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Abstract 

GARCH models have been commonly used to capture volatility dynamics in financial time series. 

A key assumption utilized is that the series is stationary as this allows for model identifiability. 

This however violates the volatility clustering property exhibited by financial returns series. 

Existing methods attribute this phenomenon to parameter change. However, the assumption of 

fixed model order is too restrictive for long time series. This paper proposes a change-point 

estimator based on Manhattan distance.The estimator is applicable to GARCH model order 

change-point detection. Procedures are based on the sample autocorrelation function of squared 

series. The asymptotic consistency of the estimator is proven theoretically. 

Keywords:Autocorrelation Function, Change-Point, Consistency, Garch, Manhattan Distance, 
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INTRODUCTION 

Modelling volatility of financial asset returns is particularly an important area in Finance. This is 
because volatility is considered to be a measure of risk when pricing financial instruments. The 
series particularly is characterized by the property of volatility clustering and thus can be 
considered to display a stationary behaviour for some time then suddenly the variability changes, 
it stays constant for some time at this new value until another change occurs. This therefore 
suggests that the financial returns series is non-stationary and can be looked at as a union of several 
stationary series. GARCH models have been commonly used to capture volatility dynamics in 
financial time series particularly in modelling of stock market volatility as seen in [12], [21],[2] 
and derivative market volatity as utilized by [13], [3] and [8]. 
 
A key assumption of the GARCH models used is that the process is stationary as this allows for 
model identifiability. However, this violates the volatility clustering property exhibited by the 
financial returns series. This phenomenon is manifested by the fact that the absolute value of 
returns or their squares display a positive, significant and slowly decaying autocorrelation function 
despite the fact that the returns are uncorrelated. This indicates that modeling financial returns 
series over long time horizons deviates from the stationarity assumption suggesting the existence 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 
 

 

of a change-point in the series. A modification of the GARCH model, specifically the IGARCH 
model has been proposed to model the persistent changes in volatility as the stationarity 
assumption is relaxed. However the IGARCH model is prone to some shortcomings. [14] showed 
that the behavior of an IGARCH process depends on the intercept, such that, if the intercept is 
positive then the unconditional variance of the process grows linearly with time. In practice this 
means that the amplitude of the clusters of volatility to be parametrized by the model on the average 
increases over time. The rate of increase need not, however, be particularly rapid. If the intercept 
is zero in the IGARCH model, the realizations from the process collapse to zero almost surely. 
However, a potentially disturbing fact is that the model assumes that the unconditional variance of 
the process to be modeled does not exist in that the variance may be infinite [20] and [18]. 

It is argued that in applications, the assumption of parameter constancy in GARCH models may 
not be appropriate especially when the series to be modeled are long [19]. To overcome this 
problem of modeling financial time series in the presence of structural changes, the duo suggests 
that one option is to assume that the parameters change at specific points of time, divide the series 
into sub-series according to the location of the change-points and fit separate GARCH models to 
the sub-series. This brings about the challenge of determining the number of change-points and 
their location because they are normally not known in advance. This proposition has been adopted 
by various researchers who have utilized different methodologies to be able to locate the change-
points attributed to change in parameter specification. [17] propose the use of squared model 
residuals and likelihood ratio to detect parameter changes. [1] propose the use of Markov-
switching GARCH models estimated through Markov Chain Monte Carlo simulation methods. [4] 
proposes modeling equity volatilities as a combination of macroeconomic effects and time series 
dynamics by combining exponential splines and GARCH models. An alternative approach is to 
use smooth transition GARCH model . This can be achieved by defining a transition function 
where the coefficients are expressed as a function of time as in [18] or by employing non-linear 
functions that are lagged for the squared observations [6] and [5]or lagging the the conditional 
variance [11]. CUSUM tests have also been proposed as suitable methods of identifying change-
points by establishing breaks in moments of the time series. [9] propose the use of the 
unconditional variance whereas [16, 15] utilize the mean. However, these methods are mainly 
based on the assumption that change-points occur soley due to change in parameter specification. 
 
