perception of
the product. The elementary utilities are here the presentation style and the taste
(e.g. calory content). For a party program one may want to investigate whether a
stronger ecological or a stronger social orientation gives a better overall profile of
the party. For the marketing of a new car one may be interested in whether this new
car should have a stronger active safety or comfort equipment or a more sporty note
or combinations of both.

In Conjoint Measurement Analysis one assumes that the overall utility can be
explained as an additive decomposition of the utilities of different elements. In a
sample of questionnaires people ranked the product types and thus revealed their
preference orderings. The aim is to find the decomposition of the overall utility on
the basis of observed data and to interpret the elementary or marginal utilities.

Example 18.1 A car producer plans to introduce a new car with features that appeal
to the customer and that may help in promoting future sales. The new elements
that are considered are comfort/safety components (e.g. active steering or GPS) and
a sporty look (leather steering wheel and additional kW of the engine). The car
producer has thus four lines of cars.

car 1: basic safety equipment and low sportiness

car 2: basic safety equipment and high sportiness

car 3: high safety equipment and low sportiness

car 4: high safety equipment and high sportiness

For the car producer it is important to rank these cars and to find out customers’
attitudes toward a certain product line in order to develop a suitable marketing
scheme. A tester may rank the cars as described in Table 18.1.

The elementary utilities here are the comfort equipment and the level of
sportiness. Conjoint Measurement Analysis aims at explaining the rank order given
by the test person as a function of these elementary utilities.

Example 18.2 A food producer plans to create a new margarine and varies the
product characteristics “calories” (low vs. high) and “presentation” (a plastic pot
vs. paper package) (Backhaus, Erichson, Plinke, & Weiber, 1996). We can view this
in fact as ranking four products.

product 1: low calories and plastic pot

product 2: low calories and paper package

product 3: high calories and plastic pot

product 4: high calories and paper package
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Table 18.1 Tester’s ranking
of cars

Car 1 2 3 4

Ranking 1 2 4 3

Table 18.2 Tester’s ranking
of margarine

Product 1 2 3 4

Ranking 3 4 1 2

These four fictive products may now be ordered by a set of sample testers as
described in Table 18.2.

The Conjoint Measurement Analysis aims to explain such a preference ranking
by attributing part-worths to the different elements of the product. The part-worths
are the utilities of the elementary components of the product.

In interpreting the part-worths one may find that for a test person one of the
elements has a higher value or utility. This may lead to a new design or to the
decision that this utility should be emphasised in advertisement schemes.

Summary
,! Conjoint Measurement Analysis is used in the design of new

products.
,! Conjoint Measurement Analysis tries to identify part-worth utilities

that contribute to an overall utility.
,! The part-worths enter additively into an overall utility.

,! The interpretation of the part-worths gives insight into the percep-
tion and acceptance of the product.

18.2 Design of Data Generation

The product is defined through the properties of the components. A stimulus is
defined as a combination of the different components. Examples 18.1 and 18.2 had
four stimuli each. In the margarine example they were the possible combinations of
the factors X1 (calories) and X2 (presentation). If a product property such as

X3(usage) D
8
<

:

1 bread
2 cooking
3 universal

is added, then there are 3 � 2 � 2 D 12 stimuli.
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For the automobile Example 18.1 additional characteristics may be engine power
and the number of doors. Suppose that the engines offered for the new car have
50; 70; 90kW and that the car may be produced in 2-, 4-, or 5-door versions. These
categories may be coded as

X3.power of engine/ D
8
<

:

1 50 kW
2 70 kW
3 90 kW

and

X4.doors/ D
8
<

:

1 2 doors
2 4 doors
3 5 doors

:

Both X3 and X4 have three factor levels each, whereas the first two factors X1
(safety) andX2 (sportiness) have only two levels. Altogether 2 � 2 � 3 � 3D 36 stimuli
are possible. In a questionnaire a tester would have to rank all 36 different products.

The profile method asks for the utility of each stimulus. This may be time
consuming and tiring for a test person if there are too many factors and factor levels.
Suppose that there are six properties of components with three levels each. This
results in 36 D 729 stimuli (i.e. 729 different products) that a tester would have to
rank.

The two factor method is a simplification and considers only two factors
simultaneously. It is also called trade-off analysis. The idea is to present just two
stimuli at a time and then to recombine the information. Trade-off analysis is
performed by defining the trade-off matrices corresponding to stimuli of two factors
only.

The trade-off matrices for the levelsX1, X2 andX3 from the margarine Example
18.2 are given in Table 18.3. The trade-off matrices for the new car outfit are
described in Tabel 18.4.

The choice between the profile method and the trade-off analysis should be
guided by consideration of the following aspects:

1. requirements on the test person,
2. time consumption,
3. product perception.

Table 18.3 Trade-off
matrices for margarine

X3 X1

1 1 2

2 1 2

3 1 2

X3 X2

1 1 2

2 1 2

3 1 2

X1 X2

1 1 2

2 1 2
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Table 18.4 Trade-off
matrices for car design

X4 X3

1 1 2 3

2 1 2 3

3 1 2 3

X4 X2

1 1 2

2 1 2

3 1 2

X4 X1

1 1 2

2 1 2

3 1 2

X3 X2

1 1 2

2 1 2

3 1 2

X3 X1

1 1 2

2 1 2

3 1 2

X2 X1

1 1 2

2 1 2

The first aspect relates to the ability of the test person to judge the different stimuli.
It is certainly an advantage of the trade-off analysis that one only has to consider
two factors simultaneously. The two factor method can be carried out more easily
in a questionnaire without an interview.

The profile method incorporates the possibility of a complete product perception
since the test person is not confronted with an isolated aspect (2 factors) of the
product. The stimuli may be presented visually in its final form (e.g. as a picture).
With the number of levels and properties the number of stimuli rise exponentially
with the profile method. The time to complete a questionnaire is therefore a factor
in the choice of method.

In general the product perception is the most important aspect and is therefore
the profile method that is used the most. The time consumption aspect speaks for the
trade-off analysis. There exist, however, clever strategies on selecting representation
subsets of all profiles that bound the time investment. We therefore concentrate on
the profile method in the following.

Summary
,! A stimulus is a combination of different properties of a product.

,! Conjoint measurement analysis is based either on a list of all factors
(profile method) or on trade-off matrices (two factor method).

,! Trade-off matrices are used if there are too many factor levels.

,! Presentation of trade-off matrices makes it easier for testers since
only two stimuli have to be ranked at a time.
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18.3 Estimation of Preference Orderings

On the basis of the reported preference values for each stimulus conjoint analysis
determines the part-worths. Conjoint analysis uses an additive model of the form

Yk D
JX

jD1

LjX

lD1
ˇjl I.Xj D xjl/C �; for k D 1; : : : ; K and 8 j

LjX

lD1
ˇjl D 0:

(18.1)

Xj (j D 1; : : : ; J ) denote the factors, xjl (l D 1; : : : ; Lj ) are the levels of each
factor Xj and the coefficients ˇjl are the part-worths. The constant � denotes an
overall level and Yk is the observed preference for each stimulus and the total
number of stimuli are:

K D
JY

jD1
Lj :

Equation (18.1) is without an error term for the moment. In order to explain
how (18.1) may be written in the standard linear model form we first concentrate on
J D 2 factors. Suppose that the factors engine power and airbag safety equipment
have been ranked as follows:

Airbag

1 2

Engine 50 kW 1 1 3

70 kW 2 2 6

90 kW 3 4 5

There are K D 6 preferences altogether. Suppose that the stimuli have been
sorted so that Y1 corresponds to engine level 1 and airbag level 1, Y2 corresponds to
engine level 1 and airbag level 2, and so on. Then model (18.1) reads:

Y1 D ˇ11 C ˇ21 C �
Y2 D ˇ11 C ˇ22 C �
Y3 D ˇ12 C ˇ21 C �
Y4 D ˇ12 C ˇ22 C �
Y5 D ˇ13 C ˇ21 C �
Y6 D ˇ13 C ˇ22 C �:

Now we would like to estimate the part-worths ˇjl.
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Table 18.5 Ranked products X2 (calories)

Low High

1 2

X1 (usage) Bread 1 2 1

Cooking 2 3 4

Universal 3 6 5

Example 18.3 In the margarine example let us consider the part-worths of X1 D
usage and X2 D calories. We have x11 D 1, x12 D 2, x13 D 3, x21 D 1 and
x22 D 2. (We momentarily re-labeled the factors: X3 became X1.) Hence L1 D 3

and L2 D 2. Suppose that a person has ranked the six different products as in
Table 18.5.

If we order the stimuli as follows:

Y1 D Utility .X1 D 1 ^X2 D 1/
Y2 D Utility .X1 D 1 ^X2 D 2/
Y3 D Utility .X1 D 2 ^X2 D 1/
Y4 D Utility .X1 D 2 ^X2 D 2/
Y5 D Utility .X1 D 3 ^X2 D 1/
Y6 D Utility .X1 D 3 ^X2 D 2/ ;

we obtain from Eq. (18.1) the same decomposition as above:

Y1 D ˇ11 C ˇ21 C �
Y2 D ˇ11 C ˇ22 C �
Y3 D ˇ12 C ˇ21 C �
Y4 D ˇ12 C ˇ22 C �
Y5 D ˇ13 C ˇ21 C �
Y6 D ˇ13 C ˇ22 C �:

Our aim is to estimate the part-worths ˇjl as well as possible from a collection of
tables like Table 18.5 that have been generated by a sample of test persons. First, the
so-called metric solution to this problem is discussed and then a non-metric solution.

Metric Solution

The problem of conjoint measurement analysis can be solved by the technique of
Analysis of Variance (ANOVA). An important assumption underlying this technique
is that the “distance” between any two adjacent preference orderings corresponds to
the same difference in utility. That is, the difference in utility between the products
ranked 1st and 2nd is the same as the difference in utility between the products
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Table 18.6 Metric solution
for car example

X2 (airbags)
1 2 Npx1� ˇ1l

X1(engine) 50 kW 1 1 3 2 �1.5

70 kW 2 2 6 4 0.5

90 kW 3 4 5 4.5 1

Npx2� 2.33 4.66 3.5

ˇ2l �1.16 1.16

ranked 4th and 5th. Put differently, we treat the ranking of the products—which is a
cardinal variable—as if it were a metric variable.

Introducing a mean utility � Eq. (18.1) can be rewritten. The mean utility in the
above Example 18.3 is � D .1C 2C 3 C 4 C 5C 6/=6 D 21=6 D 3:5. In order
to check the deviations of the utilities from this mean, we enlarge Table 18.5 by the
mean utility Npxj�

, given a certain level of the other factor. The metric solution for
the car example is given in Table 18.6.

Example 18.4 In the margarine example the resulting part-worths for � D 3:5 are

ˇ11 D �2 ˇ21 D 0:16

ˇ12 D 0 ˇ22 D �0:16
ˇ13 D 2

:

Note that
LjP

lD1
ˇjl D 0 (j D 1; : : : ; J ). The estimated utility OY1 for the product with

low calories and usage of bread, for example, is:

OY1 D ˇ11 C ˇ21 C � D �2C 0:16C 3:5 D 1:66:

The estimated utility OY4 for product 4 (cooking (X1 D 2) and high calories (X2 D
2)) is:

OY4 D ˇ12 C ˇ22 C � D 0 � 0:16C 3:5 D 3:33:

The coefficients ˇjl are computed as Npxjl��, where Npxjl is the average preference
ordering for each factor level. For instance, Npx11 D 1=2 
 .2C 1/ D 1:5.

The fit can be evaluated by calculating the deviations of the fitted values to the
observed preference orderings. In the rightmost column of Table 18.8 the quadratic
deviations between the observed rankings (utilities) Yk and the estimated utilities OYk
are listed.
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Table 18.7 Metric solution
for Table 18.5

X2 (calories)

Low High

1 2 Npx1� ˇ1l

X1 (usage) Bread 1 2 1 1.5 �2

Cooking 2 3 4 3.5 0

Universal 3 6 5 5.5 2

Npx2� 3.66 3.33 3.5

ˇ2l 0.16 �0.16

Table 18.8 Deviations
between model and data

Stimulus Yk OYk Yk � OYk .Yk � OYk/2
1 2 1.66 0.33 0.11

2 1 1.33 �0.33 0.11

3 3 3.66 �0.66 0.44

4 4 3.33 0.66 0.44

5 6 5.66 0.33 0.11

6 5 5.33 �0.33 0.11
P

21 21 0 1.33

The technique described that generated Table 18.7 is in fact the solution to a least
squares problem. The conjoint measurement problem (18.1) may be rewritten as a
linear regression model (with error " D 0):

Y D Xˇ C " (18.2)

with X being a design matrix with dummy variables. X has the row dimension

K D
JQ

jD1
Lj (the number of stimuli) and the column dimension D D

JP

jD1
Lj � J .

The reason for the reduced column number is that per factor only (Lj � 1) vectors
are linearly independent. Without loss of generality we may standardise the problem
so that the last coefficient of each factor is omitted. The error term " is introduced
since even for one person the preference orderings may not fit the model (18.1).

Example 18.5 If we rewrite the ˇ coefficients in the form

0

B
B
@

ˇ1
ˇ2
ˇ3

ˇ4

1

C
C
A D

0

B
B
@

�C ˇ13 C ˇ22
ˇ11 � ˇ13
ˇ12 � ˇ13
ˇ21 � ˇ22

1

C
C
A (18.3)
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and define the design matrix X as

X D

0

B
B
B
B
B
B
B
@

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

1

C
C
C
C
C
C
C
A

; (18.4)

then Eq. (18.1) leads to the linear model (with error " D 0):

Y D Xˇ C ": (18.5)

The least squares solution to this problem is the technique used for Table 18.7.
In practice we have more than one person to answer the utility rank question for

the different factor levels. The design matrix is then obtained by stacking the above
design matrix n times. Hence, for n persons we have as a final design matrix:

X � D 1n ˝ X D

0

B
B
B
B
@

X
:::
:::

X

1

C
C
C
C
A

9
>>>>=

>>>>;

n � times

which has dimension .nK/.L�J / (whereL D
JP

jD1
Lj ) and Y � D .Y >1 ; : : : ; Y >n />.

The linear model (18.5) can now be written as:

Y � D X �ˇ C "�: (18.6)

Given that the test people assign different rankings, the error term "� is a necessary
part of the model.

Example 18.6 If we take the ˇ vector as defined in (18.3) and the design matrix X
from (18.4), we obtain the coefficients:

Ǒ
1 D 5:33 D O�C Ǒ13 C Ǒ22
Ǒ
2 D �4 D Ǒ11 � Ǒ13
Ǒ
3 D �2 D Ǒ12 � Ǒ13
Ǒ
4 D 0:33 D Ǒ21 � Ǒ22
LjP

lD1
Ǒ
jl D 0:

(18.7)
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Solving (18.7) we have:

Ǒ
11 D Ǒ2 � 1

3

� Ǒ
2 C Ǒ3

�
D �2

Ǒ
12 D Ǒ3 � 1

3

� Ǒ
2 C Ǒ3

�
D 0

Ǒ
13 D � 13

� Ǒ
2 C Ǒ3

�
D 2

Ǒ
21 D Ǒ4 � 1

2
Ǒ
4 D 1

2
Ǒ
4 D 0:16

Ǒ
31 D � 12 Ǒ4 D �0:16
O� D Ǒ1 C 1

3

� Ǒ
2 C Ǒ3

�
C 1

2
. Ǒ4/ D 3:5:

(18.8)

In fact, we obtain the same estimated part-worths as in Table 18.7. The stimulus
k D 2 corresponds to adding up ˇ11; ˇ22; and � (see (18.3)). Adding Ǒ1 and
Ǒ
2 gives:

OY2 D 5:33� 4 D 1:33:

Nonmetric Solution

If we drop the assumption that utilities are measured on a metric scale, we have
to use (18.1) to estimate the coefficients from an adjusted set of estimated utilities.
More precisely, we may use the monotone ANOVA as developed by Kruskal (1965).
The procedure works as follows. First, one estimates model (18.1) with the ANOVA
technique described above. Then one applies a monotone transformation OZ D f . OY /
to the estimated stimulus utilities. The monotone transformation f is used because
the fitted values OYk from (18.2) of the reported preference orderings Yk may not be
monotone. The transformation OZk D f . OYk/ is introduced to guarantee monotonicity
of preference orderings. For the car example the reported Yk values were Y D
.1; 3; 2; 6; 4; 5/>. The estimated values are computed as:

OY1 D �1:5 � 1:16C 3:5 D 0:84
OY2 D �1:5C 1:16C 3:5 D 3:16
OY3 D �0:5 � 1:16C 3:5 D 2:84
OY4 D �0:5C 1:16C 3:5 D 5:16
OY5 D 1:5 � 1:16C 3:5 D 3:34
OY6 D 1:5C 1:16C 3:5 D 5:66:

If we make a plot of the estimated preference orderings against the revealed ones,
we obtain Fig. 18.1.
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Fig. 18.1 Plot of estimated
preference orderings
vs. revealed rankings and
PAV fit
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We see that the estimated OY6 D 5:16 is below the estimated OY5 D 5:66 and
thus an inconsistency in ranking the utilities occurs. The monotone transformation
OZk D f . OYk/ is introduced to make the relationship in Fig. 18.1 monotone. A very

simple procedure consists of averaging the “violators” OY6 and OY5 to obtain 5:41. The
relationship is then monotone but the model (18.1) may now be violated. The idea
is therefore to iterate these two steps. This procedure is iterated until the stress
measure (see Chap. 17)

STRESS D

KP

kD1
. OZk � OYk/2

KP

kD1
. OYk � NOY /2

(18.9)

is minimised over ˇ and the monotone transformation f . The monotone transfor-
mation can be computed by the so-called pool-adjacent-violators (PAV) algorithm.
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Summary
,! The part-worths are estimated via the least squares method.

,! The metric solution corresponds to analysis of variance in a linear
model.

,! The non-metric solution iterates between a monotone regression
curve fitting and determining the part-worths by ANOVA method-
ology.

,! The fitting of data to a monotone function is done via the PAV
algorithm.

18.4 Exercises

Exercise 18.1 Compute the part-worths for the following table of rankings

X2

1 2

X1 1 1 2

2 4 3

3 6 5

.

Exercise 18.2 Consider again Example 18.5. Rewrite the design matrix X and the
parameter vector ˇ so that the overall mean effect � is part of X and ˇ, i.e. find the
matrix X 0 and ˇ0 such that Y D X 0ˇ0.

Exercise 18.3 Compute the design matrix for Example 18.5 for n D 3 persons
ranking the margarine with X1 and X2.

Exercise 18.4 Construct an analog for Table 18.8 for the car example.

Exercise 18.5 Compute the part-worths on the basis of the following tables of
rankings observed on n D 3 persons.

