MACHAKOS UNIVERSITY

SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS
FIRST YEAR, SECOND SEMESTER EXAMINATIONS
For Diploma in Electrical and Electronics. (TVET)
Date Time 3 hours

Instructions

The paper consists of EIGHT questions. Answer any FIVE questions.
ALL questions carry equal marks.
Show all your working

1. (a) Simplify the expressions;
i) $\frac{(1-x)^{\frac{1}{2}}-x(1-x)^{-\frac{1}{2}}}{1-x}$
ii) $\frac{\log 729-4 \log 3+2 \log 27}{\log 243-\log 27+\log 9}$ without using logarithm tables
b) Solve the equations;
i) $\log _{2} \mathrm{X}+2 \log _{4}(\mathrm{x}+1)=1$
ii) $4^{\mathrm{x}}=2+16^{\frac{x}{4}}$
(13 marks)
2. a) Determine the values of p, q, and r such that $4 x^{2}-3 x+12=p(x+q)^{2}+r$
b) The roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are α and $\alpha+2$. Prove that

$$
\begin{equation*}
\mathrm{b}^{2}=4\left(\mathrm{a}^{2}+\mathrm{ac}\right) . \tag{7marks}
\end{equation*}
$$

c) Three currents in a d.c. circuit satisfy the simultaneous equations

$$
\begin{aligned}
& \mathrm{I}_{1}+2 \mathrm{I}_{2}-\mathrm{I}_{3}=1 \\
& \mathrm{I}_{1}+3 \mathrm{I}_{2}-2 \mathrm{I}_{3}=0 \\
& \mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=4
\end{aligned}
$$

3) a) Simplify the expression $5 \times 4^{3 n+1}-20 \times 8^{2 n}$
b) Find the values of:
i) $\frac{\log 15625}{\log 25}-2$
ii) $\frac{8^{\frac{2}{3}}+4^{\frac{3}{2}}}{16^{\frac{3}{4}}}$
c) Given that $2 \log 8 \mathrm{~N}=\mathrm{p}, \log 22 \mathrm{~N}=\mathrm{q}$ and that $\mathrm{q}-\mathrm{p}=4$, determine the value of N .
4.a) Given that $\operatorname{Sin} \mathrm{A}=\frac{12}{13}$ and $\operatorname{Cos} \mathrm{B}=\frac{4}{5}$ where A is obtuse and B is acute, determine the values of ;
i) $\quad \operatorname{Sin}(A-B)$
ii) $\quad \operatorname{Tan}(A+B)$
b) Prove the identities:
i) $\frac{1-\cos \theta}{\sin \theta}+\frac{\sin \theta}{1-\operatorname{Cos} \theta}=2 \operatorname{Cosec} \theta$
ii) $\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
c) Given $\mathrm{t}=\tan 22 \frac{1}{2}^{0}$
i) Show that $\tan 45^{0}=\frac{2 t}{1-t^{2}}$;
ii) Hence solve the equation:

$$
\begin{equation*}
\mathrm{t}^{2}+2 \mathrm{t}-1=0 \text {, leaving your answer in surd form. } \tag{7marks}
\end{equation*}
$$

5.a) Express in polar co-ordinates the position :
i) $P_{1}(34) \quad$ ii) $P_{2}(-5-8)$
b) Obtain the Cartesian equations of;
i) $\mathrm{r}=5(1+2 \cos \theta)$
ii) $r=a \tan \theta$
c) Find the cartesian equations of the loci;
i) $x=t^{2}+4$ and $y=t-3$
ii) $\mathrm{x}=5 \cos \theta$ and $\mathrm{y}=4 \sin \theta$
6.a) solve the following equations for all values of θ between 0^{0} and 360°.

$$
\begin{equation*}
2 \sin \theta-3 \cos \theta=2 \tag{7marks}
\end{equation*}
$$

b) Solve for x in the following equations
i) $\log _{3}(2 x-3)=-1$
ii) $3^{2 x}=4\left(3^{x}\right)+3$ (4 marks)
c) Show that $\frac{1+\tan ^{2} B}{1+\cot ^{2} B}=\tan ^{2} B$ (6 marks)
7.a) Given that $\mathrm{pCosh} \mathrm{x}+\mathrm{qSinh} \mathrm{x}=3 \mathrm{e}^{\mathrm{x}}-2 \mathrm{e}^{-\mathrm{x}}$, determine the values of p and q . (7 marks)
b) Prove the identities:
i) $\operatorname{Cosh} 2 x=\frac{1+\tanh ^{2} x}{1-\tanh ^{2} x}$
ii) $\tanh 3 x=\frac{3 \tanh x+\tanh ^{3} x}{1+3 \tanh ^{2} x}$
c) Solve the equation:

$$
\begin{equation*}
3 \cosh x-7 \sinh x=2 \tag{7marks}
\end{equation*}
$$

8.a) Given the complex numbers $Z_{1}=4+3 j, Z_{2}=1+j$ and $Z_{3}=1-2 j$, express $\mathrm{Z}=\mathrm{Z}_{1}+\frac{Z_{2} Z_{3}}{Z_{2}+Z_{3}} \quad$ in the form $\mathrm{a}+\mathrm{bj}$.
b) Use De Moivre's theorem to prove that $\operatorname{Cos} 3 \theta=4 \operatorname{Cos}^{3} \theta-3 \operatorname{Cos} \theta$
c) Given that $Z=j$ is one root of the equation $Z^{4}-2 Z^{3}+3 Z^{2}-2 Z+2=0$, determine the other roots.

