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Abstract 

Statistical distributions play a major role in parametric statistical modeling and inference. 

However, most of the existing classical distributions do not provide reasonable parametric fits to 

data sets. Thus, the need to develop generalized versions of these classical distributions has 

become an issue of interest to many researchers in the field of distribution theory. This study 

proposes a new generalization of the Burr III distribution called the exponentiated generalized 

geometric Burr III distribution. Various statistical properties of the distribution such as the 

quantile function, moment, moment generating function, incomplete moment, mean residual life, 

entropy, reliability, stochastic orders and order statistics were derived. The method of maximum 

likelihood estimation was employed to estimate the parameters of the distribution and simulation 

studies were performed to investigate the properties of the estimators for the parameters of the 

distribution. The simulation results revealed that the estimators for the parameters were stable as 

the sample size increases. Application of the distribution was demonstrated using real data set to 

showits usefulness. 
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INTRODUCTION 

The modification of standard distributions through the induction of extra parameters plays a vital 

role in the development of new families of distributions with a range of skewness and light and 

heavy tails. In addition, the induction of parameters has been proved to be imperative in 

determining tail properties and improving the goodness-of-fit of the resulting distribution (Tahir 

and Nadarajah, 2015). 

 

The Burr III distribution (Burr, 1942) which is sometimes referred to as the inverse Burr 

distribution (Klugman et al., 1998) in the actuarial literature and kappa distribution in the 

meteorological field (Mielke, 1973) has been modified in recent time by a number of researchers 

to improve its flexibility in modeling lifetime data. The usefulness of the distribution in finance, 

environmental studies, survival analysis and reliability theory cannot be ignored (see Gove et al., 

2008; Lindsay et al., 1996). Some of the modified versions of the Burr III distribution includes: 
gamma Burr III distribution (Cordeiro et al., 2017), extended Burr III distribution (Cordeiro et al., 

2014), beta Burr III distribution (Gomes et al., 2013) and Kumaraswamy Burr III distribution 

(Behairy et al., 2016). 

 

In this study, a new generalization of the Burr III distribution called exponentiated generalized 

geometric Burr III (EGGB) distribution is proposed and studied using the exponentiated 

generalized geometric (EGG) family of distributions developed by Nasiru et al. (2018). The 
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cumulative distribution function (CDF) of the EGG is defined as: 

 
and the corresponding probability density function (PDF) is given by 

. 

The rest of the paper is organized as follows: In section 2, the cumulative distribution function 
(CDF), probability density function (PDF), survival function and hazard function of the EGGB 
distribution were defined. In section 3, statistical properties of the EGGB were derived. In section 
4, the parameters of the new family were estimated using maximum likelihood estimation. In 
section 5, simulation was performed to examine the finite sample properties of the estimators for 
the parameters of the EGGB distribution. In section 6, application of the model was demonstrated 
using real data set. Finally, the concluding remarks of the study were given in section 7. 
Generalized Geometric Burr III Distribution 

Suppose the random variable X follows the Burr III distribution with CDF 

 G(x) = (1 + x−θ)−β,θ >0, β >0, x >0. (2) 
By substituting equation (2) into (1), the CDF of the EGGB is defined as 

. 
(3) 
By differentiating equation (3), the PDF of the EGGB distribution is 

. 

(4) 
Lemma 1. The density function of the EGGB distribution has a mixture representation of the form 

∞ i 
 f(x) = (1 − λ)cd XXωijklg(x;θ,βl+1), x >0, (5) 
i,k,l=0 j=0 

where g(x;θ,βl+1) = θβl+1x
−θ−1(1 + x−θ)−βl+1−1 is the PDF of the Burr III distri- 

bution with parameters θ and βl+1 = β(l + 1), and 

. 
Proof. For a real non-integer η >0, the following identities hold: 

 , (6) 
and 

 . (7) 
Using equations (6) and (7), and the fact that 0 <(1+x−θ)−β <1, the PDF of the EGGB distribution 
can be written as 
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∞ i 
f(x) = (1 − λ)cd XXωijklg(x;θ,βl+1). 
i,k,l=0 j=0 

The linear representation of the EGGB density given in lemma 1 revealed that the EGGB 
distribution is a linear combination of Burr III distribution with different shape parameters. The 
expansion of the density is vital in deriving the mathematical properties of the EGGB distribution. 
The density function plot of the EGGB distribution is given in Figure 1. The density exhibits right 
skewed shape with varied degree of skewness and kurtosis. 

