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ABSTRACT 

 

The option theory and its applications play an important role in modern finance. Many trading 

strategies, corporate incentive plans, and hedging strategies include various types of options. In 

this paper, the option definitions and basics of how the instruments are traded will not be the main 

focus but in particular, we will focus on the critical aspects of the dynamics of payoff and profit/loss 

functions, the difference between European versus American options, the Binomial option model 

with/without dividends, and different trading strategies. 
 
INTRODUCTION 

 

Option Structure Details and Exercise types 

 
The key difference between a European and American option is that a European option can only 
be exercised on the maturity date, while an American option can be exercised any time before or 
on its maturity date. Given the extra flexibility of the American option, its price (option premium) 
should be higher than or equal to its European counterpart.  
 

Call Option PremiumEuropean <= Call Option PremiumAmerican 

 
Put Option PremiumEuropean<= Put Option PremiumAmerican 

 

In quantitative finance, another thing concerns us. For a European option, we have a closed-form 
solution; that is, the Black-Scholes-Merton option model. However, we don't have a closed-form 
solution for an American option. To price an American option, we will have to use the slightly 
more complex and computationally intensive Binomial Tree Method (also called the CRR 
method). 
 
Cash Flows, Types of Options, a Right, and an Obligation 

 
We know that, for each business contract, we have two sides: a buyer and a seller. This is also true 
for an option contract. A call buyer will pay upfront (cash output) to acquire a right. Since this is a 
zero-sum game, a call option seller will enjoy an upfront cash inflow and assume an obligation. 
The following table presents these positions (buyer or seller), directions of the initial cash flows 
(inflow or outflow), the option buyer's rights (buy or sell), and the option seller's obligations (that 
is, to satisfy the option seller's demand):  
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Buyer Seller European 

 

A call option, often simply labeled a "call", is a financial contract between two parties, the buyer 
and the seller of this type of option. The buyer of the call option has the right, but not the 
obligation, to purchase/buy an agreed quantity of a particular commodity/asset or financial 
instrument (the underlying asset) from the seller for a certain given price (the strike/exercise price) 
on or before a given date(expiration date). 
 
The seller (or "writer") is obligated to sell the commodity or financial instrument to the buyer if 
the buyer so decides. The buyer pays a fee (called a premium) for this right. The term "call" comes 
from the fact that the owner has the right to "call the stock away" from the seller. 
 
Put: on the other hand gives owner the right to sell an asset for a given price on or before the 
expiration date. 
 
Properties of Options 

 

For convenience, we refer to the underlying asset as stock. It could also be a bond, foreign currency 
or some other asset. 
 
Key elements in defining an option: 

 

S: Price of stock/Underlying asset now 
ST: Exercise price (strike price) at T 
B: Price of discount bond with face value $1 and    maturity T (clearly, 1≤B ) 
C: Price of a European call with strike price and maturity T (today is 0) 
P: Price of a European put with strike price K and maturity T 
c: Price of an American call with strike price K and maturity T 
p: Price of an American put with strike price K and maturity T . 
 

Option Value and Asset Volatility Option value increases with the volatility of underlying asset. 
 
Option Pricing 

 

Option pricing refers to the amount per share at which an option is 
traded. Options are derivative contracts that give the holder (the "buyer") the right, but not the 
obligation, to buy or sell the underlying instrument at an agreed-upon price on or before a specified 
future date. Although the holder of the option is not obligated to exercise the option, the 
option writer (the "seller") has an obligation to buy or sell the underlying instrument if the option 
is exercised. 
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Depending on the strategy, options trading can provide a variety of benefits, including the security 
of limited risk and the advantage of leverage. Another benefit is that options can protect or enhance 
your portfolio in rising, falling and neutral markets. Regardless of why you trade options – or the 
strategy you use – it's important to understand how options are priced. In this tutorial, we'll take a 
look at various factors that influence options pricing, as well as several popular options-pricing 
models that are used to determine the theoretical value of options. 
 
Option Payoff 

 

The payoff of an option on the expiration date is determined by the price of the underlying asset. 
Example: Consider a European call option on IBM with exercise price $100. This gives the owner 
(buyer) of the option the right (not the obligation) to buy one share of IBM at $100 on the expiration 
date. Depending on the share price of IBM on the expiration date, the option owner’s payoff looks 
as follows: 
 

IBM Price Action Payoff 

. Not Exercise 0 

80 Not Exercise 0 

90 Not Exercise 0 

100 Not Exercise 0 

110 Exercise 10 

120 Exercise 20 

130 Exercise 30 

. Exercise ST -100 

 
Note: 
• The payoff of an option is never negative. 
• Sometimes, it is positive. 
• Actual payoff depends on the price of the underlying asset. 
Payoffs of calls and puts can be described by plotting their payoffs at expiration as function of the 
price of the underlying asset: 
The net payoff from an option must include its cost. 
 

Call Option Payoff Formula 

The total profit or loss from a long call trade is always a sum of two things: 
Initial cash flow 
Cash flow at expiration. 
 
