

DATE: 11/11/2020

TIME: 2.00-4.00 PM

INSTRUCTIONS

- This paper consists of **Five** questions.
- Answer question **ONE** and any other **TWO** questions
- Maximum marks for each part of the question are as shown.

QUESTION ONE (30 MARKS) (COMPULSORY)

a) Figure 1 shows a simply supported rectagular beam 100mm wide X 200mm deep, spanning 4m and carrying a concentrated load of 10kN.

Determine the maximum bending stress induced in the beam. (10 marks)

b) A simply supported beam with a cross section as shown in figure 2 carries a bending moment of 6kNm.

Determine:

- i. The maximum tensile stress
- ii. The maximum compressive stress
- c) The retaining wall shown in figure 3 weighs 22kN/m³. Calculate the factor of safety against overturning. (10 marks)

QUESTION TWO (20 MARKS)

A dam wall having a trapezoidal section retains water as shown in figure 4. Check the stability of the dam with respect to:

- a) Tension in the base
- b) Overturning
- c) Sliding
- d) Crushing.

Take unit weight of masonry = 20kN/m³

Coefficient of friction between dam base and soil = 0.6

Allowable compressive stress = 400kN/m^2

(10 marks)

QUESTION THREE (20 MARKS)

A horizontal cantilever beam 2m long has a T shaped section as shown in figure 2. It carries a uniformly distributed load of 10kN/m along its entire length. Calculate the maximum tensile and compressive stresses.

QUESTION FOUR (20 MARKS)

- a) State Four assumptions made in the theory of simple bending. (4 marks)
- b) An I section beam has a cross section as shown in figure 3. It carries a vertical shear force of 100kN. Calculate the shear stress at important points
 Draw the shear stress distribution diagram over the depth of the section. (16 marks)

QUESTION FIVE (20 MARKS)

A composite beam consists of a timber section 75mm wide and 150mm deep with a 6mm thick steel plate securely fixed to the bottom face.

 Calculate the maximum stress in both timber and steel if the section is subjected to a sagging moment of 5kNm.

 $E_s = 200 kN/mm^2$; $E_t = 12 kN/mm^2$

b) If the steel stress must not exceed 120N/mm² and the timber stress must not exceed 14N/mm², determine the maximum moment that the beam can bear.