 
Figure 1: Plot of EGGB density function 

The survival and hazard functions of the EGGB distribution are given by 

 . (8) 
and 

h(

. 

(9) 
respectively. Figure 2 shows different plots of the hazard function of the EGGB distribution. From 
the figure, the hazard function exhibits unimodal shape and bathtub followed by upside down 
bathtub shape. 
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Figure 2: Plot of EGGB hazard function 

 

Statistical Properties 

Statistical properties of the EGGB distribution were derived in this section. 
Quantile Function 

The quantile function provides an alternative means for describing the shapes of a distribution and 
is vital when generating random numbers. 
Lemma 2. For u ∈ [0, 1], the quantile function of the EGGB distribution is given by 

 . (10) 
Proof. By definition, the quantile function is given by F(xu) = P(X ≤ xu) = u,u ∈ [0, 1]. Thus, 

  (11) 
Replacing xu with QX(u) in equation (11) and solving for QX(u) yields the quantile function. The 
first quartile, median and upper quartile of the EGGB random variable can easily be obtained by 
substituting u = 0.25, 0.5, 0.75 respectively into the quantile function. 
Moments 

This subsection presents the moment of the EGGB random variable. 
Proposition 1. Suppose the random variable X follows the EGGB distribution. Then the rth non-
central moment is given by 

  (12) 

where  is the beta function and r = 1, 2, .... 
Proof. By definition 
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Moment Generating Function 

Proposition 2. The moment generating function of the EGGB random variable is given by 

  (13) 
Proof. By definition 

 
Using Taylor series expansion, 

 
Incomplete Moment 
The incomplete moment is useful when computing mean deviation, median deviation, mean 
residual life and measures of income inequalities. In this subsection, the incomplete moment of 
the EGGB random variable is derived. Proposition 3. The incomplete moment of the EGGB 
random variable is 

 

where  is the incomplete beta function and r = 

1, 2, .... 
Proof. Using the identity 

 
and the technique for proving the moment, the incomplete moment of the EGGB distribution is 
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Mean Residual Lifetime 

The residual lifetime of a system when it is still operating at time t, is Xt = X − t|X > t with PDF 

. 

Proposition 4. The mean residual lifetime of EGGB random variable is given by 

. 

(15) 
Proof. By definition 

. 

The is the first incomplete moment. 
Entropy 

The entropy of a random variable is simply a measure of variation. It has been used extensively in 
the science, engineering and probability theory (R´enyi, 1961). 
Proposition 5. The R´enyi entropy of the EGGB random variable is given by 

 , 

where 0 and 

. 

Proof. By definition 
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Using the concepts for expanding the density 

∞ i 
fδ(x) = ((1 − λ)θβcd)δx−δ(θ+1) XX$ijkl(1 + x−θ)−β(δ+l)−δ. 

i,k,l=0 j=0 

Hence 

 , 

where 0 and  

Reliability 

Suppose X1 is the strength of a system and X2 is the stress, then the component fails when X1 ≤ X2. 
The estimate of stress-strength reliability of the system R is P(X2 < X1). 
Proposition 6. If X1 ∼ EGGB(λ,θ,β,c,d) and X2 ∼ EGGB(λ,θ,β,c,d), then the 

stress-strength reliability estimate is given by 

 , (17) 
where 

. 

Proof. By definition 

 
Stochastic Ordering Property 

The simplest way of showing ordering mechanism in lifetime distribution is through stochastic 
ordering. 
Proposition 7. Suppose X1 follows the EGGB distribution and X2 follows the exponentiated 
generalized Burr III (EGB) distribution, that is X1 ∼EGGB(λ,θ,β,c,d) andX2 ∼EGB(θ,β,c,d). Then 
X1 is smaller than X2 in likelihood ratio order. 
Proof. 
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and 

fX2(x) = θβcdx−θ−1(1 + x−θ)−β−1(1 − (1 + x−θ)−β)d−1[1 − (1 − (1 + x−θ)−β)d]c−1, x >0. 