X2

X1 1 1 2

2 4 3

3 6 5

X2

X1 1 3

4 2

5 6

X2

X1 3 1

5 2

6 4
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Exercise 18.6 Suppose that in the car example a person has ranked cars by the
profile method on the following characteristics:

X1 D motor

X2 D safety

X3 D doors

X1 X2 X3 Preference

1 1 1 1

1 1 2 3

1 1 3 2

1 2 1 5

1 2 2 4

1 2 3 6

X1 X2 X3 Preference

2 1 1 7

2 1 2 8

2 1 3 9

2 2 1 10

2 2 2 12

2 2 3 11

X1 X2 X3 Preference

3 1 1 13

3 1 2 15

3 1 3 14

3 2 1 16

3 2 2 17

3 2 3 18

There are k D 18 stimuli.
Estimate and analyse the part-worths.



Chapter 19
Applications in Finance

A portfolio is a linear combination of assets. Each asset contributes with a weight
cj to the portfolio. The performance of such a portfolio is a function of the various
returns of the assets and of the weights c D .c1; : : : ; cp/

>. In this chapter we
investigate the “optimal choice” of the portfolio weights c. The optimality criterion
is the mean-variance efficiency of the portfolio. Usually investors are risk-averse,
therefore, we can define a mean-variance efficient portfolio to be a portfolio that
has a minimal variance for a given desired mean return. Equivalently, we could
try to optimise the weights for the portfolios with maximal mean return for a
given variance (risk structure). We develop this methodology in the situations of
(non)existence of riskless assets and discuss relations with the capital asset pricing
model (CAPM).

19.1 Portfolio Choice

Suppose that one has a portfolio of p assets. The price of asset j at time i is denoted
as pij. The return from asset j in a single time period (day, month, year etc.) is:

xij D pij � pi�1;j
pi�1;j

�

We observe the vectors xi D .xi1; : : : ; xip/
> (i.e. the returns of the assets which are

contained in the portfolio) over several time periods. We stack these observations
into a data matrix X D .xij/ consisting of observations of a random variable

X � .�;†/:

© Springer-Verlag Berlin Heidelberg 2015
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The return of the portfolio is the weighted sum of the returns of the p assets:

Q D c>X; (19.1)

where c D .c1; : : : ; cp/> (with
Pp

jD1 cj D 1) denotes the proportions of the assets
in the portfolio. The mean return of the portfolio is given by the expected value
of Q, which is c>�. The risk or variance (squared volatility) of the portfolio is
given by the variance of Q (Theorem 4.6), which is equal to two times

1

2
c>†c: (19.2)

The reason for taking half of the variance ofQ is merely technical. The optimisation
of (19.2) with respect to c is of course equivalent to minimising c>†c. Our aim is to
maximise the portfolio returns (19.1) given a bound on the volatility (19.2) or vice
versa to minimise risk given a (desired) mean return of the portfolio.

Summary
,! Given a matrix of returns X from p assets in n time periods, and

that the underlying distribution is stationary, i.e. X � .�;†/, then
the (theoretical) return of the portfolio is a weighted sum of the
returns of the p assets, namelyQ D c>X .

,! The expected value of Q is c>�. For technical reasons one
considers optimising 1

2
c>†c. The risk or squared volatility is

c>†c D Var.c>X/.
,! The portfolio choice, i.e. the selection of c, is such that the return

is maximised for a given risk bound.

19.2 Efficient Portfolio

A variance efficient portfolio is one that keeps the risk (19.2) minimal under the
constraint that the weights sum to 1, i.e. c>1p D 1. For a variance efficient portfolio,
we therefore try to find the value of c that minimises the Lagrangian

L D 1

2
c>†c � �.c>1p � 1/: (19.3)

A mean-variance efficient portfolio is defined as one that has minimal variance
among all portfolios with the same mean. More formally, we have to find a vector
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of weights c such that the variance of the portfolio is minimal subject to two
constraints:

1. a certain, pre-specified mean return N� has to be achieved,
2. the weights have to sum to one.

Mathematically speaking, we are dealing with an optimisation problem under two
constraints.

The Lagrangian function for this problem is given by

L D c>†c C �1. N� � c>�/C �2.1 � c>1p/:

With tools presented in Sect. 2.4 we can calculate the first order condition for a
minimum:

@L
@c
D 2†c � �1� � �21p D 0: (19.4)

Example 19.1 Figure 19.1 shows the monthly returns from January 2000 to
December 2009 of six stocks. The data is from Yahoo Finance. For each stock
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Fig. 19.1 Returns of six firms from January 2000 to December 2009 MVAreturns
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we have chosen the same scale on the vertical axis (which gives the return of
the stock). Note how the return of some stocks, such as Forward Industries and
Apple, are much more volatile than the returns of other stocks, such as IBM or
Consolidated Edison (Electric utilities).

As a very simple example consider two differently weighted portfolios
containing only two assets, IBM and Forward Industries. Figure 19.2 displays the
monthly returns of the two portfolios. The portfolio in the upper panel consists of
approximately 10 % Forward Industries assets and 90 % IBM assets. The portfolio
in the lower panel contains an equal proportion of each of the assets. The text
windows on the right of Fig. 19.2 show the exact weights which were used. We can
clearly see that the returns of the portfolio with a higher share of the IBM assets
(which have a low variance) are much less volatile.

For an exact analysis of the optimisation problem (19.4) we distinguish between
two cases: the existence and nonexistence of a riskless asset. A riskless asset is an
asset such as a zero bond, i.e. a financial instrument with a fixed nonrandom return
(Franke, Härdle & Hafner, 2011).

Fig. 19.2 Portfolio of IBM
and Forward Industries
assets, equal and efficient
weights MVAportfolIBMFord
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Nonexistence of a Riskless Asset

Assume that the covariance matrix † is invertible (which implies positive
definiteness). This is equivalent to the nonexistence of a portfolio c with variance
c>†c D 0. If all assets are uncorrelated, † is invertible if all of the asset returns
have positive variances. A riskless asset (uncorrelated with all other assets) would
have zero variance since it has fixed, nonrandom returns. In this case † would not
be positive definite.

The optimal weights can be derived from the first order condition (19.4) as

c D 1

2
†�1.�1�C �21p/: (19.5)

Multiplying this by a .p � 1/ vector 1p of ones, we obtain

1 D 1>p c D
1

2
1>p †�1.�1�C �21p/;

which can be solved for �2 to get:

�2 D
2 � �11>p †�1�
1>p †�11p

:

Plugging this expression into (19.5) yields

c D 1

2
�1

 

†�1� � 1>p †�1�
1>p †�11p

†�11p

!

C †�11p
1>p †�11p

: (19.6)

For the case of a variance efficient portfolio there is no restriction on the mean of
the portfolio .�1 D 0/. The optimal weights are therefore:

c D †�11p
1>p †�11p

: (19.7)

This formula is identical to the solution of (19.3). Indeed, differentiation with
respect to c gives

†c D �1p

c D �†�11p:
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If we plug this into (19.3), we obtain

L D 1

2
�21>p †�11p � �.�1>p †�11p � 1/

D � � 1
2
�21>p †�11p:

This quantity is a function of � and is minimal for

� D .1>p †�11p/�1

since

@2L
@c>@c

D † > 0:

Theorem 19.1 The variance efficient portfolio weights for returns X � .�;†/ are

copt D †�11p
1>p †�11p

: (19.8)

Existence of a Riskless Asset

If an asset exists with variance equal to zero, then the covariance matrix † is not
invertible. The notation can be adjusted for this case as follows: denote the return of
the riskless asset by r (under the absence of arbitrage this is the interest rate), and
partition the vector and the covariance matrix of returns such that the last component
is the riskless asset. Thus, the last equation of the system (19.4) becomes

2Cov.r; X/� �1r � �2 D 0;

and, because the covariance of the riskless asset with any portfolio is zero, we have

�2 D �r�1: (19.9)

Let us for a moment modify the notation in such a way that in each vector and matrix
the components corresponding to the riskless asset are excluded. For example, c
is the weight vector of the risky assets (i.e. assets with positive variance), and c0
denotes the proportion invested in the riskless asset. Obviously, c0 D 1�1>p c, and†
the covariance matrix of the risky assets, is assumed to be invertible. Solving (19.4)
using (19.9) gives

c D �1

2
†�1.� � r1p/: (19.10)
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This equation may be solved for �1 by plugging it into the condition �>c D N�.
This is the mean-variance efficient weight vector of the risky assets if a riskless asset
exists. The final solution is:

c D N�†�1.�� r1p/
�>†�1.�� r1p/ : (19.11)

The variance optimal weighting of the assets in the portfolio depends on the
structure of the covariance matrix as the following corollaries show.

Corollary 19.1 A portfolio of uncorrelated assets whose returns have equal
variances († D �2Ip) needs to be weighted equally:

copt D p�11p:

Proof Here we obtain 1>p †�11p D ��21>p 1p D ��2p and therefore c D ��21p

��2p
D

p�11p . ut
Corollary 19.2 A portfolio of correlated assets whose returns have equal vari-
ances, i.e.

† D �2

0

B
B
B
@

1 � � � � �
� 1 � � � �
:::
:::
: : :

:::

� � � � � 1

1

C
C
C
A
; � 1

p � 1 < � < 1

needs to be weighted equally:

copt D p�11p:

Proof † can be rewritten as † D �2
n
.1 � �/Ip C �1p1>p

o
: The inverse is

†�1 D Ip
�2.1 � �/ �

�1p1
>
p

�2.1 � �/f1C .p � 1/�g

since for a .p � p/ matrix A of the form A D .a � b/Ip C b1p1>p the inverse is
generally given by

A�1 D Ip
.a � b/ �

b 1p1
>
p

.a � b/faC .p � 1/bg �
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Hence

†�11p D 1p

�2.1 � �/ �
�1p1

>
p 1p

�2.1 � �/f1C .p � 1/�g
D Œf1C .p � 1/�g � �p�1p
�2.1 � �/f1C .p � 1/�g D

f1 � �g1p
�2.1 � �/f1C .p � 1/�g

D 1p

�2f1C .p � 1/�g

which yields

1>p †�11p D
p

�2f1C .p � 1/�g

and thus c D p�11p . ut
Let us now consider assets with different variances. We will see that in this case

the weights are adjusted to the risk.

Corollary 19.3 A portfolio of uncorrelated assets with returns of different vari-
ances, i.e. † D diag.�21 ; : : : ; �

2
p/, has the following optimal weights

cj;opt D
��2j
pP

lD1
��2l

; j D 1; : : : ; p:

Proof From †�1 D diag.��21 ; : : : ; ��2p / we have 1>p †�11p D
Pp

lD1 ��2l and

therefore the optimal weights are cj D ��2j =
pP

lD1
��2l . ut

This result can be generalised for covariance matrices with block structures.

Corollary 19.4 A portfolio of assets with returns X � .�;†/, where the
covariance matrix has the form:

† D

0

B
B
B
B
@

†1 0 : : : 0

0 †2
: : :

:::
:::
: : :

: : :
:::

0 : : : 0 †r

1

C
C
C
C
A
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has optimal weights c D .c1; : : : ; cr /> given by

cj;opt D
†�1j 1
1>†�1j 1

; j D 1; : : : ; r:

Summary
,! An efficient portfolio is one that keeps the risk minimal under the

constraint that a given mean return is achieved and that the weights
sum to 1, i.e. that minimises L D c>†cC �1. N�� c>�/C �2.1�
c>1p/:

,! If a riskless asset does not exist, the variance efficient portfolio
weights are given by

c D †�11p
1>p †�11p

:

,! If a riskless asset exists, the mean-variance efficient portfolio
weights are given by

c D N�†�1.� � r1p/
�>†�1.� � r1p/ :

,! The efficient weighting depends on the structure of the covariance
matrix †. Equal variances of the assets in the portfolio lead to
equal weights, different variances lead to weightings proportional
to these variances:

cj;opt D
��2j
pP

lD1
��2l

; j D 1; : : : ; p:
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19.3 Efficient Portfolios in Practice

We can now demonstrate the usefulness of this technique by applying our method to
the monthly market returns computed on the basis of transactions at the New York
stock market and the NASDAQ stock market between January 2000 and December
2009.

Example 19.2 Recall that we had shown the portfolio returns with uniform and
optimal weights in Fig. 19.2. The covariance matrix of the returns of IBM and
Forward Industries is

S D
�
0:0073 0:0023

0:0023 0:0454

�

:

Hence by (19.7) the optimal weighting is

Oc D S�112
1>2 S�112

D .0:8952; 0:1048/>:

The effect of efficient weighting becomes even clearer when we expand the
portfolio to six assets. The covariance matrix for the returns of all six firms
introduced in Example 19.1 is

S D 10�3

0

B
B
B
B
B
B
B
@

7:3 6:2 3:1 2:3 �0:1 5:2

6:2 23:9 4:3 2:1 0:4 6:4

3:1 4:3 19:5 �0:9 1:1 3:7

2:3 2:1 �0:9 45:4 �2:1 0:8

�0:1 0:4 1:1 �2:1 2:4 �0:1
5:2 6:4 3:7 0:8 �0:1 14:7

1

C
C
C
C
C
C
C
A

:

Hence the optimal weighting is

Oc D S�116
1>6 S�116

D .0:1894;�0:0139; 0:0094; 0:0580; 0:7112; 0:0458/>:

As we can clearly see, the optimal weights are quite different from the equal
weights (cj D 1=6). The weights which were used are shown in text windows on
the right hand side of Fig. 19.3.

This efficient weighting assumes stable covariances between the assets over time.
Changing covariance structure over time implies weights that depend on time as
well. This is part of a large body of literature on multivariate volatility models.
For a review refer to Franke et al. (2011).
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Fig. 19.3 Portfolio of all six
assets, equal and efficient
weights MVAportfol
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X
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Weights

0.167, IBM
0.167, Apple
0.167, BAC
0.167, Ford
0.167, Edison
0.167, Stanley

0 20 40 60 80 100 120
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6

Optimal Weighted Portfolio

X

Y

Weights

0.189, IBM
−0.014, Apple
0.009, BAC
0.058, Ford
0.711, Edison
0.046, Stanley

Summary
,! Efficient portfolio weighting in practice consists of estimating the

covariances of the assets in the portfolio and then computing
efficient weights from this empirical covariance matrix.

,! Note that this efficient weighting assumes stable covariances
between the assets over time.

19.4 The Capital Asset Pricing Model

The CAPM considers the relation between a mean-variance efficient portfolio and
an asset uncorrelated with this portfolio. Let us denote this specific asset return by
y0. The riskless asset with constant return y0 D r may be such an asset. Recall
from (19.4) the condition for a mean-variance efficient portfolio:

2†c � �1� � �21p D 0:
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In order to eliminate �2, we can multiply (19.4) by c> to get:

2c>†c � �1 N� D �2:

Plugging this into (19.4), we obtain:

2†c � �1� D 2c>†c1p � �1 N�1p
� D N�1p C 2

�1
.†c � c>†c1p/: (19.12)

For the asset that is uncorrelated with the portfolio, Eq. (19.12) can be written as:

y0 D N� � 2

�1
c>†c

since y0 D r is the mean return of this asset and is otherwise uncorrelated with the
risky assets. This yields:

�1 D 2
c>†c
N�� y0 (19.13)

and if (19.13) is plugged into (19.12):

� D N�1p C N� � y0
c>†c

.†c � c>†c1p/

� D y01p C †c

c>†c
. N� � y0/

� D y01p C ˇ. N� � y0/ (19.14)

with

ˇ
defD †c

c>†c
:

The relation (19.14) holds if there exists any asset that is uncorrelated with
the mean-variance efficient portfolio c. The existence of a riskless asset is not a
necessary condition for deriving (19.14). However, for this special case we arrive at
the well-known expression

� D r1p C ˇ. N� � r/; (19.15)

which is known as the CAPM, see Franke et al. (2011). The beta factor ˇ measures
the relative performance with respect to riskless assets or an index. It reflects the
sensitivity of an asset with respect to the whole market. The beta factor is close to
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1 for most assets. A factor of 1.16, for example, means that the asset reacts in relation
to movements of the whole market (expressed through an index like DAX or DOW
JONES) 16 % stronger than the index. This is of course true for both positive and
negative fluctuations of the whole market.

Summary
,! The weights of the mean-variance efficient portfolio satisfy 2†c �

�1�� �21p D 0:
,! In the CAPM the mean of X depends on the riskless asset and the

pre-specified mean � as follows � D r1p C ˇ.�� r/:
,! The beta factor ˇ measures the relative performance with respect

to riskless assets or an index and reflects the sensitivity of an asset
with respect to the whole market.

19.5 Exercises

Exercise 19.1 Prove that the inverse of A D .a � b/Ip C b1p1>p is given by

A�1 D Ip
.a � b/ �

b 1p1
>
p

.a � b/faC .p � 1/bg �

Exercise 19.2 The empirical covariance between the 120 returns of IBM and
Forward Industries is 0:0023 (see Example 19.2). Test if the true covariance is zero.
Hint: Use Fisher’s Z-transform.

Exercise 19.3 Explain why in both Figs. 19.2 and 19.3 the portfolios have negative
returns just before the end of the series, regardless of whether they are optimally
weighted or not! (What happened in the mid 2007?)

Exercise 19.4 Apply the method used in Example 19.2 on the same data
(Table 22.5) including also the Digital Equipment company. Obviously one of
the weights is negative. Is this an efficient weighting?

Exercise 19.5 In the CAPM the ˇ value tells us about the performance of the
portfolio relative to the riskless asset. Calculate the ˇ value for each single stock
price series relative to the “riskless” asset IBM.



Chapter 20
Computationally Intensive Techniques

It is generally accepted that training in statistics must include some exposure to the
mechanics of computational statistics. This exposure to computational methods is of
an essential nature when we consider extremely high-dimensional data. Computer-
aided techniques can help us to discover dependencies in high dimensions without
complicated mathematical tools. A draftman’s plot (i.e. a matrix of pairwise
scatterplots like in Fig. 1.14) may lead us immediately to a theoretical hypothesis
(on a lower dimensional space) on the relationship of the variables. Computer-aided
techniques are therefore at the heart of multivariate statistical analysis.

With the rapidly increasing amount of data statistics faces a new challenge.
While in the twentieth century the focus was on the mathematical precision of
statistical modelling, the twenty-first century relies more and more on data analytic
procedures that provide information (even for extremely large data bases) on the
fingertip. This demand on fast availability of condensed statistical information has
changed the statistical paradigm and has shifted energy from mathematical analysis
to computational analysis of course without loosing sight of the statistical core
questions.