Initial cash flow 

Initial cash flow is constant – the same under all scenarios. It is a product of three things: 
The option’s price when you bought it 
Number of option contracts you have bought 
Number of shares per contract 
Usually you also include transaction costs (such as broker commissions). 
If initial option price (including commissions) is $2.88 per share, we are long 1 contract of 100 
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shares, therefore initial cash flow is: 
2.88 x 1 x 100 = – $288 
Of course, with a long call position the initial cash flow is negative, as you are buying the options 
in the beginning. 
 

Cash flow at expiration 

The second component of a call option payoff, cash flow at expiration, varies depending on 
underlying price. That said, it is actually quite simple and you can construct it from the scenarios 
discussed above. 
If underlying price is below than or equal to strike price, the cash flow at expiration is always zero, 
as you just let the option expire and do nothing. 
If underlying price is above the strike price, you exercise the option and you can immediately sell 
it on the market at the current underlying price. Therefore the cash flow is the difference between 
underlying price and strike price, times number of shares. 
CF = what you sell the underlying for – what you buy the underlying for when exercising the 
option 
CF per share = underlying price – strikes price 
CF = (underlying price – strike price) x number of option contracts x contract multiplier 
In our example with underlying price 49.00: 
CF = (49 – 45) x 1 x 100 = $400 
Putting all the scenarios together, we can say that the cash flow at expiration is equal to the greater 
of: 
(underlying price – strike price) x number of option contracts x contract multiplier 
Zero 
 
Call B/E = strike price + initial option price 
In our example with strike = 45 and initial price = 2.88 the break-even point is 47.88. You can try 
to use this as underlying price in the P/L formula above and you will get exactly zero profit. 
Long Call Option Payoff Summary 

A long call option position is bullish, with limited risk and unlimited upside. 
Maximum possible loss is equal to initial cost of the option and applies for underlying price below 
than or equal to the strike price. 
With underlying price above the strike, the payoff rises in proportion with underlying price. 
The position turns profitable at break-even underlying price equal to the sum of strike price and 
initial option price. 
 
METHODOLOGY 

Binomial Option Pricing Model 

Determinants of Option Value 
Key factors in determining option value: 
1. Price of underlying asset S 
2. strike price K 
3. time to maturity T 
4. interest rate r 
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5. dividends D 
6. Volatility of underlying asset s. 
Additional factors that can sometimes influence option value: 
7. Expected return on the underlying asset 
8. Additional properties of stock price movements 
9. Investors’ attitude toward risk,... 
 
Price Process of Underlying Asset 

In order to have a complete option pricing model, we need to make additional assumptions about  
1. Price process of the underlying asset (stock) 
2. Other factors. 
We will assume, in particular, that: 
• Prices do not allow arbitrage. 
• Prices are “reasonable”. 
• A benchmark model — Price follows a binomial process. 
  Sup 
S0      
Sdown 
 
t=0 t=1           time 
 

One-period Binomial Model 

Example: Valuation of a European call on a stock. 
• Current stock price is $50. 
• There is one period to go. 
• Stock price will either go up to $75 or go down to $25. 
• There are no cash dividends. 
• The strike price is $50. 
• one period borrowing and lending rate is 10%. 
 
 
The stock and bond present two investment opportunities: 
   75       1.1 
50      1 
25       1.1 
 
 
The option’s payoff at expiration is: 
   25 
CO             
   0 
 

 

Example: What is CO, the value of the option today? 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 

 

Claim: We can form a portfolio of stock and bond that gives identical payoffs as the call. 
Consider a portfolio (a, b) where 
• a is the number of shares of the stock held 
• b is the dollar amount invested in the riskless bond. 
We want to find (a, b) so that 
75a +1.1b =25 
25a +1.1b =0. 
There is a unique solution 
a =0.5 and b = -11.36. 
That is buy half a share of stock and sell $11.36 worth of bond payoff of this portfolio is identical 
to that of the call present value of the call must equal the current cost of this “replicating portfolio” 
which is 
(50)(0.5)-11.36=13.64. 
 
Definition: Number of shares needed to replicate one call option is called hedge ratio or option 
delta. 
In the above problem, the option delta is a: 
Option delta =1/2. 
 
RESULTS 

 

Payoff and Profit/Loss Functions for Call Options 

As we know, an option gives its buyer the right to buy (call option) or sell (put option) something 
in the future to the option seller at a predetermined price (exercise price). For example, if we buy 
a European call option to acquire a stock 
for X dollars, such as $45, at the end of three months, our payoff on maturity day 
will be calculated using the following formula:  
 
Call Option Payoff= Max(St-X,0) 

