

MACHAKOS UNIVERSITY COLLEGE

(A Constituent College of Kenyatta University) University Examinations for 2015/2016 Academic Year

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SECOND SEMESTER EXAMINATION FOR DIPLOMA IN ELECTRIC AND ELECTRONICS ENGINEERING

EED 316: DATA COMMUNICATION

DATE:

TIME:

INSTRUCTIONS

Answer Question ONE And Any Other Two Questions From Section B

SECTION A: (COMPULSORY)

1.	a)	Explain any five components of data communication.	(10 marks)
	b)	With the aid of a block diagram, show the data communication systemeters	em.
			(10 marks)
	c)	Explain any four different forms in which data can be represented.	(8 marks)
	d)	What is the maximum data rate for a 3 kHz channel that transmits dat levels?	a using 2 (2 marks)
SEC	TION B	: ANSWER ANY OTHER TWO QUESTIONS	
2.	a)	i) Explain any three reasons for choosing encoding techniques i	n data
		communication.	(9 marks)
		ii) A complex low-pass signal has a bandwidth of 200 kHz. What	at is the
		minimum sampling rate for this signal?	(6 marks)
	b)	List Factors that are used to Compare Encoding Schemes in data com	munication.
			<i></i>

(5 marks)

3.	a)	With the aid of a block diagram show how the components of a pulse code modulation (PCM) encoder, modulates an analogue signal to a digital signal. (10 marks)		
	b)	Using sinusoidal wave signals, illustrate aliasing sampling technique. (4 marks)		
	c)	Highlight the differences between the following modes of communicationi)Simplexii)Half-duplexiii)Full-duplex(6 marks)		
4.	a)	Using 11001010101010101 digital bits, illustrate the following digital signals i) Unipolar encoding ii) Non-return to zero NRZ iii) Non-return to zero NRZ-I iv) Manchester (10 marks)		
	b)	With the aid of the use of diagrams, illustrate the following bipolar encodingtechniquesi)Amplitude shift keying (ASK)ii)Frequency shift keying (FSK)iii)Phase shift keying (PSK)(10 marks)		
5.	a)	Compare datagram packet switching with virtual circuit packet switching.		

(10 marks)

- b) Draw example timing diagrams to show how a Stop-and-wait ARQ scheme copes with:
 - 1. A damaged data frame;
 - 2. A lost data frame;
 - 3. A lost ACK. (10 marks)