In this chapter we first present the concept of Simplicial Depth—a multivariate
extension of the data depth concept of Sect. 1.1. We then present Projection
Pursuit—a semiparametric technique which is based on a one-dimensional, flexible
regression or on the idea of density smoothing applied to principal component
analysis (PCA) type projections. A similar model is underlying the Sliced Inverse
Regression (SIR) technique which we discuss in Sect. 20.3.

The next technique is called support vector machines (SVMs) and is motivated
by non-linear classification (discrimination) problems. SVMs are classification
methods based on statistical learning theory. A quadratic optimisation problem
determines so-called support vectors with high margin that guarantee maximal
separability. Non-linear classification is achieved by mapping the data into a feature
space and finding a linear separating hyperplane in this feature space. Another

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
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advanced technique is CART—Classification and Regression Trees, a decision tree
procedure developed by Breiman, Friedman, Olshen, and Stone (1984).

20.1 Simplicial Depth

Simplicial depth generalises the notion of data depth as introduced in Sect. 1.1.
This general definition allows us to define a multivariate median and to visually
present high-dimensional data in low dimension. For univariate data we have well
known parameters of location which describe the centre of a distribution of a random
variable X . These parameters are for example the mean

Nx D 1

n

nX

iD1
xi ; (20.1)

or the mode

xmod D arg max
x

Of .x/;

where Of is the estimated density function of X (see Sect. 1.3). The median

xmed D
8
<

:

xf.nC1/=2g if n odd

x.n=2/Cx.n=2C1/

2
otherwise;

where x.i/ is the order statistics of the n observations xi , is yet another measure of
location.

The first two parameters can be easily extended to multivariate random variables.
The mean in higher dimensions is defined as in (20.1) and the mode accordingly,

xmod D arg max
x

Of .x/

with Of the estimated multidimensional density function of X (see Sect. 1.3). The
median poses a problem though since in a multivariate sense we cannot interpret the
element-wise median

xmed;j D
8
<

:

xf.nC1/=2g;j if n odd

x.n=2/;jCx.n=2C1/;j

2
otherwise

(20.2)

as a point that is “most central”. The same argument applies to other observations
of a sample that have a certain “depth” as defined in Sect. 1.1. The “fourths” or the
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“extremes” are not defined in a straightforward way in higher (not even for two)
dimensions.

An equivalent definition of the median in one dimension is given by the simplicial
depth. It is defined as follows: For each pair of datapoints xi and xj we generate a
closed interval, a one-dimensional simplex, which contains xi and xj as border
points. Redefine the median as the datapoint xmed, which is enclosed in the
maximum number of intervals:

xmed D arg max
i

#fk; l I xi 2 Œxk; xl �g: (20.3)

With this definition of the median, the median is the “deepest” and “most
central” point in a data set as discussed in Sect. 1.1. This definition involves a
computationally intensive operation since we generate n.n � 1/=2 intervals for n
observations.

In two dimensions, the computation is even more intensive since the interval
Œxk; xl � is replaced by a triangle constructed from three different datapoints. The
median as the deepest point is then defined by that datapoint that is covered by
the maximum number of triangles. In three dimensions triangles become pyramids
formed from 4 points and the median is that datapoint that lies in the maximum
number of pyramids.

An example for the depth in two dimensions is given by the constellation of
points given in Fig. 20.1. If we build for example the triangle of the points 1, 3, 5
(denoted as4 135 in Table 20.1), it contains the point 4. From Table 20.1 we count
the number of coverages to obtain the simplicial depth values of Table 20.2.

Simplicial Depth Example
1

6

3 4

5

2

Fig. 20.1 Construction of simplicial depth MVAsimdep1
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Table 20.1 Coverages for
artificial configuration of
points

Triangle Coverages

1 4 123 1 2 3

2 4 124 1 2 4

3 4 125 1 2 5

4 4 126 1 2 3 4 6

5 4 134 1 3 4

6 4 135 1 3 4 5

7 4 136 1 3 6

8 4 145 1 4 5

9 4 146 1 3 4 6

10 4 156 1 3 4 5 6

11 4 234 2 3 4

12 4 235 2 3 4 5

13 4 236 2 3 4 6

14 4 245 2 4 5

15 4 246 2 4 6

16 4 256 2 5 6

17 4 345 3 4 5

18 4 346 3 4 6

19 4 356 3 5 6

20 4 456 4 5 6

Table 20.2 Simplicial
depths for artificial
configuration of points

Point 1 2 3 4 5 6

Depth 10 10 12 14 8 8

In arbitrary dimension p, we look for datapoints that lie inside a simplex (or
convex hull) formed from p C 1 points. We therefore extend the definition of the
median to the multivariate case as follows

xmed D arg max
i

#fk0; : : : ; kpI xi 2 hull.xk0 ; : : : ; xkp /g: (20.4)

Here k0; : : : ; kp denote the indices of p C 1 datapoints. Thus for each datapoint
we have a multivariate data depth. If we compute all the necessary simplices
hull.xk0 ; : : : ; xkp /, the computing time will unfortunately be exponential as the
dimension increases.

In Fig. 20.2 we calculate the simplicial depth for a two-dimensional, 10 point
distribution according to depth. It contains 100 data points with corresponding
parameters controlling its spread. The deepest point, the two-dimensional median,
is indicated as a big star in the centre. The points with less depth are indicated via
grey shades.
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Fig. 20.2 10 point
distribution according to
depth with the median shown
as a big star in the centre
MVAsimdepex
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Summary
,! The “depth” of a datapoint in one dimension can be computed by

counting all (closed) intervals of two datapoints which contain the
datapoint

,! The “deepest” datapoint is the central point of the distribution, the
median

,! The “depth” of a datapoint in arbitrary dimension p is defined as
the number of simplices (constructed from p C 1 points) covering
this point. It is called simplicial depth

,! A multivariate extension of the median is to take the “deepest”
datapoint of the distribution

,! In the bivariate case we count all triangles of datapoints which
contain the datapoint to compute its depth

20.2 Projection Pursuit

“Projection Pursuit” stands for a class of exploratory projection techniques.
This class contains statistical methods designed for analysing high-dimensional
data using low-dimensional projections. The aim of projection pursuit is to
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reveal possible non-linear and therefore interesting structures hidden in the high-
dimensional data. To what extent these structures are “interesting” is measured by
an index. Exploratory Projection Pursuit (EPP) goes back to Kruskal (1969, 1972).
The approach was successfully implemented for exploratory purposes by various
other authors. The idea has been applied to regression analysis, density estimation,
classification and discriminant analysis.

Exploratory Projection Pursuit

In EPP, we try to find “interesting” low-dimensional projections of the data. For
this purpose, a suitable index function I.˛/, depending on a normalised projection
vector ˛, is used. This function will be defined such that “interesting” views
correspond to local and global maxima of the function. This approach naturally
accompanies the technique of PCA of the covariance structure of a random vectorX .
In PCA we are interested in finding the axes of the covariance ellipsoid. The index
function I.˛/ is in this case the variance of a linear combination ˛>X subject to the
normalising constraint ˛>˛ D 1 (see Theorem 11.2). If we analyse a sample with a
p-dimensional normal distribution, the “interesting” high-dimensional structure we
find by maximising this index is of course linear.

There are many possible projection indices, for simplicity the kernel based and
polynomial based indices are reported. Assume that the p-dimensional random
variable X is sphered and centred, that is, E.X/ D 0 and Var.X/ D Ip . This
will remove the effect of location, scale, and correlation structure. This covariance
structure can be achieved easily by the Mahalanobis transformation (3.26).

Friedman and Tukey (1974) proposed to investigate the high-dimensional distri-
bution of X by considering the index

IFT;h.˛/ D n�1
nX

iD1
Ofh;˛.˛>Xi/ (20.5)

where Ofh;˛ denotes the kernel estimator (see Sect. 1.3)

Ofh;˛.z/ D n�1
nX

jD1
Kh.z� ˛>Xj / (20.6)

of the projected data. Note that (20.5) is an estimate of
R
f 2.z/d z where z D ˛>X

is a one-dimensional random variable with mean zero and unit variance. If the high-
dimensional distribution of X is normal, then each projection z D ˛>X is standard
normal since jj˛jj D 1 and since X has been centred and sphered by, e.g. the
Mahalanobis transformation.
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The index should therefore be stable as a function of ˛ if the high-dimensional
data is in fact normal. Changes in IFT;h.˛/ with respect to ˛ therefore indicate
deviations from normality. Hodges and Lehman (1956) showed that, given a mean
of zero and unit variance, the (compact support) density which minimises

R
f 2 is

uniquely given by

f .z/ D maxf0; c.b2 � z2/g;

where c D 3=.20
p
5/ and b D p5. This is a parabolic density function, which is

equal to zero outside the interval (�p5;p5). A high value of the Friedman–Tukey
index indicates a larger departure from the parabolic form.

An alternative index is based on the negative of the entropy measure, i.e.R �f logf . The density for zero mean and unit variance which minimises the index

Z

f logf

is the standard normal density, a far more plausible candidate than the parabolic
density as a norm from which departure is to be regarded as “interesting”. Thus
in using

R
f logf as a projection index we are really implementing the viewpoint

of seeing “interesting” projections as departures from normality. Yet another index
could be based on the Fisher information (see Sect. 6.2)

Z

.f 0/2=f:

To optimise the entropy index, it is necessary to recalculate it at each step of the
numerical procedure. There is no method of obtaining the index via summary
statistics of the multivariate data set, so the workload of the calculation at each
iteration is determined by the number of observations. It is therefore interesting to
look for approximations to the entropy index. Jones and Sibson (1987) suggested
that deviations from the normal density should be considered as

f .x/ D '.x/f1C ".x/g (20.7)

where the function " satisfies
Z

'.u/".u/u�rdu D 0; for r D 0; 1; 2: (20.8)

In order to develop the Jones and Sibson (1987) index it is convenient to think in
terms of cumulants �3 D �3 D E.X3/, �4 D �4 D E.X4/ � 3 (see Sect. 1.3). The
standard normal density satisfies �3 D �4 D 0, an index with any hope of tracking
the entropy index must at least incorporate information up to the level of symmetric
departures (�3 or �4 not zero) from normality. The simplest of such indices is a
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positive definite quadratic form in �3 and �4. It must be invariant under sign-reversal
of the data since both ˛>X and�˛>X should show the same kind of departure from
normality. Note that �3 is odd under sign-reversal, i.e. �3.˛>X/ D ��3.�˛>X/.
The cumulant �4 is even under sign-reversal, i.e. �4.˛>X/ D �4.�˛>X/. The
quadratic form in �3 and �4 measuring departure from normality cannot include
a mixed �3�4 term.

For the density (20.7) one may conclude with (20.8) that

Z

f .u/ log.u/du 	 1

2

Z

'.u/".u/du:

Now if f is expressed as a Gram–Charliér expansion

f .x/'.x/ D f1C �3H3.x/=6C �4H4.x/=24C � � � g (20.9)

(Kendall & Stuart, 1977, p. 169) where Hr is the r-th Hermite polynomial, then
the truncation of (20.9) and use of orthogonality and normalisation properties of
Hermite polynomials with respect to ' yields

1

2

Z

'.x/"2.x/dx D ��23 C �24=4
�
=12:

The index proposed by Jones and Sibson (1987) is therefore

IJS.˛/ D f�23.˛>X/C �24.˛>X/=4g=12:

This index measures in fact the negative entropy difference
R
f logf � R ' log'.

Example 20.1 The EPP is used on the Swiss bank note data. For 50 randomly
chosen one-dimensional projections of this six-dimensional dataset we calculate the
Friedman–Tukey index to evaluate how “interesting” their structures are.

Figure 20.3 shows the density for the standard, normally distributed data (green)
and the estimated densities for the best (red) and the worst (blue) projections found.
A dotplot of the projections is also presented. In the lower part of the figure we
see the estimated value of the Friedman–Tukey index for each computed projection.
From this information we can judge the non normality of the bank note data set
since there is a lot of variation across the 50 random projections.

Projection Pursuit Regression

The problem in projection pursuit regression is to estimate a response surface

f .x/ D E.Y j x/
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Fig. 20.3 Exploratory Projection Pursuit for the Swiss bank notes data (greenD standard normal,
red D best, blueD worst) MVAppexample

via approximating functions of the form:

Of .x/ D
MX

kD1
gk.ƒ

>
k x/

with non-parametric regression functions gk and projection indices ƒk . Given
observations f.x1; y1/; : : : ; .xn; yn/g with xi 2 R

p and yi 2 R the basic algorithm
works as follows.

1. Set r.0/i D yi and k D 1.
2. Minimise

Ek D
nX

iD1

n
r
.k�1/
i � gk.ƒ>k xi /

o2

where ƒk is an orthogonal projection matrix and gk is a non-parametric
regression estimator.

3. Compute new residuals

r
.k/
i D r.k�1/i � gk.ƒ>k xi /:
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4. Increase k and repeat the last two steps until Ek becomes small.

Although this approach seems to be simple, we encounter some problems. One
of the most serious is that the decomposition of a function into sums of functions of
projections may not be unique. An example is

z1z2 D 1

4ab
f.az1 C bz2/

2 � .az1 � bz2/
2g:

Numerical improvements of this algorithm were suggested by Friedman and
Stuetzle (1981).

Summary
,! Exploratory Projection Pursuit is a technique used to find inter-

esting structures in high-dimensional data via low-dimensional
projections. Since the Gaussian distribution represents a standard
situation, we define the Gaussian distribution as the most uninter-
esting

,! The search for interesting structures is done via a projection score
like the Friedman–Tukey index IFT.˛/ D

R
f 2. The parabolic

distribution has the minimal score. We maximise this score over
all projections

,! The Jones–Sibson index maximises

IJS.˛/ D f�3.˛>X/C �24.˛>X/=4g=12

as a function of ˛
,! The entropy index maximises

IE.˛/ D
Z

f .˛>X/ logf .˛>X/

where f is the density of ˛>X
,! In Projection Pursuit Regression the idea is to represent the

unknown function by a sum of non-parametric regression functions
on projections. The key problem is in choosing the number of terms
and often the interpretability
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20.3 Sliced Inverse Regression

SIR is a dimension reduction method proposed by Duan and Li (1991). The idea is
to find a smooth regression function that operates on a variable set of projections.
Given a response variable Y and a (random) vector X 2 R

p of explanatory
variables, SIR is based on the model:

Y D m.ˇ>1 X; : : : ; ˇ>k X; "/; (20.10)

where ˇ1; : : : ; ˇk are unknown projection vectors, k is unknown and assumed to be
less than p, m W RkC1 ! R is an unknown function, and " is the noise random
variable with E ." jX/ D 0.

Model (20.10) describes the situation where the response variable Y depends
on the p-dimensional variable X only through a k-dimensional subspace. The
unknown ˇi ’s, which span this space, are called effective dimension reduction
directions (EDR-directions). The span is denoted as effective dimension reduction
space (EDR-space). The aim is to estimate the base vectors of this space, for which
neither the length nor the direction can be identified. Only the space in which they
lie is identifiable.

SIR tries to find this k-dimensional subspace of R
p which under the

model (20.10) carries the essential information of the regression between X and Y .
SIR also focuses on small k, so that nonparametric methods can be applied for the
estimation of m. A direct application of nonparametric smoothing to X is for high
dimension p generally not possible due to the sparseness of the observations. This
fact is well known as the curse of dimensionality, see Huber (1985).

The name of SIR comes from computing the inverse regression (IR) curve. That
means instead of looking for E .Y jX D x/, we investigate E .X jY D y/, a curve
in R

p consisting of p one-dimensional regressions. What is the connection between
the IR and the SIR model (20.10)? The answer is given in the following theorem
from Li (1991).

Theorem 20.1 Given the model (20.10) and the assumption

8b 2 R
p W E

�
b>X jˇ>1 X D ˇ>1 x; : : : ; ˇ>k X D ˇ>k x

� D c0 C
kX

iD1
ciˇ
>
i x;

(20.11)

the centred IR curve E.X jY D y/ � E.X/ lies in the linear subspace spanned by
the vectors †ˇi , i D 1; : : : ; k; where † D Cov.X/.

Assumption (20.11) is equivalent to the fact that X has an elliptically symmetric
distribution, see Cook and Weisberg (1991). Hall and Li (1993) have shown that
assumption (20.11) only needs to hold for the EDR-directions.
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It is easy to see that for the standardised variable Z D †�1=2fX � E.X/g the
IR curve m1.y/ D E.Z j Y D y/ lies in span.�1; : : : ; �k/, where �i D †1=2ˇi .
This means that the conditional expectation m1.y/ is moving in span.�1; : : : ; �k/
depending on y. With b orthogonal to span.�1; : : : ; �k/, it follows that

b>m1.y/ D 0;

and further that

m1.y/m1.y/
>b D Covfm1.y/gb D 0:

As a consequence CovfE.Z jy/g is degenerated in each direction orthogonal to all
EDR-directions �i of Z. This suggests the following algorithm.

First, estimate Covfm1.y/g and then calculate the orthogonal directions of this
matrix (for example, with eigenvalue/eigenvector decomposition). In general, the
estimated covariance matrix will have full rank because of random variability,
estimation errors and numerical imprecision. Therefore, we investigate the eigen-
values of the estimate and ignore eigenvectors having small eigenvalues. These
eigenvectors O�i are estimates for the EDR-direction �i of Z. We can easily rescale
them to estimates Ǒi for the EDR-directions ofX by multiplying by O†�1=2, but then
they are not necessarily orthogonal. SIR is strongly related to PCA. If all of the data
falls into a single interval, which means that bCovfm1.y/g is equal to bCov.Z/, SIR
coincides with PCA. Obviously, in this case any information about y is ignored.

The SIR Algorithm

The algorithm to estimate the EDR-directions via SIR is as follows:

1. Standardise x:

zi D O†�1=2.xi � Nx/:

2. Divide the range of yi into S nonoverlapping intervals (slices)Hs , s D 1; : : : ; S .
ns denotes the number of observations within slice Hs , and IHs the indicator
function for this slice:

ns D
nX

iD1
IHs .yi /:

3. Compute the mean of zi over all slices. This is a crude estimate Om1 for the inverse
regression curve m1:

Nzs D ns�1
nX

iD1
zi IHs .yi /:
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4. Calculate the estimate for Covfm1.y/g:

OV D n�1
SX

sD1
ns Nzs Nz>s :

5. Identify the eigenvalues O�i and eigenvectors O�i of OV .
6. Transform the standardised EDR-directions O�i back to the original scale. Now

the estimates for the EDR-directions are given by

Ǒ
i D O†�1=2 O�i :

Remark 20.1 The number of different eigenvalues unequal to zero depends on the
number of slices. The rank of OV cannot be greater than the number of slices �1 (the
zi sum up to zero). This is a problem for categorical response variables, especially
for a binary response—where only one direction can be found.