 
Here, St is the stock price at the maturity date, (T), and X represents the strike price or the exercise 
price (45$). Assume the stock price is $30 three months later. We will not exercise our call option 
to pay $45 in exchange for the stock since we could buy the same stock at $30 on the open market. 
On the other hand if the stock price is $60, we will most definitely be keen on exercising this 
option as it will give us a profit of $15 per contract.  
Let us now code a program using Python programming Language to graphically represent the 
generic payoff function call options assuming a few representative values for stock price and strike 
price. 
import numpy as np  
import matplotlib.pyplot as plt  
 
if __name__ == '__main__':  
 
def payoffFuncCall(sT,x):  
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return (sT-x+abs(sT-x))/2  
s = np.arange(5,200,3)  
x=30  
# Figure setup  
fig=plt.figure()  
axis=fig.add_subplot(111)  
payoff=payoffFuncCall(s,x)  
# Set up axis details  
axis.set_ylim(-10,200)  
axis.set_xlabel('Stock Price at Maturity')  
axis.set_ylabel('Payoff at Maturity')  
axis.grid(True)  
plt.plot(s,payoff,color='orangered',label='Call Option 
Payoff',linewidth=3)  
plt.title("Payoff function for Call Options")  
plt.show()  
 

Check out the contour of the output graph. The flat horizontal line followed by an upward slope is 
a common symbology of call options.  

 
Figure 1: Payoff and Profit/Loss Functions for Call Options 
 
Call Option—Buyer’s Payoff Vs. Sellers Payoff 

 
The payoff for a call option seller is the opposite of that of the buyer. It is important to remember 
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that option buying and selling is a zero-sum game: When one party makes a profit, it invariably 
means that the other has lost money.  
 
For example, assume an institutional house sold three call options with an exercise price of $30. 
When the stock price is $35 on maturity, the option buyer's payoff is $15, while the total loss to 
the option writer is also $15. If we represent the call option premium by “c,” the profit/loss function 
for a call option buyer is the difference between the option price on exercise date (this will closely 
mirror the underlying asset price) and the initial premium paid for holding the option.  
 
Here, we ignore the time value of money since maturities are usually quite short.  
For a call option buyer, the profit is calculated using the following formula:  
 
For a call option seller, the profit is calculated using the following formula: 
Buyer’s Payoff for Call Option= Max(St-X,0)-c  
 
call option buyer and seller:  
 
Sellers Payoff for Call Option= c-Max(St-X,0) 

 
Check out the following code for a graph showing the profit/loss functions for the 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
if __name__ == '__main__': 
 
    s = np.arange(10,100,5) 
    x=57; 
    call=3.2 
    profitCalc=(abs(s-x)+s-x)/2 -call 
    y2=np.zeros(len(s)) 
    # Figure setup 
    fig=plt.figure() 
    axis=fig.add_subplot(111)     
     # Set up axis details 
    axis.set_ylim(-30,50) 
    plt.plot(s,profitCalc,label='Call Option Buyer\'s 
payoff',color='teal',linewidth=3) 
    plt.plot(s,y2,'-.') 
    plt.plot(s,-profitCalc,label='Call Option Seller\'s 
payoff',color='deeppink',linewidth=3) 
    plt.title("Profit/Loss function") 
    axis.set_xlabel('Stock price at Maturity') 
    axis.set_ylabel('Profit (loss) at Maturity') 
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    axis.grid(True) 
    plt.legend() 
    plt.show() 

 
Figure 2: Call Option-Buyer’s Payoff Vs. Sellers Payoff 
 
 
Put Option—Buyer’s Payoff Vs. Sellers Payoff 

A put option gives its buyer the right to sell a security (commodity) to the put option buyer in the 
future at a predetermined price, X. The following is its payoff function:  
 
Put Option Payoff= Max(X-St,0)  
 
Here, St   is the stock price at the maturity date, (T), and X represents the strike price or the exercise 
price. Consider the fact that the initial premium paid for a put option is p. Then, for a put option 
buyer, the profit/loss function is as follows:  
 
Buyer’s Payoff for Put Option= Max(X-St,0)-p  
 
For a put option seller, the profit is calculated using the following formula: 
 
Sellers Payoff for Put Option= p- Max(X-St,0) 
Check out the following code for a graph showing the profit/loss functions for the put option buyer 
and seller. 
import numpy as np 
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import matplotlib.pyplot as plt 
if __name__ == '__main__': 
    s = np.arange(10,100,5) 
    x=57; 
    put=3.2           
    profitCalc=put-(abs(x-s)+x-s)/2 
    y2=np.zeros(len(s)) 
    x3=[x, x] 
    y3=[-30,10] 
    # Figure setup 
    fig=plt.figure() 
    axis=fig.add_subplot(111)     
    # Set up axis details 
    axis.set_ylim(-30,50) 
    plt.plot(s,profitCalc,label='Put Option Seller\'s 
payoff',color='firebrick',linewidth=3) 
    plt.plot(s,y2,'-.') 
    plt.plot(s,-profitCalc,label='Put Option Buyer\'s 
payoff',color='limegreen',linewidth=3) 
    plt.plot(x3,y3,label='Exercise Price',color='gold',linewidth=5) 
    plt.title("Profit/Loss function") 
    axis.set_xlabel('Stock price at Maturity') 
    axis.set_ylabel('Profit (loss) at Maturity') 
    axis.grid(True) 
    plt.legend() 
    plt.show() 
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Figure 3: Put Option-Buyer’s Payoff Vs. Seller's Payoff  

 
CONCLUSIONS 

 
In summary, profit and loss diagrams have proven useful for a visual representation regarding the 
gain and loss potential for various option strategies. 
 
