

MACHAKOS UNIVERSITY

University Examinations for 2018/2019 Academic Year

SCHOOL OF EDUCATION

DEPARTMENT OF EDUCATIONAL MANAGEMENT AND CURRICULUM STUDIES

APRIL SESSION EXAMINATION FOR DOCTOR OF PHILOSOPHY

EDUCATIONAL ADMINISTRATION/ EDUCATIONAL PSYCHOLOGY

ECC 901: ADVANCED STATISTICS IN EDUCATION.

DATE: 8/8/2019

TIME: 8.30-11.30 AM

INSTRUCTIONS: Answer QUESTION ONE and any other TWO QUESTIONS

QUESTION ONE

In the regression equation

y = a + bx

 $b = \frac{\sum xy - \frac{1}{n}(\sum x)(\sum y)}{\sum x^2 - \frac{1}{n}(\sum x)^2}$

And $\neg a = y - bx$

Explain the symbols $\sum xy$, $\sum x$, $\sum y$, $\sum x^2$, $(\sum x)^2$

Given:

Х	У
2	3
4	5
5	6
6	8
12	14
15	18

Determine the regression line

(15 marks)

QUESTION TWO

$$x^2 = \sum \frac{(0-E)^2}{E} \qquad \sum = \frac{RiCi}{N}$$

Explain the symbols $0, E (0-E)^2$, *Ri and Ci*

Given

	Pass	Fail	
Boys	35	15	50
Girls	20	30	50
	55	45	100

Complete the table below

0	Е	(0 – E)	$(0 - E)^2$	
35				
15				
30				
20				

How significant is the x^2 value at $\propto =0.05$?

 $\emptyset = \sqrt{\frac{x^2}{N}}$ comment on the value of \emptyset

QUESTION THREE

In the marri Whitney U-test

$$u_{1} = n_{1}n_{2} + \frac{n_{1} + (n_{1} + 1)}{2} - r_{1}$$
$$u_{2} = n_{1}n_{2} + \frac{n_{2} + (n_{2} + 1)}{2} - r_{2}$$

(8 marks)

(3 marks)

(4 marks)

$$z = \frac{u - (n_1 + n_2 + 1)}{z}$$
a) Explain the meaning of $n_1 n_2 r_1 r_2 u_1 z_1$
(8 marks)
b) Given two samples
Sample 1 43 31 50 53 66 68
Sample 2 6 10 13 14 29 42 50
Compute
i. U₁
(4 marks)
ii. U₂
(4 marks)
iii. Z

QUESTION FOUR

Complete the frequency table below

(9 marks)

Х	F	FX	X^2	FX ²	
5	5				
15	8				
25	15				
35	20				
45	40				
55	40				
65	20				l
75	15				
85	8				
95	5				

Find	i)	$\sum fx$	(1 mark)
	ii)	$\sum fx^2$	(1 mark)
	iii)	$\operatorname{var} = \frac{\sum fx^2 - \frac{\left(\sum fx\right)^2}{n}}{n-1}$	(5 marks)
iv) The sta	tandard deviation. (4 marks)	

QUESTION FIVE

The kruskal – wallis – H test is calculated using the expression:

$$H = \frac{12}{n(n+1)} \sum \frac{r_i^2}{n_i} - 3(n+1)$$
a) Explain the symbols $n n_i R_i^2$ and $\frac{\sum_{i=1}^{n} R_i^2}{i_i = 1}$ (6 marks)
b) Work out the kruskal – wallis h- statistic for the data below (8 marks)
G1: 271 282 257 248 262
G2: 252 275 302 268 276
G3: 260 255 239 246 266
G4: 279 242 297 270 158
c) Interpret the value you have calculated (6 marks)