SIR II

In the previous section we learned that it is interesting to consider the IR curve,
that is, E.X j y/. In some situations however SIR does not find the EDR-direction.
We overcome this difficulty by considering the conditional covariance Cov.X j y/
instead of the IR curve. An example where the EDR directions are not found via the
SIR curve is given below.

Example 20.2 Suppose that .X1;X2/> � N.0; I2/ and Y D X2
1 . Then E.X2 j

y/ D 0 because of independence and E.X1 j y/ D 0 because of symmetry. Hence,
the EDR-direction ˇ D .1; 0/> is not found when the IR curve E.X j y/ D 0 is
considered.

The conditional variance

Var.X1 jY D y/ D E.X2
1 jY D y/ D y;

offers an alternative way to find ˇ. It is a function of y while Var.X2 j y/ is a
constant.

The idea of SIR II is to consider the conditional covariances. The principle of
SIR II is the same as before: investigation of the IR curve (here the conditional
covariance instead of the conditional expectation). Unfortunately, the theory of SIR
II is more complicated. The assumption of the elliptical symmetrical distribution of
X has to be more restrictive, i.e. assuming the normality of X .

Given this assumption, one can show that the vectors with the largest distance to
Cov.Z j Y D y/ � EfCov.Z j Y D y/g for all y are the most interesting for the
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EDR-space. An appropriate measure for the overall mean distance is, according to
Li (1992),

E
�jj ŒCov.Z jY D y/ � EfCov.Z jY D y/g� bjj2�

D b> E
�jjCov.Z jy/ � EfCov.Z jy/gjj2� b: (20.12)

Equipped with this distance, we conduct again an eigensystem decomposition, this
time for the above expectation E

�jjCov.Z jy/� EfCov.Z jy/gjj2�. Then we take
the rescaled eigenvectors with the largest eigenvalues as estimates for the unknown
EDR-directions.

The SIR II Algorithm

The algorithm of SIR II is very similar to the one for SIR, it differs in only
two steps. Instead of merely computing the mean, the covariance of each slice
has to be computed. The estimate for the above expectation (20.12) is calculated
after computing all slice covariances. Finally, decomposition and rescaling are
conducted, as before.

1. Do steps 1–3 of the SIR algorithm.
2. Compute the slice covariance matrix OVs:

OVs D .ns � 1/�1
nX

iD1
IHs .yi /zi z

>
i � ns Nzs Nz>s :

3. Calculate the mean over all slice covariances:

NV D n�1
SX

sD1
ns OVs:

4. Compute an estimate for (20.12):

OV D n�1
SX

sD1
ns

� OVs � NV
�2 D n�1

SX

sD1
ns OV 2

s � NV 2:

5. Identify the eigenvectors and eigenvalues of OV and scale back the eigenvectors.
This gives estimates for the SIR II EDR-directions:

Ǒ
i D O†�1=2 O�i :
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Fig. 20.4 SIR: The left plots show the response versus the estimated EDR-directions. The upper
right plot is a three-dimensional plot of the first two directions and the response. The lower right
plot shows the eigenvalues O�i (asterisk) and the cumulative sum (open circle) MVAsirdata

Example 20.3 The result of SIR is visualised in four plots in Fig. 20.4: the left two
show the response variable versus the first respectively second direction. The upper
right plot consists of a three-dimensional plot of the first two directions and the
response. The last picture shows O‰k , the ratio of the sum of the first k eigenvalues
and the sum of all eigenvalues, similar to PCA.

The data are generated according to the following model:

yi D ˇ>1 xi C .ˇ>1 xi /3 C 4
�
ˇ>2 xi

�2 C "i ;

where the xi ’s follow a three-dimensional normal distribution with zero mean, the
covariance equal to the identity matrix, ˇ2 D .1;�1;�1/>, and ˇ1 D .1; 1; 1/>.
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Fig. 20.5 Plot of the true
response versus the true first
index. The monotonic and the
convex shapes can be clearly
seen MVAsirdata
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Fig. 20.6 Plot of the true
response versus the true
second index. The monotonic
and the convex shapes can be
clearly seen MVAsirdata
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"i is standard, normally distributed and n D 300. Corresponding to model (20.10),
m.u; v; "/ D uC u3 C v2 C ". The situation is depicted in Figs. 20.5 and 20.6.

Both algorithms were conducted using the slicing method with 20 elements in
each slice. The goal was to find ˇ1 and ˇ2 with SIR. The data are designed such
that SIR can detect ˇ1 because of the monotonic shape of fˇ>1 xi C .ˇ>1 xi /3g, while
SIR II will search for ˇ2, as in this direction the conditional variance on y is varying.
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Table 20.3 SIR:
EDR-directions for simulated
data

Ǒ
1

Ǒ
2

Ǒ
3

0:452 0:881 0:040

0:571 �0:349 �0:787
0:684 �0:320 0:615

Table 20.4 SIR II:
EDR-directions for simulated
data

Ǒ
1

Ǒ
2

Ǒ
3

�0.272 0:964 �0:001
0.670 0:100 0:777

0.690 0:244 �0:630

If we normalise the eigenvalues for the EDR-directions in Table 20.3 such that
they sum up to one, the resulting vector is .0:852; 0:086; 0:062/. As can be seen in
the upper left plot of Fig. 20.4, there is a functional relationship found between the
first index Ǒ>1 x and the response. Actually, ˇ1 and Ǒ1 are nearly parallel, that is, the
normalised inner product Ǒ>1 ˇ1=fjj Ǒ1jjjjˇ1jjg D 0:9894 is very close to one.

The second direction along ˇ2 is probably found due to the good approximation,
but SIR does not provide it clearly, because it is “blind” with respect to the change
of variance, as the second eigenvalue indicates.

For SIR II, the normalised eigenvalues are .0:706; 0:185; 0:108/, that is, about
69 % of the variance is explained by the first EDR-direction (Table 20.4). Here, the
normalised inner product of ˇ2 and Ǒ1 is 0:9992. The estimator Ǒ1 estimates in fact
ˇ2 of the simulated model. In this case, SIR II found the direction where the second
moment varies with respect to ˇ>2 x (Fig. 20.7).

In summary, SIR has found the direction which shows a strong relation regarding
the conditional expectation between ˇ>1 x and y, and SIR II has found the direction
where the conditional variance is varying, namely, ˇ>2 x.

The behaviour of the two SIR algorithms is as expected. In addition, we have
seen that it is worthwhile to apply both versions of SIR. It is possible to combine
SIR and SIR II (Cook & Weisberg, 1991; Li, 1991; Schott, 1994) directly, or to
investigate higher conditional moments. For the latter it seems to be difficult to
obtain theoretical results.

Summary
,! SIR serves as a dimension reduction tool for regression problems

,! Inverse regression avoids the curse of dimensionality

,! The dimension reduction can be conducted without estimation of
the regression function y D m.x/
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Summary (continued)

,! SIR searches for the effective dimension reduction (EDR) by
computing the inverse regression IR

,! SIR II uses the EDR on computing the inverse conditional variance

,! SIR might miss EDR directions that are found by SIR II
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Fig. 20.7 SIR II mainly sees the direction ˇ2. The left plots show the response versus the
estimated EDR-directions. The upper right plot is a three-dimensional plot of the first two
directions and the response. The lower right plot shows the eigenvalues O�i (asterisk) and the
cumulative sum (open circle) MVAsir2data
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20.4 Support Vector Machines

The purpose of this section is to introduce one of the most promising among recently
developed multivariate non-linear statistical techniques: the SVM. The SVM is
a classification method that is based on statistical learning theory. It has been
successfully applied to optical character recognition, early medical diagnostics, and
text classification. One application where SVMs outperformed other methods is
electric load prediction (EUNITE, 2001), another one is optical character recogni-
tion (Vapnik, 1995). In a variety of applications SVMs produce better classification
results than parametric methods (e.g. logit analysis) and are outperforming widely
used nonparametric techniques, such as neural networks. Here we apply SVMs to
corporate bankruptcy analysis.

Classification Methodology

In order to illustrate the classification methodology we focus for the moment on
a company rating example that we will treat further in more detail. Investment
risks are evaluated via the default probability (PD) for a company. Each company is
described by a set of variables (predictors) x, such as financial ratios, and its class y
that can be either y D �1 (“successful”) or y D 1 (“bankrupt”). Financial ratios are
constructed from the variables like net income, total assets, interest payments, etc.
A training set represents a sample of data for companies which are known to have
survived or gone bankrupt. From the training set one estimates a classifier function
f that is then applied to computing PDs. These PDs can be uniquely translated into
a company rating.

Classical discriminant analysis is based on the assumption that each group of
observations is normally distributed with the same variance–covariance matrix but
different means. Under such a formulation the discriminating function will be linear,
see Theorem 14.2. Figure 20.8 displays this situation: if some linear combination of
predictors (called Z-score in the context of bankruptcy analysis) is greater than
a particular threshold value z0 the observation under consideration is regarded as
belonging to y D 1; if Z < z0 the observation would belong to y D �1
(successful). One can change the labels “�1,C1” to the more standard notation
“0,1”. The current labeling is done only for mathematical convenience.

The Z-score is:

Zi D a1xi1 C a2xi2 C : : :C apxip D a>xi ;

where xi D .xi1; : : : ; xip/
> 2 R

p are predictors for the i -th company. The
classification based on the Z-score are necessarily linear and, therefore, may not
handle more complex situations as in Fig. 20.9 when non-linear classifiers, such as
those generated by SVMs, can produce better results.
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Fig. 20.8 A linear
classification function in the
case of linearly separable data
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Fig. 20.9 Different linear
classification functions (1)
and (2) and a non-linear one
(3) in the linearly
non-separable case
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Expected vs. Empirical Risk Minimisation

A non-linear classifier function f may be described by a function class F . F is fixed
a priori, e.g. it can be the class of linear classifiers (hyperplanes). A good classifier
optimises some criterion that tells us how well f separates the classes. As in (14.4)
one considers the minimisation of the expected risk:

R .f / D
Z
1

2
jf .x/ � yj dF.x; y/: (20.13)

The joint distributionF.x; y/, however, is never known in practical applications and
must be estimated from the training set fxi ; yi gniD1. By replacing F.x; y/ with the
empirical cdf Fn.x; y/ one obtains the empirical risk:

OR .f / D 1

n

nX

iD1

1

2
jf .xi / � yi j : (20.14)
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The empirical risk is an average value of loss over the training set, while the
expected risk is the expected value of loss under the true probability measure. The
loss is given by:

L.x; y/ D 1

2
jf .x/ � yj D

(
0; if classification is correct,

1; if classification is wrong.

One sees here that it is convenient to work with the labels “�1; 1” for y. The
solutions to the problems of expected and empirical risk minimisation:

fopt D arg min
f 2F R .f / ; (20.15)

Ofn D arg min
f 2F

OR .f / ; (20.16)

generally do not coincide (Fig. 20.10), although converge as n ! 1 if F is not
too large. According to statistical learning theory (Vapnik, 1995), it is possible to
get a uniform upper bound on the difference between R .f / and OR .f / via the
Vapnik–Chervonenkis (VC) theory. The VC bound states that there is a function
� (monotone increasing in h) so that for all f 2 F with a probability 1 � �:

R .f / � OR .f /C �


h

n
;

log.�/

n




: (20.17)

Here h denotes the VC dimension, a measure of complexity of the involved function
class F . For a linear classification rule g.x/ D sign.x>wC b/:

�



h

n
;

log.�/

n




D
s

h
�
log 2n

h

� � log �

4

n
; (20.18)

Fig. 20.10 The minima fopt

and Ofn of the expected (R)
and empirical ( OR) risk
functions generally do not
coincide
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where h is the VC dimension. By plotting the function � .u; v/ D ˚ � u � log 2uC
log 4�v��1=2 for small u one sees the monotonicity of � .u; v/. In fact one can show
that

@�
�
h
n
;

log.�/
n

�

@h
> 0

if and only if 2n > h. For a linear classifier with h D p C 1 this is an easy condition
to meet.

The VC dimension of a set F of functions in a d -dimensional space is h if some
function f 2 F can shatter h objects

˚
xi 2 R

d ; i D 1; : : : ; h�, in all 2h possible
configurations and no set

˚
xj 2 R

d ; j D 1; : : : ; q� with q > h, exists that satisfies
this property. For example, three points on a plane (d D 2) can be shattered by linear
indicator functions in 2h D 23 D 8 ways, whereas 4 points can not be shattered in
2q D 24 D 16 ways. Thus, the VC dimension of the set of linear indicator functions
in a two-dimensional space is h D 3, see Fig. 20.11. The expression for the VC
bound (20.17) involves the VC dimension h, a parameter controlling complexity

of F . The term �
n
h
n
;

log.�/
n

o
introduces a penalty for excessive complexity of a

classifier function. The higher is the complexity of f 2 F the higher are h and
therefore �. There is a trade-off between the number of classification errors on the
training set and the complexity of the classifier function. If the complexity were
not controlled for, it would be possible to construct a classifier function with no
classification errors on the training set notwithstanding how low its generalisation
ability would be.

Fig. 20.11 Eight possible ways of shattering 3 points on the plane with a linear indicator function
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The SVM in the Linearly Separable Case

First we will describe the SVM in the linearly separable case. The family F of
classification functions in the data space is given by:

F D ˚x>wC b;w 2 R
p; b 2 R

�
(20.19)

In order to determine the support vectors we choose f 2 F (or equivalently .w; b/)
such that the so-called margin—the corridor between the separating hyperplanes—
is maximal. This situation is illustrated in Fig. 20.12. The margin is equal to d�CdC.
The classification function is a hyperplane plus the margin zone, where, in the
separable case, no observations can lie. It separates the points from both classes with
the highest “safest” distance (margin) between them. It can be shown that margin
maximisation corresponds to the reduction of complexity as given by the VC-
dimension of the SVM classifier. Apparently, the separating hyperplane is defined
only by the support vectors that hold the hyperplanes parallel to the separating one.
In Fig. 20.12 there are three support vectors that are marked with bold style: two
crosses and one circle. We come now to the description of the SVM selection.

Let x>wC b D 0 be a separating hyperplane. Then dC .d�/ will be the shortest
distance to the closest objects from the classes C1 .�1/. Since the separation can
be done without errors, all observations i D 1; 2; : : : ; n must satisfy:

x>i wC b � C1 for yi D C1
x>i wC b � �1 for yi D �1

Fig. 20.12 The separating
hyperplane x>wC b D 0

and the margin in the linearly
separable case
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We can combine both constraints into one:

yi .x
>
i wC b/� 1 � 0 i D 1; 2; : : : ; n (20.20)

The canonical hyperplanes x>i wCb D ˙1 are parallel and the distance between
each of them and the separating hyperplane is dC D d� D 1=kwk. To maximise the
margin dC C d� D 2=kwk one therefore minimises the Euclidean norm kwk or its
square kwk2.

The Lagrangian for the primal problem that corresponds to margin maximisation
subject to constraint (20.20) is:

LP .w; b/ D 1

2
kwk2 �

nX

iD1
˛i fyi .x>i wC b/� 1g (20.21)

The Karush–Kuhn–Tucker (KKT) (Gale et al., 1951) first order optimality
conditions are:

@LP

@w
D 0 W w �

nX

iD1
˛iyixi D 0

@LP

@b
D 0 W

nX

iD1
˛iyi D 0

yi .x
>
i wC b/� 1 � 0; i D 1; : : : ; n

˛i � 0
˛i fyi .x>i wC b/� 1g D 0

From these first order condition, we can derive w DPn
iD1 ˛iyixi and therefore

the summands in (20.21) read:

1

2
kwk2 D 1

2

nX

iD1

nX

jD1
˛i˛j yiyj x

>
i xj

�
nX

iD1
˛i fyi.x>i wC b/� 1g D �

nX

iD1
˛iyix

>
i

nX

jD1
˛j yj xj C

nX

iD1
˛i

D �
nX

iD1

nX

jD1
˛i˛j yiyj x

>
i xj C

nX

iD1
˛i
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Substituting this into (20.21) we obtain the Lagrangian for the dual problem:

LD .˛/ D
nX

iD1
˛i � 1

2

nX

iD1

nX

jD1
˛i˛j yiyj x

>
i xj : (20.22)

The primal and dual problems are:

min
w;b

LP .w; b/

max
˛
LD .˛/ s.t. ˛i � 0;

nX

iD1
˛iyi D 0:

Since the optimisation problem is convex the dual and primal formulations give the
same solution.

Those points i for which the equation yi .x>i wC b/ D 1 holds are called support
vectors. After “training the SVM” i.e. solving the dual problem above and deriving
Lagrange multipliers (they are equal to 0 for non-support vectors) one can classify
a company. One uses the classification rule:

g.x/ D sign
�
x>wC b� ; (20.23)

where w D Pn
iD1 ˛iyixi and b D 1

2
.xC1 C x�1/w. xC1 and x�1 are two support

vectors belonging to different classes for which y.x>wC b/ D 1. The value of the
classification function (the score of a company) can be computed as

f .x/ D x>wC b: (20.24)

Each score f .x/ uniquely corresponds to a default probability (PD). The higher
f .x/ the higher the PD.

SVMs in the Linearly Non-separable Case

In the linearly non-separable case the situation is like in Fig. 20.13. The slack
variables �i represent the violation from strict separation. In this case the following
inequalities can be induced from Fig. 20.13:

x>i wC b � 1 � �i for yi D 1;
x>i wC b � �1C �i for yi D �1;

�i � 0:
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Fig. 20.13 The separating
hyperplane x>wC b D 0

and the margin in the linearly
non-separable case

They can be combined into two constraints:

yi .x
>
i wC b/ � 1� �i (20.25)

�i � 0: (20.26)

SVM classification again maximises the margin given a family of classification
functions F .

The penalty for misclassification, the classification error �i � 0, is related to
the distance from a misclassified point xi to the canonical hyperplane bounding its
class. If �i > 0, an error in separating the two sets occurs. The objective function
corresponding to penalised margin maximisation is then formulated as:

1

2
kwk2 C C

nX

iD1
�i ; (20.27)

where the parameter C characterises the weight given to the classification errors.
The minimisation of the objective function with constraint (20.25) and (20.26) pro-
vides the highest possible margin in the case when classification errors are inevitable
due to the linearity of the separating hyperplane. Under such a formulation the
problem is convex.