Furthermore, when using these diagrams, we get a better understanding of how to replicate the 
gain/loss profile of different investment strategies using options. This can be useful to further 
understand and visualize many investment strategies. 
 
These simple graphs represent the profit and loss potential, at expiration, assuming the positions 
are closed at their intrinsic value, if any. As with any investment strategy, you should consider and 
understand all of the risks associated with that particular strategy and how it fits into your 
objectives, risk profile and portfolio prior to making an investment decision. 
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Abstract 

In this paper, we demonstrate the power of functional data models for a statistical analysis of 

stimulus-response experiments which is a quite natural way to look at this kind of data and which 

makes use of the full information available. In particular, we focus on the detection of a change in 

the mean of the response in a series of stimulus-response curves where we also take into account 

dependence in time. 

 

Keywords: stimulus-response data, functional data, functional time series, changepoint test, 
inhibitory synaptic transmission 
 

1. Introduction 

Stimulus-response data are a frequent product of cognitive experiments. The test object is 
confronted with a stimulus, and the following response is measured in some form, e.g. as the 
changes in time of the potential at certain locations in a single neuron or by means of an 
electroencephalogram (EEG) of an animal or human. The full data are functions of time or, in the 
EEG case, vectors of functions. Usually, they are already digitized during storage, but with such a 
fine discretization such that they still can be seen as continuouscurves. 
 
For a statistical analysis, we have to model such data as random functions of time. However, in 
cognitive science, the full information available is rarely used for inference. Usually, the response 
curves are reduced to a low-dimensional data vector before, e.g., performing statistical tests. Those 
data vectors consist of simple univariate characteristics like maximal response, average response, 
length of response, response latency, i.e. waiting time between stimulus and response etc. Modern 
functional data analysis allows to use the full information of the response curves in a quite natural 
manner which we want todemonstrate in this paper with a real-data example. 
 
Standardizing the observation interval to [0,1], let Xi(t),0 ≤ t ≤ 1, denote the response curve from 
the ithexperiment. Analogously to multivariate data, the mean curve of functional data is defined 
pointwise, i.e. EXi(t) = µ(t),0 ≤ t ≤ 1, if the functional data Xi have identical means. As for random 
vectors, there are tests for equality of the mean to some given function in case of one sample or 
for equality of the means of two independent samples (compare, e.g., Horva´th and Kokoszka 
(2010), chapter 5). In this paper, we consider a more involved testing problem. We have a time 
series of response curves Xi(t),0 ≤ t ≤ 1,i = 1,...,N, generated by presenting the same stimulus 
repeatedlyto the same test object. The particular kind of data are explained in chapter 2. 
 
In section 3, we consider the problem of testing for a change in the mean under the assumption of 
independent X1,...,XNas well as in the general setting of dependent curves. Such changepoints are 
of interest in experiments about learning or increasing fatigue of the test object under repeated 
stimuli. E.g., the response latency may become longer corresponding to a shift of the response 
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curve towards the time of stimulus, or the response curves may become flatter on the average 

corresponding to the test object getting used to the stimulus. In chapter 4, we finally apply the 

methods described in chapter 3 to our actual stimulus response data and detect various changes in 

the mean in our sequences of stimulus-response curves. We also test the detrended data for 

dependence. It turns out that subsequent curves are dependent which has to be taken into account 

in the tests forchanges in the mean. 
 
Figure 1: Original stimulus-response data 

Stimulus Data (Original), Frequency=10Hz 

 
Differenced Stimulus Data (Original), Frequency=10Hz 

 
 

2. Preprocessing the data 

 

The data are generated by stimulus-response experiments on a single on a single neuron in the 

lateral superior olive, as part of a larger research project on the reliability of inhibitory synaptic 

transmission in the auditory brainstem. For more details about the physiological background, we 

refer to Fischer (2016) or Kraechan et al. (2016). The stimulus is a brief electric shock that triggers 

synaptic activity and is repeatedly applied at various frequencies (1, 2, 5, 10, 50 Hz). The duration 

of the experiment is always 1 min such that the sample sizes for the samples with different stimulus 

frequencies vary between N = 60 for 1 Hz and N = 3000 for 50 Hz. The individual responses are 

short-lived enough such that each response has ended well before the next stimulus even in case 

of the highest stimulus frequency. Hence, we have a series of curve data which look similar, but 

show some randomvariation. 
 
