MACHAKOS UNIVERSITY

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

FIRST YEAR, SECOND SEMESTER EXAMINATIONS

For Diploma in Mechanical Engineering. (TVET)

Date Time 3 hours

Instructions

The paper consists of **EIGHT** questions. Answer any **FIVE** questions.

ALL questions carry equal marks.

Show all your working

- 1. (a) Simplify the expressions;
 - i) $\frac{(1-x)^{\frac{1}{2}}-x(1-x)^{-\frac{1}{2}}}{(1-x)^{\frac{1}{2}}}$
 - ii) $\frac{\log_{1-x}}{\log_{243} \log_{27} + \log_{9}}$ without using logarithm tables (7marks)
 - b) Solve the equations;
 - i) $\log_2 x + 2\log_4(x+1) = 1$

ii)
$$4^x = 2 + 16^{\frac{x}{4}}$$
 (13 marks)

- 2. a) Determine the values of p, q, and r such that $4x^2 3x + 12 = p(x + q)^2 + r$ (5 marks)
 - b) The roots of the equation $ax^2 + bx + c = 0$ are α and $\alpha + 2$. Prove that

$$b^2 = 4(a^2 + ac)$$
. (7marks)

c) Solve the following simultaneous equations

$$x + 2y - z = 1$$

$$x + 3y - 2z = 0$$

$$x + y + z = 4$$

Use the method of substitution to solve the equation (8 marks)

3) a) Simplify the expression
$$5 \times 4^{3n+1} - 20 \times 8^{2n}$$
 (4 marks)

b) Find the values of:

i)
$$\frac{log15625}{log25} - 2$$

ii)
$$\frac{8^{\frac{2}{3}} + 4^{\frac{3}{2}}}{16^{\frac{3}{4}}}$$
 (6 marks)

c) Given that $2\log 8N = p$, $\log 22N = q$ and that q - p = 4, determine the value of N.

(10 marks)

4.a) Given that SinA = $\frac{12}{13}$ and Cos B = $\frac{4}{5}$ where A is obtuse and B is acute, determine the values of;

i)
$$Sin(A - B)$$

ii)
$$\operatorname{Tan}(A + B)$$
 (5 marks)

b) Prove the identities:

i)
$$\frac{1-\cos\theta}{\sin\theta} + \frac{\sin\theta}{1-\cos\theta} = 2\text{Cosec}\theta$$

ii)
$$\tan 3x = \frac{3tanx - tan^3x}{1 - 3tan^2x}$$
 (8 marks)

- c) Given $t = tan22 \frac{1}{2}^0$
 - i) Show that $\tan 45^0 = \frac{2t}{1 t^2}$;
 - ii) Hence solve the equation:

$$t^2 + 2t - 1 = 0$$
, leaving your answer in surd form. (7 marks)

5.a) Express in polar co-ordinates the position :

i)
$$P_1(3.4)$$
 ii) $P_2(-5.8)$ (6 marks)

b) obtain the Cartesian equations of;

i)
$$r = 5(1 + 2\cos\theta)$$

ii)
$$r = a \tan \theta$$
 (7 marks)

- c) Find the cartesian equations of the loci;
 - i) $x = t^2 + 4$ and y = t 3Type equation here.

ii)
$$x = 5\cos\theta$$
 and $y = 4\sin\theta$ (7 marks)

6.a) Obtain the (i) polar equation of the of the loci $x^2 + y^2 - 2x = 0$

(ii) parametric equation of the locus
$$x^3 + y^3 = 3xy$$
 (7 marks)

b) Express
$$\frac{6-7j}{j(5-2j)} + \frac{3}{2j}$$
 (5 marks)

c) Solve for $0^0 \le x \le 360^0$ given;

$$12\sin 2x + 12\cos x - 6\sin x - 3 = 0$$
 (8 marks)

7.a) Given the complex numbers $Z_1 = 4 + 3j$, $Z_2 = 1 + j$ and $Z_3 = 1 - 2j$, express

$$Z = Z_1 + \frac{Z_2 Z_3}{Z_2 + Z_3}$$
 in the form a + bj. (8 marks)

- b) Use De Moivre's theorem to prove that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ (5 marks)
- c) Given that Z = j is one root of the equation $Z^4 2Z^3 + 3Z^2 2Z + 2 = 0$, determine the other roots. (7 marks)

8.a) solve the following equations for all values of θ between 0^0 and 360^0 .

$$2\sin\theta - 3\cos\theta = 2\tag{7 marks}$$

b) Solve for x in the following equations

i)
$$\log_3(2x-3) = -1$$
 (3 marks)

ii)
$$3^{2x} = 4(3^x) + 3$$
 (4 marks)

c) Show that
$$\frac{1+tan^2B}{1+cot^2B} = tan^2B$$
 (6 marks)