The approach presented here seeks to identify change-points attributed to change in model order 
specification. Plausible values for the orders p and q can be arrived at through inspection of sample 
autocorrelations and sample partial autocorrelations of a squared returns series. It is in light of this 
that an estimator based on the Manhattan distance of sample autocorrelation is proposed. This 
paper is organized as follows. Section 2 gives the 2 GARCH MODEL 

GARCH model specification with corresponding assumtions utilized. Section 3 presents the 
proposed change-point estimator. Section 4 looks into the consistency of the change-point 
estimator. 
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GARCH Model 

Assume that the data Xt, for t ∈Z, are independent and sampled at equispaced points. (Xt)t∈Z 

describes a financial returns time series modeled using GARCH (p,q) model specified as: 

  (1) 

The sequence of innovations  is an independent and identically distributed (iid) sequence 
with mean zero and unit variance. (σt)t∈Z is the volatility sequence of the GARCH model. Assume 
that αpβq 6= 0 and that all coefficients αi and βj are non-negative to avoid ambiguity with regards 
to orders (p,q). Since we are not interested in the trivial solution Xt ≡ 0 to (1), further assume that 
α0 >0. 

Let p = q and , where {ci,t} is a sequence of independent and 
identically distributed random variables such that ci,t is independent of σt. This allows us to rewrite 
(1) as 

  (2) 

GARCH MODEL 

Model (2) is utilised in the proof of consistency of the proposed change-point estimator. 
Bollerslev (1986) showed that the GARCH(p,q) model (1) can also be represented as an 
ARMA(max(p,q),q) written 

 p q q 

 Xt2 − XαiXt2−i − XβjXt2−j = α0 + ut − Xβjut−j for t ∈Z (3) 

 i=1 j=1 j=1 

where ut = Xt
2 − σt

2and (ut
)
t∈Z is white noise 

This representation of the GARCH model follows the standard ARMA form for the squared series, 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 
 

 

therefore, conventional methods used to identify ARMA processes may be used to determine the 
presence of GARCH. Of keen interest is the use of the sample autocorrelation function (SACF) 
and partial autocorrelation functions (PACF). Specifically, the orders p and q are drawn from the 
autocorrelation function and partial autocorrelation function respectively. Empirically, these orders 
are chosen such that the the SACF cuts off after lag p and the PACF decline exponentially to zero 
after lag q for which they are significant. In light of this it can be asserted that the SACF and PACF 
can be used to distinguish GARCH model with different model orders specifications. 
 
The following assumptions are necessary to prove the subsequent theoretical results.  
Assumption 1 (Independence)  are independent and identically 

distributed 
• Xt

0s are independent of the  for 1 ≤ t ≤ n 

Assumption 1 will ensure parameters in model (1) are estimated using QuasiMaximum Likelihood 
Estimation method. 

Assumption 2 (Strictly Stationary) 
According to Bougerol and Picard (1992) the existence of a unique strictly stationary solution to 

(1) is the negativity of the top Lyapunov exponent. This however cannot be calculated explicitly 

but a sufficient condition for this is given by 

  (4) 

Assumption 3 (Ergodic Process) 

According to Krengel (1985) standard ergodic theory yields that (Xt) is an ergodic process. Thus 

its properties can be deduced from a single sufficiently large random sample of the sample. 

CHANGE-POINT ESTIMATOR 

Assume that the data  describes a financial returns time series modeled using GARCH 

(p,q) process. A single change-point testing problem is first considered where it is assumed that 
a change-point can happen only at time k where 1 < k < n−1. The hypotheses to be investigated 
are assumed to follow the following definition: 

 H0 : Xt ∼GARCH (1,1) for t = 1,··· ,n 

against 

 D wherep,q ∈N\{0} 

 D GARCH (1,1) for t = 1,··· ,k 
H1:Xt ∼ 

 D GARCH (p,q) for t = k + 1,··· ,n 
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(5) 

Let I = N be a finite index sequence and (Xt)t∈N satisfy Assumptions 1 and 2. Let X = (X1,X2,···Xk) 
be a k dimensional vector and Y = 
(Xk+1,Xk+2,··· ,Xn) be a (n − k) dimensional vector. The autocovariance and autocorrelation 
functions can be expressed in terms of the inner product as 

 acovar hX,Y i = hX − E (X), Y − E (Y )i (6) 

  (7) 

where sd(X) and sd(Y ) represents the standard deviation of X and Y respectively which represents 
an L2 distance from the mean. 

By the Assumption 3 that the series (Xt)t∈N is ergodic, then it is implied that the sample moments 
converge in probability to the population moments. It therefore follows that the sample 
autocovariance and autocorrelation converge in probability to the population autocovariance and 
autocorrelation respectively. 