The top panel of Figure 1 shows a subsection of 14 curve data from the experiment with stimulus 

frequency 10 Hz (observations number 11-24), where the total sample size was N = 600. Note that 

the horizontal axis shows the index number of discretized single measurements recorded for 

storage, not some physical time. We always stored about 85observations for each individual 

stimulus-response cycle independently of the frequency. 
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For the mean tests, we use the response curves themselves. In testing for dependence of the data, 

it is however convenient to first apply a differencing filter which removes the mean even in 

situations where it is slowly changing. To be precise, if Xi(t) denote theoriginal response curves, 

then the differenced curve data are the random functions 
 
 Yi(t) = Xi+1(t) − Xi(t), i = 1,...,N − 1.    (1) 
 
The lower panel of Figure 1 shows a subsection of the differenced response curves from the 
experiment with stimulus frequency 10 Hz. 
 
At the beginning of each response and differenced response there is a noticeable sharp spike 

(circled in red) in Figure 2. This is an artifact which represents the direct effect of the stimulus 

onto the measuring device, but does not correspond to the response of the cell. The cell reacts to 

the stimulus only after a brief delay. As the stimulus part and the response part of the curves are 

well enough separated and we are only interested in the measurements of the response, it is safe to 

remove a few data points at the beginning of each curve. We therefore cut the data points in the 

circle and consider only the rest as the response curve to be analyzed further on. Once the 

truncation has been done, we have 68, 73, 78, 73, 73 measurement points per individual curve left 

in the case of 1, 2, 5, 10 and 50 Hz frequencies respectively, which are then smoothed to form the 

curves shown in thefigures. 
 

Figure 2: Artifact  
 

 
 
Figures 3, 4 and 5 show the adjusted and differenced plots of parts of the response curve samples 

corresponding to stimulus frequencies 1, 2, 5, 10 and 50 Hz respectively. In particular, after the 

adjustment the local random noise in the differenced data can be seen much more clearly. 
 
 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 

 

 
 
 
 
 
 
Figure 3: Adjusted Responses (left) and their Differenced Counterparts 1, 2 Hz 
 
Adjusted Stimulus, Freq.=1Hz Differenced Stimulus, Freq.=1Hz 

 
Adjusted Stimulus, Freq.=2Hz          Differenced Stimulus Freq.=2Hz 

 
 
Figure 4: Adjusted responses (left) and their differenced counterparts 5, 10 Hz 
 
Adjusted Stimulus, Freq.=5Hz        Differenced Stimulus, Freq.= 5Hz 

 
 

Adjusted Stimulus, Freq.=10Hz Differenced Stimulus, Freq.= 10Hz 
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Figure 5: Adjusted responses (top) and their differenced counterparts 50 Hz 
 

Stimulus Data (Adjusted), Frequency=50Hz 

 

Differenced Stimulus Data, Frequency=50Hz 

 

 
3. Testing for changes in the mean 

 

We interpret observed response curves resp. their transformations after preprocessing asrandom 

functions Xi(t),0 ≤ t ≤ 1, and we assume that they are square integrable: 

, 
i.e. Xi is a random variable with values in the space H = L2[0,1] of, for convenience complex-

valued, square integrable functions on [0,1]. This space is a separable Hilbert space which has a 

quite similar structure as the finite dimensional Euclidean space Rm. Inparticular, there is a scalar 

product and a corresponding norm 
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 �
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�
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where�	
�denotes the complex conjugate of g(t). There exists a countable orthonormal basis, i.e. 

a sequence of functions �, ��, …in H with ‖��‖ � 1, 〈��, ��〉 � 0 for all  ! ", such that we have 

the usual linear expansion of any f in H in terms of the basis 
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If we choose, in particular, the Fourier basis vk(t) = ei2πkt= cos(2πkt)+isin(2πkt),−∞ < k <∞, then 

this is the Fourier expansion well known in signal analysis, and 〈�, ��〉are the Fourier coefficients 

of f. In the following, we refer some notions and results from chapter 6 of Horv#́th and Kokoszka 

(2010). 
 

3.1 Changepoint test for independent data 

 

If Xi(t),i= 1,...,N, is a sequence of real-valued random functions in H, then we decompose them 

into the mean function and the random component: 
 
 Xi(t) = µi(t) + Yi(t), EYi(t) = 0. 
  
We assume that the random components Yi are independent and all have the same distribution 

satisfying 
 

%‖&'‖� � � &'�	
��
 ( ∞
�

 

Then, the covariance function measuring dependence between the function values Xi(t),Xi(s) 
at different points t,sin time, does not depend on i: 
 
 c(t,s) = cov(Xi(t),Xi(s)) = EYi(t)Yi(s) for all i,0 ≤ s,t≤ 1, 

 
and it allows for the expansion 
 

. 
λ1 ≥ λ2 ≥ ... are the ordered eigenvalues, which automatically are nonnegative, and�, ��, …the 

corresponding orthonormal eigenfunctions of the covariance operator C whichlinearly maps a 

function f in H onto the function Cfgiven by 
 

  (2) 
The functions �, ��, …are called the functional principal components. As they are an orthonormal 

basis of H, we also have 
 &'	
� � ∑ +',���,�- , where +',� � 〈&', ��〉 

 
We want to test if the response curves are on the average identical or, if at some unknown 

changepointm in the sample, the mean changes. In our model above, the null hypothesis 
H0 of no change and the alternative H1 of one change are 
 .�: 0 � ⋯ �  . : 0 � ⋯ �  02 ! 023 � ⋯ � 04for some 1 5 6 ( 7 
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As the basis of the test statistic, we consider the partial means of data before and after k: 
 

   
 
Under H0, both0̂� and 09�will estimate the common mean of all the functional data and will be 

approximately equal for all k. If, however, there is a changepointm < N, then 0̂� : 09�will be large 

for k ≈ m. 
 
