

University Examinations 2018/2019

SCHOOL OF EDUCATION

DEPARTMENT OF EDUCATIONAL MANAGEMENT AND CURRICULUM

STUDIES

FIRST YEAR FIRST SEMESTER EXAMINATION FOR

MASTER OF EDUCATION

ECC 802: EDUCATIONAL STATISTICS

DATE: 2/5/2019	TIME: 2:00 – 4:00 PM

INSTRUCTIONS:

Answer question ONE and any other TWO questions. All questions carry equal marks.

QUESTION ONE (20 MARKS)

a) Using relevant examples, define the following terms; (10 marks)

- i) Kurtosis
- ii) Data
- iii) Skewness
- iv) Statistics
- v) Variable
- b) Citing appropriate examples, distinguish between descriptive statistics and Inferential statistics. (6 marks)
- c) Kunder-Richardson (K-R) 20 formula i.e $KR20 = (\underline{K}) (\underline{S2} \underline{SUMS2})/(\underline{S2})(\underline{K-1})$

Where; KR20 = Reliabilty coefficient of internal consistency

- K = Number of items used to measure the concept
- S2 = Variance of all scores
- S2 = Variance of individual items

Using the KR formula, briefly explain what a high coefficient implies (4 marks)

QUESTION TWO (20 MARKS)

- a) In an examination done by 25 candidates, the mean was 60 marks and the standard deviation 8. Assuming it was a nominal distribution:
 - i) Compute the proportion of candidates who scored between 52 and 76 marks

(2 marks)

- ii) Supposing 85% of the top candidates are to be selected, what is the minimum mark a candidate is expected to score so as to be selected? (2 marks)
- iii) How many students got 72 marks and above? (2 marks)
- The table shows the scores of students in an examination marked out of 50 marks b)

Marks	No. of Students
40 - 44	2
35 - 39	4
30 - 34	`7
25 – 29	10
20 - 24	6
15 – 19	5
10 – 14	2
5 – 9	3
0-4	1
N = 40	

Calculate

c)

	i) The mean mark	(4 marks)					
	ii) The mode	(1 mark)					
	iii) The median	(1 mark)					
c)	State FOUR limitations of casual-comparative research and describe control						
	procedures that can be used to minimize these limitations	(8 marks)					
QUE	STION THREE (20 MARKS)						
a)	Give examples of studies in which it is appropriate to use the chi-squ	are test and					
	analysis of variance. In each case, give the reasons for your choice.	(4 marks)					
h)	Discuss the essential assumptions that are recognized when using reg	ression					

b) Discuss the essential assumptions that are recognized when using regression analysis. (4 marks)

- c) Differentiate between simple and multiple regressions. (4 marks)
- d) Construct a regression model for a study set out to investigate the influence of age, education and occupation on financial status of households. (8 marks)

QUESTION FOUR (20 MARKS)

The scores of students in Mathematics is as given below;

Form (1A) 23, 60, 60, 45, 33, 48, 59, 75, 60, 13, 68

(1B) 11,25, 37, 80, 76, 37, 55, 26, 90, 79, 25, 37

- a) Calculate the standard deviation for each group, form 1A and form 1B (8 marks).
- b) Calculate the standard deviation for the combined groups -form IA and 1B

(6 marks)

(6 marks)

c) Compute the t-test

QUESTION FIVE (20 MARKS)

- a) Explain why it is important to conduct normal distribution tests before analyzing data (4 marks)
- b) Assuming you have collected data on KCPE mean grades of primary schools in 4 counties. You wish to summarise the mean grades by county using a chart. Which is the most appropriate chart that can be used to perform the task?, justify your answer (4 marks)
- c) Differentiate between a one sample t-test and an independent sample t-test

(2 marks)

d) Interpret and explain the results of the hypothesis test contained in tables 2a and
2b (10 marks)

Table 2a

Group Statistics							
Scale	Gender	Ν	Mean	Std. Deviation	Std. Error Mean		
Students motivation to learn	Male	44	4.0573	.43702	.06588		
physics	Female	36	4.0189	.47439	.07907		

Table 2b

Independent Samples Test										
Levene's Test for				t-test for Equality of Means						
Equality of										
	Variances F Sig.									
			Sig.	t	df	Sig.	Mean	Std. Error	95% Con	fidence
						(2-tailed)	Difference	Difference	Interval	of the
						Difference				
									Lower	Upper
ESMQ Pre- test mean	Equal variances assumed	.516	.475	.376	78	.708	.03838	.10207	16482	.24158
scores	Equal variances not assumed			.373	72.161	.710	.03838	.10292	16677	.24354