Theorem 1 (Holder’s Inequality) 

Let I be a finite or countable index set. Given 1 ≤ p ≤ ∞, if X = (Xk)k∈I ∈ 

Lp (I) and Y = (Yk)k∈I ∈Lp0 (I), where  then XY = (XkYk)k∈I ∈ 
L1 (I) and 

 

0 
Let p = p = 2 in the Holders Inequality Theorem 1 we obtain 

Following (11) 
define 

sequences of 
autocorrelation 

functions ρi+1,j 

where for fixed i 
= 0, 1 ≤ j ≤ n − 1 
and for fixed j = 
n, 1 ≤ i ≤ n − 1 
to be 

such that we have two subsequences ρ1j = (ρ1,1,ρ1,2,··· ,ρ1,k,···ρ1,n−1) and ρin = 

E (|X||Y |) ≤ pE (X2)pE (Y 2) 

thus, applying the result in (9) to (6) and (7) yields 

(9) 

 |acovar (X,Y )| ≤ sd(X)sd(Y ) ∈ L1space (10) 

 |acorr (X,Y )| ≤ 1 ∈ L1space (11) 
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(ρ2,n,ρ3,n,··· ,ρk+1,n,··· ,ρnn) where ρ1,k and ρk+1,n denote the autocorrelation of the sequence 

 and  for 1 ≤ k ≤ n. 
An estimator is proposed drawn from a process quantifying the deviation between ρ1,k and 
ρk+1,n using a divergence measure motivated by the weighted Lp distance, with k denoting the 
change-point. For p >0 define  Lp (ρ1,k − ρk+1

,n) = (12) 

Specifically, assume the case when p = 1 in (12) resulting into a weighted Manhattan distance 
and by linearity and absolute value of inequalities of the expectation operator results into 

L1 (ρ1,k − 
ρk+1,n) 

= 
! 

 

 = E (wk|φk − φk+1|)  

 ≥ 
wk |E (φk) − E (φk+1)| 

(13) 

  
 

 

To facilitate the construction of the proposed estimator the lower bound of the divergence 
measure (13) is assumed. Further assume that the autocorrelation function is calculated at lag h : 
0 < h < n. The proposed change-point estimator is thus developed from the process generated by 
this measure as follows: 

  (14) 

From (14) it can be seen that the proposed test is a weighted difference between the sample 
autocorrelation functions ρ1,k and ρk+1,n with wk denoting the weight. 
Assumption 4 (Weight) 

The weight wk is a measurable function that depends on the sample size n and change-point k. It 

is arbitrarily chosen such that it satisfies the condition that 
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  (15) 

Equating (14) and (15) determines the weight wk as follows: 

 

 

The resultant process is obtained from (14) and (16) and defined as 

  (17) 

The change-point estimator kˆ of a change point k∗is the point at which there is maximal sample 
evidence for a break in the sample autocorrelation function of the squared returns process. It is 

therefore estimated as the least value of k that maximizes the value of where 1 < k < n is chosen 
as: 

  (18) 

SIMULATION STUDY 

The performance of the proposed estimator is examined by considering the effects of the change 
in sample size. Assume that {Xt} is a stationary GARCH (p,q) process where p,q ∈N\{0}. The 

single change-point estimation problem is considered where the change-point k is fixed at  for 
n = 500, n = 1000 and n = 2000. The Figures 1, 2 and 3 below displays the plots for the location 
of the change-point estimator as estimated by the proposed estimator (18) for various sample 
sizes. The hypothesis considered here is when change occurs in model order q, described as; 

 H0 : Xt ∼GARCH (1,1) for t = 1,··· ,n 



Proceeding of  the 1st Annual  International Conference held on 17th-19th April 2018, Machakos 

University, Kenya 

 

 
 

 

against 
(19) 

 H1:Xt ∼GARCH (1,1) for t = 1,··· ,k 

 Xt ∼GARCH (1,2) for t = k + 1,··· ,n 

 

Figure 1: Single Change-Point for Stationary Series GARCH Xt for n = 500 
3.1 Simulation Study 
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Figure 2: Single Change-Point for Stationary Series GARCH Xt for n = 1000 
 
 
 
 
 

 
Figure 3: Single Change-Point for Stationary Series GARCH Xt for n = 2000 
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The change-point estimators obtained are k = 264, k = 587 and k = 1052 for sample sizes 500, 1000 
and 2000 respectively as displayed in Figures 1, 2 and 3 above. The performance of the estimators 
is evaluated using the Adjusted Rand Index (ARI) which compares the segmentation created by 
the change-point estimator and the true segmentation. The Adjusted Rand Index lies between 0 and 
1. When the two partitions agree perfectly, the ARI is 1. The results of the ARI are provided in 
Tables 1 for changes in order q. Table 1: Adjusted Rand Index given changes in order q 

 

 
n 4q Hubert and Arabie ARI Fowlkes and Mallows ARI 

500 1 1.00 0.9895613 

1000 1 1.00 0.9914832 

2000 1 1.00 0.9971880 
The results for the change in order q in Table 1 show that as the sample size increases, the similarity 
index given by ARI generally increases. 