For small k, the variability of 0̂� is rather large, as only few observations contribute to the average, 

and the same applies to 09�for small N − k. Therefore, the test uses the 
weighted differences 

, 
to take into account the different random variability of 0̂� : 09�for various k. 
If ;�would be scalar numbers, we would look at the maximum value of |;�|in thespirit of classical 

changepoint analysis and reject the hypothesis H0 if it exceeds a critical bound depending on the 

level of the test. However, ;�is a function in H. We could reduce them to scalar characteristics like 

the integral of the absolute value or the maximum if we would have a rather precise notion about 

the type of change to expect. A main feature offunctional data analysis, however, is its flexibility 

regarding the characterization of response curves. So, we are looking for several scalar quantities 

which combined give us the essential features of the whole function. For a suitable d (compare 

subsection 4), these are just the scores of ;�relative to the first d functional principal components 

v1,...,vd, i.e. 
 

 
 

Then, for convenience, we look at a suitable weighted average of the squares, not of the absolute 

values, of the 〈;�, ��〉: 
 

 
 
This is not yet a feasible test statistic, as it depends on the unknown �� , <�. First notethat 
 

 
 
as centering each summand in both sums by subtracting XN has no effect. Therefore, for estimating 
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TN(k), we need to estimate <� , +',�, " � 1, … , �, = � 1, … , 7. First we estimate the covariance 

function c(t,s) by the sample version 
 

 
where, under the hypothesis of no change, the sample mean >�4	
�of X1(t),...,XN(t) estimates the 

common mean function of the curve data. ?̂	
, @�characterizes the estimate ABof the covariance 

operator analogously to (2). Finally, we have to calculate the first d eigenvalues <B C … C <BD and 

the scalar products of the centered data with the corresponding eigenvectors �E, … , �ED of ABto get 

the estimate of TN(k) 
 

 
 

These calculations can be easily done using the R package fda. There are various possibilities how 

to combineFG4	 �,  � 1, … , 7 to a single scalar test statistic. Horv#́th andKokoszka (2010) just 

use averaging and get 

 
 .�is rejected if SN,dis large. Let us just summarize again the intuition behind this decision 

procedure. As mentioned above, if the mean does not change, the weighted differences Pk(t) of the 

sample mean functions before and after k should all be reasonably close to 0. Hence, for all k and ", their squared scores 〈;�	
�, ��〉� should be small. Now, TN(k) as a weighted average of those 

quantities should be small too for k = 1,...,N, and, hence, this also holds for the average over k. If 

we replace the unknown quantities in this average by their sample analogues, then we just get SN,d. 
 
Finally, we need critical values for the test which we get from the asymptotic distribution of 

SN,dunder the hypothesis which has been derived by Horv#́th and Kokoszka (2010) undersome 

rather weak regularity assumptions. In particular, for N → ∞ 
 

HIJK4,D C L |.� ℎN"�@O →  QD � R ∑ S��	
��
,D�-
�    (3) 

 
whereS�, " � 1, … , �, are independent standard Brownian bridges. The distribution of Kdhas been 

derived quite early by Kiefer (1959) in his study of extensions of the CramT́r-von Mises test. 

Critical values for SN,dfor various significance levels and values of d can be found in Table 6.1 of 

Horv#́th and Kokoszka (2010). 
 
If the test rejects the hypothesis and detects a changepointm, then we are interested in estimating 

its location. A consistent estimate 6U is derived by checking at which indexk, the statisticFG4	 � 

assumes its maximum: 
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      (4) 
Note that if we detect a changepoint, we can say that the mean is not constant over time, i.e. H0 

does not hold, up to the usual small error probability. It does not necessarily imply that the mean 

is constant before and after the changepoint. The test is also sensitive against other kinds of 

alternatives, e.g. several changepoints or a gradual change of themean. 
 
One way to check the constancy of the mean before and after the detected changepoint is a repeated 

application of the test. So, if H0 is detected and 6 Vis the estimated changepoint, we apply the test 

again twice to the samples >, … , >2U resp.>2U 3, … , >4. If we detect some changepoints in those 

subsamples, then again we split the samples and apply the test again until finally we get a partition 

of the original data into subsamples which all have approximately constant means or just have 

small enough sample sizes that the test does not reject the hypothesis any longer. 
 

