MACHAKOS UNIVERSITY

University Examinations for 2019/2020Academic Year
SCHOOL OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
SECOND YEAR SECOND SEMESTER EXAMINATION FOR
DIPLOMA IN CIVIL ENGINEERING
BCECD 212: STRENGTH OF MATERIALS II

INSTRUCTIONS

- This paper consists of Five questions.
- Answer question ONE and any other TWO questions
- Maximum marks for each part of the question are as shown.

QUESTION ONE (30 MARKS) (COMPULSORY)

a) Figure 1 shows a simply supported rectagular beam 100 mm wide X 200 mm deep, spanning 4 m and carrying a concentrated load of 10 kN .

Determine the maximum bending stress induced in the beam.

Fig. 1
b) A simply supported beam with a cross section as shown in figure 2 carries a bending moment of 6 kNm .

Determine:
i. The maximum tensile stress
ii. The maximum compressive stress
(10 marks)
c) The retaining wall shown in figure 3 weighs $22 \mathrm{kN} / \mathrm{m}^{3} \cdot$ Calculate the factor of safety against overturning.

Fig. 3

QUESTION TWO (20 MARKS)

A dam wall having a trapezoidal section retains water as shown in figure 4. Check the stability of the dam with respect to:
a) Tension in the base
b) Overturning
c) Sliding
d) Crushing.

Take unit weight of masonry $=20 \mathrm{kN} / \mathrm{m}^{3}$
Coefficient of friction between dam base and soil $=0.6$
Allowable compressive stress $=400 \mathrm{kN} / \mathrm{m}^{2}$

Fig. 4

QUESTION THREE (20 MARKS)

A horizontal cantilever beam 2 m long has a T shaped section as shown in figure 2 . It carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ along its entire length. Calculate the maximum tensile and compressive stresses.

Fig. 2

Fig. 3

QUESTION FOUR (20 MARKS)

a) State Four assumptions made in the theory of simple bending.
b) An I - section beam has a cross section as shown in figure 3. It carries a vertical shear force of 100 kN . Calculate the shear stress at important points

Draw the shear stress distribution diagram over the depth of the section.

QUESTION FIVE (20 MARKS)

A composite beam consists of a timber section 75 mm wide and 150 mm deep with a 6 mm thick steel plate securely fixed to the bottom face.
a) Calculate the maximum stress in both timber and steel if the section is subjected to a sagging moment of 5 kNm .
$\mathrm{E}_{\mathrm{s}}=200 \mathrm{kN} / \mathrm{mm}^{2} ; \mathrm{E}_{\mathrm{t}}=12 \mathrm{kN} / \mathrm{mm}^{2}$
b) If the steel stress must not exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$ and the timber stress must not exceed $14 \mathrm{~N} / \mathrm{mm}^{2}$, determine the maximum moment that the beam can bear.