The Lagrange function for the primal problem is:

LP .w; b; �/ D 1

2
kwk2 C C

nX

iD1
�i �

nX

iD1
˛i fyi

�
x>i wC b� � 1C �i g �

nX

iD1
�i �i ;

(20.28)
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where ˛i � 0 and �i � 0 are Lagrange multipliers. The primal problem is
formulated as:

min
w;b;�

LP .w; b; �/ :

The first order conditions in this case are:

@LP

@w
D 0 W w �

nX

iD1
˛iyixi D 0

@LP

@b
D 0 W

nX

iD1
˛iyi D 0

@LP

@�i
D 0 W C � ˛i � �i D 0

With the conditions for the Lagrange multipliers:

˛i � 0
�i � 0
˛i fyi.x>i wC b/� 1C �i g D 0
�i �i D 0

Note that
Pn

iD1 ˛iyib D 0 therefore similar to the linear separable case the primal
problem translates into:

LD .˛/ D 1

2

nX

iD1

nX

jD1
˛i˛j yiyj x

>
i xj �

nX

iD1
˛iyix

>
i

nX

jD1
˛j yj xj

CC
nX

iD1
�i C

nX

iD1
˛i �

nX

iD1
˛i �i �

nX

iD1
�i �i

D
nX

iD1
˛i � 1

2

nX

iD1

nX

jD1
˛i˛j yiyj x

>
i xj C

nX

iD1
�i .C � ˛i � �i/

Since the last term is 0 we derive the dual problem as:

LD .˛/ D
nX

iD1
˛i � 1

2

nX

iD1

nX

jD1
˛i˛j yiyj x

>
i xj ; (20.29)
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and the dual problem is posed as:

max
˛
LD .˛/ ;

subject to:

0 � ˛i � C;
nX

iD1
˛iyi D 0:

Non-linear Classification

The SVMs can also be generalised to the non-linear case. In order to obtain non-
linear classifiers as in Fig. 20.14 one maps the data with a non-linear structure via a
function‰ W Rp 7! H into a very large dimensional space H where the classification
rule is (almost) linear. Note that all the training vectors xi appear in LD (20.29)
only as scalar products of the form x>i xj . In the non-linear SVM situations this
transforms to  .xi /

>  
�
xj
�
.

The so-called kernel trick is to compute this scalar product via a kernel function.
These kernel functions are actually related to those we presented in Sect. 1.3.
If a kernel function K exists such that K.xi ; xj / D ‰.xi /

>‰.xj /, then it
can be used without knowing the transformation ‰ explicitly. A necessary and
sufficient condition for a symmetric function K.xi ; xj / to be a kernel is given
by Mercer’s theorem (Mercer, 1909). It requires positive definiteness, i.e. for
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Fig. 20.14 Mapping into a three-dimensional feature space from a two-dimensional data space
R
2 7! R

3. The transformation ‰.x1; x2/ D .x21 ;
p
2x1x2; x

2
2/

> corresponds to the kernel function
K.xi ; xj / D .x>

i xj /
2
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any data set x1; : : : ; xn and any real numbers �1; : : : ; �n the function K must
satisfy

nX

iD1

nX

jD1
�i�jK.xi ; xj / � 0: (20.30)

Some examples of kernel functions are:

– K.xi ; xj / D e�kxi�xjk=2�2—the isotropic Gaussian kernel with constant �

– K.xi ; xj / D e�.xi�xj />r�2†�1.xi�xj /=2—the stationary Gaussian kernel with an
anisotropic radial basis with constant r and variance–covariance matrix † from
training set

– K.xi ; xj / D .x>i xj C 1/p—the polynomial kernel of degree p
– K.xi ; xj / D tanh.kx>i xj � ı/—the hyperbolic tangent kernel with constant k

and ı.

SVMs for Simulated Data

The basic parameters of SVMs are on the scaling r of the anisotropic radial basis
functions (in the stationary Gaussian kernel) and the capacity C . The parameter r
controls the local resolution of the SVM in the sense that smaller r create smaller
curvature of the margin. The capacity C controls the amount of slack to allow for
unclassified observations. A large C would create a very rough and curved margin
where C close to zero makes the margin more smooth.

One of the guinea pig tests for a classification algorithm is the data described
as “orange peel”, i.e. when two groups of observations have similar means,
their variance, however, being different. The classification results in this case are
presented in Fig. 20.15. An SVM with a radial basis kernel is highly suitable for
such a kind of data.

Another popular non-linear test is the classification of “spiral data”. We generated
two spirals with the distance between them equal 1.0 that span over 3� radian. The
SVM was chosen with r D 0:1 and C D 10=n. The SVM was able to separate the
classes without an error if noise with parameters "i � N.0; 0:12I/ was injected into
the pure spiral data (Fig. 20.16). Obviously, both the “orange peel” and the “spiral
data” are not linearly separable.

Solution of the SVM Classification Problem

The standard SVM optimisation problem (20.29), which is a quadratic optimisa-
tion problem, is usually solved by means of quadratic programming (QP). This
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Fig. 20.15 SVM
classification results for the
“orange peel” data, n D 200,
d D 2, n�1 D nC1 D 100,
xC1;i � N..0; 0/>; 22I/,
x�1;i � N..0; 0/>; 0:52I/
with SVM parameters
r D 0:5 and C D 20=200

MVAsvmOrangePeel
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Fig. 20.16 SVM
classification results for the
noisy spiral data. The spirals
spread over 3� radian; the
distance between the spirals
equals 1.0. d D 2,
n�1 D nC1 D 100, n D 200.
The noise was injected with
the parameters
"i � N.0; 0:12I/. The
separation is perfect with
SVM parameters r D 0:1 and
C D 10=200
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technique, however, is notorious for (i) its bad scaling properties (the time required
to solve the problem is proportional to n3, where n is the number of observations),
(ii) implementation difficulty and (iii) enormous memory requirements. With the
QP technique the whole kernel matrix of the size n � n has to be fit in the memory,
which, assuming that each variable takes up 10 bytes of memory, will require
10 � n � n bytes. This means that 1 million observation (which is not unusual for
practical applications such as credit scoring) will require 12,000 TBytes (terabytes)
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or 10,000,000 MBytes of operating memory to store. With a typical size of the
computer memory of 512 MBytes no more than around 5,000 observations can
be processed. Thus, the main emphasis in designing new algorithms was made
on using special properties of SVMs to speed up the solution and reduce memory
requirements.

Scoring Companies

For our illustration we selected the largest bankrupt companies with the capitalisa-
tion of no less than 1 billion USD. The dataset used in this work is from the Credit
reform database provided by the Research Data Center (RDC) of the Humboldt
Universität zu Berlin. It contains financial information from about 20,000 solvent
and 1,000 insolvent German companies. The period spans from 1996 to 2002 and in
the case of the insolvent companies the information is gathered 2 years before the
insolvency took place. The last annual report of a company before it goes bankrupt
receives the indicator y D 1 and for the rest (solvent) companies y D �1.

We are given 28 variables, i.e. cash, inventories, equity, EBIT, number of
employees, and branch code. From the original data, we create common financial
indicators which are denoted as x1; : : : ; x25. These ratios can be grouped into four
categories such as profitability, leverage, liquidity, and activity.

Obviously, data for the year of 1996 are missing and we will exclude them for
further calculations. In order to reduce the effect of the outliers on the results,
all observations that exceeded the upper limit of IQ (Inter-quartile range) or the
lower limit of IQ were replaced with these values. To demonstrate how performance
changes, we will use the Accounts Payable (AP) turnover (named X24) and ratio
of Operating Income (OI) and Total Asset (TA) (namedX3). We choose randomnly
50 solvent and 50 insolvent companies. The statistical description of financial ratios
is summarized in Table 20.5.

Keep in mind that different kernels will influence performance. We will use one
of the most common ones, the isotropic Gaussian kernel. Triangles and circles
in Fig. 20.17 represent successful and failing companies from the training set,
respectively. The coloured background corresponds to different score values f . The
more blue the area, the higher the score and the greater the probability of default.
Most successful companies lying in the red area have positive profitability and a
reasonable activity.

Figure 20.17 presents the classification results for an SVM using isotropic
Gaussian kernel with � D 100 and the fixed capacity C D 1. With given priors,
the SVM has trouble classifying between solvent and insolvent company. The radial
base � , which determines the minimum radius of a group, is too large. Notice that
SVM do a poor job of distinguishing between groups even though most observations
are used as support vector.

The applied SVMs differed in two aspects: (i) their capacity that is controlled
by the coefficient C in (20.28) and (ii) the complexity of classifier functions
controlled in our case by the isotropic radial basis in the Gaussian kernel. In
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Fig. 20.17 Ratings of
companies in two dimensions.
Low complexity of classifier
functions with � D 100 and
C D 1. Percentage of
misclassification is 0.43
MVAsvmSig100C1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−0.2

−0.1

0.0

0.1

0.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

SVM classification plot

x24

x3

Table 20.5 Descriptive
statistics for financial ratios

Ratio q0:05 Med. q0:95 IQR

OI/TA �0:22 0:00 0:10 0:06

AP/sales 0:03 0:14 0:36 0:10

Fig. 20.18 Ratings of
companies in two
dimensions. The case of an
average complexity of
classifier functions with
� D 2 and capacity is fixed at
C D 1. Percentage of
misclassification is reduced to
0.27 MVAsvmSig2C1
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Fig. 20.18 the value � is reduced to 2 while C remains the same. SVM start
recognising the difference between solvent and insolvent companies resulting in
sharper cluster. Figure 20.19 demonstrate the effect of the changing capacity to the
classification result. The optimisation of SVM parameters (C and �) can be done
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Fig. 20.19 Ratings of companies in two dimensions. High capacity (C D 200) with radial basis
is fixed at � D 0:5. Percentage of misclassification is 0.10 MVAsvmSig05C200

Fig. 20.20 Cumulative accuracy profile (CAP) curve

by using grid search method or an other advance algorithm the so-called Genetic
Algorithm.

Figure 20.20 shows a Cumulative Accuracy Profile (CAP) curve which is
particularly useful in that it simultaneously measures Type I and Type II errors.
In statistical terms, the CAP curve represents the cumulative probability of default
events for different percentiles of the risk score scale. Now, we introduce Accuracy
Ratio (AR) derived from CAP curve for measuring and comparing the performance
of credit risk model. Therefore, AR is defined as the ratio of the area between a
model CAP curve and the random curve to the area between the perfect CAP curve
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and the random CAP curve (see Fig. 20.20). Perfect classification is attained if the
value of AR is equal to one.

Summary
,! SVM classification is done by mapping the data into feature space

and finding a separating hyperplane there
,! The support vectors are determined via a quadratic optimisation

problem
,! SVM produces highly non-linear classification boundaries

20.5 Classification and Regression Trees

Classification and Regression Trees (CART) is a method of data analysis developed
by a group of American statisticians (Breiman et al. , 1984). The aim of CART is to
classify observations into a subset of known classes or to predict levels of regression
functions. CART is a non-parametric tool which is designed to represent decision
rules in a form of the so-called binary trees. Binary trees split a learning sample
parallel to the coordinate axis and represent the resulting data clusters hierarchically
starting from a root node for the whole learning sample itself and ending with
relatively homogenous buckets of observations.

Regression trees are constructed in a similar way but the final buckets do not
represent classes but rather approximations to an unknown regression functions at
a particular point of the independent variable. In this sense regression trees are
estimates via a non-parametric regression model. Here we provide an outlook of
how decision trees are created, what challenges arise during practical applications
and, of course, a number of examples will illustrate the power of CART.

How Does CART Work?

Consider the example of how high risk patients (those who will not survive at least
30 days after a heart attack is admitted) were identified at San Diego Medical Center,
University of California on the basis of initial 24-h data. A classification rule using
at most three decisions (questions) is presented in Fig. 20.21. Left branches of the
tree represent cases of positive answers, right branches—negative ones so that e.g.
if minimum systolic blood pressure over the last 24 h is less or equal 91, then the
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Fig. 20.21 Decision tree for
low/high patients

Is minimum systolic blood pressure
over the initial 24 hours > 91?

Is age > 62.5?

Is sinus tachycardia present?

High risk Low risk

Low risk

High risk

patient belongs to the high risk group. In this example the dependant variable is
binary: low risk (0) and high risk (1).

A different situation occurs when we are interested in the expected amount of
days the patient will be able to survive. The decision tree will probably change and
the terminal nodes will now indicate a mean expected number of days the patient
will survive. This situation describes a regression tree rather than a classification
tree.

In a more formal setup let Y be a dependent variable—binary or continuous and
X 2 R

d . We are interested in approximating

f .x/ D E .Y jX D x/

For the definition of conditional expectations we refer to Sect. 4.2. CART estimates
this function f by a step function that is constructed via splits along the coordinate
axis. An illustration is given in Fig. 20.22. The regression function f .x/ is
approximated by the values of the step function. The splits along the coordinate
axes are to be determined from the data.

The following simple one-dimensional example shows that the choice of
splits points involves some decisions. Suppose that f .x/ D I .x 2 Œ0; 1�/ C
2 I .x 2 Œ1; 2�/ is a simple step function with a step at x D 1. Assume now that
one observes Yi D f .xi / C "i ; Xi � U Œ0; 2�; "i � N .0; 1/. By going through
the X data points as possible split points one sees that in the neighbourhood of
x D 1 one has two possibilities: one simply takes the Xi left to 1 or the observation
right to 1. In order to make such splits unique one averages these neighbouring
points.
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Fig. 20.22 CART orthogonal splitting example where each colour corresponds to one cluster

Impurity Measures

A more formal framework on how to split and where to split needs to be developed.
Suppose there are n observations in the learning sample and nj is the overall number
of observations belonging to class j , j D 1; : : : ; J . The class probabilities are:

� .j / D nj

n
; j D 1; : : : ; J (20.31)

� .j / is the proportion of observations belonging to a particular class. Let n.t/
be the number of observations at node t and nj .t/—the number of observations
belonging to the j -th class at t . The frequency of the event that an observation of
the j -th class falls into node t is:

p.j; t/ D �.j /nj .t/
nj

(20.32)

The proportion of observations at t are p.t/ D
JP

jD1
p.j; t/ the conditional

probability of an observation to belong to class j given that it is at node t is:

p.j j t/ D p.j; t/

p.t/
D nj .t/

n.t/
(20.33)
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Define now a degree of class homogeneity in a given node. This characteristic—
an impurity measure i.t/—will represent a class homogeneity indicator for a given
tree node and hence will help to find optimal splits. Define an impurity function �.t/

which is determined on .p1; : : : ; pJ / 2 Œ0; 1�J with
JP

jD1
pj D 1 so that:

1. � has a unique maximum at point
�
1
J
; 1
J
; : : : ; 1

J

�
;

2. � has a unique minimum at points .1; 0; 0; : : : ; 0/, .0; 1; 0; : : : ; 0/, : : :,
.0; 0; 0; : : : ; 1/;

3. � is a symmetric function of p1; : : : ; pJ

Each function satisfying these conditions is called an impurity function. Given �,
define the impurity measure i.t/ for a node t as:

i.t/ D � fp.1j t/; p.2j t/; : : : ; p.J j t/g (20.34)

Denote an arbitrary data split by s, then for a given node t which we will call
a parent node two child nodes described in Fig. 20.23 arise: tL and tR representing
observations meeting and not meeting the split criterion s. A fraction pL of data
from t falls to the left child node and pR D 1 � pL is the share of data in tR.

A quality measure of how well split s works is:


i.s; t/ D i.t/ � pLi.tL/ � pRi.tR/ (20.35)

The higher the value of 
i.s; t/ the better split we have since data impurity is
reduced. In order to find an optimal split s it is natural to maximise 
i.s; t/. Note
that in (20.35) for different splits s, the value of i.t/ remains constant, hence it is
equivalent to find

s� D argmax
s


i .s; t/

D argmax
s

f�pLi .tL/� pRi .tR/g

D argmax
s

fpLi .tL/C pRi .tR/g

Fig. 20.23 Parent and child
nodes hierarchy

Node t

Node tL Node tR
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where tL and tR are implicit functions of s. This splitting procedure is repeated until
one arrives at a minimal bucket size. Classes are then assigned to terminal nodes
using the following rule:

If p.j j t/ D max
i
p. i j t/; then j �.t/ D j (20.36)

If the maximum is not unique, then j �.t/ is assigned randomly to those classes
for which p.i j t/ takes its maximum value. The crucial question is of course to
define an impurity function i .t/. A natural definition of impurity is via a variance
measure: Assign 1 to all observations at node t belonging to class j and 0 to others.
A sample variance estimate for node t observations is p.j j t/ f1 � p.j j t/g.

Summing over all J classes we obtain the Gini index:

i .t/ D
JX

jD1
p.j j t/ f1 � p.j j t/g D 1 �

JX

jD1
p2.j j t/ (20.37)

The Gini index is an impurity function �.p1; : : : ; pJ /, pj D p.j j t/. It is not
hard see that the Gini index is a convex function. Since pL C pR D 1, we get:

i.tL/pL C i.tR/pR D � fp.1j tL/; : : : ; p.J j tL/gpL C � fp.1j tR/; : : : ; p.J j tR/gpR
� � fpLp.1j tL/C pRp.1j tR/; : : : ; pLp.J j tL/C pRp.J j tR/g

where inequality becomes an equality in case p.j j tL/ D p.j j tR/, j D 1; : : : ; J .
Recall that

p.j; tL/

p.t/
D p.tL/

p.t/
� p.j; tL/
p.tL/

D pLp.j j tL/

and since

p.j j t/ D p.j; tL/C p.j; tR/
p.t/

D pLp.j j tL/C pRp.j j tR/

we can conclude that

i.tL/pL C i.tR/pR � i.t/ (20.38)

Hence each variant of data split leads to 
i.s; t/ > 0 unless p.j j tR/ D
p.j j tL/ D p.j j t/, i.e. when no split decreases class heterogeneity.

Impurity measures can be defined in a number of different ways, for practical
applications the so-called twoing rule can be considered. Instead of maximising
impurity change at a particular node, the twoing rule tries to balance as if the
learning sample had only two classes. The reason for such an algorithm is that such



20.5 Classification and Regression Trees 539

a decision rule is able to distinguish observations between general factors on top
levels of the tree and take into account specific data characteristics at lower levels.

If S D f1; : : : ; J g is the set of learning sample classes, divide it into two subsets

S1 D fj1; : : : ; jng ; and S2 D SnS1
All observations belonging to S1 get dummy class 1, and the rest dummy class 2.
The next step is to calculate
i.s; t/ for different s as if there were only two (dummy)
classes. Since actually 
i.s; t/ depends on S1, the value
i.s; t; S1/ is maximised.
Now apply a two-step procedure: first, find s�.S1/ maximising 
i.s; t; S1/ and
second, find a superclass S�1 maximising
i fs�.S1/; t; S1g. In other words the idea
of twoing is to find a combination of superclasses at each node that maximises the
impurity increment for two classes.

This method provides one big advantage: it finds the so-called strategic nodes,
i.e. nodes filtering observations in the way that they are different to the maximum
feasible extent. Although applying the twoing rule may seem to be desirable espe-
cially for data with a big number of classes, another challenge arises: computational
speed. Let’s assume that the learning sample has J classes, then a set S can be
split into S1 and S2 by 2J�1 ways. For 11 classes data this will create more than
1,000 combinations. Fortunately the following result helps to reduce drastically the
amount of computations.