3.2 Changepoint test for dependent data 

 

We now consider the same setting as in the previous subsection, but we allow for dependence of 

the curve data. In particular, we assume that the random functions Y1,...,YNcentered around 0 are 

part of a stationary times series of functional data which satisfies certain weak dependence 

conditions (compare chapter 16 of Horv#́th and Kokoszka (2010)). We again want to test for a 

change in the mean. The testing procedure is similar, but, as in the familiar scalar setting, we have 

to take into account that the variability of the sample mean >�4	
� depends on the kind of 

dependence of the data. In particular, the variability will be larger if the dependence is rather 

positive which is the more common situation in practice. This would lead to a larger number of 

false rejections of the above test procedure if we falsely assume independence. Therefore, we have 

to modify the test statistics accordingly. We follow the work of HNWrmann and Kokoszka(2010), 

also described in Horv#́thand Kokoszka (2010). 
 
As in the scalar case, the effect of dependence on mean tests can be summarized in the long-run 

variance. For a real-valued stationary time series Zt,−∞ < t <∞, with mean 0this quantity is the 

sum over all autocovariances 
 X � ∑ cov	\] , \]3^� �  ∑ %\] , \]3^,̂-_,,̂-_, . 
 
By stationarity, it does not depend on t. Equivalently, σ is the value of the power spectral 
density of the time series at 0. 
 
The functional data enter the test statistic of the previous subsection only in form of the scores 

+E' � J+E',, … , +E',DO` , = � 1, … , 7,which is a sequence of d-dimensional random vectors. So, we 

need the long-run variance which now is a d × d-covariance matrix, of ad-variate stationary time 

series zt,−∞ < t <∞, with mean 0 which is defined as 
 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 

 

 
 

To get an estimate of Σ, we estimate the autocovariancesâ � %L]L]3^` by their empirical versions 

based on a sample L, … , L4: 
 

aĜ � 1
7 b L'L'3^`

4_^

'-
 

 
Then, we apply the windowing technique well known from one-dimensional spectral analysis 
to get with some suitable window width bNdepending on N 

 

 
 

K is a common kernel function which is bounded, symmetric around 0 and, for convenience, has 

a bounded support, say [−1,+1]. An example is the Bartlett kernel K(u) = 1 − |u| 
for |u| ≤ 1, and K(u) = 0, else. For N,bN→ ∞ such thatc4 7⁄ → 0 is a consistent estimate of Σ under 

some regularity conditions. 
 
For getting an appropriate test statistic, set for 1 ≤ k ≤ N 

 
 

LetdG4	+E� denote the long-run variance estimate based on L' � +E'and set 
 

 
Note that for the diagonal matrix with entries <B, … , <BD replacingdG4	+E� , the integrand coincides 

withFG4	 � such that RN,dis a straightforward generalization of the test statistic SN,dof the previous 

section to the dependent case. The asymptotics do not change under the hypothesis and under the 

alternative as the effects of dependence are completely covered by the modification of the test 

statistic. Therefore, we may use the critical values from Table 6.1 of Horv#́thand Kokoszka (2010) 

for the changepoint test under dependence,too. 
 
Note that in chapter 16 of Horv#́th and Kokoszka (2010) a slightly different version of the test 

statistic is considered, but it differs from ours only by replacing an integral by the corresponding 

Riemann sum which asymptotically is neglible. 
 

4. Application to Stimulus Response Data 
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Before applying the changepoint test, we have to choose the number d of functional principal 

components entering the test statistic. This problem is closely related to the analogous problem in 

classical principal component analysis as a tool for dimension reduction, and we use a popular 

method, which is based on the scree plot, for selecting the number of relevant principal components 

based on the data. 
 

Figure 6: Scree Plot 

 
 
The screeplot shows how much each principal component contributes to the total variability of the 

data in decreasing order of importance. In the case of functional principal components, the 

contribution to total variability are just given by the eigenvalues λ1 ≥ λ2 ≥ ... of the covariance 

operator C introduced in subsection 3.1. Estimates <Beare easily calculated using the fda package of 

R. Figure 6 shows the screeplot for the sample corresponding to the stimulus frequency 10 Hz. 

The screeplots of the other samples lookquite similar. 
 
The idea of the scree plot is that we visually select the number d of principal components as the 

point where the curve dies off. Another more objective method for this purpose is requiring that 

the cumulative percentage of variance explained by the first d functional principal component has 

to be greater than some bound close to 100%, e.g. 85%. Based on Figure 6 and this rule, we decided 

to work with d = 4 functional principal components. They explain a cumulative percentage of 

variance of approximately 96%. 
 
Assuming the data is independent and identically distributed, we applied the test described in 

subsection 3.1 to the data with stimulus frequency 1, 2, 5, 10 and 50 Hz. The data were adjusted 

to remove the artificial artifact, but not differenced. Table 1 reports the results obtained for 

significance level 0.05. Note that the asymptotic critical value, based on the relationship (3), does 

not depend on the sample size N due to an appropriate standardization of the test statistics SN,dsuch 

that it is the same for all stimulus frequencies. 
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Table 1: Test for change in the mean function (i.i.d. Test) 

 
α = 0.05, d=4, Asymptotic crit. value=1.239675 

 1Hz 2Hz 5Hz 10Hz 50Hz 

N 60 120 300 600 3000 

Test statistic 2.0872 3.8249 8.5994 54.7244 212.0775 

 
In all cases, a changepoint was detected as the values of the test statistic all exceedthe critical 
value. 
 
