MACHAKOS UNIVERSITY

University Examinations 2018/2019

SCHOOL OF PURE AND APPLIED SCIENCES
DEPARTMENT OF PHYSICAL SCIENCES
APRIL SESSION EXAMINATION FOR
BACHELOR OF EDUCATION (SCIENCE)
SPH 400: CLASSICAL MECHANICS

DATE: SCHOOL BASED
TIME: 2 Hours

INSTRUCTIONS

Answer QUESTION ONE which COMPULSORY and ANY OTHER TWO questions.

Question 1 carries $\mathbf{3 0}$ marks and the rest $\mathbf{2 0}$ marks each.

YOU MAY USE:

You may need to use the following constants

* Earth's gravitational acceleration $=9.8 \mathrm{~N} / \mathrm{Kg}$
* The Universal Gravitational Constant $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{Kg}^{2}$
* Permeability of free space, $\mu \mathrm{o}=4 \pi \times 10-7 \mathrm{Tm} / \mathrm{A}$

QUESTION ONE (COMPULSORY) (30 MARKS)

a) State the three laws of classical motion
(3 marks)
b) Identify the two assumptions made under Galilean transformations.
(2 marks)
c) Find the number of degrees of freedom for a rigid body which has one point fixed but can move in space about this point.
(3 marks)
d) A system of particles consists of particles of mass 3 g located at point $\mathrm{P}(1,0,-1), 5 \mathrm{~g}$ at point $\mathrm{Q}(-2,1,3)$ and 2 g at point $\mathrm{R}(3,-1,1)$. Find the coordinates of the center of mass of the system.
(4 marks)
e) Describe the three constraints on a system that are involved in constrained motion. (6 marks)
f) A 600 kg rocket is set for vertical firing. If the exhaust speed is $1000 \mathrm{~ms}^{-1}$, how much gas must be ejected each second to supply the thrust needed
i) to overcome the weight of the rocket
ii) to give the rocket an initial upward acceleration of $20 \mathrm{~ms}^{-2}$?
g) Consider a body of mass m be subjected to a force making an angle θ with the direction of motion, show that $F \cos \theta-\mu_{k}(m g-F \sin \theta)=0$ when there's a d displacement.
(5 marks)

QUESTION TWO (20 MARKS)

a) Due to a force field, a particle of mass 5 units moves along a space curve whose position vector is given as a function of time t by $\vec{r}=\left(2 t^{3}+t\right) \hat{i}+\left(3 t^{4}-t^{2}+8\right) \hat{j}-12 t^{2} \hat{k}$. Find
(i) the velocity
(2 marks)
(ii) the momentum
(iii) the acceleration
(iv) the force at any time t.
b) An alpha particle, which is the nucleus of the He-atom, is emitted from a Uranium- 238 nucleus, originally at rest, with a speed of $1.4 \times 10^{7} \mathrm{~ms}^{-1}$ and a kinetic energy of 4.1 MeV . Find the recoil speed of the residual nucleus which is Thorium-234.
(6 marks)
c) A rocket is moving away from the solar system at a speed of $6.0 \times 10^{3} \mathrm{~ms}^{-1}$. It fires its engine which ejects exhaust with a relative velocity of $3.0 \times 10^{3} \mathrm{~ms}^{-1}$. The mass of the rocket at this time is 4.0 x $10^{4} \mathrm{~kg}$ and it experiences an acceleration of $2.0 \mathrm{~ms}^{-2}$. Find;
i) the velocity of the exhaust relative to the solar system
ii) the rate at which the exhaust was ejected during the firing.

QUESTION THREE (20 MARKS)

a) Show that the theory of Parallel axis is $I=I_{C M}+M h^{2}$. Where all the terms have their usual meaning (10 marks)
b) Use Hamilton's Principle to find the equation of motion of a one-dimensional harmonic oscillator.
(10 marks)

QUESTION FOUR (20 MARKS)

Two skaters collide and embrace each other. One has mass $m_{1}=70 \mathrm{~kg}$ and is initially moving east at a speed $u_{l}=6 \mathrm{~km} / \mathrm{h}$ while the other has mass $m_{2}=50 \mathrm{~kg}$ and is initially moving north at a speed $u_{2}=8 \mathrm{~km} / \mathrm{h}$.
(a) What is the final velocity of the couple?
(10 marks)
(b) What fraction of the initial kinetic energy is lost because of the collision?
(10 marks)

QUESTION FIVE (20 MARKS)

a) Consider a system of many particles. Show that under rotational motion, $\vec{L}=\vec{R} \times M v_{C M}+\sum_{i} \vec{r}_{i}^{\prime} \times \vec{p}_{i}^{\prime}$ where all the terms have their usual meaning.
(10 marks)
b) Consider a mass m be attached to a spring of force constant k. Obtain its equation of motion and the frequency of oscillation using Lagrange equations.
(10 marks)

