MACHAKOS UNIVERSITY

University Examinations 2018/2019
SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

SECOND YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION FOR BACHELOR OF SCIENCE (ELECTRICAL AND ELECTRONICS)

BACHELOR OF SCIENCE (MECHANICAL ENGINEERING)
BACHELOR OF SCIENCE (CIVIL ENGINEERING)
ECU 202: ENGINEERING MATHEMATICS VII

DATE: 24/9/2019
TIME: 8:30-10:30 AM
INSTRUCTION TO CANDIDATES: ANSWER QUESTION ONE AND ANY TWO OTHER QUESTIONS

QUESTION ONE COMPULSORY (30 MARKS)
a) Form the differential equation associated with $y^{2}=4 a x \quad$ (3 marks)
b) Determine the differential equation of the family $y=A e^{2 x}+B e^{-2 x} \quad$ (5 marks)
c) Determine the general solution of $x\left(\frac{d y}{d x}\right)^{2}+(y-x) \frac{d y}{d x}-y=0 \quad$ (5 marks)
d) Apply the method of separation of variables to solve $\frac{d y}{d x}+x y=x y^{3} \quad$ (5 marks)
e) Use the method of undetermined coefficient to solve

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=4 x^{2} \tag{5marks}
\end{equation*}
$$

f) A chain coiled up near the edge of a smooth table begins to fall over the edge. When a length x of the chain has fallen, the equation of motion is given by $\frac{d}{d t}(m x v)=m x g$, when m is the mass of the chain per unit length, v is the speed, g is the acceleration due to gravity and t is the time. Show that the speed is
given by

$$
\begin{equation*}
v=\sqrt{\left(\frac{2}{3}\right)} g x \tag{7marks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

a) Show that
$A x^{2}+B y^{2}=1$ is the solution of

$$
x\left[y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-y \frac{d y}{d x}=0
$$

b) Use the method of undetermined coefficient to solve

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 y=111 e^{2 x} \cos 3 x \tag{7marks}
\end{equation*}
$$

c) Determine the orthogonal trajectories of the family

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1 \tag{10marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) Solve $D^{2}+2 D+1=x \cos x$
(6 marks)
b) Obtain the equation of the curve satisfying this equation and passing through the origin $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{4 x^{2}}{1+x^{2}}$
c) A cyclist, moving on a level road at $4 \mathrm{~m} / \mathrm{s}$ stops pedaling and free wheels to rest. The retardation of the cycle has two components a constant $0.08 \mathrm{~m} / \mathrm{s}^{2}$ due to friction in the working parts and resistance of $0.02 v^{2} / s^{2}$ where v is the speed in meters per second. What distance traversed by the cyclist before it comes to rest?
(8 marks)

QUESTION FOUR (20 MARKS)

a) Determine the general solution to $\left(D^{4}-81\right) y=0$
(4 marks)
b) Determine the general solution of

$$
\begin{equation*}
y=x+2 \tan ^{-1} p \tag{6marks}
\end{equation*}
$$

c) Reduce the given differential equation $x^{2}\left(\frac{d y}{d x}\right)^{2}+y(2 x+y) \frac{d y}{d x}+y^{2}=0$ to Clairut's form by using the substitution $y=u$, $x y=v$, and determine its singular solution.

QUESTION FIVE (20 MARKS)

a) Solve

$$
\begin{equation*}
(2 x+3 y-5) \frac{d y}{d x}+(3 x+2 y-5)=0 \tag{10marks}
\end{equation*}
$$

b) If the population of a country doubles in 50 years. In how many years will it triple under the assumption that the rate of increase is proportional to the number of inhabitants?