Once the changepoint was detected, we estimated it using (4). Then, we split the sample and 
applied the test repeatedly until no further changepoints were detected. In Table 2 we list the 
detected changepoints in order of significance for the frequencies 1, 2, 5 and 10 Hz. These will be 
used for comparison with the changepoints for the dependent case. The changepoints are listed 
here as number of observed stimulus-response curve inthe sample and not as physical time. 
 

Table 2: Changepoints in order of significance (i.i.d. Test) 
 

   Change points in order of significance (i.i.d. Test) 

Frequency  Change Points  

1Hz 20   

2Hz 70 100  

5Hz 155 85  

10Hz 361 164 62 10 472 396 547 

 
We also carried out the test for a change in the mean using the differenced data. As expected, for 
all frequencies no changepoint was detected which implies that these dataapproximately have a 
constant mean. 
 
As discussed in subsection 3.2, the test of subsection 3.1, which is based on the assumption of 
independence, is known to give wrong results when the data show some dependency, likely too 
many rejections of the hypothesis. As we suspected dependence in our data which are response 
curves measured subsequently on the same cell, we tested for dependence. We carried out a 
Portmanteau test presented by Gabrys and Kokoszka (2007) for testing the hypothesis H0 of 
independence of the curve data X1,...,XNagainst an open ended alternative of lack of independence 
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or of sameness of distributions. The corresponding test statistic is asymptotically chi-square 
distributed under the null hypothesis, such that critical values are well-known. The main 
assumption of the test is the existence of fourth moments of the observations which is likely be 
satisfied looking at the data. Also, the data should be stationary which of course is not true if the 
means are changing. Therefore, we applied the test to the differenced data Yjgiven by (1). The 
results of the test are given in Table 3. In all cases the assumption of independence is rejected such 
that our data aregenuine functional time series. 
 

Table 3: Portmanteau Test 
 

α = 0.05, d=4, Asymptotic crit. value=67.5050 

 1Hz 2Hz 5Hz 10Hz 50Hz 

N 59 119 299 599  

Test statistic 176.3522 313.8736 334.5219 552.3081 2574.5181 

 
As the data are likely dependent, the previous application of the test of subsection 3.1 is not 
justified. Therefore, we dropped the assumption of independence and applied the more complex 
test of HNWrmann and Kokoszka (2010) described in subsection 3.2. The results of the tests are 
reported in Table 4; in all case we again detect a change in the mean on thesignificance level 0.05. 

However, the values of the test statistics are generally smaller. As the asymptotic distribution of 
the statistics SN,dand RN,dare identical, this means thatthe hypothesis is not so strongly rejected as 
if we falsely use the test for independent data. 
 
Note that, as under the incorrect assumption of i.i.d. curve data, the test taking into account 
dependence also accepts the hypothesis of no change for all stimulus frequencies if we apply it to 
the differenced dataYi. 
 
 
 

Table 4: Test for change in the mean function (Dependent Test) 
 
α = 0.05, d=4, Asymptotic crit. value=1.239675 

 1Hz 2Hz 5Hz 10Hz 50Hz 

N 60 120 300 600 3000 6000 

Test statistic 1.5847 2.0715 3.6859 8.6769 32.6208 

 
The differences between the two tests of subsections 3.1 and 3.2 are more striking once we apply 
it repeatedly to the split subsamples in search of more than one changepoint.Table 5 gives the 
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change points in order of their significance based on the changepoint test for dependent data. 
 
Table 5: Changepoints in order of significance (Dependent Test) 

Frequency   Change Points     

1Hz 20       

2Hz 74       

5Hz 155       

10Hz 359 163 62 472 389     

50Hz 2067 1213 679 288 182 542 358 987 1081 

 1787 1632 1924 2459
 2330 

2748 2591 2830  

 
Comparing the results to those from Table 2, we see that the test of subsection 3.1 for i.i.d. data 
detects many false changepoints as a result of failure to account for the long-run variance. Also, it 
is noticeable as expected, that with increasing frequency of the stimulus there are more 
changepoints. This can be attributed to the fact that at high frequency the cell does not have enough 
time to recover and go back to itsresting state before the next stimulus is given. 
 

5. Conclusion 

 

In this paper, we applied tests from functional data analysis to illustrate their merit in making use 
of the full information in stimulus response curve data. In particular, we showed that the 
subsequent detrended curve data are dependent. Using an appropriate changepoint test which takes 
into account the dependence, we were able to show that the originalcurve data showed several 
changes in the mean response curve throughout the experiment. 
 
Our findings are in accordance with other statistical analyses of the same data. E.g., looking only 
at the univariate response latencies, i.e. the time span between stimulus and start of the response, 
we found an increasing trend which also was not homogeneous but showed changepoints between 
periods of rapid increase and periods of almost constancy. 
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