MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE THIRD YEAR SUPPLEMENTARY EXAMINATION FOR

BACHELOR OF SCIENCE (MATHEMATICS)
SMA 304 : NUMBER THEORY
DATE: 22/7/2019
TIME: 2:00-4:00 PM

INSTRUCTIONS:
(a) Answer ALL the questions in Section A and ANY TWO Questions in Section B

SECTION A
 QUESTION ONE 30 Marks (Compulsory)

a) If a / b and c / d show that $a c / b d$.
b) Show that $\sqrt{11}$ is irrational.
c) The square of an odd integer is odd and the square of an even integer is even proof.
d) Is 117 a prime number?
e) Show that $1+5+5^{2}+\cdots \ldots \ldots .+5^{11}$ is composite.
f) \quad Show that if p is prime and the $G C D(a, p)>1$, then p / a.

SECTION B: ANSWER ANY OTHER TWO QUESTIONS

QUESTION TWO 20 MARKS
a) Prove that every odd number of either of the form $4 p+1$ or $4 p+3 . \quad p \in \mathbb{Z} . \quad$ (5 marks)
b) Prove that for integer $n, n+2, n+4$ then one of then is divisible by 3 .
(5 marks)
c) Use Erastosthene's sieve to find the prime numbers less than 90.
d) Show that we cannot have 3 consecutive odd numbers other than 3,5,7 such that they are all prime.

QUESTION THREE 20 MARKS

a) Show that whenever d is the GCD a and $\mathrm{b}(a, b)$ then $-d$ is also the GCD of a and b .
b) Show that there are only 2 GCDs for any two pairs a and b.
c) Express the GCD of $(128,30)$ in the form $n(128)+m(30)$.
d) Prove that if $a, b, c, d \in \mathbb{Z}$ and n is a positive integer and $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then $a+c \equiv b+d(\bmod n)$.

QUESTION FOUR 20 MARKS

a) State Fermat's little theorem.
b) Use Fermat's little theorem to obtain $3^{60}(\bmod 61)$.
c) By considering $f(x, y) \bmod 4$ show that $f(x, y)=y^{2}-x^{2}-2=0$ has no solution.
d) Express $\sqrt{7}$ as continued fraction.

QUESTION FIVE 20 MARKS

a) State the Chinese remainder Theorem.
b) If a / b and c / d is it true that $a+c / b+d$.
c) \quad Find $\varphi(60)$
d) Find the set of solution z to the congruence $3 z+4=6(\bmod 7)$.
e) Find the GCD of the two numbers $(37129,14659)$ using Euclidean algorithm. (5 marks)