Thus 

. 
The derivative of the ratio of the densities yields 

. 

Since  is a decreasing function for x >0, X1 ≤lr X2. From proposition 7, 
the hazard rate order, the stochastic order and the mean residual life order between X1 and X2 hold. 
Order Statistics 

Let X1, X2, ..., Xn be a random sample from EGGB distribution and X1:n < X2:n < ... < Xn:n are order 
statistics obtained from the sample. Then the PDF, fp:n(x), of the pth order statistic Xp:n is given by 

, 

where F(x) and f(x) are the CDF and PDF of the EGGB distribution respectively and B(·,·) is the 
beta function. Using the binomial series expansion and the fact that 0 < F(x) <1 for x >0, yields 

 . (18) 
 

 

 

Substituting equation (3) into (18), the PDF of the pth order statistic Xp:n of the EGGB distribution 
is defined as 

 . 

Parameter Estimation 

 

In this section, the maximum likelihood estimators for the parameters of the EGGB model were 
determined. Let X1, X2, ..., Xn be random sample of size n from the EGGB distribution. Let zi = (1 
+ x−

i 
θ)−β and ¯zi = 1 − (1 + x−

i 
θ)−β, then the total log-likelihood for the complete sample is given 

by 

 

 n n n 

` = nlog((1 − λ)θβcd) − (θ + 1)Xlog(xi) − (β + 1)Xlog(1 + xi
−θ) + (d − 1)Xlog(¯zi)+ 

i=1 i=1 i=1 n n 

(c − 1)Xlog(1 − z¯i
d) − 2Xlog[1 − λ(1 − (1 − z¯i

d)c)]. (20) 
 i=1 i=1 
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Finding the partial derivatives of the log-likelihood function with respect to the parameters gives 
the components of the score function as: 
 

 , (21) 

 , (22) 

 , (23) 

 

, 

(25) 
 

Setting equations (21) to (25) to zero and solving them simultaneously yield the maximum 
likelihood estimates for the model parameters. The equations do not have a closed form and have 
to be solved using numerical techniques such as the quasiNewton algorithms. In order to construct 
confidence intervals for the parameters, a 5 × 5 observed information matrix can be obtained as 

λ, c, d, β, θ), whose element can estimated numerically. 
 

 

Monte Carlo Simulation 

 

To investigate the finite sample properties of the maximum likelihood estimators for the 
parameters of the EGGB distribution, simulation studies were performed. The results of the 
simulation were obtained from 1,000 Monte Carlo repetitions. In each repetition, a random sample 
of size n = 25, 50, 75 and 100 were generated from the EGGB distribution. The simulation results 
revealed that the average estimates (AE) were quite close to the actual values, the average bias 
(AB) and root mean square error (RMSE) for the parameters were small and decay towards zero 
on average as the sample size increases. Hence, it can be concluded from the results that the 
estimates of the parameters are stable and their asymptotic properties can be used for constructing 
confidence intervals and regions even for a reasonably small sample size. 
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Table 1: Simulation results: AE, AB and RMSE 

 

 0.1 0.5 0.8 0.4 0.3 25 

 0.8 0.7 0.3 2.0 0.5 25 

 0.5 1.5 2.5 1.2 3.5 25 

 
 

Application 

In this section, the usefulness of the EGGB distribution was demonstrated empirically by means 
of a real data set. The performance of the EGGB model with regards to providing an appropriate 
parametric fit to the dataset was compared to that of the extended Burr III (EBIII) distribution 
(Cordeiro et al., 2014) and beta Burr III (BBIII) distribution (Gomes et al., 2013) using the Akaike 
information criterion (AIC), corrected Akaike information criterion (AICc) and Bayesian 
information criterion (BIC). The maximum likelihood estimates for the parameters of the fitted 
models were obtained by maximizing the log-likelihood function via the subroutine mle2 uisng 
the bbmle package in R (Bolker, 2014). The PDFs of the EBIII and 