CONSISTENCY OF THE CHANGE-POINT ESTIMATOR 

Proposition 1 Consider a sample  satisfying (2) and (23) and the change-point 

estimator kˆ given by (18). If the sequences  and 

 satisfy 

 

then for , 

  (21) 

where C is a positive constant. 

Proof Suppose that and  are two GARCH(p,q) sequences as defined in 

model (2). Further suppose that a sample from the model is observed such that 

  (22) 

where k∗is the unknown change point. More specifically assume that the two sequences have 
different model order specification such that 
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  (23) 

where p1 6= p2 and q1 6= q2 but p1 = q1 = 1 and p2 = q2. Let k∗= τ∗n and assume that 0 < τ <1, then 
in the presence of the change-point, the sequence {Xk

2} is no longer stationary. 
The foundation of this proof is based on the second and fourth moments of 
{Xt

2}which will first be derived. Assume that the GARCH(p,p) model (2) has a finite fourth 

moment and let . The assumption that the second moment of {Xt} exist it 
implies that E (ci,t−i) = βi + αiν2 <1. 

Let  and  and j = 1,2. 

! 

(24) 

 
To establish the  we make use of the following Theorems as proved by 
[7]. 

Theorem 2 Assume that λ(Γ) <1. Under this condition, 

 

where for m − l >1 
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In particular 

 

 

Proof For proof of Theorem 2 see Appendix 5 of [7]. 

 

Substituting (24) and (26) in (25) yields 
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Now the fourth moment of {Xt} is evaluated as 

  (29) 

Theorem 3 The mixed moment  has the form 

  (30) 

where for n ≥ 1, 
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Proof For proof of Theorem 2 see Appendix 9 of [7]. 

The expected value of the sample autocorrelation function, E (φk), is first evaluated using (29) and 
(30). 

 

Further assuming that (22) and (23) are 
satisfied, evaluate (38) for p1 = q1 = 1 as 
follows: 

! 
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(39) 

! 

(40) 

For GARCH (1,1) model, γ21 = γ˜12 = ¯γ21 = 0. Substituting (39) and (40) in (38) results to 

 (41) 

 
For a special case GARCH (2,2) evaluate (38) for p2 = q2 = 2 as follows: 

 

Applying (33), (34), (35), and (36) and letting h = 1 yields M2 (1) 

M21 (1) = γ¯11  

M22 (1) = γ˜12  

M23 (1) = γ (c(1),2) = E (c2,t−3c2,t−4,c1,t−4) = γ21γ˜12 (44) 
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The expected value, E (φk), for (23) for model order specification p1 = q1 and p2 = q2 for lag 1 results 
to 

  (45) 

From (41) and (45), it can be seen that 

 
Thus the  is evaluated noting that it reaches its maximum at the 
point k∗resulting to 

  (47) 

Thus 

  (48) 

From (47) and (48) it follows that 

  (49) 

 

 

We also have that 
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Thus from (49) and (50) as well as replacing τ with τˆ in (49) we have that 

  (51) 

Consider  as given in (17), the estimate  is now established as follows 

 

Theorem 4 Let Y1,Y2,··· ,Yn be any random variables with finite second moments and c1,c2,··· ,cn 
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be any non-negative constants.  

 

Then 

 

Proof For proof of Theorem 4 see Theorem 4.1 of [10]. 
 

Applying Theorem 4 with  and Yk = φi−E (φi) yields 
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Substituting the result in (55) to (51) results to 
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which completes proof. 

CONCLUSION 

We have been able to derive an estimator for the change-point attributed to change in GARCH 

model order specification based on the Manhattan distance. We were also able to prove consistency 
of the estimator theoretically. The proposed estimator can be improved to examine departure from 
other model order specification other that GARCH (1,1). The next paper will focus on establishing 
the limiting distribution of the estimator. 
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