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SMA 407: MEASURE THEORY 

DATE: 22/7/2019                                                  TIME: 2:00 – 4:00 PM 

INSTRUCTIONS:  

(a) Answer ALL the questions in Section A and ANY TWO Questions in Section B 

 

SECTION A 

QUESTION ONE 30 MARKS 

a) Define a measure?                                                                                                            (3 marks) 

b) Prove that if � is a measure defined on a � −algebra �. Then � is monotonic, that is if 

�∁�, then �(�) ≤ �(�). Furthermore if �(�) ≤ ∞, then �(� − �) = �(�) − �(�).                                

.                                                                                                                                           (5 marks) 

c) Prove that �∗(���) = 0 for all � ∈ ℝ                                                                            (4 marks) 

d) Show that if �∗(�) = 0, then E is L-measurable.                                                       (5 marks) 

e) Prove that the space (ℝ, ℳ, �), where � is the lebesque measure is complete. (5 marks) 

f) Prove that if �, �: → ℝ are two � −measurable functions and � be a real number then 

the function �� is � −measurable                                                                                (5 marks) 

g) Prove that if � and � are simple functions in ��( , �) and � ≥ 0, then 

 " ��#$ = � " �#$                                                                                                          (3 marks) 
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SECTION B 

QUESTION TWO 20 MARKS 

a) Prove that if �, �: → ℝ are two � −measurable functions and � be a real number then 

the function 

i)  �%  
ii) |�|  are  � −measurable.                                                                                      (@5 marks) 

b)  Let (�') be a sequence of   � −measurable functions �':  → ℝ , then the functions  

�( ∪ �% ∪ �*∪ … … … ∪ �'  and  �( ∩ �% ∩ �* ∩ … … … ∩ �' is � −measurable. 

                                                                                                                                 (@5 Mrk) 

QUESTION THREE 20 MARKS 

a) State and prove monotone convergence theorem.                                                  (10 marks) 

b) Let ( , �) be a measurable space. Then if �, � ∈ ��( , �), then 

i)  � + � ∈ ��( , �)                                                                                            (6 marks) 

ii) " ��#$ = � " �#$                                                                                              (4 marks) 

QUESTION FOUR 20 MARKS 

a) Prove that if � and � both belong to �� and � ≤ �, then " �#$ ≤ " �#$          (6 marks) 

b) Prove that if � ∈ �� and if �, � ∈ �, with �∁� then " �#$ ≤ " �#$
./

              (7 marks) 

c) State and prove Fatous lemma.                                                                                      (7 marks) 

QUESTION FIVE 20 MARKS 

a) Define � −algebra                                                                                                            (5 marks) 

b) Prove that if 0∁1 then �∗(0) ≤ �∗(1),   0, 1 ∈ ℝ                                                    (5 marks) 

c) Prove that      �∗(∅) = 0                                                                                                  (3 marks) 

d) Prove that lebesque outer measure �∗  is countably sub additive.                          (7 marks)                                                                                         

   