It can be proven (Breiman et al. , 1984) that in a classification task with two
classes and impurity measure p.1j t/p.2j t/ for an arbitrary split s a superclass
S1.s/ is determined by:

S1.s/ D fj W p.j j tL/ � p.j j tR/g ;

max
S1

i.s; t; S1/ D pLpR

4

8
<

:

JX

jD1
jp.j j tL/� p.j j tR/j

9
=

;

2

(20.39)

Hence the twoing rule can be applied in practice as well as Gini index, although
the first criterion works a bit slower.

Gini Index and Twoing Rule in Practice

In this section we look at practical issues of using these two rules. Consider
a learning dataset from Salford Systems with 400 observations characterising
automobiles: their make, type, colour, technical parameters, age etc. The aim is to
build a decision tree splitting different cars by their characteristics based on feasible
relevant parameters. The classification tree constructed using the Gini index is given
in Fig. 20.24.



540 20 Computationally Intensive Techniques

400 makes, models and vehical types

Other makes and models

Other makes and models

............
Ford F-150

Honda Accord

Ford Taurus

Fig. 20.24 Classification tree constructed by Gini index

400 makes, models and vehical types

Passenger vehicles

Luxury

Mid-size
Large

......... .........

Economy

Trucks and vans

Trucks

Light
Heavy

......... .........

Vans

Fig. 20.25 Classification tree constructed by twoing index

A particular feature here is that at each node observations belonging to one make
are filtered out, i.e. observations with most striking characteristics are separated. As
a result a decision tree is able to pick out automobile makes quite easily.

The twoing rule based tree Fig. 20.25 for the same data is different. Instead of
specifying particular car makes at each node, application of the twoing rule results
in strategic nodes, i.e. questions which distinguish between different car classes to
the maximum extent. This feature can be vital when high-dimensional datasets with
a big number of classes are processed.
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Optimal Size of a Decision Tree

Up to now we were interested in determining the best split s� at a particular node.
The next and perhaps more important question is how to determine the optimal tree
size, i.e. when to stop splitting. If each terminal node has only class homogenous
dataset, then every point of the learning sample can be flawlessly classified using
this maximum tree. But can be such an approach fruitful?

The maximum tree is a case of overspecification. Some criterion is required to
stop data splitting. Since tree building is dependent on
i.s; t/, a criterion is to stop
data splitting if


i.s; t/ < Ň (20.40)

where Ň is some threshold value.
The value of Ň is to be chosen in a subjective way and this is unfortunately

a drawback. Empirical simulations show that the impurity increment is frequently
non-monotone, that is why even for small Ň the tree may be underparametrised.
Setting even smaller values for Ň will probably remedy the situation but at the cost
of tree overparametrisation.

Another way to determine the adequate shape of a decision tree is to demand
a minimum number of observations N (bucked size) at each terminal node. A
disadvantage is that if at terminal node t the number of observations is higher

N.t/ > N (20.41)

then this node is also being split as data are still not supposed to be clustered well
enough.

Cross-Validation for Tree Pruning

Cross-validation is a procedure which uses the bigger data part as a training set and
the rest as a test set. Then the process is looped so that different parts of the data
become learning and training set, so that at the end each datapoint was employed
both as a member of test and learning sets. The aim of this procedure is to extract
maximum information from the learning sample especially in the situations of data
scarceness.

The procedure is implemented in the following way. First, the learning sample
is randomly divided into V parts. Using the training set from the union of .V � 1/
subsets a decision tree is constructed while the test set is used to verify the tree
quality. This procedure is looped over all possible subsets.

Unfortunately for small values of V cross-validation estimates can be unstable
since each iteration a cluster of data is selected randomly and the number of
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iterations itself is relatively small, thus the overall estimation result is somewhat
random. Nowadays cross-validation with V D 10 is an industry standard and for
many applications a good balance between computational complexity and statistical
precision.

Cost-Complexity Function and Cross-Validation

Another method taken into account is tree complexity, i.e. the number of terminal
nodes. The maximum tree will get a penalty for its big size, on the other hand it
will be able to make perfect in-sample predictions. Small trees will, of course, get
lower penalty for their size but their prediction abilities are limited. Optimisation
procedure based on such a trade-off criterion could determine a good decision tree.

Define the internal misclassification error of an arbitrary observation at node
t as e.t/ D 1 � max

j
p.j j t/, define also E.t/ D e.t/p.t/. Then internal

misclassification tree error is E.T / D P

t2 QT
E.t/ where QT is a set of terminal

nodes. The estimates are called internal because they are based solely on the
learning sample. It may seem that E.T / as a tree quality measure is sufficient but
unfortunately it is not so. Consider the case of the maximum tree, here E.TMAX/ D
0, i.e. the tree is of best configuration.

For any subtree T .� TMAX/ define the number of terminal nodes
ˇ
ˇ QT ˇˇ as a

measure of its complexity. The following cost-complexity function can be used:

E˛.T / D E.T /C ˛
ˇ
ˇ QT ˇˇ (20.42)

where ˛ � 0 is a complexity parameter and ˛
ˇ
ˇ QT ˇˇ is a cost component. The more

complex the tree (high number of terminal nodes) the lower is E.T / but at the same
time the higher is the penalty ˛

ˇ
ˇ QT ˇˇ and vice versa.

The number of subtrees of TMAX is finite. Hence pruning of TMAX leads to
creation of a subtree sequence T1; T2; T3; : : : with a decreasing number of terminal
nodes.

An important question is if a subtree T � TMAX for a given ˛ minimisingE˛.T /
always exists and whether it is unique?

In Breiman et al. (1984) it is shown that for 8˛ � 0 there exists an optimal tree
T .˛/ in the sense that

1. E˛ fT .˛/g D min
T�TMAX

E˛.T / D min
T�TMAX

˚
E.T /C ˛ ˇˇ QT ˇˇ�

2. if E˛.T / D E˛ fT .˛/g then T .˛/ � T .

This result is a proof of existence, but also a proof of uniqueness: consider
another subtree T 0 so that T and T 0 both minimise E˛ and are not nested, then
T .˛/ does not exist in accordance with second condition.
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The idea of introducing cost-complexity function at this stage is to check only a
subset of different subtrees of TMAX: optimal subtrees for different values of ˛. The
starting point is to define the first optimal subtree in the sequence so that E.T1/ D
E.TMAX/ and the size of T1 is minimum among other subtrees with the same cost
level. To get T1 out of TMAX for each terminal node of TMAX it is necessary to
verify the condition E.t/ D E.tL/C E.tR/ and if it is fulfilled—node t is pruned.
The process is looped until no extra pruning is available—the resulting tree T .0/
becomes T1.

Define a node t as an ancestor of t 0 and t 0 as descendant of t if there is a
connected path down the tree leading from t to t 0. Consider Fig. 20.26 where nodes
t4, t5, t8, t9, t10 and t11 are descendants of t2 while nodes t6 and t7 are not descendants
of t2 although they are positioned lower since it is not possible to connect them with
a path from t2 to these nodes without engaging t1. Nodes t4, t2 and t1 are ancestors
of t9 and t3 is not ancestor of t9.

Define the branch Tt of the tree T as a subtree based on node t and all its
descendants. An example is given in Fig. 20.27. Pruning a branch Tt from a tree
T means deleting all descendant nodes of t . Denote the transformed tree as T � Tt .
Pruning the branch Tt2 results in the tree described in Fig. 20.28.

For any branch Tt define the internal misclassification estimate as:

E.Tt/ D
X

t 02 QTt
E.t 0/ (20.43)

where QTt is the set of terminal nodes of Tt . Hence for an arbitrary node t of Tt :

Node t7

Node t1

Node t2 Node t3

Node t4 Node t5
Node t6

Node t8 Node t9 Node t10 Node t11

Fig. 20.26 Decision tree hierarchy
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Fig. 20.27 The branch Tt2 of
the original tree T

Node t2

Node t4 Node t5

Node t8 Node t9 Node t10 Node t12

Fig. 20.28 T � Tt2 the
pruned tree T

Node t1

Node t3
Node t2

Node t6 Node t7

E.t/ > E.Tt/ (20.44)

Consider now the cost-complexity misclassification estimate for branches or
single nodes. Define for a single node ftg:

E .ftg/ D E.t/C ˛ (20.45)

and for a branch:

E˛.Tt / D E.Tt/C ˛
ˇ
ˇ QTt
ˇ
ˇ (20.46)

WhenE˛.Tt / < E˛ .ftg/ the branch Tt is preferred to a single node ftg according
to cost-complexity. For some ˛ both (20.45) and (20.46) will become equal. This
critical value of ˛ can be determined from:

E˛.Tt / < E˛ .ftg/ (20.47)

which is equivalent to

˛ <
E.t/� E.Tt/
ˇ
ˇ QTt
ˇ
ˇ � 1 (20.48)

where ˛ > 0 since E.t/ > E.Tt/
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To obtain the next member of the subtrees sequence, i.e. T2 out of T1 a special
node called weak link is determined. For this purpose a function g1.t/, t 2 T1 is
defined as

g1.t/ D
(

E.t/�E.Tt /
j QTt j�1 ; t … QT1
C1; t 2 QT1

(20.49)

Node Nt1 is a weak link in T1 if

g1.Nt1/ D min
t2T1

g1.t/ (20.50)

and a new value for ˛2 is defined as

˛2 D g1.Nt1/ (20.51)

A new tree T2 � T1 in the sequence is obviously defined by pruning the branch
TNt1 , i.e.

T2 D T1 � TNt1 (20.52)

The process is looped until root node ft0g—the final member of sequence—is
reached. When there are multiple weak links detected, for instance gk.Ntk/ D gk.Nt 0k/,
then both branches are pruned, i.e. TkC1 D Tk � TNtk � TNt 0k .

In this way it is possible to get the sequence of optimal subtrees TMAX � T1 �
T2 � T3 � � � � � ft0g for which it is possible to prove that the sequence f˛kg is
increasing, i.e. ˛k < ˛kC1, k � 1 and ˛1 D 0. For k � 1: ˛k � ˛ < ˛kC1 and
T .˛/ D T .˛k/ D Tk .

Practically this tells us how to implement the search algorithm. First, the
maximum tree TMAX is taken, then T1 is found and a weak link Nt1 is detected and
branch TNt1 is pruned off, ˛2 is calculated and the process is continued.

When the algorithm is applied to T1, the number of pruned nodes is usually
quite significant. For instance, consider the following typical empirical evidence
(see Table 20.6). When the trees become smaller, the difference in the number of
terminal nodes also gets smaller.

Finally, it is worth mentioning that the sequence of optimally pruned subtrees
is a subset of trees which might be constructed using direct method of internal
misclassification estimator minimisation given a fixed number of terminal nodes.

Table 20.6 Typical pruning speed

Tree T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13ˇ
ˇ QTk
ˇ
ˇ 71 63 58 40 34 19 10 9 7 6 5 2 1
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Consider an example of tree T .˛/ with 7 terminal nodes, then there is no other
subtree T with 7 terminal nodes having lower E.T /. Otherwise

E˛.T / D E.T /C 7˛ < E˛ fT .˛/g D min
T�TMAX

E˛.T /

which is impossible by definition.
Applying the method of V -fold cross-validation to the sequence TMAX � T1 �

T2 � T3 � � � � � ft0g, an optimal tree is determined. On the other hand it is
frequently pointed out that choice of tree with minimum value of ECV.T / is not
always adequate sinceECV.T / is not too robust, i.e. there is a whole range of values
ECV.T / satisfying ECV.T / < E

CV

MIN.T / C " for small " > 0. Moreover, when
V < N a simple change of random generator seed will definitely result in changed
values of

ˇ
ˇ QTk
ˇ
ˇ minimising OE.TK/. Hence a so-called one standard error empirical

rule is applied which states that if Tk0 is the tree minimising ECV.Tk0/ from the
sequence TMAX � T1 � T2 � T3 � � � � � ft0g, then a value k1 and a correspondent
tree Tk1 are selected so that

argmax
k1

OE.Tk1/ � OE.Tk0/C �
n OE.Tk0/

o
(20.53)

where �.�/ denotes sample estimate of standard error and OE.�/—the relevant sample
estimators.

The dotted line in Fig. 20.29 shows the area where the values of OE.Tk/ only
slightly differ from min

j QTkj
OE.Tk/. The left edge which is roughly equivalent to 16

terminal nodes shows the application of one standard error rule. The use of one

0 8 16 24 32 40
0

1

T̃k

Ê(Tk)

Fig. 20.29 The example of relationship between OE.Tk/ and number of terminal nodes
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standard error rule allows not only to achieve more robust results but also to get
trees of lower complexity given the error comparable with min

j QTkj
OE.Tk/.

Regression Trees

Up to now we concentrate on classification trees. Although regression trees
share a similar logical framework, there are some differences which need to be
addressed. The important difference between classification and regression trees is
the type of dependent variable Y . When Y is discrete, a decision tree is called a
classification tree, a regression tree is a decision tree with a continuous dependent
variable.

Gini index and twoing rule discussed in previous sections assume that the
number of classes is finite and hence introduce some measures based mainly
on p.j jt/ for arbitrary class j and node t . But since in case of continuous
dependent variable there are no more classes, this approach cannot be used
anymore unless groups of continuous values are effectively substituted with artificial
classes. Since there are no classes anymore—how can be the maximum regression
tree determined? Analogously with discrete case, absolute homogeneity can be
then described only after some adequate impurity measure for regression trees is
introduced.

Recall the idea of Gini index, then it becomes quite natural to use the variance as
impurity indicator. Since for each node data variance can be easily computed, then
splitting criterion for an arbitrary node t can be written as

s� D argmax
s

ŒpLvar ftL.s/g C pRvar ftR.s/g� (20.54)

where tL and tR are emerging child nodes which are, of course, directly dependent
on the choice of s�.

Hence the maximum regression tree can be easily defined as a structure where
each node has only the same predicted values. It is important to point out that since
continuous data have much higher chances to take different values comparing with
discrete ones, the size of maximum regression tree is usually very big.

When the maximum regression tree is properly defined, it is then of no problem
to get an optimally size tree. Like with classification trees, maximum regression tree
is usually supposed to be upwardly pruned with the help of cost-complexity function
and cross-validation. That is why the majority of results presented above is applied
to regression trees as well.
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Fig. 20.30 Decision tree for
bankruptcy dataset: Gini
index, NN D 30

MVACARTBan1

X1 < 0.028
(42,42)

X2 < 0.641
(13,35)

CLASS -1
(7,5)

X2 < 1.044
(6,30)

X1 < 0.006
(4,28)

CLASS 1
(1,20)

CLASS 1
(3,8)

CLASS -1
(2,2)

X1 < 0.057
(29,7)

CLASS -1
(16,6)

CLASS -1
(13,1)

Bankruptcy Analysis

This section provides a practical study on bankruptcy data involving decision trees.
A dataset with 84 observations representing different companies is constituted by
three variables:

– net income to total assets ratio
– total liabilities to total assets ratio
– company status (�1 if bankrupt and 1 if not)

The data is from SEC (2004).
The goal is to predict and describe the company status given the two primary

financial ratios. Since no additional information like the functional form of possible
relationship is available, the use of a classification tree is an active alternative.

The tree given in Fig. 20.30 was constructed using the Gini index and a NN D
30 constraint, i.e. the number of points in each of the terminal nodes can not be
more than 30. Numbers in parentheses displayed on terminal nodes are observation
quantities belonging to Class 1 and Class �1.

If we loose the constraint to NN D 10, the decision rule changes, see Fig. 20.31.
How exactly did the situation change? Consider the Class 1 terminal nodes of the
tree on Fig. 20.30. The first one contains 21 observations and thus was split for
NN D 10. When it was split two new nodes of different classes emerged and for both

of them the impurity measure has decreased.
We may conclude that NN 	 10 is a good choice and analysing the tree produced

we can state that for this particular example the net income to total assets .X1/
ratio appears to be an important class indicator. The successful classification ratio
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X1 < 0.028
(42,42)

X2 < 0.641
(13,35)

X1 < -0.002
(7,5)

CLASS 1
(2,4)

CLASS -1
(5,1)

X2 < 1.044
(6,30)

X1 < 0.006
(4,28)

X1 < -0.078
(1,20)

CLASS 1
(1,6)

CLASS 1
(0,14)

X1 < 0.018
(3,8)

CLASS -1
(2,0)

CLASS 1
(1,8)

CLASS -1
(2,2)

X1 < 0.057
(29,7)

X1 < 0.056
(16,6)

X1 < 0.038
(16,5)

CLASS -1
(8,1)

X1 < 0.045
(8,4)

CLASS 1
(1,3)

CLASS -1
(7,1)

CLASS 1
(0,1)

X2 < 0.755
(13,1)

CLASS -1
(13,0)

CLASS 1
(0,1)

Fig. 20.31 Decision tree for bankruptcy dataset: Gini index, NN D 10 MVACARTBan2

MinSize parameter

C
la

ss
ifi

ca
tio

n 
R

at
io

0 10 20 30 40

0.
4

0.
6

0.
8

1

Classification ratio by minsize parameter

Fig. 20.32 Successful classification ratio dynamic over the number of terminal nodes: cross-
validation MVAbancrupcydis

dynamic over the number of terminal nodes is shown in Fig. 20.32. It is chosen by
cross-validation method.

For this example with relatively small sample size we construct two maximum
trees—using the Gini and twoing rules, see Figs. 20.33 and 20.34. Looking at both
decision trees we see that the choice of impurity measure is not so important as the
right choice of tree size.
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Summary
,! CART is a tree based method splitting the data sequentially into a

binary tree
,! CART determined the nodes by minimising an impurity measure at

each mode
,! CART is non-parametric:

When no data structure hypotheses are available, non-parametric
analysis becomes the single effective data mining tool. CART is a
flexible nonparametric data mining tool

,! CART does not require variables to be selected in advance:
From a learning sample CART will automatically select the most
significant ones

,! CART is very efficient in computational terms:
Although all possible data splits are analysed, the CART architec-
ture is flexible enough to do all of them quickly

,! CART is robust to the effect of outliers:
Due to data-splitting nature of decision rules creation it is possible
to distinguish between datasets with different characteristics and
hence to neutralise outliers in separate nodes

,! CART can use any combination of continuous and categorical data:
Researchers are no longer limited to a particular class of data and
will be able to capture more real-life examples

20.6 Boston Housing

Coming back to the Boston Housing data set, we compare the results of EPP on the
original data X and the transformed data OX motivated in Sect. 1.9. So we exclude
X4 (indicator of Charles River) from the present analysis.