BBIII distributions are: 

, 

and 

 , 
respectively. The data set comprises the survival times in weeks, of 33 patients suffering from 
acute Myelogeneous Leukaemia. The data set was previously analyzed by Feigl and Zelen (1965) 
and are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 
4, 2, 3, 8, 4, 3, 30, 4, 43. Table 2 shows the descriptive statistics of the data. The minimum and 
maximum survival times were 1.000 and 156.000 weeks respectively. The average survival time 
was 40.879 weeks with a standard deviation of 46.703 weeks. The survival time was right skewed 
with a coefficient of skewness of 1.165 week. The distribution of the survival time is fat-tailed 
with coefficient of kurtosis of 3.122 weeks. 
Table 2: Descriptive Statistics 

Statistic Value 

Mean 40.879 

Median 22.000 

Minimum 1.000 
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Maximum 156.000 

Standard deviation 46.703 

Skewness 1.165 

Kurtosis 3.122 

Further exploratory analysis of the data using the total time on test (TTT) transform plot revealed 

that the data exhibit a bathtub failure rate since the TTT curve is first convex below the 45 degrees 

line and the followed by a concave shape above it as shown in Figure 3. 

 
Figure 3: TTT plot of Myelogeneous Leukaemia data 

Table 3 displays the maximum likelihood estimates for the parameters of the fitted models with 

their corresponding standard errors in parentheses. 

 

Table 3: Maximum likelihood estimates and corresponding standard errors in parentheses 

Distribution   Parameter estimates  

EGGB(λ, c, d, β, θ) 0.119 3.415  0.094 0.088 6.014 

 (0.671) (1.011)  (0.031) (0.013) (0.913) 

EBIII(α, β, a, b, s) 5.208 400.523 0.101 2.144 0.280 

(2.130 × 10−1) (7.105 × 10−4) (1.848 × 10−2) (5.418 × 10−1) (1.253 × 10−2) 

 
BBIII(α, β, c, d, s) 1.652 86.587 0.002 20.737 498.784 

(7.308 × 10−1) (4.647 × 10−3) 1.057 × 10−3 (8.598 × 10−4) (1.093 × 10−3) 
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The EGGB distribution provides a reasonable parametric fit to the survival data than the EBIII and 

BBIII distributions as shown in Table 4. From Table 4, the EGGB model has the highest log-

likelihood and the smallest AIC, AICc and BIC values compared to the other candidate models. 

 

Table 4: Goodness-of-fit statistics 

Distribution log-likelihood AIC AICc BIC 

EGGB -157.480 324.960 327.160 332.442 

EBIII -158.070 326.140 328.340 333.623 

BBIII -167.360 344.720 346.920 352.203 

The asymptotic variance-covariance matrix of the maximum likelihood estimates for the 

parameters of the EGGB distribution is given by 

N 

 0.450 0.145 

N 

N 0.145 1.021 N 
J−1 = NN−0.014 0.012 

N 

−0.014 

0.012 

0.001 

N −0.001 −0.047 

N −0.004 −0.316N 

N 

−1.355 × 10−4 −0.013N
N. 

N 

 NN−0.001−0.004−1.355 × 10−4 1.776 × 10−4 0.009 NN 

 N N 

 −0.047−0.316 −0.013 0.009 0.833 

Figure 4 displays the plot of the empirical density and the fitted densities of the distributions to the 

data. 
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Figure 4: Empirical and fitted densities plot of Myelogeneous Leukaemia data 

 

CONCLUSION 

 

In this study, a new generalization of the Burr III distribution called the exponentiated generalized 

geometric Burr III distribution was developed. Statistical properties of the model such as the 

moments, moment generating function, incomplete moment, stochastic ordering, order statistics 

among others were derived. The maximum likelihood method was used to estimate the parameters 

of the model and simulation studies were performed to examine the finite sample properties of the 

estimators of the model parameters. Finally, the usefulness of the distribution was demonstrated 

empirically using a survival data. 
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