

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

THIRD YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION FOR **BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONICS) BACHELOR OF SCIENCE (MECHANICAL ENGINEERING) BACHELOR OF SCIENCE (CIVIL ENGINEERING) ECU 201: ENGINEERING MATHEMATICS VI ECU 203: ENGINEERING MATHEMATICS VIII**

DATE: 24/7/2019

TIME: 8:30 - 10:30 AM

INSTRUCTIONS

Attempt question one (compulsory) and any other two questions.

QUESTION ONE (COMPULSORY)(30 MARKS)

- a) Calculate $P_4(x)$ using the Rodrigues formula for the Legendre functions. (5 marks)
- Determine the polynomial solution to the Legendre equation b)

 $(1-x^2)y''-2xy'+12y=0$ (5 marks)

- Evaluate $\int J_5(x) dx$ (5 marks) c)
- Using the Bessel function identities, express $[J_2(x)]'$ in terms of $J_0(x)$ and $J_1(x)$. d)

(5 marks)

- e) Determine the Laplace transform for;
 - i.) $f(t) = e^{at}$ (5 marks)
 - $f(x) = \cosh 2t$ ii.) (5 marks)

QUESTION TWO (20 MARKS)

a) Use Laplace transforms method to solve the second order differential equation $\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 2e^{3t}$ given that at t = 0; x = 5 and $\frac{dx}{dt} = 7$ (12 marks)

b) Determine the inverse of
$$\frac{5s+1}{(s-4)(s+3)}$$
 (8 marks)

QUESTION THREE (20 MARKS)

- a) Use the Bessel's function identities to express $J_3(x)$ in terms of
 - $J_0(x)$ and $J_1(x)$ (5 marks)
- b) Evaluate $\int x^3 J_0 dx$ (5 marks)
- c) Determine $J_{\pm \frac{3}{2}}$ in terms of the elementary functions $\sin x$ and $\cos x$ (4 marks)
- d) Determine the general solution to Bessel's equation of order zero. (6 marks)

QUESTION FOUR (20 MARKS)

a) Determine the Fourier's series expansion for;

$$f(x) = \begin{cases} 0 & ; -\pi \le x < \frac{-\pi}{2} \\ \cos x & ; \frac{-\pi}{2} \le x < \frac{\pi}{2} \\ 0 & ; \frac{\pi}{2} \le x < \pi \end{cases}$$
(4 marks)

- b) Determine a Fourier cosine series for $f(x) = e^x$ on $(0, \pi)$ (4 marks)
- c) i.) Define a Dirac delta function (1 mark)
 - ii.) State the convolution theorem of Fourier transforms. (3 marks)
 - iii.) Given the functions f(t) and g(t) and their convolution is;

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(x)g(t-x)dx = h(t)$$

Where * denotes the convolution operation.

If
$$f(t) = u(t)$$
 and $g(t) = \begin{cases} \sec^2 t & |t| < \frac{\pi}{4} \\ 0 & otherwise \end{cases}$

Where u(t) is the Heaviside function.

Show that
$$u(t) = \frac{1 + \tan^2 t}{1 + \tan t}$$
 (4 marks)

d.) Evaluate the inverse transform of
$$f(\omega) = \frac{1}{2\pi(a+j\omega)^2}$$
 where $a > 0$

(5 marks)

QUESTION FIVE (20 MARKS)

a)	Consider the expression $f(t) = L^{-1} \left\{ \frac{2}{s} + \frac{3e^{-s}}{s^2} + \frac{3e^{-s}}{s^$	$-\frac{3e^{-3s}}{s^2}$
	i.) Determine $f(t)$	(6 marks)
	ii.) Sketch the graph of $f(t)$	(7 marks)
b)	When $p = n$ an integer $\alpha_1 = \alpha_2 = n$; $J_n(x)$	and $J_{-n}(x)$ and are linearly

dependent. Show that
$$J_{-n}(x) = (-1)^n J_n(x)$$
 (7 marks)