The aim of this analysis is to see from a different angle whether our proposed
transformations yield more normal distributions and whether it will yield data with
less outliers. Both effects will be visible in our projection pursuit analysis.

We first apply the Jones and Sibson index to the non-transformed data with 50
randomly chosen 13-dimensional directions. Figure 20.35 displays the results in the
following form. In the lower part, we see the values of the Jones and Sibson index.
It should be constant for 13-dimensional normal data. We observe that this is clearly
not the case. In the upper part of Fig. 20.35 we show the standard normal density as
a green curve and two densities corresponding to two extreme index values. The red,
slim curve corresponds to the maximal value of the index among the 50 projections.
The blue curve, which is close to the normal, corresponds to the minimal value of
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Fig. 20.35 Projection Pursuit
with the Sibson–Jones index
with 13 original variables
MVAppsib
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Fig. 20.36 Projection Pursuit
with the Sibson–Jones index
with 13 transformed variables
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the Jones and Sibson index. The corresponding values of the indices have the same
colour in the lower part of Fig. 20.35. Below the densities, a jitter plot shows the
distribution of the projected points ˛>xi (i D 1; : : : ; 506). We conclude from the
outlying projection in the red distribution that several points are in conflict with the
normality assumption.

Figure 20.36 presents an analysis with the same design for the transformed data.
We observe in the lower part of the figure values that are much lower for the Jones
and Sibson index (by a factor of 10) with lower variability which suggests that the
transformed data is closer to the normal. (“Closeness” is interpreted here in the sense
of the Jones and Sibson index.) This is confirmed by looking to the upper part of
Fig. 20.36 which has a significantly less outlying structure than in Fig. 20.35.
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20.7 Exercises

Exercise 20.1 Calculate the Simplicial Depth for the Swiss bank notes data set and
compare the results to the univariate medians. Calculate the Simplicial Depth again
for the genuine and counterfeit bank notes separately.

Exercise 20.2 Construct a configuration of points in R
2 such that xmed;j

from (20.2) is not in the “centre” of the scatterplot.

Exercise 20.3 Apply the SIR technique to the US companies data with Y D
market value and X D all other variables. Which directions do you find?

Exercise 20.4 Simulate a data set with X � N4.0; I4/; Y D .X1C 3X2/2C .X3�
X4/

4 C " and " � N.0; .0:1/2/. Use SIR and SIR II to find the EDR directions.

Exercise 20.5 Apply the Projection Pursuit technique on the Swiss bank notes data
set and compare the results to the PC analysis and the Fisher discriminant rule.

Exercise 20.6 Apply the SIR and SIR II technique on the car data set in Table 22.3
with Y D price.

Exercise 20.7 Generate four regions on the two-dimensional unit square by
sequentially cutting parallel to the coordinate axes. Generate 100 two-dimensional
Uniform random variables and label them according to their presence in the above
regions. Apply the CART algorithm to find the regions bound and to classify the
observations.

Exercise 20.8 Modify Exercise 20.7 by defining the regions as lying above and
below the main diagonal of the unit square. Make a CART analysis and comment
on the complexity of the tree.

Exercise 20.9 Apply the SVM with different radial basis parameter r and different
capacity parameter c in order to separate two circular datasets. This example
is often called the Orange Peel exercise and involves two Normal distributions
N.�;†i/, i D 1; 2, with covariance matrices †1 D 2I2 and †2 D 0:5I2.
Exercise 20.10 The noisy spiral data set consists of two intertwining spirals that
need to be separated by a non-linear classification method. Apply the SVM with
different radial basis parameter r and capacity parameter c in order to separate the
two spiral datasets.

Exercise 20.11 Apply the SVM to separate the bankrupt from the surviving (prof-
itable) companies using the profitability and leverage ratios given in the Bankruptcy
data set in Table 22.21.
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Chapter 21
Symbols and Notations

Basics

X; Y Random variables or vectors

X1;X2; : : : ; Xp Random variables

X D .X1; : : : ; Xp/
> Random vector

X � � X has distribution �
A;B Matrices 53

	;
 Matrices 60

X ;Y Data matrices 81

† Covariance matrix 80

1n Vector of ones .1; : : : ; 1
„ ƒ‚ …
n-times

/> 54

0n Vector of zeros .0; : : : ; 0
„ ƒ‚ …
n-times

/> 54

I.:/ Indicator function, i.e. for a set M is
I D 1 on M , I D 0 otherwise

i
p�1

) Implication

, Equivalence

	 Approximately equal

˝ Kronecker product

iff if and only if, equivalence

© Springer-Verlag Berlin Heidelberg 2015
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Mathematical Abbreviations

tr.A/ Trace of matrix A
hull.x1; : : : ; xk/ Convex hull of points fx1; : : : ; xkg
diag.A/ Diagonal of matrix A
rank.A/ Rank of matrix A
det.A/ Determinant of matrix A
C.A/ Column space of matrix A

Samples

x; y Observations of X and Y

x1; : : : ; xn D fxigniD1 Sample of n observations of X

X D fxij giD1;:::;nIjD1;:::;p (n � p) data matrix of observations of X1; : : : ; Xp
or of X D .X1; : : : ; Xp/

T
81

x.1/; : : : ; x.n/ The order statistic of x1; : : : ; xn 5

H Centering matrix, H D In � n�11n1
>
n 90

Densities and Distribution Functions

f .x/ Density of X

f.x; y/ Joint density of X and Y

fX .x/; fY .y/ Marginal densities of X and Y

fX1 .x1/; : : : ; fXp .x2/ Marginal densities of X1; : : : ; Xp
Ofh.x/ Histogram or kernel estimator of f .x/ 11

F.x/ Distribution function of X

F.x; y/ Joint distribution function of X and Y

FX.x/; FY .y/ Marginal distribution functions of X and Y

FX1 .x1/; : : : ; fXp .xp/ Marginal distribution functions of X1; : : : ; Xp
'.x/ Density of the standard normal distribution

ˆ.x/ Standard normal distribution function

'X.t/ Characteristic function of X

mk k-th moment of X

�j Cumulants or semi-invariants of X
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Moments

EX;EY Mean values of random variables or vectors X and Y 80

�XY D Cov.X; Y / Covariance between random variables X and Y 80

�XX D Var.X/ Variance of random variable X 80

�XY D Cov.X; Y /p
Var.X/ Var.Y /

Correlation between random variables X and Y 84

†XY D Cov.X; Y / Covariance between random vectors X and Y ,
i.e., Cov.X; Y / D E.X �EX/.Y � EY />

†XX D Var.X/ Covariance matrix of the random vector X

Empirical Moments

x D 1

n

nX

iD1

xi Average of X sampled by fxi giD1;:::;n 7

sXY D 1

n

nX

iD1

.xi � x/.yi � y/ Empirical covariance of random variables X and Y
sampled by fxigiD1;:::;n and fyi giD1;:::;n

80

sXX D 1

n

nX

iD1

.xi � x/2 Empirical variance of random variable X sampled by
fxigiD1;:::;n

80

rXY D sXYp
sXX sY Y

Empirical correlation of X and Y 84

S D fsXi Xj g D x>Hx Empirical covariance matrix of X1; : : : ; Xp or of the
random vector X D .X1; : : : ; Xp/

>

80, 90

R D frXiXj g D D�1=2SD�1=2 Empirical correlation matrix of X1; : : : ; Xp or of the
random vector X D .X1; : : : ; Xp/

>

84, 91

Distributions

'.x/ Density of the standard normal distribution

ˆ.x/ Distribution function of the standard normal distribution

N.0; 1/ Standard normal or Gaussian distribution

N.�; �2/ Normal distribution with mean � and variance �2

Np.�;†/ p-Dimensional normal distribution with mean � and
covariance matrix †



560 21 Symbols and Notations

L�! Convergence in distribution 143

CLT Central Limit Theorem 143

�2p �2 distribution with p degrees of freedom

�21�˛Ip 1 � ˛ quantile of the �2 distribution with p degrees of
freedom

tn t -Distribution with n degrees of freedom

t1�˛=2In 1� ˛=2 quantile of the t -distribution with n d.f.

Fn;m F -Distribution with n and m degrees of freedom

F1�˛In;m 1�˛ quantile of theF -distribution with n andm degrees
of freedom

T 2p;n Hotelling T 2-distribution with p and n degrees of
freedom



Chapter 22
Data

All data sets are available on the Springer webpage or at the authors’ home pages.

22.1 Boston Housing Data

The Boston housing data set was collected by Harrison and Rubinfeld (1978). It
comprise 506 observations for each census district of the Boston metropolitan area.
The data set was analysed in Belsley, Kuh, and Welsch (1980).

X1: Per capita crime rate,

X2: Proportion of residential land zoned for large lots,

X3: Proportion of nonretail business acres,

X4: Charles River (1 if tract bounds river, 0 otherwise),

X5: Nitric oxides concentration,

X6: Average number of rooms per dwelling,

X7: Proportion of owner-occupied units built prior to 1940,

X8: Weighted distances to five Boston employment centers,

X9: Index of accessibility to radial highways,

X10: Full-value property tax rate per $10,000,

X11: Pupil/teacher ratio,

X12: 1000.B � 0:63/2 I.B < 0:63/ where B is the proportion of African American,

X13: % lower status of the population,

X14: Median value of owner-occupied homes in $1,000.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7_22
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22.2 Swiss Bank Notes

Six variables measured on 100 genuine and 100 counterfeit old Swiss 1000-franc
bank notes. The data stem from Flury and Riedwyl (1988). The columns correspond
to the following six variables.

X1: Length of the bank note,

X2: Height of the bank note, measured on the left,

X3: Height of the bank note, measured on the right,

X4: Distance of inner frame to the lower border,

X5: Distance of inner frame to the upper border,

X6: Length of the diagonal.

Observations 1–100 are the genuine bank notes and the other 100 observations
are the counterfeit bank notes.

22.3 Car Data

The car data set (Chambers, Cleveland, Kleiner & Tukey, 1983) consists of 13
variables measured for 74 car types. The abbreviations in this section are as follows:

X1: P Price,

X2: M Mileage (in miles per gallon),

X3: R78 Repair record 1978 (rated on a 5-point scale; 5 best, 1 worst),

X4: R77 Repair record 1977 (scale as before),

X5: H Headroom (in inches),

X6: R Rear seat clearance (distance from front seat back to rear seat, in inches),

X7: Tr Trunk space (in cubic feet),

X8: W Weight (in pound),

X9: L Length (in inches),

X10: T Turning diameter (clearance required to make a U-turn, in feet),

X11: D Displacement (in cubic inches),

X12: G Gear ratio for high gear,

X13: C Company headquarter (1 for USA, 2 for Japan, 3 for Europe).
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22.4 Classic Blue Pullovers Data

This is a data set consisting of ten measurements of four variables. The story:
A textile shop manager is studying the sales of “classic blue” pullovers over ten
periods. He uses three different marketing methods and hopes to understand his
sales as a fit of these variables using statistics. The variables measured are

X1: Numbers of sold pullovers,

X2: Price (in EUR),

X3: Advertisement costs in local newspapers (in EUR),

X4: Presence of a sales assistant (in hours per period).

22.5 US Companies Data

The data set consists of measurements for 79 US companies. The abbreviations in
this section are as follows:

X1: A Assets (USD),

X2: S Sales (USD),

X3: MV Market value (USD),

X4: P Profits (USD),

X5: CF Cash flow (USD),

X6: E Employees.

22.6 French Food Data

The data set consists of the average expenditures on food for several different types
of families in France (manual workersDMA, employeesDEM, managersDCA)
with different numbers of children (2, 3, 4 or 5 children). The data is taken from
Lebart, Morineau, and Fénelon (1982).
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22.7 Car Marks

The data are averaged marks for 23 car types from a sample of 40 persons. The
marks range from 1 (very good) to 6 (very bad) like German school marks. The
variables are:

X1: A Economy,

X2: B Service,

X3: C Non-depreciation of value,

X4: D Price, Mark 1 for very cheap cars,

X5: E Design,

X6: F Sporty car,

X7: G Safety,

X8: H Easy handling.

22.8 French Baccalauréat Frequencies

The data consist of observations of 202;100 baccalauréats from France in 1976 and
give the frequencies for different sets of modalities classified into regions. For a
reference see Bouroche and Saporta (1980). The variables (modalities) are:

X1: A Philosophy-Letters,

X2: B Economics and Social Sciences,

X3: C Mathematics and Physics,

X4: D Mathematics and Natural Sciences,

X5: E Mathematics and Techniques,

X6: F Industrial Techniques,

X7: G Economic Techniques,

X8: H Computer Techniques.

22.9 Journaux Data

This is a data set that was created from a survey completed in the 1980s in
Belgium questioning people’s reading habits. They were asked where they live (10
regions comprised of 7 provinces and 3 regions around Brussels) and what kind
of newspaper they read on a regular basis. The 15 possible answers belong to 3
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classes: Flemish newspapers (first letter v), French newspapers (first letter f) and
both languages (first letter b).

X1: WaBr Walloon Brabant

X2: Brar Brussels area

X3: Antw Antwerp

X4: FlBr Flemish Brabant

X5: OcFl Occidental Flanders

X6: OrFl Oriental Flanders

X7: Hain Hainaut

X8: Lièg Liège

X9: Limb Limburg

X10: Luxe Luxembourg

22.10 US Crime Data

This is a data set consisting of 50 measurements of 7 variables. It states for 1 year
(1985) the reported number of crimes in the 50 states of the US classified according
to 7 categories (X3–X9).

X1: Land area (land)

X2: Population 1985 (popu 1985)

X3: Murder (murd)

X4: Rape

X5: Robbery (robb)

X6: Assault (assa)

X7: Burglary (burg)

X8: Larcery (larc)

X9: Autothieft (auto)

X10: US states region number (reg)

X11: US states division number (div)
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Division numbers Region numbers

New England 1 Northeast 1

Mid Atlantic 2 Midwest 2

E N Central 3 South 3

W N Central 4 West 4

S Atlantic 5

E S Central 6

W S Central 7

Mountain 8

Pacific 9

22.11 Plasma Data

In Olkin and Veath (1980), the evolution of citrate concentration in the plasma is
observed at three different times of day, X1 (8 am), X2 (11 am) and X3 (3 pm), for
two groups of patients. Each group follows a different diet.

X1: 8 am

X2: 11 am

X3: 3 pm

22.12 WAIS Data

Morrison (1990) compares the results of four subtests of the Wechsler Adult
Intelligence Scale (WAIS) for two categories of people: in group one are n1 D 37

people who do not present a senile factor, group two are those (n2 D 12) presenting
a senile factor.

WAIS subtests:

X1: Information

X2: Similarities

X3: Arithmetic

X4: Picture completion
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22.13 ANOVA Data

The yields of wheat have been measured in 30 parcels which have been randomly
attributed to 3 lots prepared by one of 3 different fertilisers A, B and C.

X1: Fertiliser A

X2: Fertiliser B

X3: Fertiliser C

22.14 Timebudget Data

In Volle (1985), we can find data on 28 individuals identified according to
sex, country where they live, professional activity and matrimonial status, which
indicates the amount of time each person spent on ten categories of activities over
100 days (100 � 24 h D 2;400 h total in each row) in the year 1976.

X1: prof : Professional activity

X2: tran : Transportation linked to professional activity

X3: hous : Household occupation

X4: kids : Occupation linked to children

X5: shop : Shopping

X6: pers : Time spent for personal care

X7: eat : Eating

X8: slee : Sleeping

X9: tele : Watching television

X10: leis : Other leisures

maus: Active men in the USA

waus: Active women in the USA

wnus: Nonactive women in the USA

mmus: Married men in USA

wmus: Married women in USA

msus: Single men in USA

wsus: Single women in USA

mawe: Active men from Western countries

wawe: Active women from Western countries
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wnwe: Nonactive women from Western countries

mmwe: Married men from Western countries

wmwe: Married women from Western countries

mswe: Single men from Western countries

wswe: Single women from Western countries

mayo: Active men from Yugoslavia

wayo: Active women from Yugoslavia

wnyo: Nonactive women from Yugoslavia

mmyo: Married men from Yugoslavia

wmyo: Married women from Yugoslavia

msyo: Single men from Yugoslavia

wsyo: Single women from Yugoslavia

maes: Active men from Eastern countries

waes: Active women from Eastern countries

wnes: Nonactive women from Eastern countries

mmes: Married men from Eastern countries

wmes: Married women from Eastern countries

mses: Single men from Eastern countries

wses: Single women from Eastern countries

22.15 Geopol Data

This data set contains a comparison of 41 countries according to 10 different
political and economic parameters.

X1: popu Population

X2: giph Gross Internal Product per habitant

X3: ripo Rate of increase of the population

X4: rupo Rate of urban population

X5: rlpo Rate of illiteracy in the population

X6: rspo Rate of students in the population

X7: eltp Expected lifetime of people

X8: rnnr Rate of nutritional needs realised

X9: nunh Number of newspapers and magazines per 1,000 habitants

X10: nuth Number of television per 1,000 habitants
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AFS South Africa DAN Denmark MAR Marocco

ALG Algeria EGY Egypt MEX Mexico

BRD Germany ESP Spain NOR Norway

GBR Great Britain FRA France PER Peru

ARS Saudi Arabia GAB Gabun POL Poland

ARG Argentine GRE Greece POR Portugal

AUS Australia HOK Hong Kong SUE Sweden

AUT Austria HON Hungary SUI Switzerland

BEL Belgium IND India THA Tailand

CAM Cameroon IDO Indonesia URS USSR

CAN Canada ISR Israel USA USA

CHL Chile ITA Italia VEN Venezuela

CHN China JAP Japan YOU Yugoslavia

CUB Cuba KEN Kenia

22.16 US Health Data

This is a data set consisting of 50 measurements of 13 variables. It states for 1 year
(1985) the reported number of deaths in the 50 states of the US classified according
to 7 categories.

X1: Land area (land)

X2: Population 1985 (popu)

X3: Accident (acc)

X4: Cardiovascular (card)

X5: Cancer (canc)

X6: Pulmonar (pul)

X7: Pneumonia flu (pnue)

X8: Diabetis (diab)

X9: Liver (liv)

X10: Doctors (doc)

X11: Hospitals (hosp)

X12: US states region number (r)

X13: US states division number (d)
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Division numbers Region numbers

New England 1 Northeast 1

Mid Atlantic 2 Midwest 2

E N Central 3 South 3

W N Central 4 West 4

S Atlantic 5

E S Central 6

W S Central 7

Mountain 8

Pacific 9

22.17 Vocabulary Data

This example of the evolution of the vocabulary of children can be found in Bock
(1975). Data are drawn from test results on file in the Records Office of the
Laboratory School of the University of Chicago. They consist of scores, obtained
from a cohort of pupils from the eighth through eleventh grade levels, on alternative
forms of the vocabulary section of the Cooperative Reading Test. It provides the
following scaled scores shown for the sample of 64 subjects (the origin and units
are fixed arbitrarily).

22.18 Athletic Records Data

This data set provides data on Men’s athletic records for 55 countries in 1984
Olympic Games.

22.19 Unemployment Data

This data set provides unemployment rates in all federal states of Germany in
November 2005.

22.20 Annual Population Data

The data shows yearly average population rates for Former territory of the Federal
Republic of Germany incl. Berlin-West (given in 1,000 inhabitants).
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22.21 Bankruptcy Data I

The data are the profitability, leverage, and bankruptcy indicators for 84 companies.
The data set contains information on 42 of the largest companies that filed for

protection against creditors under Chap. 11 of the US Bankruptcy Code in 2001–
2002 after the stock market crash of 2000. The bankrupt companies were matched
with 42 surviving companies with the closest capitalisations and the same US
industry classification codes available through the Division of Corporate Finance
of the Securities and Exchange Commission (SEC, 2004).

The information for each company was collected from the annual reports for
1998–1999 (SEC, 2004), i.e. 3 years prior to the defaults of the bankrupt compa-
nies. The following data set contains profitability and leverage ratios calculated,
respectively, as the ratio of net income (NI) and total assets (TA) and the ratio of
total liabilities (TL) and total assets (TA).

22.22 Bankruptcy Data II

Altman (1968), quoted by Morrison (1990), reports financial data on 66 banks.

X1D (Working capital)/(total assets)
X2D (Retained earnings)/(total assets)
X3D (Earnings before interest and taxes)/(total assets)
X4D (Market value equity)/(book value of total liabilities)
X5D (Sales)/(total assets)

The first 33 observations correspond to bankrupt banks and the last 33 for solvent
banks as indicated by the last columns: values of y



References

ALLBUS. (2006). Germany general social survey 1980–2004.
Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate

bankruptcy. The Journal of Finance, 23, 589–609.
Andrews, D. (1972). Plots of high-dimensional data. Biometrics, 28, 125–136.
Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (1996). Multivariate analysemethoden.

Berlin: Springer.
Bartlett, M. S. (1939). A note on tests of significance in multivariate analysis. Proceedings of the

Cambridge Philosophical Society, 35, 180–185.
Bartlett, M. S. (1954). A note on multiplying factors for various chi-squared approximations.

Journal of the Royal Statistical Society: Series B, 16, 296–298.
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. New York: Wiley.
Blæsild, P., & Jensen, J. (1981). Multivariate distributions of hyperbolic type. In Statistical

distributions in scientific work—Proceedings of the NATO Advanced Study Institute held at
the Università degli studi di Trieste (Vol. 4, pp. 45–66).

Bock, R. D. (1975). Multivariate statistical methods in behavioral research. New York: Mc Graw-
Hill.

Bouroche, J.-M., & Saporta, G. (1980). L’analyse des données. Paris: Presses Universitaires de
France.

Breiman, L. (1973). Statistics: With a view towards application. Boston: Houghton Mifflin
Company.

Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. J. (1984). Classification and regression
trees. Belmont: Wadsworth.

Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods for data
analysis. Boston: Duxbury Press.

Chen, Y., Härdle, W., & Jeong, S.-O. (2008). Nonparametric risk management with generalized
hyperbolic distributions. Journal of the American Statistical Association, 103, 910–923.

Chernoff, H. (1973). Using faces to represent points in k-dimensional space graphically. Journal
of the American Statistical Association, 68, 361–368.

Cook, R. D., & Weisberg, S. (1991). Comment on “sliced inverse regression for dimension
reduction”. Journal of the American Statistical Association, 86(414), 328–332.

Dillon, W. R., & Goldstein, M. (1984). Multivariate analysis. New York: Wiley.
Duan, N., & Li, K.-C. (1991). Slicing regression: A link-free regression method. Annals of

Statistics, 19(2), 505–530.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression (with

discussion). Annals of Statistics, 32(2), 407–499.

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7

573



574 References

Embrechts, P., McNeil, A. J., & Straumann, D. (1999, May). Correlation and dependence in risk
management: Properties and pitfalls. RISK Magazine, 69–71.

EUNITE. (2001). Electricity load forecast competition of the European network on intelligent
technologies for smart adaptive systems. http://neuron.tuke.sk/competition/

Everitt, B., & Dunn, G. (1998). Applied multivariate data analysis. London: Edward Arnold.
Fahrmeir, L., & Hamerle, A. (1984). Multivariate statistische verfahren. Berlin: De Gruyter.
Fang, K. T., Kotz, S., & Ng, K. W. (1990). Symmetric multivariate and related distributions.

London: Chapman and Hall.
Fengler, M. R., Härdle, W., & Villa, C. (2003). The dynamics of implied volatilities: A common

principal components approach. Review of Derivative Research, 6, 179–202.
Flury, B. (1988). Common principle components analysis and related multivariate models. New

York: Wiley.
Flury, B., & Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation

of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on
Scientific and Statistical Computing, 7, 169–184.

Flury, B., & Riedwyl, H. (1988). Multivariate statistics: A practical approach. Cambridge:
Cambridge University Press.

Franke, J., Härdle, W., & Hafner, C. (2011). Introduction to statistics of financial markets (3rd
ed.). Heidelberg: Springer.

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit classification. Unpublished manuscript.
Friedman, J. H., & Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data

analysis. IEEE Transactions on Computers, C 23, 881–890.
Gale, D., Kuhn, H. W., & Tucker, A. W. (1951). Linear programming and the theory of games. In T.

C. Koopmans (Ed.), Activity analysis of production and allocation (pp. 317–329). New York:
John Wiley and Sons.

Gibbins, R. (1985). Canonical analysis. A review with application in ecology. Berlin: Springer.
Giri, N. C. (1996). Multivariate statistical analysis. New York: Marcel Dekker.
Gosset, W. S. (1908). The probable error of a mean. Biometrika, 6, 1–25.
Graham, M., & Kennedy, J. (2003). Using curves to enhance parallel coordinate visualisations. In

Proceedings of seventh international conference on information visualization, 2003 (IV 2003)
(pp. 10–16).

Hall, P. (1992). The bootstrap and edgeworth expansion. Statistical Series. New York: Springer.
Hall, P., & Li, K.-C. (1993). On almost linearity of low dimensional projections from high

dimensional data. Annals of Statistics, 21(2), 867–889.
Härdle, W. (1991). Smoothing techniques, with implementations in S. New York: Springer.
Härdle, W., Hautsch, N., & Overbeck, L. (2009). Applied quantitative finance (2nd ed.).

Heidelberg: Springer.
Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Non- and semiparametric models.

Heidelberg: Springer.
Härdle, W., & Scott, D. (1992). Smoothing by weighted averaging of rounded points. Computa-

tional Statistics, 7, 97–128.
Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for clean air. Journal of

Environment Economics & Management, 5, 81–102.
Hoaglin, W., Mosteller, F., & Tukey, J. (1983). Understanding robust and exploratory data

analysis. New York: Wiley.
Hodges, J. L., & Lehman, E. L. (1956). The efficiency of some non-parametric competitors of the
t -test. Annals of Mathematical Statistics, 27, 324–335.

Hotelling, H. (1935). The most predictable criterion. Journal of Educational Psychology,
26, 139–142.

Hotelling, H. (1953). New light on the correlation coefficient and its transform. Journal of the
Royal Statistical Society, Series B, 15, 193–232.

Huber, P. (1985). Projection pursuit. Annals of Statistics, 13(2), 435–475.

http://neuron.tuke.sk/competition/


References 575

Inselberg, A. (1985). A goodness of fit test for binary regression models based on smoothing
methods. The Visual Computer, 1, 69–91.

Johnson, R. A., & Wichern, D. W. (1998). Applied multivariate analysis (4th ed.). Englewood
Cliffs, NJ: Prentice Hall.

Jones, M. C., & Sibson, R. (1987). What is projection pursuit? (with discussion). Journal of the
Royal Statistical Society, Series A, 150(1), 1–36.

Kaiser, H. F. (1985). The varimax criterion for analytic rotation in factor analysis. Psychometrika,
23, 187–200.

Kendall, K., & Stuart, S. (1977). Distribution theory. In The advanced theory of statistics (Vol. 1).
London: Griffin.

Klinke, S., & Polzehl, J. (1995). Implementation of kernel based indices in XGobi. Discussion
paper 47, SFB 373. Humboldt-University of Berlin.

Kruskal, J. B. (1965). Analysis of factorial experiments by estimating a monotone transformation
of data. Journal of the Royal Statistical Society, Series B, 27, 251–263.

Kruskal, J. B. (1969). Toward a practical method which helps uncover the structure of a set of
observations by finding the line tranformation which optimizes a new “index of condensation”.
In R. C. Milton & J. A. Nelder (Eds.), Statistical computation (pp. 427–440). New York:
Academic Press.

Kruskal, J. B. (1972). Linear transformation of multivariate data to reveal clustering. In R. N.
Shepard, A. K. Romney, & S. B. Nerlove (Eds.), Multidimensional scaling: Theory and
applications in the behavioural sciences (Vol. 1, pp. 179–191). London: Seminar Press.

Lachenbruch, P. A., & Mickey, M. R. (1968). Estimation of error rates in discriminant analysis.
Technometrics, 10, 1–11.

Laplace, P.-S. (1774). Mémoire sur la probabilité des causes par les événements. Savants étranges,
6, 621–656.

Lawson, C., & Hansen, R. (1974). Solving least square problems. Englewood Cliffs: Prentice Hall.
Lebart, L., Morineau, A. and Fénelon, J. P. (1982). Traitement des données statistiques, Dunod,

Paris.
Lewin-Koh, N. (2006). Hexagon binnning. Technical Report.
Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). Journal of

the American Statistical Association, 86(414), 316–342.
Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction:

Another application of Stein’s lemma. Journal of the American Statistical Association,
87, 1025–1039.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Duluth/London: Academic
Press.

Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal
of the Royal Statistical Society, Series B, 70, 53–71.

Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society of London, 209, 415–446.

Morrison, D. (1990). Multivariate statistical methods (3rd ed., 495 pp.). New York: McGraw-Hill.
Muirhead, R. J. (1982). Aspects of multivariate statistics. New York: Wiley.
Nelsen, R. B. (1999). An introduction to copulas. New York: Springer.
Olkin, I., & Veath, M. (1980). Maximum likelihood estimation in a two-way analysis with

correlated errors in one classification. Biometrika, 68, 653–660.
Osborne, M., Presnell, B., & Turlach, B. (2000). On the lasso and its dual. Journal of

Computational and Graphical Statistics, 9(2), 319–337.
Parzen, E. (1962). On estimating of a probability density and mode. Annals of Mathematical

Statistics, 35, 1065–1076.
Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Annals of

Mathematical Statistics, 27, 832–837.
Schott, J. R. (1994). Determining the dimensionality in sliced inverse regression. Journal of the

American Statistical Association, 89(425), 141–148.



576 References

Scott, D. (1985). Averaged shifted histograms: Effective nonparametric density estimation in
several dimensions. Annals of Statistics, 13, 1024–1040.

SEC (2004). Securities and exchange commission: Archive of historical documents. http://www.
sec.gov/cgi-bin/srch-edgar

Shevade, S. K., & Keerthi, S. S. (2003). A simple and efficient algorithm for gene selection using
sparse logistic regression. Bioinformatics, 19, 2246–2253.

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Monographs on
statistics and applied probability (Vol. 26). London: Chapman and Hall.

Simon, N., Friedman, J. H., Hastie, T., & Tibshirani, R. (2013). A sparse-group lasso. Journal of
Computational and Graphical Statistics, 22(2), 231–245.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut
de Statistique de L’Université de Paris, 8, 229–231.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58, 267–288.

Tufte, E. (1983). The visual display of quantitative information. Cheshire: Graphics Press.
Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Volle, V. (1985). Analyse des Données. Paris: Economica.
Whittle, P. (1958). On the smoothing of probability density functions. Journal of the Royal

Statistical Society, Series B, 55, 549–557.
Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society, Series B, 68, 49–67.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society, Series B, 67, 301–320.

http://www.sec.gov/cgi-bin/srch-edgar
http://www.sec.gov/cgi-bin/srch-edgar


Index

Actual error rate (AER), 417
Admissible, 413
Agglomerative techniques, 393
Allocation rules, 407
Analysis of variance (ANOVA), 72
Andrews’ Curves, 29
Angle between two vectors, 72
Apparent error rate (APER), 417

Bayes discriminant rule, 413
Bernoulli distributions, 144
Best line, 308
Binary structure, 387
Binomial sampling, 273
Biplots, 439
Bootstrap, 176

sample, 179
Bootstrap sample, 179
Boston Housing, 40, 110, 242, 262, 346, 378,

400, 552
Boxplot, 4, 5

construction, 7

Canonical correlation, 443
analysis, 443
coefficient, 445
variable, 445
vector, 445

Capital asset pricing model (CAPM), 497
Cauchy distribution, 154
Centering matrix, 90
Central limit theorem (CLT), 143–145
Centroid, 396
Characteristic functions, 123, 130

Classic blue pullovers, 82
Cluster algorithms, 392
Cluster analysis, 385
Cobb–Douglas production function, 254
Cochran theorem, 192
Coefficient of determination, 96, 107

adjusted, 107
Column space, 74, 306
Common factors, 361
Common principal components analysis

(CPCA), 342
Communality, 362
Complete linkage, 396
Computationally intensive techniques, 501
Concentration ellipsoid, 139
Conditional approximations, 188
Conditional covariance, 513
Conditional density, 119
Conditional distribution, 186
Conditional expectation, 126, 512, 513
Conditional pdf, 119
Confidence interval, 146
Confusion matrix, 417
Contingency tables, 264, 273, 425
Contrast, 227
Convex hull, 504
Copula, 120, 168
Copulae, 166
Correlation, 84

multiple, 188
Correspondence analysis, 425
Covariance, 80
Covariance matrix

decomposition, 320
properties, 124

© Springer-Verlag Berlin Heidelberg 2015
W.K. Härdle, L. Simar, Applied Multivariate Statistical Analysis,
DOI 10.1007/978-3-662-45171-7

577



578 Index

Cramer–Rao, 208
Cramer–Rao lower bound, 206
Cramer–Wold, 131
Cumulant, 132
Cumulative distribution function (cdf), 118
Curse of dimensionality, 511

Data depth, 504
Degrees of freedom, 102
Dendrogram, 394
Density estimates, 11
Density functions, 118
Determinant, 56
Deviance, 269
Diagonal matrix, 54
Dice, 388
Discriminant analysis, 407
Discriminant rule, 408

in practice, 415
Dissimilarity of cars, 458
Distance

d, 68
Euclidean, 68
iso-distance curves, 69
matrix, 460
measures, 389

Distribution, 118
Draftman’s plot, 21
Duality relations, 313
Duality theorem, 464

Effective dimension reduction directions, 511,
513

Effective dimension reduction space, 511
Efficient portfolio, 488
Eigenvalues, 57
Eigenvectors, 57
Elastic net, 297
Elliptical distribution, 196
Elliptically symmetric distribution, 511
Existence of a riskless asset, 492
Expected cost of misclassification, 409
Explained variation, 96
Exploratory projection pursuit, 506
Extremes, 7

F-spread, 7
F-test, 104
Faces, 23
Factorial

axis, 308, 309
method, 336

representation, 314, 317
variable, 308, 316

Factors, 306
analysis model, 359, 360
model, 367
scores, 376

Farthest Neighbor, 396
Fisher information, 209
Fisher information matrix, 207, 208
Fisher’s linear discrimination function, 418
Five-number summary, 5
Flury faces, 24
Fourths, 6
French food expenditure, 340
Full model, 103

G-inverse, 57
non-uniqueness, 61

General multinormal distribution, 193
Gradient, 65
Group-building algorithm, 386

Heavy-tailed distributions, 149
Hessian, 65
Hexagon, 37

binning algorithm, 37, 50
plot, 38

Hierarchical algorithm, 393
Histograms, 11
Hotelling T 2-distribution, 193
Hyperbolic, 151

Idempotent matrix, 54
Identity matrix, 54
Independence copula, 122
Independent, 85, 119
Inertia, 315, 317
Information matrix, 208
Interpretation of the factors, 363
Interpretation of the principal components, 327
Invariance of scale, 363
Inverse, 56
Inverse regression, 511, 513

Jaccard, 388
Jacobian, 135
Jordan decomposition, 60, 61

Kernel
densities, 15
estimator, 15

Kulczynski, 388



Index 579

Laplace distribution, 154
Lasso, 282
Likelihood function, 202
Likelihood ratio test, 214
Limit theorems, 142
Linear discriminant analysis (LDA), 412
Linear regression, 93
Linear transformation, 91
Link function, 511
Loadings, 361, 362

non-uniqueness, 364
Log-likelihood function, 202
Log-linear, 264
Logit models, 272

Mahalanobis distance, 412
Mahalanobis transformation, 93, 137, 138
Marginal densities, 119
Marketing strategies, 101
Maximum likelihood discriminant rule, 408
Maximum likelihood estimator, 202
MDS direction, 459
Mean-variance, 487, 488
Median, 5, 502
Metric methods, 459
Mixture model, 156
Model with interactions, 258
Moments, 123
Multidimentional scaling (MDS), 455
Multinormal, 139, 183

distribution, 137
Multivariate deneralised hyperbolic

distribution, 160
Multivariate laplace distribution, 163
Multivariate median, 504
Multivariate t-distribution, 163, 196

Nearest neighbor, 395
Non-metric solution, 479
Nonexistence of a riskless asset, 491
Nonhomogeneous, 92
Nonmetric methods of MDS, 459
Norm of a vector, 72
Normal distribution, 203
Normal-inverse Gaussian, 151
Normalized principal components (NPCs), 335
Null space, 74

Odds, 273
Order statistics, 5
Orthogonal complement, 75
Orthogonal matrix, 54

Orthonormed, 309
Outliers, 3
Outside bars, 7

Parallel profiles, 238
Partitioned covariance matrix, 184
Partitioned matrixes, 66
PAV algorithm, 466, 484
Pearson chi-square, 269
Pearson chi-square test for independence, 269
Pool-adjacent violators algorithm, 466, 484
Portfolio

analysis, 487
choice, 487

Positive
definite, 62
definiteness, 65
or negative dependence, 22
semidefinite, 62, 90

Principal
axes, 70
components, 324

method, 372
in practice, 324
technique, 324
transformation, 321, 323

factors, 370
Principal components analysis (PCA), 512,

515
Profile

analysis, 238
method, 476

Projection
matrix, 75
pursuit, 505
pursuit regression, 508
vector, 511

Proximity between objects, 387
Proximity measure, 386
p-value, 269

Quadratic discriminant analysis, 414
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